34786407-8-shortcircuit-iec

454
2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Short-Circuit Analysis IEC Standard

Upload: serdarank

Post on 04-Dec-2014

117 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Short-Circuit AnalysisIEC Standard

Page 2: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 2

CORTO CIRCUITO

Estándar de ANSI/IEEE & IEC.

Análisis de fallas transitorias (IEC 61363).

Efecto de Arco (NFPA 70E-2000)

Integrado con coordinación de dispositivos de protección.

Evaluación automática de dispositivos.

Características principales:

Page 3: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 3

Purpose of Short-Circuit Studies• A Short-Circuit Study can be used to determine

any or all of the following:

– Verify protective device close and latch capability

– Verify protective device interrupting capability

– Protect equipment from large mechanical forces (maximum fault kA)

– I2t protection for equipment (thermal stress)

– Selecting ratings or settings for relay coordination

Page 4: 34786407-8-Shortcircuit-IEC

Types of Short-Circuit Faults

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 4

Page 5: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 5

Types of SC Faults•Three-Phase Ungrounded Fault•Three-Phase Grounded Fault•Phase to Phase Ungrounded Fault•Phase to Phase Grounded Fault•Phase to Ground Fault

Fault Current

•IL-G can range in utility systems from a few percent to

possibly 115 % ( if Xo < X1 ) of I3-phase (85% of all faults).

•In industrial systems the situation IL-G > I3-phase is rare.

Typically IL-G .87 * I3-phase

•In an industrial system, the three-phase fault condition is frequently the only one considered, since this type of fault generally results in Maximum current.

Types of Short-Circuit Faults

Page 6: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 6

)tSin(Vmv(t)

i(t)v(t)

Short-Circuit Phenomenon

Page 7: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 7

Offset) (DC

TransientState Steady

t) - sin(

Z

Vm ) - tsin(

Z

Vmi(t)

(1) ) t Sin(Vmdt

di L Riv(t)

LR

-e

expression following theyields 1equation Solving

i(t)v(t)

Page 8: 34786407-8-Shortcircuit-IEC

DC Current

AC Current (Symmetrical) with No AC Decay

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 8

Page 9: 34786407-8-Shortcircuit-IEC

AC Fault Current Including the DC Offset (No AC Decay)

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 9

Page 10: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 10

Machine Reactance ( λ = L I )

AC Decay Current

Page 11: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 11

Fault Current Including AC & DC Decay

Page 12: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 12

IEC Short-Circuit Calculation (IEC 909)

• Initial Symmetrical Short-Circuit Current (I"k)

• Peak Short-Circuit Current (ip)

• Symmetrical Short-Circuit Breaking Current (Ib)

• Steady-State Short-Circuit Current (Ik)

Page 13: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 13

IEC Short-Circuit Calculation Method

• Ik” = Equivalent V @ fault location divided by equivalent Z

• Equivalent V is based bus nominal kV and c factor

• XFMR and machine Z adjusted based on cmax, component Z & operating conditions

Page 14: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 14

Transformer Z Adjustment

• KT -- Network XFMR

• KS,KSO – Unit XFMR for faults on system side

• KT,S,KT,SO – Unit XFMR for faults in auxiliary system, not between Gen & XFMR

• K=1 – Unit XFMR for faults between Gen & XFMR

Page 15: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 15

Syn Machine Z Adjustment

• KG – Synchronous machine w/o unit XFMR

• KS,KSO – With unit XFMR for faults on system side

• KG,S,KG,SO – With unit XFMR for faults in auxiliary system, including points between Gen & XFMR

Page 16: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 16

Types of Short-Circuits

• Near-To-Generator Short-Circuit

– This is a short-circuit condition to which at least one synchronous machine contributes a prospective initial short-circuit current which is more than twice the generator’s rated current, or a short-circuit condition to which synchronous and asynchronous motors contribute more than 5% of the initial symmetrical short-circuit current ( I"k) without motors.

Page 17: 34786407-8-Shortcircuit-IEC

Near-To-Generator Short-Circuit

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 17

Page 18: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 18

Types of Short-Circuits

• Far-From-Generator Short-Circuit

– This is a short-circuit condition during which the

magnitude of the symmetrical ac component of

available short-circuit current remains essentially

constant.

