42v slides

47
142V_Sammlung.ppt Automotive Power Semiconductors AI AP Dr. Graf Semiconductor Technologies and Power Switches for new Automotive Electrical Systems with higher Voltages 1. Introduction 2. 42V related activities 3. High voltage automotive applications 4. Advantages of the new 42V el. power system 5. Example: 300W heater at 42V Power window at 42V 6. Quality and EMC at 42V 7. Technology and product overview 8. System approach 9. Conclusion Dr. Alfons Graf Infineon Technologies AG i. Gr. Power Semiconductors Technical Marketing D-81541 München ++89/234-22805

Upload: beniamin-cociorvan

Post on 27-Nov-2015

41 views

Category:

Documents


2 download

DESCRIPTION

42V new gen

TRANSCRIPT

Page 1: 42V Slides

142V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Semiconductor Technologies and Power Switches for newAutomotive Electrical Systems with higher Voltages

1. Introduction

2. 42V related activities

3. High voltage automotive applications

4. Advantages of the new 42V el. power system

5. Example: 300W heater at 42V

Power window at 42V

6. Quality and EMC at 42V

7. Technology and product overview

8. System approach

9. Conclusion

Dr. Alfons GrafInfineon Technologies AG i. Gr.Power SemiconductorsTechnical MarketingD-81541 München++89/234-22805

Page 2: 42V Slides

242V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Powering Future Vehicles1st International Congress

28.-29. September 1999, Villach

42V PowerNet: the first solutions

350 participants,

follow up 04/2001

Haus der TechnikHaus der Technik e.V. e.V.

HollestrasseHollestrasse 1 1

D-45127 D-45127 EssenEssen, Germany, Germany

Tel: (+49) 201/1803-228Tel: (+49) 201/1803-228

E-mail: E-mail: fbfb@@hdthdt--essenessen.de.de

Page 3: 42V Slides

342V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

MIT 42V Consortium

Page 4: 42V Slides

442V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Forum Relationship Standardization

FAKRA

Forum

"Vehicle Electrical Systems Architecture"(15 manuf., 50 suppliers)

WGS (manuf., suppliers, FAKRA)

VDA

MIT IndustryConsortium (manuf., suppliers)

"External"

CISPR,VDE,others

ISO

Page 5: 42V Slides

542V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

42V PowerNet Activities

1. Name for the Entire System

In English: 42V PowerNet

In German: 42V - Bordnetz

2. Logo

3. Symbol or mark

(e.g. for components:“designed for 42V”)

Page 6: 42V Slides

642V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

High Voltage Smart Power Applications

application supply VAZ

42V automotive el. power net generator >60/70Vstarter/generator, power switching

24V truck el. power net generator >65Vpower switching

80V e.g. local high voltage DC/DC conv. >80Vfuel direct injection

60-80V active zener clamp -- >60/80Vfast inductance de-excitation

24/48V industry application power supply >65Vpower switching

Page 7: 42V Slides

742V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Simplified Electrical Distribution System with 14V and 42V Supply

A ACDC

DCDC

42V=

14V=

A: Alternator

S: Starter Pow

erLo

ad

Logi

cIn

Logi

cIn

Load

Logi

cIn

S

Page 8: 42V Slides

842V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Advantages of a new 42V electrical power system

- Decrease of currents e.g. factor 3

- Efficiency increase e.g. from 40% to 85% Alternator, Distribution, Switching

- Cable cross section, plug-in contacts

- New specifications Overvoltage, reverse battery Load-dump, Jump-start,

- New application can be realized e.g. EVT

- Reduction of semiconductor costs

Page 9: 42V Slides

942V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Partitioning of the loads

14V (conventional system)Lamps Shock sensitiveCommunication 5V-supplyModule-logic 5V-supplySmall motors Thin wiresSmall valves Thin wires

42V (additional system)Load with high power demand Starter

Brake/Drive by WireCatalyst heatingWindow- / seat-heatingWater/fuel pumpPower window, wiperEVTCooling fan ...

