38190

26
Corrosion Protection of Metallic Bipolar Plates for Fuel Cells May 22-26, DOE Hydrogen Program Review John A. Turner , Heli Wang National Renewable Energy Laboratory Michael P. Brady Oak Ridge National Laboratory This presentation does not contain any proprietary or confidential information Project ID #: FCP12 NREL/PR-560-38190

Upload: yovaraj

Post on 10-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 1/26

Corrosion Protection of Metallic

Bipolar Plates for Fuel Cells

May 22-26, DOE Hydrogen Program Review

John A. Turner, Heli Wang

National Renewable Energy Laboratory

Michael P. Brady

Oak Ridge National Laboratory

This presentation does not contain any proprietary or confidential information

Project ID #: FCP12NREL/PR-560-38190

Page 2: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 2/26

Overview

BarriersTimeline• Barriers addressed

Stack Material andManufacturing costs.

Materials Durability

• Project start date: 2004

• Project end date: tbd• Percent complete: tbd

Budget

Partners• Total project funding

– DOE share: $196k

• Funding received in FY04:$40k

• Funding for FY05: $156k

• Interactions/ collaborations

– Oak Ridge National Lab. – Plug Power

Page 3: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 3/26

Approach and Objectives

• Our approach is two fold – Understanding the relationship between alloy

composition and bipolar plate performance.

– Study possible coating materials and methods.• Objectives - FY 05 Goals

– Corrosion testing of new alloys and coatings

– Collaborate with ORNL to evaluate nitrided alloys and todetermine best alloy composition for PEMFC.

– Characterize conducting coatings on alloys and their performance in PEMFC environments.

– Assemble test system for operation in the 100-200 °Crange and study materials in this temperature range.

– Development of corrosion tests for polyphosphoric acidenvironment at >150C

Page 4: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 4/26

Why Metallic Bipolar Plates

• Wide choices, high chemical stability, includingchoices for corrosion resistance

• High strength allowing thinner plates for highpower density

• Existing low cost/high volume manufacturing

techniques (e.g. stamping);• High bulk electrical and thermal conductivities;

• Potential for low cost.

• DOE 2010 Technical Targets for Fuel Cell Stacks

-Cost $35/kW

-Durability 5000 hours

Page 5: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 5/26

Challenges with Metallic Bipolar

Plates in PEMFC

• Possible contamination of polymer membraneby dissolved metal ions

• Higher surface contact resistance due tosurface oxides (such oxides provide excellentcorrosion resistance however)

Page 6: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 6/26

NREL/ORNL Collaboration

• Evaluated over 10 alloy compositions, bothcommercially available and synthesized;

• Evaluated the influence of nitridation parameterson the contact resistance and corrosion

resistance in PEMFC environments, used for improving and adjusting the alloy compositionand nitridation parameters;

• Filled a joint patent application for the nitridationof AISI446 alloy, finding 2 alloys suitable for PEMFC bipolar plates after nitridation.

Page 7: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 7/26

Initial Success for Fe-Cr alloy via

Nitrogen Modified Oxide Layer

• AISI446 and ModifiedAISI446: Ferritic, Fe-base;

• ICR significantlydecreased, both as-nitrided and tested;

• Surface complex of oxygen-nitrogenmixture with Cr, Fe.

1

10

100

1000

104

0 50 100 150 200

2 X I C R , m O h m * c m 2

Compaction force, N/cm2

Polarized 7.5h @0.6 V, bare AISI446Fresh bare AISI446

Polarized 7.5h @0.6 V (nitrided)As received (nitrided)

Goal ICR

Page 8: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 8/26

Nitrided AISI446 has excellent corrosion

resistance in 1M H2SO4+2ppm F- at 70 °C with air

purge

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

-0.2 0 0.2 0.4 0.6 0.8 1

C u r r e n t d e n s i t y , A / c m 2

Potential, V(SCE)

Cathode potentialin application

3 1 6 L

3 4 9 T M

2 2 0 5

A I S I 4 4 6

N i t r i d e d

A I S I 4 4 6

Page 9: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 9/26

Time-dependent data for Nitrided AISI446 in

simulated PEMFC environments

• Anodic behavior for nitridedAISI446 in PEMFC

environments – cathode (a)

– anode (b) (note the cathodic

current).• DOE target: 16 µA/cm2

-2 10-6

0

2 10-6

4 10-6

6 10-6

8 10-6

1 10-5

C u r r e n t d e n

s i t y , A / c m 2

(a)

-4 10-6

-2 10-6

0

2 10-6

4 10-6

6 10-6

8 10-6

1 10-5

1.2 10-5

0 100 200 300 400 500

C u r r e n t d e n s i t y , A / c m 2

Time, min

(b)

Page 10: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 10/26

Nitrided G-35TM and G-30 ® meet the ICR Goal

• Cr-nitrides formed oncommercial Ni-base

alloys;• Corrosion test at GM

and NREL show noincrease in ICR;

• Complex conductive“oxy-nitride” after polarization (master’s

thesis).

0

50

100

150

200

250

0 50 100 150 200

I n t e r f a c i a l c o n t a c t r e

s i s t a n c e , m O h m * c m2

Compaction force, N/cm2

G-35TM

G-30®

Goal: <20 mΩ⋅cm2

Page 11: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 11/26

Developing lower cost alloys with low ICR

0

10

20

30

40

50

0 50 100 150 200

I n t e r f a

c i a l c o n t a c t r e s i s t a n c e , m O h m * c m 2

Compaction force, N/cm2

Nitrided Al29-4CTM

Nitrided AISI446 (Control)Nitrided ORNL Modified 446

Goal: <20 mΩ⋅cm2

Page 12: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 12/26

And keep excellent corrosion resistance

after modification

-2 10-5

0

2 10-5

4 10-5

6 10-5

8 10-5

0 100 200 300 400 500

C u r r e n t d e n s i t y , A / c m 2

Time, min

-1 10-5

0

1 10-5

2 10-5

3 10-5

4 10-5

5 10-5

-10 0 10 20 30 40 50 60

C u r r e n t d e n s i t y , A

/ c m

2

Time, min

0

5 10-5

0.0001

0.00015

0.0002

0 100 200 300 400 500

C u r r e n t d e n s i t y , A / c m 2

Time, min

0

2 10-5

4 10-5

6 10-5

8 10-5

0.0001

-10 0 10 20 30 40 50 60

C u r r e n t d e n s i t y , A / c m

2

Time, min

PEMFC anode PEMFC cathode

Page 13: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 13/26

ICR for the modified 446 after

polarization in PEMFC environments?

0

10

20

30

40

50

60

0 50 100 150 200 250

2 X I C R , m O

h m * c m 2

Compaction force, N/cm2

Polarized 7.5h @0.6 V, Air purge

Polarized 7.5h @-0.1V, H2 purge

As received

ICR Goal

Page 14: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 14/26

Cost - DOE Targets

Alloy ICR@140 N/cm2,

mΩ⋅cm2

Current at –0.1 V(H2 purge), µA/cm2

Current at 0.6 V(air purge), µA/cm2

Cost*,$/kW

349TM 110 -4.5∼-2.0 0.5∼0.8 4.22

AISI446 190 -2.0∼-1.0 0.3∼1.0 4.76

2205 130 -0.5∼+0.5 0.3∼1.2 3.14

Nitrided

AISI446

6.0 -1.7∼-0.2 0.7∼1.5 N/A

Modified

AISI446

4.8 -9.0∼-0.2 1.5∼4.5 N/A

DOE Target 20 mΩ⋅

cm

2

<16 µA/cm

2

<16 µA/cm

2

$10/kW

Note: Cost data were based on the base price of cold rolled coils from Allegheny Ludlum (see website), and

by assuming 6 cells/kW for a PEMFC and the dimensions of a bipolar plate are 24 cm×24 cm×0.254 cm

(which gives a 400 cm

2

utilization surface area in a 0.01 inch thick sheet).

Page 15: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 15/26

Conductive SnO2:F Coating

• High conductivity

• High stability in many different environments• Volume production is available----widely

used in PV industry

• May allow reduced cost with lower gradealloys.

• NREL expertise (National Center for Photovoltaics)

Page 16: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 16/26

Performance of coated steels in

PEMFC anode environment

• Excellent behavior

of SnO2:F/AISI446is expected;

• Good corrosionresistance of

SnO2:F/AISI444 issurprising! Butmatch with ICPanalysis (seeTable)

0

2 10-5

4 10-5

6 10-5

8 10

-5

0.0001

-10 0 10 20 30 40 50 60

C u r r e n t d e n s i t y , A / c m

2

Time, min

SnO2:F coated AISI441

SnO2:F coated AISI444

SnO2:F coated AISI446

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 100 200 300 400 500

C u r r e n t d e n s i t y , A / c m 2

Time, min

SnO2:F coated AISI441

SnO2:F coated AISI444

SnO2:F coated AISI446

Page 17: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 17/26

Fe, Cr, Ni ions concentration after polarized in

PEMFC environments (average of 3 samples) Ion concentration in PEMFC

anode environment after 7.5hIon concentration in PEMFCcathode environment after 7.5hMaterial

Fe, ppm Cr, ppm Ni, ppm Fe, ppm Cr, ppm Ni, ppm

316L 21.18 4.60 2.49 9.02 1.94 1.41317L 3.98 0.65 0.39 1.29 - -

349TM 1.70 0.12 - 1.47

SnO2/316L 10.83 1.97 1.38 1.12 0.10 0.11

SnO2/317L 4.03 0.69 0.56 0.87 - -SnO2/349TM 1.27 - - 1.07 - -

441 622.9 135.7 1.07 462.8 101.2 0.95

444 141.5 37.86 0.30 328.3 67.97 0.94446 1.46 - - 0.99 - -

SnO2/441 24.15 4.51 - 330.3 68.72 0.60

SnO2/444 12.70 2.09 - 64.42 13.73 0.22

SnO2/446 1.24 0.98 - -

The Needs and Challenges of High

Page 18: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 18/26

The Needs and Challenges of High

Temperature (HT) bipolar plates

….Starting Point

• Desire of transportation industry;

• R&D on high temperature membrane, however,exact environments for HT PEMFC not yetdefined!

• Accordingly, set HT at 150 - 170 °C, selectedH3PO4 as electrolyte, evaluated over 12 “HT”epoxies, and chose the best;

• Modified test systems to suite the HT, workingwith native stainless steel and graphite bipolar plate for PAFC from PlugPower.

Dynamic polarization for 904L steel in H PO

Page 19: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 19/26

Dynamic polarization for 904L steel in H3PO4

at 170 °C

• New condition

resulted insignificant changes

• Passivation for the

steel in bothenvironments;

• High current noted

even in thepassivation region.

10-5

0.0001

0.001

0.01

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

C u r r e n t d e

n s i t y , A / c m 2

Potential, V(SHE)

Anode potentialin application

Cathode potentialin application

Air purgeH

2

purge

Page 20: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 20/26

How about potentiostatic polarization for 904L steel in

H3PO4 at 170 °C?

• At 0.1 V with H2 purge,current slightly increasesfrom 0.73 to 1.15 mA/cm2

after 15 minutes;

• At 0.7 V with air purge,current peaks at 5

minutes, then stabilized at1.0-1.25 mA/cm2 after 15minutes;

• Matches with dynamic

polarization.0

0.002

0.004

0.006

0.008

0.01

-20 0 20 40 60 80 100 120 140

C u r r e n

t d e n s i t y , A / c m 2

Time, min

@0.7 V, air [email protected] V, H

2purged

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

-5 0 5 10 15 20 25 30

C u r r e n t d e n s i t

y , A / c m

2

Time, min

@0.7 V, air [email protected] V, H

2purged

Page 21: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 21/26

How about graphite (used in PAFC now)?

• Actual bipolar

plate;• Very low ICR

with graphite;

• Tested atroom

temperature0

10

20

30

40

50

0 50 100 150 200

I n t e r f a c i a l c o n t a c t r e s i s t a n c e , m O h m * c m 2

Compaction force, N/cm2

Goal: <20 mΩ⋅

cm

2

Page 22: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 22/26

Anodic behavior of graphite in H3PO4

at 170 °C with H2

or air purge

• High currents

• 2 Tafel regions.

10-6

10-5

0.0001

0.001

0.01

0.1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

C u r r e n t d e

n s i t y , A / c m 2

Potential, V(SHE)

Anode potentialin application

Cathode potentialin application

H2

purge

Air purge

Dissemination of Results

Page 23: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 23/26

Dissemination of ResultsJournal Papers

1. Heli Wang and John A. Turner:SnO2:F Coated Ferritic Stainless Steels for PEM Fuel Cell Bipolar Plates, submitted to Journal of Power Sources.

2. Heli Wang, Glen Teeter and John A. Turner:Investigation of a Duplex Stainless Steel as Polymer Electrolyte Membrane Fuel Cell Bipolar Plate Material, Journal of the

Electrochemical Society , 152 (3) B99-B104(2005).

3. Heli Wang, Michael P. Brady, Glenn Teeter and John A. Turner:Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1: Model Ni-50Cr andAustenitic 349TM alloys, Journal of Power Sources 138, 86-93(2004).

4. Heli Wang, Michael P. Brady, K. L. More, H. M. Meyer III and John A. Turner:Thermal Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates, Part 2: Beneficial Modification of Passive Layer on AISI446, Journal of Power Sources 138, 79-85(2004).

5. Heli Wang and John A. Turner:Ferritic Stainless Steels for Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells, Journal of Power Sources 128, 193-200(2004).

6. Heli Wang, Mary Ann Sweikart, John A. Turner:Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells, Journal of Power Sources 115, 243-251(2003).

Conference Papers/Presentations

1. M. P. Brady, H. Wang, I. Paulauskas, B. Yang, P. Sachenko, P. F. Tortorelli, J. A. Turner, R. A. Buchanan: NitridedMetallic Bipolar Plates for PEM Fuel Cells, Proceedings of the 2nd International Conference of Fuel Cell Science,Engineering and Technology, Rochester NY, June 14-16, 2004.

2. Heli Wang and John A. Turner: Using Duplex, Austenite and Ferrite Stainless Steels for Bipolar Plate in PEM Fuel Cells,Proceedings of the 204th Meeting of the Electrochemical Society, October 12-16, Orlando, FL, USA, 2003, paper No.1004.

Paten Application

M. P. Brady, H. Wang and J. A. Turner, Surface Modified Stainless Steels for PEM Fuel Cell Bipolar Plates, US PatentApplication, 2005 (pending).

Page 24: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 24/26

Future Work

• Continue NREL/ORNL collaboration withalloy development and nitridation

• Investigate new alloy compositions andcoatings

• Bare alloys in HT PAFC environments;• Nitrided alloys in HT environments;

• Coated steels in HT environments;

• Further NREL/PlugPower collaboration.

Page 25: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 25/26

Hydrogen Safety

The most significant hydrogen hazardassociated with this project is:

- Hydrogen atmosphere used duringcorrosion tests

H d S f t

Page 26: 38190

8/8/2019 38190

http://slidepdf.com/reader/full/38190 26/26

Hydrogen Safety

Our approach to deal with this hazardis:- Limit cell head space to <10ml and use low

hydrogen flow rates.

- Perform experiments in a fume hood.

- Project activities are covered by a formal,standard operation procedure and reviewedby ES&H and approved by PI’s and cognizant

managers.