Page 19: 34786407-8-Shortcircuit-IEC

Far-From-Generator Short-Circuit

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 19

Page 20: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 20

Factors Used in If Calc

• κ – calc ip based on Ik”

• μ – calc ib for near-to-gen & not meshed network

• q – calc induction machine ib for near-to-gen & not meshed network

• Equation (75) of Std 60909-0, adjusting Ik for near-to-gen & meshed network

• λmin & λmax – calc ik

Page 21: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 21

IEC Short-Circuit Study Case

Page 22: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 22

Types of Short-Circuits

• Maximum voltage factor is used

• Minimum impedance is used (all negative

tolerances are applied and minimum

resistance temperature is considered)

When these options are selected

Page 23: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 23

Types of Short-Circuits

• Minimum voltage factor is used

• Maximum impedance is used (all positive

tolerances are applied and maximum

resistance temperature is considered)

When this option is selected

Page 24: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 24

Voltage Factor (c)

• Ratio between equivalent voltage &

nominal voltage

• Required to account for:

• Variations due to time & place

• Transformer taps

• Static loads & capacitances

• Generator & motor subtransient behavior

Page 25: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 25

Calculation Method

• Breaking kA is more conservative if the option No Motor Decay is selected

Page 26: 34786407-8-Shortcircuit-IEC

IEC SC 909 Calculation

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 26

Page 27: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 27

Device Duty Comparison

Page 28: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 28

Mesh & Non-Mesh If

• ETAP automatically determines mesh & non-meshed contributions according to individual contributions

• IEC Short Circuit Mesh Determination Method – 0, 1, or 2 (default)

Page 29: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 29

L-G FaultsL-G Faults

Page 30: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 30

Symmetrical Components

L-G Faults

Page 31: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 31

Sequence Networks

Page 32: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 32

0

ZZZ

V3I

I3I

021

efaultPrf

af 0

g Zif

L-G Fault Sequence Network Connections

Page 33: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 33

21

efaultPrf

aa

ZZ

V3I

II12

L-L Fault Sequence Network Connections

Page 34: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 34

0

ZZZZ

Z

VI

I0III

20

201

efaultPrf

aaaa 012

g Zif

L-L-G Fault Sequence Network Connections

Page 35: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 35

Transformer Zero Sequence Connections

Page 36: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 36

grounded.

solidly areer transformConnected Y/

or Generators if case thebemay This

I

: then trueare conditions thisIf

&

: ifgreater

becan faultsG -L case. severemost

theisfault phase-3 aGenerally

1f3

1021

fI

ZZZZ

Solid Grounded Devices and L-G Faults

Page 37: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 37

Zero Sequence Model

• Branch susceptances and static loads including capacitors will be considered when this option is checked

• Recommended by IEC for systems with isolated neutral, resonant earthed neutrals & earthed neutrals with earth fault factor > 1.4

Page 38: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 38

Complete reports that include individual branch contributions for:

•L-G Faults

•L-L-G Faults

•L-L Faults

One-line diagram displayed results that include:

•L-G/L-L-G/L-L fault current contributions

•Sequence voltage and currents

•Phase Voltages

Unbalanced Faults Display & Reports

Page 39: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 39

Total Fault Current Waveform

Transient Fault Current Calculation (IEC 61363)

Page 40: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 40

Percent DC Current Waveform

Transient Fault Current Calculation (IEC 61363)

Page 41: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 41

AC Component of Fault Current Waveform

Transient Fault Current Calculation (IEC 61363)

Page 42: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 42

Top Envelope of Fault Current Waveform

Transient Fault Current Calculation (IEC 61363)

Page 43: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 43

Top Envelope of Fault Current Waveform

Transient Fault Current Calculation (IEC 61363)

Page 44: 34786407-8-Shortcircuit-IEC

IEC Transient Fault Current Calculation

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 44

Page 45: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 45

Complete reports that include individual branch contributions for:

•L-G Faults

•L-L-G Faults

•L-L Faults

One-line diagram displayed results that include:

•L-G/L-L-G/L-L fault current contributions

•Sequence voltage and currents

•Phase Voltages

Unbalanced Faults Display & Reports

Page 46: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 46

Page 47: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 47

Page 48: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 48

TEMA 2

Page 49: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Protective Device Coordination

ETAP Star

Page 50: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 50

ETAP START PROTECCION Y COORDINACION

Curvas para más de 75,000 dispositivos.

Actualización automática de Corriente de Corto Circuito.

Coordinación tiempo-corriente de dispositivos.

Auto-coordinación de dispositivos.

Integrados a los diagramas unifilares.

