4-1 organic chemistry william h. brown christopher s. foote brent l. iverson william h. brown...

29
4- 4- 1 1 Organic Organic Chemistry Chemistry William H. Brown William H. Brown Christopher S. Christopher S. Foote Foote Brent L. Iverson Brent L. Iverson

Post on 20-Dec-2015

236 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-11

Organic Organic ChemistryChemistry

William H. BrownWilliam H. Brown

Christopher S. FooteChristopher S. Foote

Brent L. IversonBrent L. Iverson

William H. BrownWilliam H. Brown

Christopher S. FooteChristopher S. Foote

Brent L. IversonBrent L. Iverson

Page 2: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-22

Acids Acids and and BasesBases

Chapter 4Chapter 4

Page 3: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-33

Arrhenius Acids and BasesArrhenius Acids and Bases In 1884, Svante Arrhenius proposed these

definitions • acid:acid: a substance that produces H3O+ ions aqueous

solution• base:base: a substance that produces OH- ions in aqueous

solution• this definition of an acid is a slight modification of the

original Arrhenius definition, which was that an acid produces H+ in aqueous solution

• today we know that H+ reacts immediately with a water molecule to give a hydronium ion

H+(aq) + H2O(l) H3O+(aq)Hydronium ion

Page 4: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-44

Brønsted-Lowry DefinitionsBrønsted-Lowry Definitions Acid:Acid: a proton donor Base:Base: a proton acceptor

+

Proton donor

Protonacceptor

-O H

H

OH

H

O HH + +O H H

+

Protonacceptor

Protondonor

+O H

H

OH

H

N H

H

H

H

H

H + +N H H

: ::

: :

:

::

: :

::

Page 5: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-55

Conjugate Acids & BasesConjugate Acids & Bases

• conjugate baseconjugate base: the species formed from an acid when it donates a proton to a base

• conjugate acid:conjugate acid: the species formed from a base when it accepts a proton from an acid

• acid-base reaction:acid-base reaction: a proton-transfer reaction• conjugate acid-base pair:conjugate acid-base pair: any pair of molecules or ions

that can be interconverted by transfer of a proton

HCl(aq) H2O(l) Cl-(aq) H3O+(aq)+ +WaterHydrogen

chlorideHydronium

ionChloride

ion(base)(acid) (conjugate

acid of H2O)(conjugate

base of HCl)

conjugate acid-base pair

conjugate acid-base pair

Page 6: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-66

Conjugate Acids & BasesConjugate Acids & Bases

• Brønsted-Lowry definitions do not require water as a reactant

• consider the following reaction between acetic acid and ammonia

NH4+CH3COOH CH3COO-

NH3+ +

Acetic acid Ammonia

(acid)

conjugate acid-base pair

Acetate ion

Ammoniumion

(base) (conjugate baseacetic acid)

(conjugate acidof ammonia)

conjugate acid-base pair

Page 7: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-77

Conjugate Acids & BasesConjugate Acids & Bases

• we can use curved arrows to show the flow of electrons in an acid-base reaction

CH3-C-OO

H N HH

H CH3-C-O -

OH-N-H

H

H+ +

Acetic acid(proton donor)

Acetate ion

:

:: ::

:: :: :

Ammonia(proton acceptor)

Ammoniumion

Page 8: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-88

Conjugate Acids & BasesConjugate Acids & Bases Many organic molecules have two or more sites

that can act as proton acceptors in this chapter, we limit our discussion to carboxylic

acids, esters, and amides in these molecules, the favored site of protonation is

the one in which the charge is more delocalized question: which oxygen of a carboxylic acid is

protonated?

CH3-C-O-H

O+ H2SO4 CH3-C-O-H

HO+

CH3-C-O-HH

O+

+ HSO4-or

A(protonation

on the carbonyl oxygen)

B(protonation

on thehydroxyl oxygen)

Page 9: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-99

Conjugate Acids & BasesConjugate Acids & Bases for protonation on the carbonyl oxygen, we can write

three contributing structures two place the positive charge on oxygen, one places it

on carbon

A-1 and A-3 make the greater contribution because all atoms have complete octets

the positive charge is delocalized over three atoms with the greater share on the two equivalent oxygens

++

CH3-C-O-H

OH

CH3-C-O-H

OH

CH3-C

OH

++CH3-C-O-H

O

CH3-C=O-H

OH

CH3-C=O-H

OH+

A-1(C and O have

complete octets)

A-2(C has incomplete

octet)

A-3(C and O have

complete octets)

Page 10: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1010

Conjugate Acids & BasesConjugate Acids & Bases for protonation on the hydroxyl oxygen, we can write

two contributing structures

B-2 makes only a minor contribution because of charge separation and adjacent positive charges

therefore, we conclude that protonation of a carboxylic acid occurs preferentially on the carbonyl oxygen

CH3-C-O-H

O

H

+

B-1

CH3-C-O-H

O

H+

+

B-2(charge separation and

adjacent positive charges)

Page 11: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1111

Conjugate Acids & BasesConjugate Acids & Bases Problem 4.3Problem 4.3 Does proton transfer to an amide

group occur preferentially on the amide oxygen or the amide nitrogen?