Page 10: 42V Slides

1042V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Vertical Power MOSFET Area versus Nominal Supply Voltage

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

Nominal Supply Voltage VN [V]

Con

duct

ance

, Sili

con

Are

a [%

]

0

500

1000

1500

2000

2500

Spec

ific

RON

[%]

Conditions:Pload = const.Ploss = const.Vmax = VN + 30V

Conductance ~1/VN

Resulting silicon area

Specific RON ~e² c(VN+30V)

Page 11: 42V Slides

1142V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Definition of Supply Voltage Ranges for new 42V PowerNet

Definition of net requirements at 42V:

0Ustart

21V

min.start voltage

min.operating voltage

nominalvoltage

max. dynamicovervoltage(load dump)

max. continuousgenerator voltage

including ripple

max. operatingvoltage

=min. zener (avalanche)clamp voltage (Vmax)

0 42V 58V

min.operating voltage

nominaloperating voltage

max. zenerclamp voltage

=min. technology

breakdown voltage

Definition of semiconductor requirements at 42V:

75V*

reversepolarity

not allowed

18V

* : Dependant on semiconductor technology and circuit concept

reversepolarity

not specified

Umin

18VUop,min

30VUN

42VUeff-max,stat

48VUmax,stat

50VUmax,dyn

58V

Vbb(on) Vbb(AZ)

Page 12: 42V Slides

1242V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Definition of Supply Voltage Ranges for new 14V Net

Definition of net requirements at 14V:

0 9V 11V 14.3V 16V

min. voltageengine start

min. voltageengine off

max. voltageengine running

max.continuousovervoltage

max. operatingvoltage

=min. zener (avalanche)

clamp voltage (Vmax)

0 9V 14.3V 20V

min. operatingvoltage

nominal operatingvoltage

VN

Definition of semiconductor requirements at 14V:

30V*

max. zenerclamp voltage

=min. technology

breakdown voltage* : Dependant on semiconductor technology and circuit concept

reversepolarity

not allowed

reversepolarity

not specified

max. dynamicovervoltage(load dump)

20V

Vbb(on) Vbb(AZ)

Page 13: 42V Slides

1342V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power - MOSFET: Chip area versus RON , PV , VN

20%

140%

14V55V

42V Nominal Voltage VN75V Technology Breakdown Voltage

Nor

mal

ized

Chi

p A

rea

P V optimized

Chip cost optimized

100%

ROPO

RON= 9* ROPV = PO

RON≅≅≅≅ 1.4* ROPV ≅≅≅≅ 0.16* PO

RON= ROPV = 1/9 PO

1/RONPV

1/RONPV

1/RONPV

System cost reduction in all cases

Page 14: 42V Slides

1442V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Mechanical versus electronic power switch application

G

D S

fuse

>ILoad

relay, driver load

PROFET

>ILoad

Isense [mA]

loade.g. 280W

IN ST IS

+ electronic fuse function+ diagnostic / current sense+ fully protection+ PWM possibility+ less wires and connectors

Term. 30

Term. 30

Page 15: 42V Slides

1542V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

G

D S

PROFET

>6.5A load

IN ST IS

dramatic cost reduction:dramatic cost reduction:chip area + package + mounting

42V

Example: 280W heater at 14V or 42V

280W

G

D S

PROFET

>20A load

IN ST IS

14V

280WTO218PV=1.7WRON=2.9m2.9mΩΩΩΩΩΩΩΩ

D-PAKPV=1.1WRON=18m18mΩΩΩΩΩΩΩΩ

calculation at Tj=100°C

Page 16: 42V Slides

1642V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Chip Shrink Forces: Time and Nominal Voltage

1988 1994 1998

RO

N*m

TO218TO21818m18mΩΩΩΩΩΩΩΩ60mm²60mm²

TO220TO22018m18mΩΩΩΩΩΩΩΩ25mm²25mm² D-PAKD-PAK

18m18mΩΩΩΩΩΩΩΩ10mm²10mm²

Chi

p ar

ea, p

acka

ge s

ize

TO218TO2182.9m2.9mΩΩΩΩΩΩΩΩ60mm²60mm²

D-PAKD-PAK18m18mΩΩΩΩΩΩΩΩ10mm²10mm²

‘Evolution’ in Silicon‘Evolution’ in Silicon Revolution in SiliconRevolution in Silicon

The step from 14V to 42V takes us 10 years into future

Application:280W heater

2000

14V14V

42V42V

Page 17: 42V Slides

1742V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

System Costs versus Nominal Voltage

14V 42V

norm

aliz

ed c

osts Revolution in SiliconRevolution in Silicon

280W heater :280W heater : switch and fuse costs

1

The step from 14V to 42V takes us 10 years into future

Silicon solution

Silicon solution

Mechanical solutionMechanical solution

3.5

0.81.1

Page 18: 42V Slides

1842V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

dramatic cost reduction:dramatic cost reduction:chip area + package + mounting

Power Window at 14V or 42V ( Low end )