Rastreo o cálculos en diferentes tiempos.

Características principales:

Page 51: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 51

Page 52: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 52

Agenda

• Concepts & Applications

• Star Overview

• Features & Capabilities

• Protective Device Type

• TCC Curves

• STAR Short-circuit

• PD Sequence of Operation

• Normalized TCC curves

• Device Libraries

Page 53: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 53

Definition

• Overcurrent Coordination

– A systematic study of current responsive devices in an electrical power system.

Page 54: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 54

Objective

• To determine the ratings and settings of fuses, breakers, relay, etc.

• To isolate the fault or overloads.

Page 55: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 55

Criteria

• Economics

• Available Measures of Fault

• Operating Practices

• Previous Experience

Page 56: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 56

Design

• Open only PD nearest (upstream) of the fault or overload

• Provide satisfactory protection for overloads

• Interrupt SC as rapidly (instantaneously) as possible

• Comply with all applicable standards and codes

• Plot the Time Current Characteristics of different PDs

Page 57: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 57

Analysis

When:

• New electrical systems

• Plant electrical system expansion/retrofits

• Coordination failure in an existing plant

Page 58: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 58

Spectrum Of Currents

• Load Current

– Up to 100% of full-load

– 115-125% (mild overload)

• Overcurrent

– Abnormal loading condition (Locked-Rotor)

• Fault Current

– Fault condition

– Ten times the full-load current and higher

Page 59: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 59

Protection

• Prevent injury to personnel

• Minimize damage to components

– Quickly isolate the affected portion of the system

– Minimize the magnitude of available short-circuit

Page 60: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 60

Coordination

• Limit the extent and duration of service interruption

• Selective fault isolation

• Provide alternate circuits

Page 61: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 61

Coordination

t

I

C B A

C

D

D B

A

Page 62: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 62

Protection vs. Coordination

• Coordination is not an exact science

• Compromise between protection and coordination

– Reliability

– Speed

– Performance

– Economics

– Simplicity

Page 63: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 63

Required Data• One-line diagrams (Relay diagrams)

• Power Grid Settings

• Generator Data

• Transformer Data– Transformer kVA, impedance, and connection

Motor Data

• Load Data

• Fault Currents

• Cable / Conductor Data

• Bus / Switchgear Data

• Instrument Transformer Data (CT, PT)

• Protective Device (PD) Data– Manufacturer and type of protective devices (PDs)

– One-line diagrams (Relay diagrams)

Page 64: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 64

Study Procedure

• Prepare an accurate one-line diagram (relay diagrams)

• Obtain the available system current spectrum (operating load, overloads, fault kA)

• Determine the equipment protection guidelines

• Select the appropriate devices / settings

• Plot the fixed points (damage curves, …)

• Obtain / plot the device characteristics curves

• Analyze the results

Page 65: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 65

Time Current Characteristics

• TCC Curve / Plot / Graphs

• 4.5 x 5-cycle log-log graph

• X-axis: Current (0.5 – 10,000 amperes)

• Y-axis: Time (.01 – 1000 seconds)

• Current Scaling (…x1, x10, x100, x100…)

• Voltage Scaling (plot kV reference)

• Use ETAP Star Auto-Scale

Page 66: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 66

Page 67: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 67

TCC Scaling Example

• Situation:

– A scaling factor of 10 @ 4.16 kV is selected for TCC curve plots.

• Question

– What are the scaling factors to plot the 0.48 kV and 13.8 kV TCC curves?

Page 68: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 68

TCC Scaling Example• Solution

Page 69: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 69

Fixed Points

• Cable damage curves

• Cable ampacities

• Transformer damage curves & inrush points

• Motor starting curves

• Generator damage curve / Decrement curve

• SC maximum fault points

Points or curves which do not change regardless of protective device settings:

Page 70: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 70

Capability / Damage Curves

t

I

I2

2t

Gen

I2t

MotorXfmr

I2t

Cable

I2t

Page 71: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 71

Cable Protection

• Standards & References– IEEE Std 835-1994 IEEE Standard Power Cable

Ampacity Tables

– IEEE Std 848-1996 IEEE Standard Procedure for the Determination of the Ampacity Derating of Fire-Protected Cables

– IEEE Std 738-1993 IEEE Standard for Calculating the Current- Temperature Relationship of Bare Overhead Conductors

– The Okonite Company Engineering Data for Copper and Aluminum Conductor Electrical Cables, Bulletin EHB-98

