document4

15
This article was downloaded by: [IMPA Inst de Matematica Pura & Aplicada] On: 26 September 2013, At: 06:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Partial Differential Equations Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lpde20 Non-uniqueness in the equilibrium shape of a confined plasma David G. Schaeffer a a Messachusetts Institute of Technology, Cambridge Published online: 23 Dec 2010. To cite this article: David G. Schaeffer (1977) Non-uniqueness in the equilibrium shape of a confined plasma , Communications in Partial Differential Equations, 2:6, 587-600, DOI: 10.1080/03605307708820040 To link to this article: http://dx.doi.org/10.1080/03605307708820040 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Upload: carlos-almendras-montero

Post on 21-Jul-2016

223 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Document4

This article was downloaded by: [IMPA Inst de Matematica Pura & Aplicada]On: 26 September 2013, At: 06:45Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: MortimerHouse, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Partial Differential EquationsPublication details, including instructions for authors and subscriptioninformation:http://www.tandfonline.com/loi/lpde20

Non-uniqueness in the equilibrium shape of aconfined plasmaDavid G. Schaeffer aa Messachusetts Institute of Technology, CambridgePublished online: 23 Dec 2010.

To cite this article: David G. Schaeffer (1977) Non-uniqueness in the equilibrium shape of a confined plasma ,Communications in Partial Differential Equations, 2:6, 587-600, DOI: 10.1080/03605307708820040

To link to this article: http://dx.doi.org/10.1080/03605307708820040

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensorsmake no representations or warranties whatsoever as to the accuracy, completeness, or suitabilityfor any purpose of the Content. Any opinions and views expressed in this publication are the opinionsand views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy ofthe Content should not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings,demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arisingdirectly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial orsystematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distributionin any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found athttp://www.tandfonline.com/page/terms-and-conditions

Page 2: Document4

COMM. IN PARTIAL DIFFERENTIAL EQUATIONS, 2(6) , 587-600 (1977)

NON-UNIQUENESS I N THE EQUILIBRIUM SHAPE OF A CONFINED

PLASMA ' David G . Schaeffer*

Messachusetts I n s t i t u t e of Technology Cambridge, Massachusetts 02139

R . Temam [3] has r e c e n t l y proved t h e e x i s t e n c e of

s o l u t i o n s f o r t h e equat ions of a model desc r ib ing t h e

equ i l ib r ium of a confined plasma. I n t h i s paper we

consider a s l i g h t l y modified vers ion [ 1 , 4 ] of Temam's

o r i g i n a l problem which, a f t e r some i n i t i a l r e d u c t i o n s ,

may be formulated a s t h e fol lowing non l inear D i r i c h l e t

problem:

(1) - A U = AU i n n + ( l a ) u 1 an i s a cons tan t ( t o be determined)

- ' Research supported i n p a r t under NSF gran t 22927 . * Alfred P . Sloan Fellow.

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 3: Document4

Here R c R~ i s a bounded domain with a smooth

boundary r , A = P ( a / a x i ) i s t he Laplace opera tor ,

u+ = m a x ( o , u ) , and i s a given pos i t i ve constant

g rea t e r than the lowest eigenvalue A I of A on R

(with Di r i ch l e t boundary condi t ions) . The constant i n

( l a ) , denoted u f r ) , i s t o be determined by the i n t e g r a l

r e l a t i o n ( l b ) , i n which a/av denotes t he inward

d i rec ted normal. The plasma occupies t he region

it follows from (1) t h a t A i s t h e lowest eigenvalue

of A on R f p ) . The hypothesis A > A assures

u f r ) < 0 , so t h a t R f p ) i s properly contained i n

Temam [3 ] based h i s o r i g i n a l ex is tence proof on a

t h a t

R .