CH3-C-N-H

H

O+ HCl

+

CH3-C-N-H

OH

H

H

CH3-C-N-H

H

O+

+ Cl -or

A(protonation

on theamide oxygen)

B(protonation

on theamide nitrogen)

Acetamide(an amide)

Page 12: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1212

Pi Electrons As Basic SitesPi Electrons As Basic Sites Proton-transfer reactions occur with compounds

having pi electrons, as for example the pi electrons of carbon-carbon double and triple bonds the pi electrons of 2-butene, for example, react with

HBr by proton transfer to form a new C-H bond

the result is formation of a carbocationcarbocation, a species in which one of its carbons has only six electrons in its valence shell and carries a charge of +1

CH3-CH=CH-CH3 + H-Br CH3-C-C-CH3 + Br -

H

H

+

2-Butene sec-Butyl cation(a 2° carbocation)

H

Page 13: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1313

Pi Electrons As Basic SitesPi Electrons As Basic Sites Problem 4.4Problem 4.4 Draw Lewis structures for the two

possible carbocations formed by proton transfer from HBr to 2-methyl-2-butene

CH3-C=CH-CH3 + H-Br

2-Methyl-2-butene

CH3

Page 14: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1414

Acids & Base StrengthsAcids & Base Strengths The strength of an acid is expressed by an

equilibrium constant the acid dissociation of acetic acid is given by the

following equation

H3O+

+CH3CO-

OH2O+CH3COH

O

Acetic acid Water Acetateion

Hydroniumion

Page 15: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1515

Weak Acids and BasesWeak Acids and Bases We can write an equilibrium expression for the

dissociation of any uncharged acid, HA, as:

water is a solvent and its concentration is a constant equal to approximately 55.5 mol/L

we can combine these constants to give a new constant, KKaa, called an acid dissociation constantacid dissociation constant

HA + H2O

[H3O+][A

-]

[HA][H2O]Keq

A- + H3O

+

=

Keq[H2O]Ka[H3O+][A-]

[HA]= =

Page 16: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1616HI I-

HBr Br-

HCl Cl-

H2SO4 HSO4-

H2OH3O+

H3PO4 H2PO4-

C6H5COOH C6H5COO-

CH3COOH CH3COO-

H2CO3 HCO3-

H2S HS-

NH3NH4+

C6H5OH C6H5O-

HCO3-

CO32-

CH3NH2CH3NH3+

H2O HO-

CH3CH2OH CH3CH2O-

HC CH HC C-H2 H-NH3 NH2

-CH2=CH2 CH2=CH

-CH3CH3 CH3CH2

-Acid Formula pKa Conjugate BaseEthane

Ammonia

EthanolWater

Bicarbonate ionPhenol

Ammonium ion

Carbonic acidAcetic acid

3525

Benzoic acidPhosphoric acid

Sulfuric acidHydrogen chlorideHydrogen bromideHydrogen iodide

51

38

10.33

15.715.9

4.766.36

9.24

9.95

-5.2-7

-9-8

4.19

2.1-1.74Hydronium ion

Strongerconjugate

base

Weakerconjugate

base

Weaker acid

Stronger acid

Methylammonium ion 10.64

Hydrogen sulfide 7.04

AcetyleneHydrogen

Ethylene 44

Page 17: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1717

Acid-Base EquilibriaAcid-Base Equilibria Equilibrium favors reaction of the stronger acid

and stronger base to give the weaker acid and weaker base

CH3COOH NH3 CH3COO-

NH4++ +

Ammonia(stronger base)

Acetate ion(weaker base)

Acetic acidpKa 4.76

(stronger acid)

Ammonium ionpKa 9.24

(weaker acid)

pKeq = 4.76 - 9.24 = -4.48

Keq = 3.0 x 104

Page 18: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1818

Acid-Base EquilibriaAcid-Base Equilibria Consider the reaction between acetic acid and

sodium bicarbonate we can write the equilibrium as a net ionic equation we omit Na+ because it does not undergo any

chemical change in the reaction

equilibrium lies to the right carbonic acid forms, which then decomposes to

carbon dioxide and water

CH3COH

OHCO3

- CH3CO-

O

H2CO3

Bicarbonate ion Acetate ionAcetic acidpKa 4.76

(stronger acid)

Carbonic acidpKa 6.36

(weaker acid)

+ +

Page 19: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-1919

Molecular Structure and AcidityMolecular Structure and Acidity The overriding principle in determining the

relative acidities of uncharged organic acids is the stability of the anion, A-, resulting from the loss of a proton the more stable the anion, the greater the acidity of HA

Ways to stabilize anions include having the negative charge on a more electronegative atom on a larger atom delocalized through resonance delocalized by the inductive effect in an orbital with more s character

