5 1. hydraulic pumps (pp. 47 90, gorla khan; wiki)wang44/courses/mech3492/...79 4. cavitation in...

9
77 Chapter 51. Hydraulic Pumps (pp. 4790, Gorla & Khan; Wiki) 1. Two Basic Categories of Pumps Positive Displacement (PD) Pumps Kinetic Pumps 2. Rotary Pumps (A General Introduction) Source of information: http://www.pumpschool.com Gear pumps Lobe pumps Vane pumps Screw pumps 3. Centrifugal Pumps 3.1 Basic Parts: There are three important parts: (1) the impeller, (2) volute casing, and (3) diffuser. There are two types of diffuser designs: (1) vaneless diffuser (volute), and (2) vaned diffuser. For the diffusion process, the vaneless diffuser is reasonably efficient and is best suited for a wide range of operations. It consists simply of an annular passage without vanes surrounding the impeller. The vaned diffuser is advantageous where small size is important. In this type of diffuser, vanes are used to diffuse the outlet kinetic energy of the fluid at a much higher rate than is possible by a simple increase in radius, and hence it is possible to reduce the length of flow path and diameter. A positive displacement pump causes a fluid to move by trapping a fixed amount of it then forcing (displacing) that trapped volume into the discharge pipe. For a positive displacement pump, energy is added intermittently to the fluid. A positive displacement pump can be further classified according to the mechanism used to move the fluid into: Reciprocating action pumps Rotary action pumps For a kinetic pump, energy is added continuously to the fluid. Kinetic pumps include: Centrifugal pumps Axial pumps Jet pumps Example of A Reciprocating Pump Example of A Centrifugal Pump with volute Example of A Centrifugal Pump with volute Example of Jet Pumps

Upload: others

Post on 12-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

77 

Chapter 5‐1. Hydraulic Pumps (pp. 47‐90, Gorla & Khan; Wiki)  

1. Two Basic Categories of Pumps  Positive Displacement (PD) Pumps 

           

Kinetic Pumps     

  

2. Rotary Pumps (A General Introduction) Source of information: http://www.pumpschool.com 

Gear pumps  Lobe pumps  Vane pumps  Screw pumps 

 

3. Centrifugal Pumps 3.1 Basic Parts: There are three important parts: (1) the impeller, (2) volute casing, and (3) diffuser.  

There are two types of diffuser designs: (1) vaneless diffuser (volute), and (2) vaned diffuser.  

For  the diffusion process,  the vaneless diffuser  is  reasonably efficient and  is best  suited  for a wide  range of operations. It consists simply of an annular passage without vanes surrounding the impeller. 

The vaned diffuser  is advantageous where small size  is  important.  In  this  type of diffuser, vanes are used  to diffuse  the outlet  kinetic  energy of  the  fluid  at  a much higher  rate  than  is possible by  a  simple  increase  in radius, and hence it is possible to reduce the length of flow path and diameter. 

         

A positive displacement pump causes a fluid to move by trapping a fixed amount of it then forcing (displacing) that trapped volume into the discharge pipe. For a positive displacement pump, energy is added intermittently to the fluid. A positive displacement pump can be further classified according to the mechanism used to move the fluid into:  Reciprocating action pumps  Rotary action pumps 

For a kinetic pump, energy is added continuously to the fluid. Kinetic pumps include:  Centrifugal pumps  Axial pumps  Jet pumps 

Example of A Reciprocating Pump 

   

Example of A Centrifugal  Pump with volute    

    

Example of A Centrifugal Pump with volute 

 

Example of Jet Pumps    

 

Page 2: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

78 

      

                            

Example of A Centrifugal Pump (Engineering Graph)  Example of Centrifugal Pumps  

(with a vaned diffuser ring) 

Example of A Centrifugal Pump (with a vaneless diffuser)  Question: for the vaneless 

diffuser shown in the left 

figure, what causes the 

change in the cross‐sectional 

area? 

Your answer is:____________ 

________________________. 

Page 3: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

79 

4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are the Undesirable Effects of Cavitation? 

                                   Undesirable Effects of Cavitation: 

Local pitting and erosion in the impeller; 

Vibrations and noises (sharp cracking sound) when cavitation takes place; 

Drop of efficiency due to vapour formation, which reduces the effective flow areas.  

Cavitation on a Propeller (an axial pump, used on, e.g. a boat/ship) 

http://www.youtube.com/watch?v=GpklBS3s7iU&feature=related 

http://www.youtube.com/watch?v=KExSxt‐lo5c&feature=related  

http://www.youtube.com/watch?v=R‐LAwH5wKpg&NR=1  

Effect of Cavitation on a Propeller  

Cavitation damage to a Francis turbine  

Cavitation on a Propeller (e.g., on a boat/ship) 

What causes cavitation? 

Local vaporization of the fluid when the local static pressure falls below the vapour pressure of the fluid. Small bubbles and cavities are formed. 

