4nodequad

Upload: syed-rizwan-saleem

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 4NodeQuad

    1/7

    MANE 4240 & CIVL 4240

    Introduct ion to Finite Elements

    Four-noded

    rectangular element

    Prof. Suvranu De

    Reading assignment:

    Logan 10.2 + Lecture notes

    Summary:

    Computation of shape functions for 4-noded quad

    Special case: rectangular element

    Properties of shape functions

    Computation of strain-displacement matrix

    Example problem

    Hint at how to generate shape functions of higher order

    (Lagrange) elements

    Finite element formulation for 2D:

    Step 1: Divide the body into finite elements connected to each

    other through special points (nodes)

    x

    y

    Su

    STu

    v

    x

    px

    py

    Element e

    3

    2

    1

    4

    y

    xv

    u

    1

    2

    3

    4

    u1

    u2

    u3

    u4

    v4

    v3

    v2

    v1

    =

    4

    4

    3

    3

    2

    2

    1

    1

    v

    u

    v

    u

    v

    u

    v

    u

    d

    Displacement approximation in terms of shape functions

    Strain approximation in terms of strain-displacement matrix

    Stress approximation

    Summary: For each element

    Element stiffness matrix

    Element nodal load vector

    dNu =

    dBD=

    dB =

    = eVk dVBDBT

    S

    eT

    b

    e

    f

    SS

    T

    f

    V

    TdSTdVXf += NN

  • 7/28/2019 4NodeQuad

    2/7

    Constant Strain Triangle (CST) : Simplest 2D finite element

    3 nodes per element

    2 dofs per node (each node can move in x- and y- directions)

    Hence 6 dofs per element

    x

    y

    u3

    v3v1

    u1

    u2

    v2

    2

    3

    1

    (x,y)

    vu

    (x1,y1)

    (x2,y2)

    (x3,y3)

    332211

    332211

    vy)(x,Nvy)(x,Nvy)(x,Ny)(x,v

    uy)(x,Nuy)(x,Nuy)(x,Ny)(x,u

    ++

    ++

    Formula for the shape functions are

    A

    ycxbaN

    A

    ycxbaN

    A

    ycxbaN

    2

    2

    2

    3333

    2222

    1111

    ++=

    ++=

    ++=

    12321312213

    31213231132

    23132123321

    33

    22

    11

    x1

    x1

    x1

    det2

    1

    xxcyybyxyxa

    xxcyybyxyxa

    xxcyybyxyxa

    y

    y

    y

    triangleofareaA

    ===

    ===

    ===

    ==

    where

    x

    y

    u3

    v3v1

    u1

    u2

    v2

    2

    3

    1

    (x,y)

    vu

    (x1,y1)

    (x2,y2)

    (x3,y3)

    Approximation of the strains

    x y

    u

    v

    u v

    x

    y

    x

    B dy

    y x

    = =

    +

    =

    =

    332211

    321

    321

    332211

    321

    321

    000000

    2

    1

    y)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,N

    y)(x,N0

    y)(x,N0

    y)(x,N0

    0y)(x,N

    0y)(x,N

    0y)(x,N

    bcbcbc

    cccbbb

    A

    xyxyxy

    yyy

    xxxB

    =

    =

    3

    3

    2

    2

    1

    1

    321

    321

    v

    u

    v

    u

    v

    u

    N0N0N0

    0N0N0N

    y)(x,v

    y)(x,uu

    dNu =

    Approximation ofdisplacements Element stiffness matrix

    = eVk dVBDBT

    Atke

    VBDBdVBDB

    TT== t=thickness of the elementA=surface area of the element

    Since B is constant

    t

    A

    Element nodal load vector

    S

    eT

    b

    e

    f

    SST

    f

    VT dSTdVXf += NN

  • 7/28/2019 4NodeQuad

    3/7

    Class exercise

    = eTS

    S

    T

    SdSTf N

    For the CST shown below, compute the vector of nodal loads due to surface traction

    x

    y

    fS3x

    fS3yfS2y fS2x

    2 3

    1

    =e

    lS

    along

    T

    SdSTtf

    31 32N

    py=-1(0,0) (1,0)

    Class exercise

    =

    el

    Salong

    T

    SdSTtf

    31 32N

    x

    y

    fS3x

    fS3yfS2y fS2x

    2 3

    1

    py=-1

    =

    1

    0ST

    The only nonzero nodal loads are

    = =1

    0 3222 x

    yalongSdxpNtf

    y

    = =1

    0 3233 x

    yalongSdxpNtf

    y

    ( ) ( )

    x

    xxy

    xy

    y

    xy

    y

    y

    y

    xyy

    A

    xyyyxyx

    A

    xba

    A

    ycxbaN

    yalong

    =

    =

    =

    =

    +=

    +=

    ++=

    =

    1

    )(

    )1(

    0x1

    0x1

    x1

    det

    )1(

    x1

    x1

    x1

    det

    222

    231

    1

    3

    2

    11

    1

    33

    22

    11

    11

    13311322

    0

    222

    322

    (can you derive this simpler?)

