4see.pdf

62
1 CARBONYL COMPOUNDS ALDEHYDES AND KETONES

Upload: subhabrata-mabhai

Post on 16-Jul-2016

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4see.pdf

1

1

CARBONYL COMPOUNDSALDEHYDES AND KETONES

Page 2: 4see.pdf

2

2

Aldehydes and Ketones

CH

RO C

R

RO

Aldehyde Ketone

C OH3C

H118o

121oC C

H

H

H

H118o

121o

C OH3C

HC O

H3C

H

δ−δ+

Resonance Structures

Page 3: 4see.pdf

3

3

Some naturally occurring aldehydes and ketones

Page 4: 4see.pdf

4

4

Formalin, 35-40% formadehyde in waterPreservative that reacts with proteins causing them to resist decay Coelacanth, “prehistoric fish”

OH

Acrolein (2-propenal)

- lachrymator and pleasant "odor" from barbacuing meat

HCO

H

Page 5: 4see.pdf

5

5

Preparation of Carbonyls

1. Oxidation of Alcohols

Primary alcohols can be oxidized with pyridinium chlorochromate(PCC) to aldehydes. Ketones can be obtained from secondary alcohols by oxidation with sodium dichromate/sulfuric acid or KMnO4.

Page 6: 4see.pdf

6

6

Preparation of Carbonyls

2. Friedel Crafts AcylationAromatic ketones (acyl benzenes) can be produced from the reaction of benzenoid compounds with acyl chlorides, which are derived from carboxylic acids.

Page 7: 4see.pdf

7

7

Preparation of Carbonyls

3. Ozonolysis of AlkenesThe cleavage of an alkene with ozone produces carbonyl compounds. Recall that disubstituted double-bonded carbons become ketones and monosubstituted double-bonded carbons become aldehydes through ozonolysis.

Page 8: 4see.pdf

8

8

Preparation of Carbonyls 4. Aldehydes from Acid ChloridesAldehydes are easily oxidized to carboxylic acids but carboxylic acids are difficult to reduce to aldehydes. This difficulty is circumvented by converting a carboxylic acid into the more reactive acid chloride, which can be readily reduced to an aldehyde. Lithium tri-t-butoxyaluminum hydride is a mild reducing agent that displaces chloride with hydride to produce an aldehyde.

Page 9: 4see.pdf

9

9

Preparation of Carbonyls 4. Ketones from Acid Chlorides

Alkyl groups can replace the chlorine to produce ketones.

Page 10: 4see.pdf

10

10

A Grignard (or organolithium) reagent would react with an acid chloride to produce a ketone, but then the ketone would react immediately with additional Grignard reagent in the solution to form a tertiary alcohol. This problem is circumvented by using the weakest of the organometallicreagents, an organocuprate, which is too weak a nucleophile to add to a ketone.

Page 11: 4see.pdf

11

11

Page 12: 4see.pdf

12

12

Reactions of Aldehydes and Ketones

Page 13: 4see.pdf

13

13

Addition to Carbonyls: Simple Nucleophile

Carbonyls readily undergo Nucleophilic Attack

OC

δ−

δ+OCNuc

OCNuc

H

Nuc

H+

Alkoxide Alcohol

Aldehyde is more reactive than ketone

OC

R H

δ−

δ+OC

R R

δ−

δ+

Page 14: 4see.pdf

14

14

1. Reduction of CarbonylsThe most useful reagents for reducing aldehydes and ketones are the metal hydride reagents.The two most common metal hydride reagents are sodium borohydride (NaBH4) and lithium aluminum hydride (LiAlH4). These reagents contain a polar metal-hydrogen bond that serves as a source of the nucleophile hydride, H:-. LiAlH4 is a stronger reducing agent than NaBH4, because the Al-H bond is more polar than the B-H bond.

Page 15: 4see.pdf

15

15

MECHANISM LiAlH4 Reduction of RCHO and R2C=O

Page 16: 4see.pdf

16

16

2. Reaction of Carbonyls with Cyanide Ion• The reaction is conducted using sodium cyanide at pH 10 to yield

cyanohydrin.