Page 72: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 72

Cable Protection

2

2

1

tA

T 2340.0297log

T 234

The actual temperature rise of a cable when exposed to a short circuit current for a known time is calculated by:

Where:A= Conductor area in circular-mils

I = Short circuit current in ampst = Time of short circuit in seconds

T1= Initial operation temperature (750C)

T2=Maximum short circuit temperature

(1500C)

Page 73: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 73

Cable Short-Circuit Heating LimitsRecommended

temperature rise: B) CU 75-200C

Page 74: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 74

Shielded Cable

The normal tape width is 1½

inches

Page 75: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 75

NEC Section 110‑14 C

• (c) Temperature limitations. The temperature rating associated with the ampacity of a conductor shall be so selected and coordinated as to not exceed the lowest temperature rating of anylowest temperature rating of any connected terminationconnected termination, conductor, or device. Conductors with temperature ratings higher than specified for terminations shall be permitted to be used for ampacity adjustment, correction, or both.

• (1) Termination provisions of equipment for circuits rated 100 amperes or less, or marked for Nos. 14 through 1 conductors, shall be used only for conductors rated 600C (1400F).

• Exception No. 1: Conductors with higher temperature ratings shall be permitted to be used, provided the ampacity of such conductors is determined based on the 6O0C (1400F) ampacity of the conductor size used.

• Exception No. 2: Equipment termination provisions shall be permitted to be used with higher rated conductors at the ampacity of the higher rated conductors, provided the equipment is listed and identified for use with the higher rated conductors.

• (2) Termination provisions of equipment for circuits rated over 100 amperes, or marked for conductors larger than No. 1, shall be used only with conductors rated 750C (1670F).

Page 76: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 76

Transformer Protection• Standards & References

– National Electric Code 2002 Edition

– C37.91-2000; IEEE Guide for Protective Relay Applications to Power Transformers

– C57.12.59; IEEE Guide for Dry-Type Transformer Through-Fault Current Duration.

– C57.109-1985; IEEE Guide for Liquid-Immersed Transformer Through-Fault-Current Duration

– APPLIED PROCTIVE RELAYING; J.L. Blackburn; Westinghouse Electric Corp; 1976

– PROTECTIVE RELAYING, PRINCIPLES AND APPLICATIONS; J.L. Blackburn; Marcel Dekker, Inc; 1987

– IEEE Std 242-1986; IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems

Page 77: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 77

Transformer CategoryANSI/IEEE C-57.109

Page 78: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 78

Transformer Categories I, II

Page 79: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 79

Transformer Categories III

Page 80: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 80

Transformer

t(sec)

I (pu)

Thermal200

2.5

I2t = 1250

2

25Isc

Mechanical

K=(1/Z)2t

(D-D LL) 0.87

(D-R LG) 0.58

Frequent Fault

Infrequent Fault

Inrush

FLA

Page 81: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 81

Page 82: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 82

Transformer Protection

MAXIMUM RATING OR SETTING FOR OVERCURRENT DEVICE

PRIMARY SECONDARY

Over 600 Volts Over 600 Volts 600 Volts or Below

Transformer

Rated Impedance

Circuit Breaker Setting

Fuse

Rating

Circuit Breaker Setting

Fuse

Rating

Circuit Breaker Setting or Fuse

Rating

Not more than 6%

600 %

300 %

300 %

250%

125%

(250% supervised)

More than 6% and not more

than 10%

400 %

300 %

250%

225%

125%

(250% supervised)

Table 450-3(a) source: NEC

Any Location – Non-Supervised

Page 83: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 83

Transformer Protection

• Turn on or inrush current

• Internal transformer faults

• External or through faults of major magnitude

• Repeated large motor starts on the transformer. The motor represents a major portion or the transformers KVA rating.

• Harmonics

• Over current protection – Device 50/51

• Ground current protection – Device 50/51G

• Differential – Device 87

• Over or under excitation – volts/ Hz – Device 24

• Sudden tank pressure – Device 63

• Dissolved gas detection

• Oil Level

• Fans

• Oil Pumps

• Pilot wire – Device 85

• Fault withstand

• Thermal protection – hot spot, top of oil temperature, winding temperature

• Devices 26 & 49

• Reverse over current – Device 67

• Gas accumulation – Buckholz relay

• Over voltage –Device 59

• Voltage or current balance – Device 60

• Tertiary Winding Protection if supplied

• Relay Failure Scheme

• Breaker Failure Scheme

Page 84: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 84

Recommended Minimum Transformer Protection

Protective systemWinding and/or power system

grounded neutral groundedWinding and/or power system

neutral ungrounded

Up to 10 MVA Above 10 MVA Up to 10 MVAAbove

10 MVA

Differential - √ - √

Time over current √ √ √ √

Instantaneous restricted ground fault √ √ - -

Time delayed ground fault √ √ - -

Gas detection√ - √

Over excitation - √ √ √ Overheating - √ - √

Page 85: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 85

Question

What is ANSI Shift Curve?