charac te r iza t ion of so lu t ions a s extrema of a c e r t a i n

v a r i a t i o n a l problem, and these ideas have been adapted

[1,41 t o y i e ld exis tence f o r (1) - ( lb) . In t h i s note we show t h a t these equations may

admit more than one so lu t ion , even i n t h e case of

so lu t ions coming from the absolute minimum of one of

the v a r i a t i o n a l problems. Consider the problem (1) - ( lb) on a domain with the shape of an hourglass , a

domain cons is t ing of two bubbles connected by a long

t h i n neck. More p rec i se ly , f o r o < E < I l e t aE

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 4: Document4

NON-UNIQUENESS OF A CONFINED PLASMA 589

be a region i n t h e plane of t h e form SZE = SE U wE u @,

where S' i s t h e s t r i p

and 0; i s t h e r e f l e c t i o n of €7'' under t h e symmetry

opera t ion

Here B ~ ( x , ~ ) denotes t h e b a l l of r a d i u s r around

t h e p o i n t x g . We s h a l l show, f o r both of t h e

v a r i a t i o n a l formulat ions [ 1 , 4 ] which provide s o l u t i o n s

t o (1) - ( l b ) , t h a t a minimizing f u n c t i o n cannot be

symmetric under t h e operat ion ( 3 ) . Thus i f u (x, y ) i s

one s o l u t i o n of t h e v a r i a t i o n a l problem, then t h e r e -

f l e c t e d func t ion u (-x, g ) i s a second s o l u t i o n . I n

o t h e r words, non-uniqueness a r i s e s a s an example of

spontaneously broken symnetry.

We s h a l l assume t h a t A - X I i s bounded away

from zero by a c o n s t a n t n o t depending on E . The

r e l a t i o n (2) a l lows us t o o b t a i n upper and lower bounds

f o r A I t h a t do n o t depend on E , because t h e e igen-

va lues o f A v a r y monotonically wi th t h e domain.

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 5: Document4

590 SCHAEFFER

1 LEPIMA : There i s a constant C , depen.ding only on A

and ;he diameter o f Q , such t h a t any s o l u t i o n of (1) -

( l b ) s a t i s f i e s

PROOF: The fundamental e s t imate f o r t h i s lemma i s

where c depends only on A and t h e diameter of R.

Assuming ( 5 ) , m u l t i p l y equat ion ( I ) , r e - w r i t t e n a s

by u - u(r) and i n t e g r a t e over Q. On i n t e g r a t i n g

by p a r t s on t h e l e f t and applying t h e Schwartz i n -

e q u a l i t y on t h e r i g h t we a r r i v e a t (4 ) .

To prove (5) we argue a s fo l lows . Sobolev 's

Lema i n two dimensions g ives u s t h e e s t i m a t e

f o r any p < m. But s i n c e ~ ( r ! < 0 , we have L -

J. owe t o X . Br6zis t h e observa t ion t h a t t h i s e s t i m a t e hoLas f o r any s o l u t i o n of (1) - ( l b ) , n o t j u s t f o r f m c ~ i m s which minimize t h e v a r i a t i o n a l problem.

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 6: Document4

NON-UNIQUENESS OF A CONFINED PLASMA 591

u f; % ( R ) , so t h a t 1 1 u+ : XI 1Q)ll i s equivalent: t o + 1 , 0

. Moreover on mul t ip ly ing (1) by u+ and

i n t e g r a t i n g we see t h a t

On t h e o ther hand by Holder ' s i n e q u a l i t y

where 0 < 0 < S and p = ( 2 - 2 8 ) / ( 1 - 2 0 ) . Now it

1 follows from (1b) t h a t 1 + : L ( R 1 = A . Therefore

we may combine t h e above i n e q u a l i t i e s (wich a conven-

i e n t p > 2) t o conclude

I n t h i s way we may ob ta in an 2 p r i o r i bound on

11 u+ : L~ (RI 11, which i n t u r n provides t h e e s t i m a t e (5) 2 f o r [I u+ : L (Q) I / , a s R i s bounded. The proof i s

complete.

Let us apply (4) i n SE, t h e neck of ! IE. If

-1 5 x 5 1 , then

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 7: Document4

the l a t t e r equa l i t y being a de f in i t i on . By the Schwartz

inequal i ty

Theref o re , given any pos i t i ve constant a , t he Lebesgue

measure

must be pos i t i ve , provided E i s s u f f i c i e n t l y small.

Indeed, f o r small E the measure of t h i s s e t w i l l be

nearly equal t o 2 .

Our s t r a t egy i n t he proof below w i l l be t o obtain

an upper bound f o r u ( r ) ,

f o r some pos i t i ve constant a . On combining t h i s with

the p o s i t i v i t y of (6) we w i l l conclude t h a t does

not c ross the neck of QE, provided E i s small enough.