Page 20: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2020

Molecular Structure and AcidityMolecular Structure and Acidity

A. Electronegativity of the atom bearing the negative charge • within a period, the greater the electronegativity of the atom

bearing the negative charge, the more strongly its electrons are held, the more stable the anion is, and the stronger the acid

CH

HH

NH

H

O H

EthanepKa 51

MethylaminepKa 38

MethanolpKa 16

i

Conjugate base

CH3 C –H

H

CH3 N –

H

CH3 O –

Methylamide ion

Methoxide ion

Ethyl anionCH3

CH3

CH3

Acid

Page 21: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2121

Molecular Structure and AcidityMolecular Structure and Acidity

B. Size of the atom bearing the negative charge• within a column of the Periodic Table, acidity is related to the size

of the the atom bearing the negative charge• atomic size increases from top to bottom of a column• the larger the atom bearing the charge, the greater its stability

S HCH3 CH3 O – CH3 S –O HCH3

MethanethiolpKa 7.0

(stronger acid)

Methoxide ion

(stronger base)

Methanethiolateion

(weaker base)

MethanolpKa 16

(weaker acid)

+ +

Page 22: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2222

Molecular Structure and AcidityMolecular Structure and Acidity

C. Resonance delocalization of charge in A-

• the more stable the anion, the farther the position of equilibrium is shifted to the right

• compare the acidity alcohols and carboxylic acids• ionization of the O-H bond of an alcohol gives an anion

for which there is no resonance stabilization

CH3CH2O-H H2O CH3CH2O - H3O++

An alcohol An alkoxide ion

+ pKa = 15.9

Page 23: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2323

Molecular Structure and AcidityMolecular Structure and Acidity

• ionization of a carboxylic acid gives a resonance-stabilized anion

• the pKa of acetic acid is 4.76

• carboxylic acids are stronger acids than alcohols as a result of the resonance stabilization of the carboxylate anion

equivalent contributing structures; the carboxylate anion is stabilized bydelocalization of the negative charge.

+CH3 C

O

O

C

O

O

CH3O H

C

O

CH3 H3O+

+ H2O

Page 24: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2424

Molecular Structure and AcidityMolecular Structure and Acidity

D. Electron-withdrawing inductive effect• the polarization of electron density of a covalent bond

due to the electronegativity of an adjacent covalent bond

• stabilization by the inductive effect falls off rapidly with increasing distance of the electronegative atom from the site of negative charge

C-CH2O-H

H

H

H

C-CH2O-H

F

F

F

EthanolpKa 15.9

2,2,2-TrifluoroethanolpKa 12.4

CF3-CH2-OH CF3-CH2-CH2-OH CF3-CH2-CH2-CH2-OH

2,2,2-Trifluoro-ethanol

(pKa 12.4)

3,3,3-Trifluoro-1-propanol(pKa 14.6)

4,4,4-Trifluoro-1-butanol

(pKa 15.4)

Page 25: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2525

Molecular Structure and AcidityMolecular Structure and Acidity

• we also see the operation of the inductive effect in the acidity of halogen substituted carboxylic acids

Butanoic acid

pKa 4.82

4-Chlorobutanoicacid

pKa 4.52

3-Chlorobutanoicacid

pKa 3.98

2-Chlorobutanoicacid

pKa 2.83

OH

O

OH

O

OH

O

OH

O

Cl

ClCl

Page 26: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2626

Molecular Structure and AcidityMolecular Structure and Acidity

E. Hybridization • for anions differing only in the hybridization of the charged atom,

the greater the % s character to the hybrid orbital of the charged atom, the more stable the anion

• consider the acidity of alkanes, alkenes, and alkynes (given for comparison are the acidities of water and ammonia)

CH3CH2-H CH3CH2–

CH2=CH-H CH2=CH–

H2N-H H2N–

HC C H HC C–

HO-H HO–

Weak Acid

Alkyne

Alkene

Alkane

Water

25

44

51

15.7

ConjugateBase pKa

Increasing acidity

Ammonia 38

Page 27: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2727

Lewis Acids and BasesLewis Acids and Bases Lewis acid:Lewis acid: any molecule of ion that can form a

new covalent bond by accepting a pair of electrons

Lewis base:Lewis base: any molecule of ion that can form a new covalent bond by donating a pair of electrons

Lewis base

Lewis acid

+ BA new covalent bondformed in this Lewisacid-base reaction

:+-

A B

Page 28: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2828

Lewis Acids and BasesLewis Acids and Bases

• examples

:

: :

Br -CH3-C C-CH3

H H

H

CH3-C C-CH3

H H

H Br

Bromideion

sec-Butyl cation(a carbocation)

2-Bromobutane

++

: :

::

+ -

Diethyl ether(a Lewis base)

Boron trifluoride (a Lewis acid)

O

CH3CH2

CH3CH2

F

F

O

CH3CH2

CH3CH2

B-F

F

F

+ B

A BF3-ether complex

F:: :

Page 29: 4-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson

4-4-2929

Acids and Acids and BasesBases

End Chapter 4End Chapter 4