3ddi visualization muri uc berkeley and mit. uc- mit 3ddi: overview project pipeline: 3d capture:...

80
3DDI Visualization MURI UC Berkeley and MIT

Upload: claud-hudson

Post on 12-Jan-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

3DDI Visualization MURI

UC Berkeley and MIT

Page 2: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3DDI: Overview

Project pipeline:

3D capture:Modeling,simulation

Rendering 3D Display

Applications:Tele-surgery

TrainingCollaboration

Page 3: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3DDI: Goals• Direct Interaction: no

gloves or glasses.

• Animated content: interaction in real time.

• Content is real-world: 3D models from live capture and modeling.

Laser scanner

3D display

Virtual object

Page 4: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: 3D capture using range scanner• To build a solid-state, high-accuracy electronic

range-finding scanner.

• The system should serve as a replacement for mechanical scanners and motion-capture devices and be usable indoors and outdoors.

• Desired performance: Outdoors, sub-meter accuracy at 100s of meters,

scans in less than a second. Indoors, millimeter accuracy at several meters, scans

at 20-60 frames/sec.

Page 5: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Subtasks

• Fabrication, testing and improvement of high-power, flip-bonded VCSEL arrays.

• Integration of scanner components. Design of custom elements (modulator, amplifier and power supplies).

• Purchase and integration of coupling optics.• Illumination demo with VCSEL source,

photomultiplier and CCD.• Wrote code for image sequence processing

and calibration.• Static scan example, integration with dynamic

authoring tool (Steve Chenney).

Page 6: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3D Imaging System, U.C.B.

Fuji Lens

MCPImaging Optics

CCDVCSEL Array

Power Supply HF Signal

Portable Platform!

IR Light

Page 7: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

• Bottle image: depth range ~ 1.2m. Accuracy ~ 0.3cm

First Scanned image

Page 8: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Model Capture Using Pose Cameras

• Urban geometry

• Textures/BRDFsfor reillumination

… How can we import 3D scene data quickly and automatically?… Starting point for visualization, design, simulation, teaching.

… Develop effectivesensors, automatedand semi-automatedsoftware tools for rapid environment capture

• Synergistic efforts at UCB: 3D scanner Illumination capture

Page 9: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Goals of integrated effort• Acquire geo-referenced digital imagery

of MIT campus from ground, air

• Extract building exteriors from imagery,using fully automatic techniques

• Model building interiors semi-automaticallyfrom existing 2D building floorplans

• Attach dense interior phototexturesto geometry, semi-automatically

• Integrate photometrics, interaction,and dynamic simulation from UCB

Page 10: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Acquisition of geo-referenced imagery• Argus platform performs sensor fusion

of imagery, navigation information

Page 11: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Geo-referencing of multiple nodes• Currently semi-automated process requir-

ing less than one person-second per image

Page 12: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Texture extraction• Estimation based on weighted medians

Page 13: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress year 3• Acquire hemispherical interior imagery

• Merge ground, aerial geo-ref’d imagery

• Extension to temporal modeling Continuous site modeling of changing site Test: Building 20 demolition, construction

Page 14: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Capturing Geometry and Reflectance from Photographs

• Input from Cameras, Pose Cameras, Laser Scanners

• Output to Conventional and 3D Displays

Page 15: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress year 1

• Extend Facade to Parametrized Curved Objects

• Visibility Processing and Real-time Rendering

• Campanile Movie

• High Dynamic Range Photography

Page 16: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Research Highlights Year 1

• Façade: extended to circularly symmetric objects.

• Façade: Accelerated using α-blending.

Campanile Movie shown at SIGGRAPH’97

Page 17: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress year 2

• Photometric Properties of Architectural Scenes

• Capturing and Using Complex Natural Illumination

• Video Motion Capture

Page 18: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Research Highlights Year 2• Calculation of radiance with known

(outdoor) illumination:

• Re-rendering under novel lighting:

Page 19: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Research Highlights Year 2• Rendering synthetic objects into real scenes using

HDR photography. Real+Synthetic objects:

Page 20: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Research Highlights Year 2

• Acquisition of motion data from video using kinematic models:

Page 21: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress year 3

• Reflectance Recovery from MIT Pose Camera Data

• Inverse Global Illumination

Page 22: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

A Synthetic Sunrise Sequence

5:00am 5:30am 6:00am 6:30am

7:00am 8:00am 9:00am 10:00am

One Day at the End of March

Page 23: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Inverse Global Illumination Algorithm Developed

Reflectance Properties

Radiance Maps

Geometry Light Sources

Page 24: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Real vs. Synthetic for Original Lighting

Page 25: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Real vs. Synthetic for Novel Lighting

Page 26: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress Year 4

• Input Multiple range scans

of a scene Multiple photographs

of the same scene

• Output Geometric meshes of

each object in the scene

Registered texture maps for objects

Page 27: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Overview

RangeImages

RadianceImages

PointCloud

PointGroups

Meshes SimplifiedMeshes

CalibratedImages

TextureMaps Objects

Registration Segmentation Reconstruction

PoseEstimation

Texture MapSynthesis

Page 28: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Segmentation Results

Page 29: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Camera Pose Results

• Accuracy: consistently within 2 pixels• Correctness: correct pose for 58 out of 62 images

Page 30: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Texture-Mapping and Object Manipulation

Page 31: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Image-based Modeling and Rendering• 3rd Generation--Vary spatial

configurations in addition to viewpoint and lighting

Novel Viewpoint Novel Viewpoint & Configuration

Page 32: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Texture-Mapping and Object Manipulation

Page 33: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Authoring Huge, Dynamic Visual Simulations

• Efficiency Too much time is spent computing needless dynamic

state, and dynamic authoring is not integrated with geometric design.

