483f12l04.orbmech

52
Orbital Mechanics ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Lecture #03 – September 8, 2011 ENAE 483/484 project organization Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories Relative orbital motion (“proximity operations”) 1 © 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: aarish-behzaad

Post on 27-Oct-2015

22 views

Category:

Documents


1 download

DESCRIPTION

vbb

TRANSCRIPT

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Orbital Mechanics• Lecture #03 – September 8, 2011• ENAE 483/484 project organization• Planetary launch and entry overview• Energy and velocity in orbit• Elliptical orbit parameters• Orbital elements• Coplanar orbital transfers• Noncoplanar transfers• Time in orbit• Interplanetary trajectories• Relative orbital motion (“proximity operations”)

1

© 2011 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Notes

• There will be no live lecture on Tuesday, 9/13 - a lecture video will be posted

• Looking ahead - under current plans, the following lectures will also be video only– Tuesday, 9/20– Thursday, 9/22– Thursday, 9/29

• As always, future plans are subject to change at any time, so keep checking the syllabus at spacecraft.ssl.umd.edu

2

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Exo-SPHERES Project Team• Systems Integration

– Gabriel Charalambides– Raymond Russell– Terry Van Wormer

• Mission Planning and Analysis– Justin Brannan– Josh Fogel– Samuel Lewis

• Loads, Structures, and Mechanisms– Andrei Arevalo– Daniel Skeberdis– Walter McGee

• Power, Propulsion, and Thermal– Henry Elder– Ethan Evans– Angela Maki

• Crew Systems– Pratik Saripalli– Sean Li

• Avionics and Software– Reuben Abraham– Anthony Morales– Sanka Perera– Sean Hersey– Michael Tsu– Benjamin Krosner

3

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Human/Robotic Servicing Project Team• Systems Integration

– Donald Clabaugh– Bradley Hood– Brian Chinn

• Mission Planning and Analysis– Marco Colleluori– Elizabeth Lato– Lucrecio Alberto

• Loads, Structures, and Mechanisms– David Thoerig– Jason Lu– William Gross

• Power, Propulsion, and Thermal– Richard Burcat– Grant Barrett– Jamil Shehadeh

• Crew Systems– Jason Niemeyer– Sahil Ambani

• Avionics and Software– Matthew Westerfield– Joseph Chung– Alexander Nelson

4

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Space Launch - The Physics

• Minimum orbital altitude is ~200 km

• Circular orbital velocity there is 7784 m/sec

• Total energy per kg in orbit

Potential Energy

kg in orbit= − µ

rorbit+

µ

rE= 1.9× 106 J

kg

Kinetic Energy

kg in orbit=

12

µ

r2orbit

= 30× 106 J

kg

Total Energy

kg in orbit= KE + PE = 32× 106 J

kg

5

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Theoretical Cost to Orbit

• Convert to usual energy units

• Domestic energy costs are ~$0.05/kWhr

Theoretical cost to orbit $0.44/kg

Total Energy

kg in orbit= 32× 106 J

kg= 8.888

kWhrs

kg

6

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Actual Cost to Orbit

• Delta IV Heavy – 23,000 kg to LEO– $250 M per flight

• $10,900/kg of payload• Factor of 25,000x higher

than theoretical energy costs!

7

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

What About Airplanes?

• For an aircraft in level flight,

• Energy = force x distance, so

• For an airliner (L/D=25) to equal orbital energy, d=81,000 km (2 roundtrips NY-Sydney)

8

Total Energykg

=thrust× distance

mass=

Td

m=

gd

L/D

WeightThrust

=LiftDrag

, ormg

T=

L

D

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Equivalent Airline Costs?

• Average economy ticket NY-Sydney round-round-trip (Travelocity 9/3/09) ~$1300

• Average passenger (+ luggage) ~100 kg• Two round trips = $26/kg

– Factor of 60x more than electrical energy costs– Factor of 420x less than current launch costs

• But… you get to refuel at each stop!

9

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Equivalence to Air Transport

• 81,000 km ~ twice around the world

• Voyager - one of only two aircraft to ever circle the world non-stop, non-refueled - once!

10

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Orbital Entry - The Physics

• 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66kW/kg

• Pure graphite (carbon) high-temperature material: cp=709 J/kg°K

• Orbital energy would cause temperature gain of 45,000°K!

• (If you’re interesting in how this works out, you can take ENAE 791 Launch and Entry Vehicle Design next term...)

11

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Newton’s Law of Gravitation• Inverse square law

• Since it’s easier to remember one number,

• If you’re looking for local gravitational acceleration,

F =

GMm

r2

µ = GM

g =

µ

r2

12

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Some Useful Constants

• Gravitation constant µ = GM– Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2 – Sun: 1.327x1011 km3/sec2

• Planetary radii– rEarth = 6378 km

– rMoon = 1738 km

– rMars = 3393 km

13

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Energy in Orbit

• Kinetic Energy

• Potential Energy

• Total Energy

<--Vis-Viva Equation

K.E. =1

2mv

2=!

K.E.

m=

v2

2

P.E. = !µm

r="

P.E.

m= !

µ

r

Constant =v2

2!

µ

r= !

µ

2a

14

v2 = µ

�2r− 1

a

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Classical Parameters of Elliptical Orbits

15

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

16

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular and parabolic orbits

vcircular =

!

µ

r

vescape =

!

r

vescape =!

2vcircular

17

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Hohmann Transfer

vperigee

v1

vapogee

v2r1

r2

18

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver Velocities• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =

!

µ

r1

vperigee =

!

µ

r1

!

2r2

r1 + r2

!v1 =

!

µ

r1

"!

2r2

r1 + r2

! 1

#

19

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

!v2 =

!

µ

r2

"

1 !

!

2r1

r1 + r2

#

vapogee =

!

µ

r2

!

2r1

r1 + r2

v2 =

!

µ

r2

20

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Implications of Hohmann Transfers• Implicit assumption is made that velocity changes

instantaneously - “impulsive thrust”• Decent assumption if acceleration ≥ ~5 m/sec2

(0.5 gEarth)• Lower accelerations result in altitude change

during burn ⇒ lower efficiencies and higher ΔVs• Worst case is continuous “infinitesimal” thrusting

(e.g., ion engines) ⇒ ΔV between circular coplanar orbits r1 and r2 is

21

∆VLow Thrust = Vc1 − Vc2 =

�µ

r1−�

µ

r2

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Limitations on Launch Inclinations

Equator

22

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Differences in Inclination

Line of Nodes

23

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Choosing the Wrong Line of Apsides

24

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Simple Plane Change

vperigee

v1vapogee

v2

Δv2

25

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Optimal Plane Change

vperigee v1 vapogee

v2

Δv2Δv1

26

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver with Plane Change Δi1

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =�

µ

r1

vp =�

µ

r1

�2r2

r1 + r2

∆v1 =�

v21 + v2

p − 2v1vp cos ∆i1

27

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver with Plane Change Δi2

• Initial vehicle velocity

• Needed final velocity

• Delta-V

∆v2 =�

v22 + v2

a − 2v2va cos ∆i2

va =�

µ

r2

�2r1

r1 + r2

v2 =�

µ

r2

28

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Sample Plane Change Maneuver

Optimum initial plane change = 2.20°

29

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Calculating Time in Orbit

30

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

➥M=mean anomaly

P = 2π

�a3

µ

n =�

µ

a3

M = nt = E − e sinE

31

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a (1− e cos E)

tanθ

2=

�1 + e

1− etan

E

2

Ei+1 = nt + e sinEi

32

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time in Orbit

• Hohmann transfer from LEO to GEO– h1=300 km --> r1=6378+300=6678 km

– r2=42240 km

• Time of transit (1/2 orbital period)

a =12

(r1 + r2) = 24, 459 km

ttransit =P

2= π

�a3

µ= 19, 034 sec = 5h17m14s

33

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328; 2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317

Ej+1 = nt + e sin Ej = 1.783 + 0.7270 sin Ej

n =�

µ

a3= 1.650x10−4 rad

sec

e = 1− rp

a= 0.7270

34

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position (cont.)

Have to be sure to get the position in the proper quadrant - since the time is less than 1/2 the period, the spacecraft has yet to reach apogee --> 0°<θ<180°

35

E = 2.317

tanθ

2=

�1 + e

1− etan

E

2=⇒ θ = 160 deg

r = a(1− e cosE) = 12, 387 km

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Basic Orbital Parameters

• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum!h = !r ! !v

p = a(1 ! e2)

r =p

1 + e cos !

rp = a(1 ! e) ra = a(1 + e)

h =

!

µp

36

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit

37

r =p

1 + e cos θ

vr =dr

dt=

d

dt

�p

1 + e cos θ

�=−p(−e sin θ dθ

dt )(1 + e cos θ)2

vr =pe sin θ

(1 + e cos θ)2dθ

dt

1 + e cos θ =p

r⇒ vr =

r2 dθdt e sin θ

p−→h = −→r ×−→v

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit (cont.)

38

�h = �r × �v h = rv cos γ = r

�rdθ

dt

�= r2

dt

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conics• Simple approximation to multi-body motion (e.g.,

traveling from Earth orbit through solar orbit into Martian orbit)

• Treats multibody problem as “hand-offs” between gravitating bodies --> reduces analysis to sequential two-body problems

• Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here is a very simple, convenient, and not altogether accurate method for performing this calculation. Results will be accurate to a few percent, which is adequate at this level of design analysis.

39

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Lunar Orbit Insertion• v2 is velocity of moon

around Earth• Moon overtakes

spacecraft with velocity of (v2-vapogee)

• This is the velocity of the spacecraft relative to the moon while it is effectively “infinitely” far away (before lunar gravity accelerates it) = “hyperbolic excess velocity”

40

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Planetary Approach Analysis

• Spacecraft has vh hyperbolic excess velocity, which fixes total energy of approach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approach is tangent to desired final orbit at periapse

v =

!

v2

h+

r

!v =

!

v2

h+

r!

!

µ

r

v2

2− µ

r= − µ

2a=

v2h

2

41

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conic - Lunar Approach• Lunar orbital velocity around the Earth

• Apogee velocity of Earth transfer orbit from initial 400 km low Earth orbit

• Velocity difference between spacecraft “infinitely” far away and moon (hyperbolic excess velocity)

vm =

!

µ

rm

=

!

398, 604

384, 400= 1.018

km

sec

va = vm

!

2r1

r1 + rm

= 1.018

!

6778

6778 + 384, 400= 0.134

km

sec

vh = vm ! va = vm = 1.018 ! 0.134 = 0.884km

sec

42

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conic - Lunar Orbit Insertion

• The spacecraft is now in a hyperbolic orbit of the moon. The velocity it will have at the perilune point tangent to the desired 100 km low lunar orbit is

• The required delta-V to slow down into low lunar orbit is

vpm =

!

v2

h +2µm

rLLO=

!

1.0182 +2(4667.9)

1878= 2.451

km

sec

!v = vpm ! vcm = 2.451 !

!

4667.9

1878= 0.874

km

sec

43

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

ΔV Requirements for Lunar Missions

To:

From:

Low EarthOrbit

LunarTransferOrbit

Low LunarOrbit

LunarDescentOrbit

LunarLanding

Low EarthOrbit

3.107km/sec

LunarTransferOrbit

3.107km/sec

0.837km/sec

3.140km/sec

Low LunarOrbit

0.837km/sec

0.022km/sec

LunarDescentOrbit

0.022km/sec

2.684km/sec

LunarLanding

2.890km/sec

2.312km/sec

44

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

LOI ΔV Based on Landing Site

45

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

LOI ΔV Including Loiter Effects

46

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Interplanetary “Pork Chop” Plots

• Summarize a number of critical parameters– Date of departure– Date of arrival– Hyperbolic energy (“C3”)– Transfer geometry

• Launch vehicle determines available C3 based on window, payload mass

47

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Hill’s Equations (Proximity Operations)

˙ ̇ x = 3n2x + 2n˙ y + adx

˙ ̇ y = −2n˙ x + ady

˙ ̇ z = −n 2z + adz

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

48

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Clohessy-Wiltshire (“CW”) Equations

x(t) = 4 − 3cos(nt)[ ]xo +sin(nt)

n˙ x o +

2n

1− cos(nt)[ ] ˙ y o

y(t) = 6 sin(nt)− nt[ ]xo + yo −2n

1−cos(nt)[ ] ˙ x o +4sin(nt)− 3nt

n˙ y o

z( t) = zo cos(nt) +˙ z on

sin(nt)

˙ z ( t) = −zonsin(nt) + ˙ z o sin(nt)

49

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001

50

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“R-Bar” Approach

• Approach from along the radius vector (“R-bar”)

• Gravity gradients decelerate spacecraft approach velocity - low contamination approach

• Used for Mir, ISS docking approaches

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and

Resupply, 15th USU Small Satellite Conference, 2001

51

Orbital MechanicsENAE 483/788D - Principles of Space Systems Design

U N I V E R S I T Y O FMARYLAND

References for This Lecture• Wernher von Braun, The Mars Project University of

Illinois Press, 1962• William Tyrrell Thomson, Introduction to Space

Dynamics Dover Publications, 1986• Francis J. Hale, Introduction to Space Flight Prentice-

Hall, 1994• William E. Wiesel, Spaceflight Dynamics MacGraw-

Hill, 1997• J. E. Prussing and B. A. Conway, Orbital Mechanics

Oxford University Press, 1993

52