Page 86: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 86

Answer

• For delta-delta connected transformers, with line-to-line faults on the secondary side, the curve must be reduced to 87% (shift to the left by a factor of 0.87)

• For delta-wye connection, with single line-to-ground faults on the secondary side, the curve values must be reduced to 58% (shift to the left by a factor of 0.58)

Page 87: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 87

Question

What is meant by Frequent andInfrequent for transformers?

Page 88: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 88

Infrequent Fault Incidence Zones for Category II & III Transformers

* Should be selected by reference to the frequent-fault-incidence protection curve or for transformers serving industrial, commercial and institutional power systems with secondary-side conductors enclosed in conduit, bus duct, etc., the feeder protective device may be selected by reference to the infrequent-fault-incidence protection curve.

Source: IEEE C57

Source

Transformer primary-side protective device (fuses, relayed circuit breakers, etc.) may be selected by reference to the infrequent-fault-incidence protection curve

Category II or III Transformer

Fault will be cleared by transformer primary-side protective device

Optional main secondary –side protective device. May be selected by reference to the infrequent-fault-incidence protection curve

Feeder protective device

Fault will be cleared by transformer primary-side protective device or by optional main secondary-side protection device

Fault will be cleared by feeder protective device

Infrequent-Fault Incidence Zone*

Feeders

Frequent-Fault Incidence Zone*

Page 89: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 89

Motor Protection

• Standards & References

– IEEE Std 620-1996 IEEE Guide for the Presentation of Thermal Limit Curves for Squirrel Cage Induction Machines.

– IEEE Std 1255-2000 IEEE Guide for Evaluation of Torque Pulsations During Starting of Synchronous Motors

– ANSI/ IEEE C37.96-2000 Guide for AC Motor Protection

– The Art of Protective Relaying – General Electric

Page 90: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 90

Motor Protection

• Motor Starting Curve

• Thermal Protection

• Locked Rotor Protection

• Fault Protection

Page 91: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 91

Motor Overload Protection (NEC Art 430-32 – Continuous-Duty Motors)

• Thermal O/L (Device 49)

• Motors with SF not less than 1.15

– 125% of FLA

• Motors with temp. rise not over 40°C

– 125% of FLA

• All other motors

– 115% of FLA

Page 92: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 92

Motor Protection – Inst. Pickup

LOCKED ROTOR S d

1 I

X X "

PICK UP

LOCKED ROTOR

I RELAY PICK UP 1.2 TO 1.2

I

PICK UP

LOCKED ROTOR

I RELAY PICK UP 1.6 TO 2

I

with a time delay of 0.10 s (six cycles at 60 Hz)

Recommended Instantaneous Setting:

If the recommended setting criteria cannot be met, or where more sensitive protection is desired, the in stantaneous relay (or a second relay) can be set more

sensitively if delayed by a timer. This permits the asymmetricalasymmetrical starting component to decay out. A typical setting for this is:

Page 93: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 93

Locked Rotor Protection

• Thermal Locked Rotor (Device 51)

• Starting Time (TS < TLR)

• LRA

– LRA sym

– LRA asym (1.5-1.6 x LRA sym) + 10% margin

Page 94: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 94

Fault Protection (NEC Art / Table 430-52)

• Non-Time Delay Fuses

– 300% of FLA

• Dual Element (Time-Delay Fuses)

– 175% of FLA

• Instantaneous Trip Breaker

– 800% - 1300% of FLA*

• Inverse Time Breakers

– 250% of FLA

*can be set up to 1700% for Design B (energy efficient) Motor

Page 95: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 95

Low Voltage Motor Protection

• Usually pre-engineered (selected from Catalogs)