• Control Physics doesn’t do what an author wants

• Success is measured through speedups and the control of example scenarios.

Page 34: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3D Capture

Modeling,Simulation

Rendering

3D Display

• Take models from measured data. Eg: architecture

• Author scenarios and simulate the dynamics. Eg: a traffic accident

• Provide dynamic models for efficient rendering.

• Integration example: Simulating with a scanned bottle.

How it relates to MURI

Page 35: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Year 1: Culling with consistency

• Exploit viewer uncertainty to achieve efficient dynamics culling

• Significant speedups demonstrated: Around 5x for test environments. Arbitrary depending on the world.

• Tools released for VRML authoring.

• Papers in I3D, VRML98 and CGA.

Page 36: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Year 2 and 3: Directing Scenarios

• Use physical sources of randomness (eg. rough surfaces, variable initial conditions) to direct physical simulations

• Year 2: Directing a single body

• Year 3: Directing multiple interacting bodies

• Along the way: Fast multi-body simulation techniques

Page 37: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Integration Example: Details

• Captured data and 3d rendering must be linked by an authoring phase.

• Extract radius information from 3D bottle scan, plus estimate of variance.

• Simulate using MCMC to achieve a goal - balls are deflected by bottles to land in the right place.

• Render on autostereoscopic display.

Page 38: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Integration of Modeling and Simulation• Incorporate data from multiple sources:

Geodetic capture (MIT); floorplan extrusion, instancing (UCB)

• Geometry compilation for responsiveness: Scaleable, persistent proximity/visibility database (UCB,

MIT)

• Natural, extensible constraint-based interaction Object associations framework (UCB)

• Physically-based kinematics: Fire simulation (UCB; shown in ‘98) Impulse-response simulation (UCB)

Page 39: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Several generations of system components:• 1990-93: WalkThrough system (UCB)

Rapid visualization of complex models

• 1993-94: Radiosity integration (Princeton) Diffuse illumination throughout model

• 1994-95: Object associations (UCB) Natural object instancing & placement

• 1994-97: FireWalk, Impulse (UCB) Physically-based fire, kinematic simulations

• 1996-99: Façade, Skymaps (UCB) High-fidelity photo-assisted modeling

• 1996-99: City Scanning (MIT) Acquisition of extended urban models

Page 40: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Dataset Integration: Geo-referencing• Argus data is geodetically registered

Page 41: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Dataset Integration: Exterior structure• Exteriors in UCB FireWalk framework

Page 42: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Integration of UCB object associations• Infrastructure supports editing at any scale

Page 43: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Exterior to interior transition

• Seamless transition to Tech Square interior

Page 44: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Transition: building approach

• Gravity association keeps us to local ground

Page 45: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Visibility modifications: exterior, interior

• Cell-portal visibility applies throughout

Page 46: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Door passages using object assocations

• Opening doors to allow passage

Page 47: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Integration of UCB floorsketch, firewalk

• Tech Square interiors modeled by procedural floorplan extrusion, furniture instancing

Page 48: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Integration of UCB Impulse-Response• Automated generation of RBL objects

Requires specification as union of convex parts

• Initial integration: population, visualization

Page 49: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Extension to Impulse: sleeping objects• Added “sleep state” for objects coming to

rest

Page 50: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Extension to Impulse: interaction• Added interactive application of forces

Page 51: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Novel 3D Displays

• Re-design the MIT holographic-video display for heightened utility.

• Design a new autostereoscopic video display for multiple viewers.

Page 52: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Relationship to the rest of the field:

• The holographic video display is the first of its kind, and is unique in its size (75mm x 125 mm) and its capability for rapid interaction.

• The autostereoscopic display is unique in its ability to provide binocular stereo video to multiple viewers in arbitrary locations, without the use of viewing aids such as spectacles.

Page 53: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Interactive Holographic Video

Page 54: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Autostereoscopic Display

Multiple viewers(three, so far)Micropolarizer-based spatial multiplexing

Page 55: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Viewer Tracking in Progress

recognizer finds left eye(s).

video signal to viewer-tracking LCD

Page 56: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Task: Telesurgery

To integrate elements of the MURI pipeline for visualization in the performance and training of surgery:

• Capture of anatomical data

• Modeling of deformable objects

• Haptic interaction with models

• 3D display of models

Page 57: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress year 1

Developed virtual environment for surgical training:

• Organ models from Visible Human data

• Simple deformable modeling, using 2D meshes of masses-springs-dampers

• Basic instrument interactions, without force feedback: grasping, cutting, stapling, electrocautery

• Commercial laparoscopic interface without force feedback (Immersion Corp.)