    2

    )1)(1(1

    0

    1

    0 3222

    t

    dxxt

    dxpNtf

    x

    xyalongS y

    =

    =

    =

    =

    =

    Now compute

    = =1

    0 3233 x

    yalongSdxpNtf

    y

    4-noded rectangular element with edges parallel to the

    coordinate axes:

    x

    y

    (x,y)

    vu

    (x1,y1)(x2,y2)

    (x3,y3)

    1 2

    34(x4,y4)

    2b

    2a

    =

    4

    1

    iy)u(x,y)(x,ui

    iN

    =

    4

    1

    iy)v(x,y)(x,vi

    iN

    4 nodes per element 2 dofs per node (each node can move in x- and y- directions)

    8 dofs per element

  • 7/28/2019 4NodeQuad

    4/7

    Generation of N1:

    x

    y

    1 2

    34

    2b

    2a

    N1

    l1(y)

    l1(x)

    1

    1

    21

    21 )(

    xx

    xxxl

    =At node 1

    has the property

    0)(

    1)(

    21

    11

    =

    =

    xl

    xl

    Similarly

    41

    41 )(

    yy

    yyyl

    =

    has the property

    0)(

    1)(

    41

    11

    =

    =

    yl

    yl

    Hence choose the shape function at node 1 as

    ( )( )4241

    4

    21

    2111

    4

    1)()( yyxx

    abyy

    yy

    xx

    xxylxlN =

    ==

    ( )( )

    ( )( )

    ( )( )

    ( )( )134

    243

    312

    421

    4

    1

    4

    1

    4

    1

    4

    1

    yyxxab

    N

    yyxxab

    N

    yyxxab

    N

    yyxxab

    N

    =

    =

    =

    =

    Using similar arguments, choose

    Properties of the shape functions:

    1. The shape functions N1, N2 , N3 and N4 are bilinear functions

    of x and y

    =nodesotherat

    inodeatyx

    0

    ''1),(N

    i

    3. Completeness

    yy

    xx

    i

    i

    =

    =

    =

    =

    =

    =

    4

    1i

    i

    4

    1i

    i

    4

    1i

    i

    N

    N

    1N

    2. Kronecker delta property

    3. Along lines parallel to the x- or y-axes, the shape functions

    are linear. But along any other line they are nonlinear.

    4. An element shape function related to a specific nodal point is

    zero along element boundaries not containing the nodal point.

    5. The displacement field is continuous across elements

    6. The strains and stresses are not constant within an element

    nor are they continuous across element boundaries.

  • 7/28/2019 4NodeQuad

    5/7

    =

    =

    4

    4

    3

    3

    2

    2

    1

    1

    B

    44332211

    4321

    4321

    xy

    v

    u

    v

    u

    v

    u

    v

    u

    y)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,Ny)(x,N

    y)(x,N0

    y)(x,N0

    y)(x,N0

    y)(x,N0

    0y)(x,N

    0y)(x,N

    0y)(x,N

    0y)(x,N

    xyxyxyxy

    yyyy

    xxxx

    y

    x

    The strain-displacement relationship

    =

    yyxxyyxxyyxxyyxx

    xxxxxxxx

    yyyyyyyy

    abB

    13243142

    3412

    1234

    0000

    0000

    4

    1

    Notice that the strains (and hence the stresses) are NOT constant within an element

    The B-matrix (strain-displacement) corresponding to this element is

    We will denote the columns of the B-matrix as

    Computation of the terms in the stiffness matrix of 2D elements (recap)

    x

    y

    (x,y)

    v

    u

    1 2

    34v4

    v3

    v2v

    1

    u1u

    2

    u3u4

    1 2 3 4

    1 2 3 4

    1 1 2 2 3 3 4 4

    N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

    N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

    N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y)

    x x x x

    y y y y

    y x y x y x y x

    u1 v1 u2 v2 u3 u4

    v3 v4

    1 1

    1

    1

    1

    1

    N (x,y)0

    N (x,y )0 ; ; and so on...

    N (x,y)N (x,y )

    u v

    x

    B By

    yx

    = =

    = eVk dVBDBT

    1 1 12 1 3 14 1 5 1 6 1 7 18

    2 1 2 2 2 3 2 4 2 5 26 2 7 2 8

    31 3 2 33 3 4 35 36 37 3 8

    4 1 4 2 4 3 4 4 4 5 46 4 7 4 8

    51 52 53 54 55 5 6 5 7 5 8

    61 6 2 63 6 4 65 66 67 6 8

    71 7 2 73 7 4 75 76 77 7 8

    8 1 8 2 8 3 8 4 8 5 86 8 7 8 8

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    k k k k k k k k

    =

    u1

    v1

    u2

    v2

    u3

    u4

    v3

    v4

    u1 v1u

    2v

    2 u3u4v3

    v4

    The stiffness matrix corresponding to this element is

    which has the following form

    1 1 1 1 1 2

    1 1 1 1

    T T T

    11 12 13

    T T

    21 21

    B D B dV; B D B dV; B D B dV,...