• Typically, motors larger than 2 Hp are protected by combination starters

• Overload / Short-circuit protection

Page 96: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 96

Low-voltage MotorRatings Range of ratingsContinuous amperes 9-250 —

Nominal voltage (V) 240-600 —

Horsepower 1.5-1000 —

Starter size (NEMA) — 00-9

Types of protection Quantity NEMA designation

Overload: overload relay elements 3 OL

Short circuit: circuit breaker current

trip elements3 CB

Fuses 3 FUUndervoltage: inherent with integral control supply and three-wire control circuit — —

Ground fault (when speci fied): ground relay with toroidal CT — —

Page 97: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 97

Minimum Required Sizes of a NEMA

Combination Motor Starter System

MAXIMUM CONDUCTOR LENGTH FOR ABOVE AND

BELOW GROUND CONDUIT SYSTEMS. ABOVE GROUND SYSTEMS HAVE DIRECT SOLAR EXPOSURE. 750 C

CONDUCTOR TEMPERATURE, 450 C AMBIENT

CIRCUIT BREAKER SIZE

FU

SE

SIZ

E

CLA

SS

J

FU

SE

MO

TO

R H

P

460V

NE

C F

LC

ST

AR

TE

R

SIZ

E

MIN

IMU

M

SIZ

E

GR

OU

ND

ING

C

ON

DU

CT

OR

F

OR

A 5

0 %

CU

RR

EN

T C

AP

AC

ITY

MIN

IMU

M

WIR

E

SIZ

E

MA

XIM

UM

LE

NG

TH

FO

R 1

%

VO

LTA

GE

D

RO

P

NE

XT

LA

RG

ES

T

WIR

E

SIZ

E

US

E N

EX

T

LA

RG

ER

GR

OU

ND

C

ON

DU

CT

OR

MA

XIM

UM

LE

NG

TH

FO

R 1

%

VO

LTA

GE

D

RO

P W

ITH

LA

RG

ER

WIR

E

250%

200%

150%

1 2.1 0 12 12 759 10 1251 15 15 15 5

1½ 3 0 12 12 531 10 875 15 15 15 6 2 3.4 0 12 12 468 10 772 15 15 15 7

3 4.8 0 12 12 332 10 547 20 20 15 10

5 7.6 0 12 12 209 10 345 20 20 15 15

7½ 11 1 12 10 144 8 360 30 25 20 20

10 14 1 10 8 283 6 439 35 30 25 30

15 21 2 10 8 189 6 292 50 40 30 45

20 27 2 10 6 227 4 347 70 50 40 60

25 34 2 8 4 276 2 407 80 70 50 70

30 40 3 6 2 346 2/0 610 100 70 60 90

40 52 3 6 2 266 2/0 469 150 110 90 110

50 65 3 2 2/0 375 4/0 530 175 150 100 125

60 77 4 2 2/0 317 4/0 447 200 175 125 150

75 96 4 2 4/0 358 250 393 250 200 150 200

100 124 4 1 250 304 350 375 350 250 200 250

125 156 5 2/0 350 298 500 355 400 300 250 350

150 180 5 4/0 500 307 750 356 450 350 300 400

Page 98: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 98

Required Data - Protection of a Medium Voltage Motor• Rated full load current

• Service factor

• Locked rotor current

• Maximum locked rotor time (thermal limit curve) with the motor at ambient and/or operating temperature

• Minimum no load current

• Starting power factor

• Running power factor

• Motor and connected load accelerating time

• System phase rotation and nominal frequency

• Type and location of resistance temperature devices (RTDs), if used

• Expected fault current magnitudes

• First ½ cycle current

• Maximum motor starts per hour

Page 99: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 99

Medium-Voltage Class E Motor Controller

RatingsClass El

(without fuses)

Class E2 (with fuses)

Nominal system voltage 2300-6900 2300-6900Horsepower 0-8000 0-8000

Symmetrical MVA interrupting capacity at nominal system voltage

25-75 160-570

Types of Protective Devices QuantityNEMA Designation

Overload, or locked Rotor, or both:

Thermal overload relayTOC relay

IOC relay plus time delay

333

OL OC TR/O

Thermal overload relay 3 OL

TOC relay 3 OC

IOC relay plus time delay 3 TR/OC

Short Circuit:

Fuses, Class E2 3 FU

IOC relay, Class E1 3 OC

Ground Fault

TOC residual relay 1 GP

Overcurrent relay with toroidal CT

1 GP

NEMA Class E2 medium voltage starter

NEMA Class E1 medium voltage starter

Phase Balance

Current balance relay 1 BC

Negative-sequence voltage relay (per bus), or both

1 —

Undervoltage:Inherent with integral control supply and three-wire control circuit, when voltage falls suffi ciently to permit the contractor to open and break the seal-in circuit

— UV

Temperature:Temperature relay, operating from resistance sensor or ther mocouple in stator winding

— OL

Page 100: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 100

Starting Current of a 4000Hp, 12 kV, 1800 rpm Motor

First half cycle current showing current offset.