Page 58: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress years 2 & 3

• Added haptic capability to surgical simulation:

Custom 4 degree of freedom laparoscopic interface, based on commerical 3 DOF device (Sensable Tech Phantom)

• Non-linear, graded finite-element modeling for real-time performance and good accuracy & scalability.

• Tested environment in surgical training course at UCSF

Page 59: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Current Simulation:Gallbladder removal

Removal of soft tissue using electrocautery tool

Page 60: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3DDI: Overview

Project pipeline:

3D capture:Modeling,simulation

Rendering 3D Display

Applications:Tele-surgery

TrainingCollaboration

Page 61: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Programmatic Evaluation I

• Research on components and system integration successful One example of complete pipeline--from

scanning to display shown (bottle). Multiple examples of integration of two or

more modules -- walkthru, outdoor reflectance modeling, simulation

Page 62: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Programmatic Evaluation II

• Research on components has not connected well with original applications. The virtual surgery work does not make much use of the technologies developed in the project.

• Propose shift of primary motivating application to urban model capture, visualization and simulation

Page 63: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Budget Adjustments

• MIT Phase out research on holographic display Continue autostereoscopic development Increase funding of urban modeling

• UCSF Virtual surgery: phase out completely

• UC Berkeley Increase funding for modeling from laser

scanner data

Page 64: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

3DDI: Overview

Project pipeline:

3D capture:Modeling,simulation

Rendering 3D Display

Application:Exterior and InteriorUrban Environments

Page 65: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Scenario: Rapid Capture of, andTraining in, Urban Environments

• Acquire high-fidelity geometric and photometric models of real environments

• Provide ability to simulate, visualize and physically interact with this environment

• Enhance photorealism with 3D displays

Page 66: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

An Example Sequence of Interactions

• The images in the following sequence obviously appear synthetic; we want to achieve this functionality while maintaining photorealism.

Page 67: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Flyby of Model of Real Urban Environment• Can be modified by adding virtual buildings

Page 68: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Seamless Exterior to Interior Transition

• Incorporate geometric, photometric detailto increase photorealism, immersion

Page 69: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Compiled Proximity, Visibility Information• Increases interactivity, decreases network

traffic among multiple users of model

Page 70: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Interact with Physical Objects• Increased ability for natural interaction with

running physical simulation

Page 71: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Directing Behaviors• Construct problem solving contexts for

training

Page 72: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Research and Engineering Aspects

• Instrumentation

• Exterior capture

• Interior capture

• Real-time Interaction

• Directable Dynamics

• 3D Display

• System Integration

• Representation!

Page 73: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress over the last 12 months• VCSEL array scanner

• Modeling from range and image data: Berkeley

• Modeling from pose cameras: MIT

• Authoring with dynamics

• Real-time Simulation of Physically Realistic Global Deformations

• System integration in Walkthru framework

Page 74: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress on VCSEL array scanner• Design of row-addressable VCSEL array to

provide a scanning source.

• Fabrication of chip prototypes with bonding to silicon.

• Testing and characterization.

Page 75: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress on Modeling: MIT

• Acquisition sensor improvements

• Faster, more accurate spherical imagery

• Improved sub-pixel edge detection

• Automated rotational alignment

• Improved texture, occlusion estimation

• Off-planar relief estimation (Fua, Leclerc)

• Symbolic window extraction (Wang)

• Framework for indoor/outdoor visibility

Page 76: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress on Authoring with Dynamics

• Combine the visibility structure of a model with a model of object dynamics Objects guarantee where they will not be Cull dynamics safely

• Objective: Frame rate depends on number of objects

in view

• Demonstration: A complex world where frame rate (largely)

depends on number of objects in view

Page 77: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress on Real-time Simulation of Physically Realistic Global Deformations

•Combines the best features of several models FEM accuracy (theory of elasticity) No distortion (due to the nonlinear strain) Diagonalized mass matrix (similar to particle

system) Graded mesh size of O(n^2) (comparable to

BEM)

Page 78: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

System Integration in Walkthru Framework

• Create an object-oriented, extensible databasein which various types of models can be stored.

• Develop rendering paradigms by which this DB can be explored by many users simultaneously.

• Create the hooks for the attachment of simulators which may allow “work-on-demand” control.

• Allow all interactions to happen over the Internetbetween different types of computers and OS.

Page 79: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Walkthru Framework

• Environment to model complex dynamic worlds with user interaction: Cell-based visibility culling: Pre-loading of scene parts -- based on

expected demand, derived from user motion.

• Generic simulation interface; integrated: CFAST: NIST’s Fire Simulator IMPULSE: Rigid Body Dynamics

Page 80: 3DDI Visualization MURI UC Berkeley and MIT. UC- MIT 3DDI: Overview Project pipeline: 3D capture: Modeling, simulation Rendering3D Display Applications:

UC-MIT

Progress Summary

• Built a shared, object-oriented data base.

• Extensions beyond just geometry (SYLIF).

• Tools for model generation from floorplans.

• Used in joint model developments with MIT.

• Integration of scene data from Malik’s group.