    B D B dV; B D B dV;.....

    e e e

    e e

    u u u v u uV V V

    v u v vV V

    k k k

    k k

    = = =

    = =

    The individual entries of the stiffness matrix may be computed as follows

    Notice that these formulae are quite general (apply to all kinds

    of finite elements, CST, quadrilateral, etc) since we have not

    used any specific shape functions for their derivation.

  • 7/28/2019 4NodeQuad

    6/7

    Example

    x

    y

    2

    34

    1

    300 psi

    1000 lb

    3 in

    2 inThickness (t) = 0.5 in

    E= 30106psi

    =0.25

    (a) Compute the unknown nodal displacements.

    (b) Compute the stresses in the two elements.

    This is exactly the same problem that we solved in last class, except

    now we have to use a single 4-noded element

    Realize that this is a plane stress problem and therefore we need to use

    psiE

    D7

    210

    2.100

    02.38.0

    08.02.3

    2

    100

    01

    01

    1

    =

    =

    Write down the shape functions

    ( )( )

    ( )( )

    ( )( )

    ( )( )6

    )3(

    4

    1

    64

    1

    6

    )2(

    4

    1

    6

    )2)(3(

    4

    1

    134

    243

    312

    421

    yxyyxx

    abN

    xyyyxx

    abN

    yxyyxx

    abN

    yxyyxx

    abN

    ==

    ==

    ==

    ==

    20

    23

    03

    00

    yx

    We have 4 nodes with 2 dofs per node=8dofs. However, 5 of these are fixed.

    The nonzero displacements are

    u2 u3 v3

    Hence we need to solve

    =

    yfv

    u

    u

    kkk

    kkk

    kkk

    33

    3

    2

    333231

    232221

    131211

    0

    0

    Need to compute only the relevant terms in the stiffness matrix

    2 2 2 3 2 3

    3 2 3 3 3 3

    3 2 3 3 3 3

    T T T

    11 12 13

    T T T

    21 22 13

    T T T

    31 22 13

    B D B dV; B D B dV; B D B dV

    B D B dV; B D B dV; B D B dV

    B D B dV; B D B dV; B D B dV

    e e e

    e e e

    e e e

    u u u u u vV V V

    u u u u u vV V V

    v u v u v vV V V

    k k k

    k k k

    k k k

    = = =

    = = =

    = = =

    u2 u3 v3

    =

    =

    6

    06

    )2(

    0

    2

    2

    2

    x

    y

    y

    N

    x

    N

    B u

    =

    =

    6

    06

    0

    3

    3

    3

    x

    y

    y

    N

    x

    N

    B u

    =

    =

    6

    6

    00

    3

    3

    3

    y

    x

    x

    N

    y

    NB v

    Compute only the relevant columns of the B matrix

  • 7/28/2019 4NodeQuad

    7/7

    2 2

    T

    11

    3 2

    8 7 5 2

    0 0

    7

    B D B dV

    20.5 (0.1067 10 0.533 10 )( ) 3.33 10

    6

    0 .656 10

    e u uV

    x y

    k

    yx dxdy

    = =

    =

    = +

    =

    Similarly compute the other terms

    How do we compute f3y

    ySyff

    310003 +=

    lb

    dxx

    dxNtf

    x

    x edgealongS y

    225

    2

    3150

    3)300)(5.0(

    )300(

    3

    0

    3

    0 4333

    =

    =

    =

    =

    =

    =

    4 3

    36 22334

    3

    xxyNN

    yy

    edge =

    ==

    ==

    lbffySy

    1225100033

    =+=

    x

    y

    a a12

    3 4

    b

    b

    Corner nodes

    +=

    =

    +

    =

    +

    +=

    224223

    222221

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    b

    yby

    a

    xaxN

    b

    yby

    a

    xaxN

    b

    yby

    a

    xaxN

    b

    yby

    a

    xaxN

    5

    6

    7

    89

    Midside nodes

    +=

    =

    =

    +

    =

    2

    22

    2822

    22

    7

    2

    22

    2622

    22

    5

    2

    )(

    2

    )(

    2

    )(

    2

    )(

    b

    yb

    a

    xaxN

    b

    yby

    a

    xaN

    b

    yb

    a

    xaxN

    b

    yby

    a

    xaN

    Center node

    2 2 2 2

    9 2 2

    a x b yN

    a b

    =

    How about a 9-noded rectangle?

    Question: Can you generate the shape functions of a 16-noded rectangle?

    Note: These elements, whose shape functions are generated by multiplying the

    shape functions of 1D elements, are said to belong to the Lagrange family