( I t i s impossible f o r small E t h a t $ 2 ' ~ ) i s e n t i r e l y

contained i n s ~ , s ince A i s an eigenvalue of A

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 8: Document4

NON-UNIQUENESS OF A CONFINED PLASMA

on S ~ ( P ) . The lowest eigenvalue of A on SE i s

B ~ E - ~ ) and the lowest eigenvalue on a proper sub-

domain would be even l a rge r . ) We then show t h a t the

assumption t h a t a minimizing funct ion i s symmetric

under ( 3 ) leads t o a contradict ion

( i ) . The formulation of Temam.

Temam [ 4 ] proves exis tence f o r (1) - ( lb) by

minimizing the func t iona l

over the s e t

Observe t h a t f o r a minimizing function u\ which

necessar i ly i s a so lu t ion of (1) - ( l b ) , we have

Let be the lowest eigenfunction of A , normalized

so t h a t / 4 d z = I-'. Since 4 E K , we have

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 9: Document4

594

However, by t h e Schwartz i n e q u a l i t y

so t h a t

where m(REl is t h e Lebesgue measure of t h a t s e t . On

combining (8) and (9) we ob ta in an upper bound f o r

U * ( r ) of t h e form ( 7 ) . A s remarked above, i t fol lows

t h a t n i p ) cannot c r o s s t h e neck of Q E , i f E i s

small enough.

However Kinder lehrer and Spruck 121 have shown

t h a t f o r t h e abso lu te minimum of t h i s v a r i a t i o n a l

problem' ~ ( p ) i s connected. (The argument i s p re -

sented i n 51.4 of C41.) Therefore n f p ) must be

contained i n e i t h e r one bubble of o r t h e o t h e r ,

so i t i s impossible f o r t h e minimizing func t ion u f

t o be symmetric wi th r e s p e c t t o ( 3 ) . The argument i s

complete.

( i i ) . The formulation of Beres tycki - Brbzis .

Berestycki - Br6zis .[I] prove ex i s tence f o r (1) -

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 10: Document4

NON-UNIQUENESS O F A CONFINED PLASMA

( lb) by minimizing the funct ional

over the convex s e t

I f p * i s a minimizing function f o r t h i s problem, then

-2 a solut ion of (1) - ( lb) i s given by u" A p * + uV(TI,

where ~ * ( r ) = Q ~ P * ) , and moreover by (1)

Arguing a s above, t h a t i s , considering the f i r s t

eigenfunction of A a s a t r i a l funct ion, we may

obtain the est imate

Again we conclude t h a t Q ( P ) cannot cross the neck of

E

It i s not known a t present whether R ( P ) i s

always connected f o r minima of the Berestycki-BrBzis

formulation of t h i s problem. However we present a

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 11: Document4

596 S CHAEFFER

d i r e c t argument t o show t h a t f o r E small , Q ( p )

cannot be minimized by a function symmetric with respect

t o ( 3 ) . Suppose t o the contrary t h a t p * i s a

symmetric function t h a t minimizes ~ ( p ) . Let us wr i t e

p * = p l + p 2 , where p l ( x , y ) = 0 f o r x < 0 and p 2

vanishes i n the complementary half plane. Observe

t h a t 2 p 1 s a t i s f i e s the cons t r a in t s of the problem

and

Now Q I p * ) i s negat ive, an upper bound being provided

by (11) . We claim t h a t the second term i n (12) can be

made a r b i t n a r i l y small by choosing E small. Proving

t h i s claim w i l l show t h a t Q ( 2 p 1 ) < Q ( P V , cont rad ic t -

ing the hypothesis t h a t p * was a minimizing funct ion.

Let us choose E SO small t h a t the s e t (6) has

measure a t l e a s t 3 / 2 . Then there e x i s t po in ts

x c (h , 1 ) and x 2 t ( - 1 , -3) such t h a t s l i p ) does 1

not cross the l i n e s C ( x , y ) : x = x . 1 . Moreover i t i s 2

impossible f o r a component of ~ 2 ' ~ ' t o be contained

i n the region between these two l i n e s , so both

p1 (x, y ) and p 2 ( x , y l vanish i f -3; 2 3: ( $.

