3d_shellexample_s04

Upload: sumohi

Post on 08-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 3D_ShellExample_s04

    1/56

    March 13-15, 2001 FEM/Ansys 1

    3D Structural Analysis

    Deformation of a cylindrical barrel vaultunder weight and pressure impact

    K. Nema

    Y. Liu and H.U. Akay

    Department of Mechanical Engineering,

    Indiana University-Purdue University

    Indianapolis

    Indianapolis, Indiana 46202

  • 8/22/2019 3D_ShellExample_s04

    2/56

    March 13-15, 2001 FEM/Ansys 2

    Problem Description

    R=7.62 m

    Supported by

    rigid diaphragm7.62 m

    t = 0.076 m

    40oFree edge

    Material Properties

    E = 3e6 lb/in2 = 2.068e10 N/m2

    v= 0.0

    = 90 lb/ft2 = 439.7 kg/m2

  • 8/22/2019 3D_ShellExample_s04

    3/56

    March 13-15, 2001 FEM/Ansys 3

    Approach and Assumptions

    Because the geometry is symmetric, only 1/4th portion is analyzed.

    Element types tried:

    Shell63 (4 nodes, 6 DOF)

    Solid45 (8 nodes, 3 DOF)

    Solid95 (20 nodes, 3 DOF)

    Solid73 (8 nodes, 6 DOF)

    Note: 3 DOF are: , 6 DOF are: Analysis

    Static

    Modal

    Transient analysis under impact pressure

    Option 1. Full analysis

    Option 2. Mode superposition (five modes)

    , ,u v w , , , , ,y zu v w

  • 8/22/2019 3D_ShellExample_s04

    4/56

    March 13-15, 2001 FEM/Ansys 4

    Basic steps

    Preprocessing

    Create solid model

    Option 1. Solid model for shell element mesh

    Option 2. Solid model for solid element mesh Create finite element model

    Apply boundary conditions

    Apply loads (gravity, pressure, etc.) Solve

    Postprocessing

  • 8/22/2019 3D_ShellExample_s04

    5/56

    March 13-15, 2001 FEM/Ansys 5

    Preprocessing: Step 1. Create solid model (for Shell63 Element)

    1.Create a partial cylinder

  • 8/22/2019 3D_ShellExample_s04

    6/56

    March 13-15, 2001 FEM/Ansys 6

    Preprocessing : Step 1. Create solid model (for Shell63 Element)

    2. Delete volume only

  • 8/22/2019 3D_ShellExample_s04

    7/56

    March 13-15, 2001 FEM/Ansys 7

    Preprocessing : Step 1. Create solid model (for Shell63 Element)

    3. Plot areas

  • 8/22/2019 3D_ShellExample_s04

    8/56

    March 13-15, 2001 FEM/Ansys 8

    Preprocessing: Step 1. Create solid model (for Shell63 Element)

    4. Front view of areas model

  • 8/22/2019 3D_ShellExample_s04

    9/56

    March 13-15, 2001 FEM/Ansys 9

    Preprocessing : Step 1. Create solid model (for Shell63 Element)

    5. Delete areas and below

    Turn on Box Pick

    Box select the unnecessary areas

  • 8/22/2019 3D_ShellExample_s04

    10/56

    March 13-15, 2001 FEM/Ansys 10

    Preprocessing : Step 1. Create solid model (for Shell63 Element)

    6. The solid model (for Shell63 Element)

  • 8/22/2019 3D_ShellExample_s04

    11/56

    March 13-15, 2001 FEM/Ansys 11

    Preprocessing: Step 1. Create solid model (for Solid Element)

  • 8/22/2019 3D_ShellExample_s04

    12/56

    March 13-15, 2001 FEM/Ansys 12

    Preprocessing : Step 2. Mesh with Shell63 Element

  • 8/22/2019 3D_ShellExample_s04

    13/56

    March 13-15, 2001 FEM/Ansys 13

    Preprocessing : Step 2. Mesh with Solid Element

  • 8/22/2019 3D_ShellExample_s04

    14/56

    March 13-15, 2001 FEM/Ansys 14

    Preprocessing: Step 3. Apply boundary conditions

    1. Apply symmetric B. C.

    Pick the two highlighted

    symmetric lines

  • 8/22/2019 3D_ShellExample_s04

    15/56

    March 13-15, 2001 FEM/Ansys 15

    Preprocessing: Step 3. Apply boundary conditions

    2. Apply B. C. on support edge

    Pick the support edge

  • 8/22/2019 3D_ShellExample_s04

    16/56

    March 13-15, 2001 FEM/Ansys 16

    Preprocessing: Step 4. Apply gravity

  • 8/22/2019 3D_ShellExample_s04

    17/56

    March 13-15, 2001 FEM/Ansys 17

    Postprocessing for static analysis Path Operation

    1. Define path by nodes (a. Pick nodes in order)

    Pick nodes in order

  • 8/22/2019 3D_ShellExample_s04

    18/56

    March 13-15, 2001 FEM/Ansys 18

    Postprocessing for static analysis Path Operation

    1. Define path by nodes (b. Define Path specification)

  • 8/22/2019 3D_ShellExample_s04

    19/56

    March 13-15, 2001 FEM/Ansys 19

    Postprocessing for static analysis Path Operation

    2. Map results onto path (Displacement on Z direction)

  • 8/22/2019 3D_ShellExample_s04

    20/56

    March 13-15, 2001 FEM/Ansys 20

    Postprocessing for static analysis Path Operation

    3. Plot path results on geometry (Displacement on Z direction)

    P t i f t ti l i P th O ti

  • 8/22/2019 3D_ShellExample_s04

    21/56

    March 13-15, 2001 FEM/Ansys 21

    Postprocessing for static analysis Path Operation

    3. Plot path results on geometry (Displacement on Z direction)

    Comparison of results from different element models

  • 8/22/2019 3D_ShellExample_s04

    22/56

    March 13-15, 2001 FEM/Ansys 22

    Comparison of results from different element models

    (Longitudinal displacement of support)

    -2.00E-03

    -1.00E-03

    0.00E+00

    1.00E-03

    2.00E-03

    3.00E-03

    4.00E-03

    5.00E-03

    6.00E-03

    0 5 10 15 20 25 30 35 40

    Angle f rom vertical direction ( o)

    Longitudinaldisplacementofsupport(m

    shell63

    solid45(3 DOF, 8 nodes)-top

    solid45(3 DOF, 8 nodes)-bottom

    solid95(3 DOF, 20 nodes)-top

    solid95(3 DOF, 20 nodes)-middle

    solid95(3 DOF, 20 nodes)-bottom

    solid73(6 DOF, 8 nodes)-top

    solid73(6 DOF, 8 nodes)-bottom

    Comparison of results from different element models

  • 8/22/2019 3D_ShellExample_s04

    23/56

    March 13-15, 2001 FEM/Ansys 23

    Comparison of results from different element models

    (Vertical displacement of central section)

    -1.00E-01

    -8.00E-02

    -6.00E-02

    -4.00E-02

    -2.00E-02

    0.00E+00

    2.00E-02

    0 5 10 15 20 25 30 35 40

    Angle from vertical direction (o)

    Verticaldisplacemen

    tofcentralsection(m)

    shell63

    solid45(3 DOF, 8 nodes)-top

    solid45(3 DOF, 8 nodes)-bottom

    solid95(3 DOF, 20 nodes)-top

    solid95(3 DOF, 20 nodes)-middle

    solid95(3 DOF, 20 nodes)-bottom

    solid73(6 DOF, 8 nodes)-top

    solid73(6 DOF, 8 nodes)-bottom

  • 8/22/2019 3D_ShellExample_s04

    24/56

    March 13-15, 2001 FEM/Ansys 24

    Modal analysis: Step 1. Define analysis type

    Turn on Modal

    M d l l i St 2 D fi d t ti th d

  • 8/22/2019 3D_ShellExample_s04

    25/56

    March 13-15, 2001 FEM/Ansys 25

    Modal analysis: Step 2. Define mode extraction method

    Five modes will be extracted

    M d l l i St 3 D fi ti f S b th d

  • 8/22/2019 3D_ShellExample_s04

    26/56

    March 13-15, 2001 FEM/Ansys 26

    Modal analysis: Step 3. Define options for Subspace method

    Postprocessing for Modal analysis(Shell63)

  • 8/22/2019 3D_ShellExample_s04

    27/56

    March 13-15, 2001 FEM/Ansys 27

    p g y ( )

    (Frequencies (Hz) for first five modes)

    Postprocessing for Modal analysis (Solid95, 20 nodes)

  • 8/22/2019 3D_ShellExample_s04

    28/56

    March 13-15, 2001 FEM/Ansys 28

    p g y ( , )

    (Frequencies (Hz) for first five modes)

    Transient analysis (Full method)

  • 8/22/2019 3D_ShellExample_s04

    29/56

    March 13-15, 2001 FEM/Ansys 29

    y ( )

    Step 1. Define analysis type

    Turn on Transient

    Transient analysis (Full method)

  • 8/22/2019 3D_ShellExample_s04

    30/56

    March 13-15, 2001 FEM/Ansys 30

    Step 2. Apply pressure on the area

    Apply downward pressure of

    1000 Pa on the area

    Transient analysis (Full method)

  • 8/22/2019 3D_ShellExample_s04

    31/56

    March 13-15, 2001 FEM/Ansys 31

    Step 3. Define time step (Impact pressure)

    Transient analysis (Full method)

  • 8/22/2019 3D_ShellExample_s04

    32/56

    March 13-15, 2001 FEM/Ansys 32

    Step 4. Define time integration method

    Use unconditionally stable scheme

    Transient analysis (Full method)

  • 8/22/2019 3D_ShellExample_s04

    33/56

    March 13-15, 2001 FEM/Ansys 33

    Step 5. Define output controls

    Time History Postprocessing for Transient analysis

    St 1 D fi lt i bl ( )

  • 8/22/2019 3D_ShellExample_s04

    34/56

    March 13-15, 2001 FEM/Ansys 34

    Step 1. Define result variables (a)

    Time History Postprocessing for Transient analysis

    St 1 D fi lt i bl (b)

  • 8/22/2019 3D_ShellExample_s04

    35/56

    March 13-15, 2001 FEM/Ansys 35

    Step 1. Define result variables (b)

    Pick the node

    Time History Postprocessing for Transient analysis

    St 1 D fi lt i bl ( )

  • 8/22/2019 3D_ShellExample_s04

    36/56

    March 13-15, 2001 FEM/Ansys 36

    Step 1. Define result variables (c)

    Vertical displacement

    Time History Postprocessing for Full Transient analysis

    Step 2 Graph the variables

  • 8/22/2019 3D_ShellExample_s04

    37/56

    March 13-15, 2001 FEM/Ansys 37

    Step 2. Graph the variables

    Transient vertical displacement of vault bottom edge centerunder pressure impact (1000 Pa) (no damping, t=0.03)

  • 8/22/2019 3D_ShellExample_s04

    38/56

    March 13-15, 2001 FEM/Ansys 38

    p p ( ) ( p g )

    (Full transient analysis)

    Shell63

    Transient vertical displacement of vault bottom edge centerunder pressure impact (1000 Pa) (no damping, t=0.03)

  • 8/22/2019 3D_ShellExample_s04

    39/56

    March 13-15, 2001 FEM/Ansys 39

    (Full transient analysis)

    Solid95 (20 nodes, 3 DOF), middle node

    Transient vertical displacement of vault bottom edge centerunder pressure impact (1000 Pa) (no damping, t=0.1)

  • 8/22/2019 3D_ShellExample_s04

    40/56

    March 13-15, 2001 FEM/Ansys 40

    (Full transient analysis)

    Shell63

    Transient vertical displacement of vault bottom edge centerunder pressure impact (1000 Pa) (with damping, t=0.03)

  • 8/22/2019 3D_ShellExample_s04

    41/56

    March 13-15, 2001 FEM/Ansys 41

    (Full transient analysis)

    Shell63

    Transient analysis (Mode Superposition method)

    Step 1 Define analysis type

  • 8/22/2019 3D_ShellExample_s04

    42/56

    March 13-15, 2001 FEM/Ansys 42

    Step 1. Define analysis type

    Turn on Transient

    Note: Modal analysis should be done

    before using Mode Superposition,

    Transient analysis (Mode Superposition method)

    Step 2. Define analysis option

  • 8/22/2019 3D_ShellExample_s04

    43/56

    March 13-15, 2001 FEM/Ansys 43

    Step 2. Define analysis option

    Define the maximum mode number for superposition

    Transient analysis (Mode Superposition method)

    Step 3. Delete pressure applied earlier in the modal analysis

  • 8/22/2019 3D_ShellExample_s04

    44/56

    March 13-15, 2001 FEM/Ansys 44

    Step 3. Delete pressure applied earlier in the modal analysis

    Transient analysis (Mode Superposition method)

    Step 4. Apply the load vector obtained from the modal analysis

  • 8/22/2019 3D_ShellExample_s04

    45/56

    March 13-15, 2001 FEM/Ansys 45

    p pp y y

    Transient analysis (Mode Superposition method)

    Step 5. Define the first time step

  • 8/22/2019 3D_ShellExample_s04

    46/56

    March 13-15, 2001 FEM/Ansys 46

    p p

    Note: Only define the time step size

    Transient analysis (Mode Superposition method)

    Step 6. Solve

  • 8/22/2019 3D_ShellExample_s04

    47/56

    March 13-15, 2001 FEM/Ansys 47

    p

    Transient analysis (Mode Superposition method)

    Step 7. Define the second time step, then solve again

  • 8/22/2019 3D_ShellExample_s04

    48/56

    March 13-15, 2001 FEM/Ansys 48

    Note: Only define the time at end of load step

    Time History Postprocessing for Mode Superposition Transientanalysis

    Step 1 Set result file

  • 8/22/2019 3D_ShellExample_s04

    49/56

    March 13-15, 2001 FEM/Ansys 49

    Step 1. Set result file

    Select the result file with extension .rdsp

    Time History Postprocessing for Mode Superposition Transientanalysis

    Step 2 Define result variables (a)

  • 8/22/2019 3D_ShellExample_s04

    50/56

    March 13-15, 2001 FEM/Ansys 50

    Step 2. Define result variables (a)

    Time History Postprocessing for Mode Superposition Transient analysis

    Step 2. Define result variables (b)

  • 8/22/2019 3D_ShellExample_s04

    51/56

    March 13-15, 2001 FEM/Ansys 51

    Pick the node

    Transient vertical displacement of vault bottom edge center

    under pressure impact (1000 Pa) (no damping, t=0.001)

    M d iti t i t l i fi d

  • 8/22/2019 3D_ShellExample_s04

    52/56

    March 13-15, 2001 FEM/Ansys 52

    -- Mode superposition transient analysis, five modes

    -- Unconditionally stable scheme

    Shell63

    Transient vertical displacement of vault bottom edge center

    under pressure impact (1000 Pa) (no damping, t=0.01)

    M d iti t i t l i fi d

  • 8/22/2019 3D_ShellExample_s04

    53/56

    March 13-15, 2001 FEM/Ansys 53

    -- Mode superposition transient analysis, five modes

    -- Unconditionally stable scheme

    Shell63

    Transient vertical displacement of vault bottom edge center

    under pressure impact (1000 Pa) (no damping, t=0.001)

    Mode s perposition transient anal sis fi e modes

  • 8/22/2019 3D_ShellExample_s04

    54/56

    March 13-15, 2001 FEM/Ansys 54

    -- Mode superposition transient analysis, five modes

    -- Conditionally stable scheme

    Shell63

    Transient vertical displacement of vault bottom edge center

    under pressure impact (1000 Pa) (no damping, t=0.01)

    Mode superposition transient analysis five modes

  • 8/22/2019 3D_ShellExample_s04

    55/56

    March 13-15, 2001 FEM/Ansys 55

    -- Mode superposition transient analysis, five modes

    -- Conditionally stable scheme

    Shell63

  • 8/22/2019 3D_ShellExample_s04

    56/56

    March 13-15, 2001 FEM/Ansys 56

    Summary

    Shell element and solid elements can be used for this problem

    Solid95 (20 nodes, 3 DOF) can give the same results of verticaldisplacement of central section as shell63

    For the longitudinal displacement of support, solid95 (20 nodes,

    3 DOF) is slightly different from shell63

    Solid45 (8 nodes, 3 DOF) and solid73 (8 nodes, 6 DOF) give the

    same results as solid95 (20 nodes, 3 DOF)

    Mode superposition transient analysis uses much less time than

    full transient analysis, while providing almost the same results Numerical damping occurs when large time step size is applied