PV : 100%RON = 50m50mΩΩΩΩΩΩΩΩ

Parameters of Power-Pack:RthJ_Air = 21 K/WRthJ_Case = 0.5 K/W

PV : 22%RON = 100m0mΩΩΩΩΩΩΩΩParameters of P-DSO-28:RthJ_Air = 60 K/WRthJ_Pin = 20 K/W

42V14V

M14V: IL=20/40A

42V: IL=6.6/13A

TRILITHICSmart Power Bridges

14V :

42V :Features: • PWM only for Softstart, not continuous• unprotected lowside switches

Page 19: 42V Slides

1942V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Window at 14V or 42V ( Mid range )

14V: IL=20/40A

42V: IL=6.6/13A

Features: • continuous PWM

M2

M1 D1

D2

ISense

IMotVOUT1

VS

M4

M3D3

D4

VOUT2

VS

M

Losses during ON-time:14 V:P_Loss_ON = IMOT

2 ( RDS_ON_HS + RDS_ON_LS ) = (20A)2 ( 35mΩΩΩΩ + 15mΩΩΩΩ ) = 20 W

42 V:P_Loss_ON = IMOT

2 ( RDS_ON_HS + RDS_ON_LS ) = (6.6A)2 ( 35mΩΩΩΩ + 15mΩΩΩΩ ) = 2.2 W

To have the same power losses at 42 V,you can afford a R_ON which is nine timeshigher than the R_ON needed at 14V.With same R_ON, losses are reduced withfactor nine.

Page 20: 42V Slides

2042V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Window at 14V or 42V ( Mid range )

14V: IL=20/40A

42V: IL=6.6/13A

Features: • continuous PWM

Losses during OFF-time:14 V:PLoss_OFF = IMOT

2 RDS_ON_HS + IMOT VTH_HS = (20A)2 35mΩΩΩΩ=

==

=+ 20A 0.8V = 14 W + 16 W = 30 W

42 V:PLoss_OFF = IMOT

2 RDS_ON_HS + IMOT VTH_HS = (6.6A)2 35mΩΩΩΩ=

==

=+ 6.6A 0.8V = 1.55 W + 5.3 W = 6.9 W

The threshold voltage of the body diode stays constant.Reduction of power losses of diodes with factor 3.

Total reduction of power losses with factor 4,4.

M2

M1 D1

D2

ISense

IMotVOUT1

VS

M4

M3D3

D4

VOUT2

VS

M

Page 21: 42V Slides

2142V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Window at 14V or 42V ( Mid range )

14V: IL=20/40A

42V: IL=6.6/13A

Features: • continuous PWM

Losses during OFF-time with active freewheeling:

M2

M1 D1

D2

ISense

IMotVOUT1

VS

M4

M3D3

D4

VOUT2

VS

M

Dramatic Reduction of losses are possible with active freewheeling.

Load current

I [A]

U[V]1

1

2

3

4

5

6

7

PLD=5.3W

PL=1.55W

GON=28.5S = --------135mΩ

0.5

GD~ 3 GON= 86 S~

Power losses arereduced due to

active freewheelingby 70%

Page 22: 42V Slides

2242V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Window at 14V or 42V ( Mid range )

Due to lower voltage, the commutation ( OFF-time ) takes3 times than the ON-time.

Power losses during ON-time:14V: 20W 42V: 2.2W

Power losses during OFF-time w/o active freewheeling:14V: 30W 42V: 6.9W

Power losses during OFF-time with active freewheeling:14V: 28W 42V: 3.1W

Arithmetic calculation of total losses withactive freewheeling :

14V: 26.2W 42V: 2.9W

Dramatic reduction of losses are possible with 42V in combination with active freewheeling.

Load current

typ. 6,6A

tON tOFF

Page 23: 42V Slides

2342V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Window at 14V or 42V

PWM: Reduction by factor 9 is possible in combination with active freewheeling

Summary:

A dramatic cost reduction is only possible in applications with standard switching behavior and low protection or logic requirements.

Output stages or power dissipation can be reduced by factor 9.