Page 4: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

80 

Chapter 5‐2. Hydraulic Turbines (Gorla & Khan, pp.91‐141; Wiki)  

1. Terminologies Related to A Hydropower Plant                                                                                

2. Impulse and Reaction Turbines    

 2.1 Impulse Hydraulic Turbines 

Hoover Dam generates more than 4 billion kilowatt-hours of electricity each year, enough to serve 1.3 million people.

Reference: http://www.greennews.com/hydropower.asp 

Reading/watching materials (Hydraulic turbines): http://en.wikipedia.org/wiki/Hydraulic_turbine 

http://en.wikipedia.org/wiki/Pelton_wheel 

http://en.wikipedia.org/wiki/Kaplan_turbine 

Draft tube  Tailrace 

Tailrace

Draft (Tailrace) tube 

Reading/watching materials (River hydroelectricity): http://www.youtube.com/watch?v=wvxUZF4lvGw&feature=related 

http://www.youtube.com/watch?v=fvYaCtjpMvk&feature=related 

http://www.youtube.com/watch?v=Hh2l_tlvZq0&feature=related 

http://www.youtube.com/watch?v=yRX7‐8izmbE&feature=related 

 Reading/watching materials (Ocean hydroelectricity): http://www.youtube.com/watch?v=HdWwtGB0K8U 

http://www.youtube.com/watch?v=lzc9‐V9DSew&feature=related 

http://www.youtube.com/watch?v=tSBACzRE3Gw&feature=related 

Page 5: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

81 

Impulse turbines change the velocity of a water jet flow. The jet impinges on the turbine's curved blades which change the direction of the flow. The resulting change in momentum (impulse) causes a force on the turbine blades. Since the turbine is spinning, the force acts through a distance (work) and the diverted water flow is left with diminished energy. 

 Prior to hitting the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine doesn't require a housing for operation. 

 Impulse turbines are most often used in very high head (>300m/984ft) applications. Consequently, the size of an impulse turbine can be compact. 

Examples of Impulse Hydraulic Turbines (Pelton Turbines/Wheels)  

        

      

    

Page 6: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

82 

               2.2 Reaction Hydraulic Turbines 

Reaction turbines are acted on by water, which changes pressure as it moves through the turbine and gives up its energy. They must be encased to contain the water pressure (or suction), or they must be fully submerged in the water flow.  In reaction turbines, pressure drop occurs in both fixed and moving blades.  Most water turbines in use are reaction turbines and are used in low (<30m/98ft) and medium (30‐300m/98‐984ft) head applications. For this reason, the size of a reaction turbine is usually larger than an impulse turbine (the latter of which is used for high‐head applications).    Typical reaction hydraulic turbines include: Kaplan turbines and Francis turbines. 

The Francis turbine is a type of water turbine that was developed by James B. Francis. It is an inward flow reaction turbine that combines radial and axial flow concepts. 

Francis turbines are the most common water turbine in use today. They operate in a head range of ten meters to several hundred meters and are primarily used for electrical power production. 

The Kaplan turbine is a propeller‐type water turbine which has adjustable blades. It was developed in 1913 by the Austrian professor Viktor Kaplan.  Kaplan turbines are now widely used throughout the world in high‐flow, low‐head power production. The Kaplan turbine was an evolution of the Francis turbine. Its invention allowed efficient power production in low‐head applications that was not possible with Francis turbines.  A Kaplan turbine is used where a large quantity of water is available at low heads and hence the blades must be long and have large chords so that they are strong enough to transmit the very high torque that arises. 

       Viktor Kaplan (Nov. 27, 1876 – Aug 23, 1934) Kaplan was an Austrian engineer and the inventor of the Kaplan turbine.

                  Lester Allan Pelton (Sept. 5, 1829 – Mar. 14, 1908) Pelton made his living as a carpenter and a millwright. He created the most efficient form of impulse water turbine.

          James Bicheno Francis (May 18, 1815 – Sept. 18, 1892) Francis was a British-American engineer.

Reading/watching materials:

http://www.youtube.com/watch?v=2WQ2Va1iICA&feature=related 

http://www.youtube.com/watch?v=4vGeUmbvcDk&feature=related 

http://www.youtube.com/watch?v=HzQPNpP55xQ 

http://www.youtube.com/watch?v=Nwpdc2DYlrg 

http://www.youtube.com/watch?v=hGI5c8JfT9Y 

Page 7: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

83 

Examples of Reaction Hydraulic Turbine (Francis Turbines/Wheels)  

            Francis runner, Three Gorges Dam Guide vanes at full flow setting  

                          Francis Inlet Scroll, Grand Coulee Dam                                                       Small Swiss‐made Francis turbine  

                       

Page 8: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

84 

Examples of Reaction Hydraulic Turbine (Kaplan Turbines/Wheels) 

                   

                   

                        

Page 9: 5 1. Hydraulic Pumps (pp. 47 90, Gorla Khan; Wiki)wang44/Courses/MECH3492/...79 4. Cavitation in Hydraulic Machinery (Pumps, Propellers and Turbines) 4.1 What is Cavitation? What are

 

85 

Comparison the Pelton, Francis and Kaplan Turbines