Beginning of run up current showing load torque pulsations.

Page 101: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 101

Starting Current of a 4000Hp, 12 kV, 1800 rpm Motor -

Motor pull in current showing motor reaching synchronous speed

Oscillographs

Page 102: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 102

Thermal Limit Curve

Page 103: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 103

Thermal Limit Curve

Typical Curve

Page 104: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 104

200 HP

MCP

O/L

Starting Curve

I2T

(49)

MCP (50)

(51)ts

tLR

LRAs LRAasym

Page 105: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 105

Protective Devices

• Fuse

• Overload Heater

• Thermal Magnetic

• Low Voltage Solid State Trip

• Electro-Mechanical

• Motor Circuit Protector (MCP)

• Relay (50/51 P, N, G, SG, 51V, 67, 49, 46, 79, 21, …)

Page 106: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 106

Fuse (Power Fuse)

• Non Adjustable Device (unless electronic)

• Continuous and Interrupting Rating

• Voltage Levels (Max kV)

• Interrupting Rating (sym, asym)

• Characteristic Curves

– Min. Melting

– Total Clearing

• Application (rating type: R, E, X, …)

Page 107: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 107

Fuse Types

• Expulsion Fuse (Non-CLF)

• Current Limiting Fuse (CLF)

• Electronic Fuse (S&C Fault Fiter)

Page 108: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 108

Minimum Melting Time Curve

Total Clearing Time Curve

Page 109: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 109

Current Limiting Fuse(CLF) • Limits the peak current of short-circuit

• Reduces magnetic stresses (mechanical damage)

• Reduces thermal energy

Page 110: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 110

Current Limiting ActionC

urr

ent

(pea

k a

mp

s)

tm ta

Ip’

Ip

tc

ta = tc – tm

ta = Arcing Time

tm = Melting Time

tc = Clearing Time

Ip = Peak Current

Ip’ = Peak Let-thru Current

Time (cycles)

Page 111: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 111© 1996-2009 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination

Page 112: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 112

Symmetrical RMS Amperes

Pea

k L

et-T

hrou

gh A

mpe

res

100 A

60 A

7% PF (X/R = 14.3)

12,500

5,200

230,000

300 A

100,000

Let-Through Chart

Page 113: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 113

Fuse

Generally:

• CLF is a better short-circuit protection

• Non-CLF (expulsion fuse) is a better Overload protection

• Electronic fuses are typically easier to coordinate due to the electronic control adjustments

Page 114: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 114

Selectivity Criteria

Typically:

• Non-CLF: 140% of full load

• CLF: 150% of full load

• Safety Margin: 10% applied to Min Melting (consult the fuse manufacturer)

Page 115: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 115

Molded Case CB

• Thermal-Magnetic

• Magnetic Only

• Motor Circuit Protector (MCP)

• Integrally Fused (Limiters)

• Current Limiting

• High Interrupting Capacity

• Non-Interchangeable Parts

• Insulated Case (Interchange Parts)

Types

• Frame Size

• Poles

• Trip Rating

• Interrupting Capability

• Voltage

Page 116: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 116

MCCB

Page 117: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 117

MCCB with SST Device

Page 118: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 118

Thermal Minimum

Thermal Maximum

Magnetic(instantaneous)

Page 119: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 119

LVPCB

• Voltage and Frequency Ratings

• Continuous Current / Frame Size / Sensor

• Interrupting Rating

• Short-Time Rating (30 cycle)

• Fairly Simple to Coordinate

• Phase / Ground Settings

• Inst. Override

Page 120: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 120

CB 2CB 1

IT

ST PU

ST Band

LT PU

LT Band

480 kV

CB 2

CB 1

If =30 kA

Page 121: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 121

Inst. Override

Page 122: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 122

Overload Relay / Heater

• Motor overload protection is provided by a device that models the temperature rise of the winding

• When the temperature rise reaches a point that will damage the motor, the motor is de-energized

• Overload relays are either bimetallic, melting alloy or electronic

Page 123: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 123

Overload Heater (Mfr. Data)

Page 124: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 124

QuestionWhat is Class 10 and Class 20 Thermal OLR curves?