If PWM is required, reduction of the power loss in the body diodes is only by factor 3.Fast switching highside switches to achieve active freewheeling provide reduction of factor 9.

Logic, protection, pads are not reduced.

Page 24: 42V Slides

2442V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Dissipation versus Load Current at 14V

0

1 W

2 W

3 W

1A 10A

P v

I L

2A 5A 20A

PL

T j = 100°CVbb = 14V

28 W 70 W 140 W 280 W14 W

BTS 711200mΩ

BTS 721100mΩ

BTS 72560mΩ

BTS 64030mΩ

BTS 44218mΩ

BTS 6506,6mΩ

BTS 5504mΩ

BTS 5552,9mΩ

R ON (25°)

Page 25: 42V Slides

2542V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Dissipation versus Load Current at 42V

0

1 W

2 W

3 W

1A 10A

P v

I L

2A 5A 20A

T j = 100°CVbb = 42V

84 W 210 W 420 W 840 W42 W

BTS 200mΩ

BTS 723100mΩ

BTS 60mΩ

BTS30mΩ

BTS18mΩ

BTS 5604mΩ

BTS 6608mΩR ON (25°)

Page 26: 42V Slides

2642V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Power Semiconductors in 42V ApplicationsElectromagnetic Compatibility

Vbb changes from 14V to 42V(Pload = const., ton = const.)

- dv/dt increases by a factor of 3

- di/dt decreases by a factor of 3

- the current magnitude is a factor of 3 lower

current magnitude and switching times determine the conducted emission

Pload = const.Vout

IL

t

t

ton

ton

14V

42V

3

1

Conducted emission is 10dBµV lower at Vbb = 42V

Vbb = 42V

Vbb = 14V

Vbb = 42V

Vbb = 14V

di/dt

dv/dt

Page 27: 42V Slides

2742V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Effect on Conducted Electromagnetic Emission

T e rm in a l D is to rb a n c e V o lta g e S p e c tru m a t 2 0 0 H z -P W M a n d c o n s t. L o a d P o w e r w ith 1 4 V u n d 4 2 V P o w e r S u p p ly

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

0 .1 1 1 0

f / M H z

dBµV

V b b 1 4 V V b b 4 2 V E S G 1 E S G 2 E S G 3 E S G 4 E S G 5

L im its V D E 0 8 7 9 / 3 B U Z 2 0 R O N = 2 0 0 m ΩP lo ad = 2 1 W , P W M f = 2 0 0 H zt p /T = 0 ,5t r~ t f = 1 0 µ s

Page 28: 42V Slides

2842V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Blade Fuse versus Smart Power

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1 10 100 1000current in A

time

in m

s

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1 10 100 1000current in A

time

in m

s

Vbb = 14V Vbb = 42V

7,5A Blade Fuse, 25°C PROFET BTS640S2, 25°C

42V: device fire 42V: faster at high current

14V

42V

V

14V

42V

V<32V

Page 29: 42V Slides

2942V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Reliability at higher Voltages: Design Aspects

The decisive factor for design is not thevoltage but the electric field.

Different operation conditions needs changes in:

Technology Process (e.g. gate oxide thickness) Transistor Geometry (e.g. channel length) Product Design (e.g. guard rings)

Page 30: 42V Slides

3042V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Reliability Aspects at higher Voltages

Intrinsic Failure Mechanisms

like hot carrier effects, electromigration, oxide ageing

can not be avoided

- can be characterized by dedicated experiments

- have to be minimized with respect to their impact by defining corresponding design rules and constraints of operation

but

Page 31: 42V Slides

3142V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Failure Rates of Technologies in Mass ProductionSmart Switches and System ICs

Field Application Failure Rates

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

12V 45V 60V 75V 170V

failu

re ra

te (p

pm)

voltage classCMOS Bipolar SMART-SIPMOS BCD, 75V BCD, 170V

Page 32: 42V Slides

3242V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Failure Rates of Technologies in Mass ProductionStandard MOSFETs

Field Application Failure Rates

voltage class failed devicesn-channel 55V 8p-channel -50V 1n-channel 100V 0n-channel 200V 0n-channel 400V 0n-channel 600V 0n-channel 800V 0n-channel 1000V 0

1996/97 : without ESD and EOS

about 300 million parts

Page 33: 42V Slides

3342V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

SPT4/90VBr > 90V

S-SMART/80VBr > 80V

S-FET2/75VBr > 75V

Smart Power ICsVAZ > 80V

Smart Power SwitchesVAZ > 65V

FET / TEMPFETVBr > 75V

Gasoline Direct InjectionVNom = 70V / 42V /24V

Truck ApplicationsFast Inductance De-excitation

Truck ABS / TRC / VDCVNom = 42V / 24V

High Current Switches

Starter-GeneratorVNom = 42V / 24VHigh Speed PWMDC / DC Converter

TechnologyTechnology Product-familyProduct-family ConceptConcept ApplicationApplication

Semiconductor Technologies and Switches for new Power SystemsTechnologies - Products - Applications

9/98 TLE customized 9/00 TLE 6387 5V adj., 2A 6/00 TLE 6361 5+3.3+2.5V

6/98 BSP 365 5 ΩΩΩΩ 9/99 BSP 752R 200 mΩΩΩΩ 9/98 BTS 723 2* 95 mΩΩΩΩ 2/00 BTS 6163D 16 mΩΩΩΩ10/98 BTS 660P 9 mΩΩΩΩopen=

==

= BTS 560P 4 mΩΩΩΩ

Time Schedule ES /Time Schedule ES /ProductsProducts

open BTS 282Z-7 8.0 mΩΩΩΩ11/99 SPP 80N08S2 8.0 mΩΩΩΩ 9/99 SIPC 49S2N08 4.0 mΩΩΩΩ

Page 34: 42V Slides

3442V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Development in Smart Power: BTS 723 for 42VCurrent application: ABS for 24V heavy duty trucks

Comparison of mounting area Samples

BTS307: 250mΩΩΩΩ=

==

====

======

===each device139mm² each device 1/94278mm² together

BTS707: 2x250mΩΩΩΩ=

==

= 1/96132mm²

BTS723: 2x95mΩΩΩΩ 9/9852,5mm² BTS723

BTS707

BTS 307 BTS 307

Page 35: 42V Slides

3542V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Development in Smart Power: BTS 723 for 42VCurrent application: ABS for 24V heavy duty trucks

Old: BTS 307 1x250mΩΩΩΩ TO-220BTS 707 2x250mΩΩΩΩ P-DSO-20

New: BTS 723 2x95mΩΩΩΩ P-DSO-14

2xBTS 307 BTS 707 BTS723

100% 83% 75%

Costs of devices

Page 36: 42V Slides

3642V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Development in Smart Power: BTS 723 for 42VCurrent application: ABS for 24V heavy duty trucks

Old: BTS 307 1x250mΩΩΩΩ TO-220BTS 707 2x250mΩΩΩΩ P-DSO-20

New: BTS 723 2x95mΩΩΩΩ P-DSO-14

BTS 307 BTS 707 BTS723 BTS 307 BTS 707 BTS723

100% 83% 28% 100% 48% 7%

Costs x RDSON Mounting area x RDSON

Page 37: 42V Slides

3742V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Vbat = 14V PLoad= 2x63W Vbat = 42VVbat = 14V PLoad= 2x63W Vbat = 42V

RDSON = 2x30mΩΩΩΩ RDSON = 2x95mΩΩΩΩPLoss = 2x0.90W PLoss = 0.64WCosts = 100% Tj=100°C Costs = 60%

RDSON = 2x30mΩΩΩΩ RDSON = 2x95mΩΩΩΩPLoss = 2x0.90W PLoss = 0.64WCosts = 100% Tj=100°C Costs = 60%

Development in Smart Power: BTS 723 for 42VComparison: Same application for 14V and 42V

BTS723

PL= 2x63WEach channel 1.5A

BTS 640S2 BTS 640S2

PL= 2x63WEach channel 4.5A

Page 38: 42V Slides

3842V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

DC/DC-Converter with bidirectional current flow

VL = 12V

VH = 42V

C2

Q1

Q2

L1 RS

C1

Buck Converter continuos mode Operation: T

TVV ONQ1

H

L =

TT

TT-1

1VV OFFQ1

ONQ2L

H ==Boost Converter continuos mode Operation:

Example: TONQ1 = 0,286T42V12V =

0,714T42V

12V-42V =Example: TONQ2 =

iL

Q1 Q2

Q2 Q1

iL

-iL

t

t

Page 39: 42V Slides

3942V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

iQ11 iQ13 iQ13iQ12iQ12 iQ11

iQ11 iQ12 iQ12iQ11

t0 t0 + Tt0+ 21 T t0+ 2

3 T t0 + 2T

t0 Tt0+ 32

T t0+ 34

T 2Tt0+ 31

T t0+ 35

T

iL11 + iL12

iL12 = iQ11 + iQ21

iL11 = iQ12 + iQ22

iL13 = iQ13 + iQ23

iL11 + iL12 + iL13

iL11 = iQ11 + iQ21

iL12 = iQ12+ iQ22

iQ21

iQ22iQ21

iQ22 iQ23

Effect of interlaced buck operation with multi stage bridge configuration:decreasing current ripple at low voltage level, increasing average current at high voltage level

Dual stage bridge configuration

Triple stage bridge configuration

decreasing gap width effects smallerinput capacitance

smaller current rippleeffects a better EMI-performance

Page 40: 42V Slides

4042V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Topology of interlaced DC/DC-converter

VL=12V

VH = 42V

C2

RS1

VH = 42V

C2

Q13

Q23

C1

L12

L11

L13

Q12 Q11

Q22 Q21

RS2

RS1

RS3

Q12 Q11

Q22 Q21

RS2

C1

L11

L12

VL=12V

Triple stage bridge configuration Dual stage bridge configuration

Page 41: 42V Slides

4142V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Minimum configuration of control unitfor DC/DC-converter with bidirectional current flow

VL = 12V

VH = 42V

C2

Q1

Q2

L1 RS

C1

VCC

CurrentFlowUp/DownVH VSFG1 S2G2GND CS VL Standby

PowerGood

VCC

VSF2G12G22 S22 CS2required for each further bridge

logic compatible inputs

Page 42: 42V Slides

4242V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Example: Electric Power Steering System 14V to 42V

3-Φ-Bridge Driver

µCV-Reg 5V

&Watchdog

LogicM

14V

14V:IMotor = 90A

42V:IMotor = 30A

Page 43: 42V Slides

4342V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Example: Electric Power Steering System 14V to 42V

14V:IMotor = 90A

42V:IMotor = 30A

6 x

TO220VBRDSS=45VRon=4.5mΩPV= 300W

PVCosts

TO220

VBRDSS=75VRon=6.5mΩPV= 50W

D-Pak

VBRDSS=75VRon=20mΩPV= 150W

Dramatic decrease system costs in both cases

Page 44: 42V Slides

4442V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Example: Electric Power Steering System 14V to 42V

µCV-Reg 5V

&Watchdog

14V

14V: PV = 0,9 W42V: PV = 3,7 W

14V: PV = 0,45 W42V: PV = 1,85 W

Dramatic increase of Pv of 400% = New solution required!

Linear working voltage regulators for 5Vand 100mA.

Voltage supply 14V:

3-Φ-Bridge Driver

Logic

Driver either with 15V external voltage supply or linear working voltage regulatorincl. charge pump onboard for 50mA

Page 45: 42V Slides

4542V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Example: Electric Power Steering System 14V to 42V

µCV-Reg 5V

&Watchdog

External step down converter for 5V andcharge pump in driver

Proposals for voltage supply 42V:

Bridge Driver

14V

Same Pv as today

µC

DC/DC Conv.&

Watchdog Bridge Driver

42V 15V

5V

Additional costs - lower Pv

Or external step down converter for 5 and15 V without charge pump in driver

Energy supply realized by 14V net

Option: DC/DC conv. integrated in driver

Page 46: 42V Slides

4642V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Interlaced DC/DC-Converter - Driver solutions

3-Φ-Bridge Driver

DC/DC ConverterControl

IC

Logic

Discrete solution:

3-Φ-Bridge Driver

DC/DC ConverterControlLogic

Logic

Integrated solution:

Page 47: 42V Slides

4742V_Sammlung.pptAutomotive Power Semiconductors AI APDr. Graf

Semiconductor Technologies and Power Switches for newAutomotive Electrical Systems with higher Voltages

1. Semiconductor costs will be dramatically reduced due to

smaller chip areas and packages

2. Semiconductors become attractive for high power applications

3. Electronic fuse works also at 42V

4. The step from 14V to 42V takes us 10 years into future

5. Infineon Technologies is developing high voltage technologies for

42V automotive applications

6. Samples and products are available

7. Infineon Technologies is ready for new 42V designs

ConclusionConclusion