Page 17: 4see.pdf

17

17

Page 18: 4see.pdf

18

18

Addition to Carbonyls: Primary Amines and Alcohols1. Addition of primary amimes

Condensation Reaction – Elimination of water

Page 19: 4see.pdf

19

19

Reaction between an amine and a carbonyl compound

Page 20: 4see.pdf

20

20

General reactionGeneral reaction

Page 21: 4see.pdf

21

21

DNP test for aldehydes & ketones gives crystalline hydrazones

C OCH3

CH3

N NH H

H

O2N

O2NC N

CH3

CH3

NH

NO2

NO2

+

2,4-diphenylhydrazine

acetonehydrazone of acetone

- H2O

2,4-dinitrophenylhydrazine orange crystals

Page 22: 4see.pdf

22

22

Nucleophilic Addition of Hydrazine:The Wolff-Kishner Reduction

Page 23: 4see.pdf

23

23

Mechanism: The Wolff-Kishner Reduction

Page 24: 4see.pdf

24

24

Addition to Carbonyls: Primary Amines and Alcohols2. Addition of alcohols

Weak nucleophiles “Acid catalyzed”

Page 25: 4see.pdf

25

25

Mechanism ofhemiacetal formation

Page 26: 4see.pdf

26

26

Mechanism of acetal formation

Page 27: 4see.pdf

27

27

Page 28: 4see.pdf

28

28

Addition to Carbonyls: Carbanions

Carbanion : strong Nucleophile- Grignard reagent : an organomagnesium bromide (RMgBr or ArMgBr). - Organolithium compounds (RLi and ArLi)

1. Addition of Grignard reagents

Page 29: 4see.pdf

29

29

Professor Victor Grignard (1912 Nobel Prize)Developed this chemistry with Professor P. A. Barbier

CR X

H

H

X = I or Br

δ+ δ−CH

HMgXR δ− δ+

Grignard Reagent

Ether

RCH2

MgXMg

Page 30: 4see.pdf

30

30

MgBr

C OH

H

EtherCH

HO MgBr C

H

HO H

Benzylalcohol

H3O+

C O MgBr1.

Ether

C OH

Triphenylmethanol

2. H3O+

Grignard reagent add to carbonyls to give alcohols

Page 31: 4see.pdf

31

31

OC

H H

OC

R HOC

R R

MgIPh MgIPh MgIPh

OCH H

H

Ph

OCR H

H

Ph

OCR R

H

Ph

+ + +

Primary alcohols Secondary alcohols tertiary alcohols

KetoneAldehydesFormaldehyde

Nucleophilic Addition Reactions

Page 32: 4see.pdf

32

32

Page 33: 4see.pdf

33

33

CR X

H

H

X = I or Br

δ+ δ−CH

HLiR δ− δ+ RCH2

Li

Organolithium Reagent

Li

Ether

2. Addition of Organolithium compounds (RLi and ArLi)

C O

R Liδ+

δ−

δ−

δ+

CR OADDITION

Li

CR O

Protonation

H

Alcohol

H+

H2O

Page 34: 4see.pdf

34

34

Problems

Page 35: 4see.pdf

35

35

Problems

Page 36: 4see.pdf

36

36

Oxidation of AldehydesThe most common oxidation reaction of carbonyl compounds is the oxidation of aldehydes to carboxylic acids. A variety of oxidizing agents can be used, including CrO3, Na2Cr2O7, K2Cr2O7 and KMnO4. Aldehydes are also oxidized selectively in the presence of other functional groups using silver(I) oxide in aqueous ammonium hydroxide. This is called Tollens reagent. Because ketones have no H on the carbonyl carbon, they do not undergo this oxidation reaction.

Page 37: 4see.pdf

37

37

Problems

Page 38: 4see.pdf

38

38

Reactivity of Enolate Ions

CO

CH

α Base

Page 39: 4see.pdf

39

39

Reactivity of Enolate Ions

Reaction on carbon is more common.

Page 40: 4see.pdf

40

40

1. Haloform reactionIf excess base and halogen are used, a methyl ketone is triply halogenated and then cleaved by base in the haloform reaction. The product are carboxylic and haloform.

+ -CX3

+CHX3

haloform

Page 41: 4see.pdf

41

41

2. Alkylation of Enolate Ionsเกิดขึ้นไดกับ ketone ที่มี α-hydrogen โดยทําปฏิกิริยากับเบสจะให enolate ion ซึ่งสามารถทําปฏิกิริยาไดอยางรวดเร็วกับ alkyl halide เกิดสารผลิตภัณฑคือ α- alkylketone

LDA = lithium diisopropylamide

C CH

O 1) LDA, THF2) R-X

ketone

C CR

O

α-alkylketone

Page 42: 4see.pdf

42

42

3. Aldol Condensationเกิดเมื่อ aldehyde หรือ ketone ที่มี α-hydrogen เปลี่ยนเปน enolate ion และทําหนาที่เปน nucleophile เพิ่มเขาไปที่ aldehyde หรือ ketone อีกโมเลกุลหนึ่ง เกิดสารผลิตภัณฑคือ β-hydroxy carbonyl หรือที่เรียกกันวา aldol (aldehyde + alcohol)