Page 125: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 125

Answer

• At 600% Current Rating:

– Class 10 for fast trip, 10 seconds or less

– Class 20 for, 20 seconds or less (commonly used)

– There is also Class 15, 30 for long trip time (typically provided with electronic overload relays)

6

20

Page 126: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 126

Answer

Page 127: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 127

Overload Relay / Heater• When the temperature at the combination motor starter is more than

±10 °C (±18 °F) different than the temperature at the motor, ambient temperature correction of the motor current is required.

• An adjustment is required because the output that a motor can safely deliver varies with temperature.

• The motor can deliver its full rated horsepower at an ambient temperature specified by the motor manufacturers, normally + 40 °C. At high temperatures (higher than + 40 °C) less than 100% of the normal rated current can be drawn from the motor without shortening the insulation life.

• At lower temperatures (less than + 40 °C) more than 100% of the normal rated current could be drawn from the motor without shortening the insulation life.

Page 128: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 128

Overcurrent Relay

• Time-Delay (51 – I>)

• Short-Time Instantaneous ( I>>)

• Instantaneous (50 – I>>>)

• Electromagnetic (induction Disc)

• Solid State (Multi Function / Multi Level)

• Application

Page 129: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 129© 1996-2009 Operation Technology, Inc. – Workshop Notes: Protective Device Coordination

Page 130: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 130

Time-Overcurrent Unit

• Ampere Tap Calculation

– Ampere Pickup (P.U.) = CT Ratio x A.T. Setting

– Relay Current (IR) = Actual Line Current (IL) / CT Ratio

– Multiples of A.T. = IR/A.T. Setting

= IL/(CT Ratio x A.T. Setting)

IL

IR

CT

51

Page 131: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 131

Instantaneous Unit

• Instantaneous Calculation

– Ampere Pickup (P.U.) = CT Ratio x IT Setting

– Relay Current (IR) = Actual Line Current (IL) / CT Ratio

– Multiples of IT = IR/IT Setting

= IL/(CT Ratio x IT Setting)

IL

IR

CT

50

Page 132: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 132

Relay Coordination

• Time margins should be maintained between T/C curves

• Adjustment should be made for CB opening time

• Shorter time intervals may be used for solid state relays

• Upstream relay should have the same inverse T/C characteristic as the downstream relay (CO-8 to CO-8) or be less inverse (CO-8 upstream to CO-6 downstream)

• Extremely inverse relays coordinates very well with CLFs

Page 133: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 133

Situation

Calculate Relay Setting (Tap, Inst. Tap & Time Dial)For This System

4.16 kV

DS 5 MVA

Cable

1-3/C 500 kcmilCU - EPR

CB

Isc = 30,000 A

6 %

50/51 Relay: IFC 53CT 800:5

Page 134: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 134

Solution

AInrsuh 328,869412I

A338.4800

5II LR

Transformer: AkV

kVAL 694

16.43

000,5I

IL

CTRIR

Set Relay:

A 55 1.52800

5328,8)50(

1

)38.1(6/4.338 0.6

4.5338.4%125

AInst

TD

ATAP

A

Page 135: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 135

Question

What T/C Coordination interval should be maintained between relays?

Page 136: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 136

Answer

At

I

B

CB Opening Time

+

Induction Disc Overtravel (0.1 sec)

+

Safety margin (0.2 sec w/o Inst. & 0.1 sec w/ Inst.)

Page 137: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 137

Recloser• Recloser protects electrical transmission systems from temporary

voltage surges and other unfavorable conditions.

• Reclosers can automatically "reclose" the circuit and restore normal power transmission once the problem is cleared.

• Reclosers are usually designed with failsafe mechanisms that prevent them from reclosing if the same fault occurs several times in succession over a short period. This insures that repetitive line faults don't cause power to switch on and off repeatedly, since this could cause damage or accelerated wear to electrical equipment.

• It also insures that temporary faults such as lightning strikes or transmission switching don't cause lengthy interruptions in service.

Page 138: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 138

Recloser Types

• Hydraulic

• Electronic

– Static Controller

– Microprocessor Controller

Page 139: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 139

Recloser Curves

Page 140: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 140

TEMA 3

Page 141: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Transient Stability

Page 142: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 142

Topics

• What is Transient Stability (TS)

• What Causes System Unstable

• Effects When System Is Instable

• Transient Stability Definition

• