3d geometric modeling for industry suzuki & …...3d geometric modeling for industry suzuki...

1
3D Geometric Modeling for Industry Suzuki & Ohtake Lab. Beam‐hardening correction CT reconstruction with unstructured grid Reconstructing sharp features Small number of elements Developing industrial applications based on geometry processing from 3D scanning data of real‐world objects. Implicit modeling High-accuracy digitalization with X-ray CT scanning Processing multi‐material object Deformation Hole filling Missing part Point cloud Mesh 3D printing Non-destructive inspection with X-ray CT Extracting medial surface Extracting voids inside Geometry processing 3D printing Application for archaeology Estimating the shape of Neanderthal’s brain Estimating the area of brain from an X‐ray CT image of a fossil of skull Optical scan / XCT scan Measurement data Measurement (CAT), design (CAD), manufacture (CAM), analysis(CAE) Object Geometry processing Before After [Data is provided by Lab. Of Physical Anthropology, Kyoto University] Avoiding failure of the products Generating a spherical cover from X‐ray CT image, and then extracting a mesh Non‐manifold part is represented Department of Precision Engineering, School of Engineering, The University of Tokyo Structural analysis based on real-world object You can recognize deformation better than on a monitor!! CT scan & Mesh generation FEM mesh Simulate the deformation on the mesh Color codes von Mieses strain (red for large and blue for small) Direct generation of FEM mesh (mesh for structural analysis) from a sinogram (radiographic images) Object FEM mesh 3D printable edges of FEM mesh Fixing Load 3D printing with magnifying 10 times → Variable thresholding : ݔߘ ݔߘ ݔ ߘ·ߘ ݔൌ0 Change the definition of the surface: Isosurface of CT image: Too thin paper to measure with CT scan Making a hole Thickness less than 1mm even in the 10 times magnified model Thickening the model slightly Shape modeling Level set method: డሺ௫,௧ሻ డ௧ ߘ ݐ,ݔSurface offsetting to avoid breaking Robust extraction of thin parts in the shape of lab’s logo with CSG

Upload: others

Post on 12-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Geometric Modeling for Industry Suzuki & …...3D Geometric Modeling for Industry Suzuki & Ohtake Lab. •Beam‐hardening correction •CT reconstruction with unstructured grid

3D Geometric Modeling for Industry Suzuki & Ohtake Lab.

• Beam‐hardening  correction

• CT reconstruction with unstructured grid

• Reconstructing sharp features• Small number of elements

Developing industrial applications based on geometry processing from 3D scanning data of real‐world objects.

Implicit modelingHigh-accuracy digitalization with X-ray CT scanning

• Processing multi‐material object• Deformation

• Hole fillingMissing part

Point cloudMesh

3D printing

Non-destructive inspection with X-ray CT

• Extracting medial surface

• Extracting voids inside

Geometry processing+ 3D printing

Application forarchaeology

• Estimating the shape of Neanderthal’s brain

Estimating the area of brain from an X‐ray CT image of a fossil of skull

Optical scan/ XCT scan Measurement 

dataMeasurement (CAT), design (CAD), manufacture (CAM), analysis(CAE)

ObjectGeometry processing

Before

After

[Data is provided by Lab. Of Physical Anthropology, Kyoto University]

Avoiding failure of the products

Generating a spherical cover from X‐ray CT image, and then extracting a mesh

Non‐manifold part is represented

Department of Precision Engineering, School of Engineering, The University of Tokyo

Structural analysis based on real-world object

You can recognize deformation better than on a monitor!!

CT scan &Mesh 

generationFEM mesh

Simulate the deformation on the mesh

Color codes von Mieses strain(red for large and blue for small)

• Direct generation of FEM mesh (mesh for structural analysis) from a sinogram (radiographic images)

Object

FEM mesh3D printable edges

of FEM mesh

Fixing

Load

3D printing with magnifying 10 times

→ Variable thresholding : · 0

Change the definition of the surface:

Isosurface of CT image:

Too thin paper to measure with CT scan

Making a hole

Thickness less than 1mm even in the 10 times magnified model

Thickening the model slightly

Shape modeling

Level set method:, ,

• Surface offsetting to avoid breaking

• Robust extraction of thin parts

in the shape of lab’s logo with  CSG