Page 43: 4see.pdf

43

43

Mechanism: Aldol Condensation

Page 44: 4see.pdf

44

44

สาร β-hydroxy aldehyde หรือ ketone ที่เกิดขึ้น ถายังมี α-hydrogen เหลืออยูจะสูญเสียโมเลกุลของน้ําไดงายโดยเกิดเปนสารที่ไมอิ่มตัวโดยมีพันธะที่ตําแหนง α,β เรียกวา α,β-unsaturated aldehyde หรือ ketone ซึง่สารที่เกิดขึ้นนี้เปนสารที่เสถียรมีการเคลื่อนที่ของ electron ไปไดทั่วทั้ง 4 atom

+ H2O

Page 45: 4see.pdf

45

45

Crossed Aldol Condensationเกิดระหวาง aldehyde หรือ ketone ตางชนิดกัน สวนใหญมักเลือกใหสารหนึ่งมี α-hydrogen และอีกสารหนึ่งไมมี α-hydrogen เพือ่ปองกันการเกิดผลิตภัณฑหลายชนิดผสมกัน

Page 46: 4see.pdf

46

46

Problem : จงเลือกสารตั้งตนที่ใชสําหรับสังเคราะหสารในแตละขอตอไปนี้

Page 47: 4see.pdf

47

47

CARBOXYLIC ACIDS

Page 48: 4see.pdf

48

48

Carboxylic Acids

OC

O H H2O+

OC

O H3O+

pKa = 4 - 5 , water = 16

OC

O H NaOH+

OC

OH2O

Na

Benzoic acid Sodium Benzoate

ClCClCl

COH

O HCClCl

COH

OHCClH

COH

O HCHH

COH

O

pKa = 0.7 1.48 2.86 4.76

Carboxylic acids are strong organic acids

Page 49: 4see.pdf

49

49

Highly PolarLow molecular weight acids show Appreciable Solubility in Water

High B.p.– Extensive H-bonds to themselves and water

Carboxylic Acids

Methanoic acid

Ethanoic acid

4-Bromo-2-ethylpentanoic acidrhubarbRed ants

O

H OH

Vinegar

O

H3C OH

Acetic acid

O

OH

OCH3

OAspirin

Page 50: 4see.pdf

50

50

Reactions of Carboxylic Acids

Page 51: 4see.pdf

51

51

Conversion of RCOOH to RCOClCarboxylic acids can't be converted to acid chlorides by using Cl- as a nucleophile, because the attacking nucleophile Cl- is a weaker base than the departing leaving group, -OH. But carboxylic acids can be converted to acid chlorides using thionyl chloride, SOCl2.

Page 52: 4see.pdf

52

52

Mechanism

Page 53: 4see.pdf

53

53

Conversion of RCOOH to (RCO)2OCarboxylic acids cannot be readily converted to anhydrides, but dicarboxylic acid can be converted to cyclic anhydrides by heating to high temperatures. This is a dehydration reaction because a water molecule is lost from the diacid.

OHOH

O

O

O

O

O

+ H2O

Page 54: 4see.pdf

54

54

Conversion of RCOOH to RCOORTreatment of a carboxylic acid with an alcohol in the presence of an acid catalyst forms an ester. This reaction is called a Fischer esterification.

Page 55: 4see.pdf

55

55

Mechanism

R OH

O

Page 56: 4see.pdf

56

56

Esterification of a carboxylic acid occurs in the presence of acid but not in the presence of base. Base removes a proton from the carboxylic acid, forming a carboxylate anion, which does not react with an electron-rich nucleophile.

Page 57: 4see.pdf

57

57

Intramolecular esterification of γ- and δ-hydroxy carboxylic acids forms five- and six-lactones.

Page 58: 4see.pdf

58

58

Draw the products of each reaction

Page 59: 4see.pdf

59

59

Conversion of RCOOH to RCONR’2The direct conversion of a carboxylic acid to an amide with NH3 or an amine is very difficult. The problem is that carboxylic acids are strong organic acids and NH3 and amines are bases, so they undergo an acid-base reaction to form an ammonium salt before any nucleophilic substitution occurs.

The overall conversion of RCOOH to RCONH2 requires two steps:[1] Acid-base reaction of RCOOH with NH3 to form an ammonium salt [2] Dehydration at high temperature (>100 oC)

Page 60: 4see.pdf

60

60

A carboxylic acid and an amine readily react to form an amide in the presence of an additional reagent, dicyclohexylcarbodiimide (DCC), which is converted to the by-product dicyclohexylurea in the course of the reaction.

Page 61: 4see.pdf

61

61

Mechanism

R OH

O

R'NH2

Page 62: 4see.pdf

62

62

Cleaning Action of Soaps