It follows from (10) and (5) t h a t

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 12: Document4

NON-UNIQUENESS OF A CONFINED PLASMA

and t h i s i n e q u a l i t y provides an es t imate f o r

1 A : ( 1 . We may s u b s t i t u t e t h i s l a t t e r

e s t imate i n t o t h e argument of t h e paragraph con ta in ing

equat ion ( 6 ) t o j u s t i f y t h e fol lowing conclus ion:

Given any p o s i t i v e cons tan t 6 ,

has p o s i t i v e measure, provided E i s s u f f i c i e n t l y

smal l . Let x be any element of t h e s e t (14) , and 0

l e t

Since A - I P 1 i s harmonic on n - and vanishes a t a n ,

by t h e maximum p r i n c i p l e

But p 2 i s supported i n - , so

t h e e s t i m a t e f o r I l p 2 : L 1 ( n ) l l coming from (13) . The

proof i s complete.

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 13: Document4

59 8 SCHAEFFER

I n [4] Temam proved t h a t t h e s o l u t i o n of (1) - ( l b ) i s unique provided X I < X < A2, where {Ai} a r e

t h e eigenvalues of A on R enumerated i n inc reas ing

o r d e r , and a s i m i l a r r e s u l t i s given i n [ I ] . I t seems

noteworthy t h a t i n our example X I - X 2 . To see t h i s

we argue as fol lows. Let p i be t h e e igenvalues of

A on

(Here we use t h e n o t a t i o n of t h e paragraph con ta in ing

equation ( 2 ) . ) The spectrum of A on 0 7 i s t h e 0

same po in t s e t p . but a l l m u l t i p l i c i t i e s a r e double , 2

s i n c e t h e union O0 Pt i s d i s j o i n t . I n p a r t i c u l a n 0

t h e lowest e igenvalue i s p I and has m u l t i p l i c i t y

two. F i n a l l y , nE i s only a smal l p e r t u r b a t i o n of

1 q r so we have A1 2 A 2 z p l . (Note t h a t ' 0 - 0 ' X I < A 2 < p 2 , by t h e minimax c h a r a c t e r i z a t i o n of

e igenvalues . ) Moreover i n our example we may take A

a r b i t r a r i l y c l o s e t o p1 . I n o ther words, our example

suggests t h a t t h e s e uniqueness r e s u l t s a r e probably

t h e b e s t p o s s i b l e without some a d d i t i o n a l r e s t r i c t i o n

on t h e domain Q .

We remark i n c l o s i n g t h a t by minimizing E l u l

o r Q ( p l i n t h e c l a s s of func t ions t h a t s a t i s f y t h e

c o n s t r a i n t s and a r e symmetric under t h e r e f l e c t i o n ( 3 ) '

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 14: Document4

NON-UNIQUENESS OF A CONFINED PLASMA 599

one may ob ta in a s o l u t i o n of (1) - ( l b ) such t h a t n f p )

con ta ins two components. (Al l t h e es t imates of t h i s

paper apply without modif icat ion t o show t h a t R

cannot c r o s s t h e neck of R E f o r small E . ) Of course

t h i s s o l u t i o n does n o t r epresen t t h e absolute minimum

of t h e v a r i a t i o n a l problem.

ACKNOWLEDGEMENT --

I t i s a p leasure t o record my indebtedness t o

H . BrBzis, D . K inder lehre r , and R , Temam f o r con-

v e r s a t i o n s and correspondence on t h i s problem.

REFERENCES

(

1. H . Beres tycki and H . BrBzis, "Sur c e r t a i n s

p r o b l h e s de f r o n t i e r e l i b r e , " t o appear

i n Comptes Rendus.

2 . D . Kinder lehrer and J . Spruck, t o appear

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13

Page 15: Document4

600 SCHAEFFER

3 . R . Temam, "A non-linear eigenvalue problem:

equilibrium shape of a confined plasma, "

Archive Rat. Mech. Anal. 60 (1975),

pp. 51-73.

4 . R . Temam, "Remarks on a f r e e boundary value problem

a r i s i n g i n plasma physics ," Corn. Pa r t .

Di f f . Eqn. , t h i s i s sue .

Received October 1976

Dow

nloa

ded

by [

IMPA

Ins

t de

Mat

emat

ica

Pura

& A

plic

ada]

at 0

6:45

26

Sept

embe

r 20

13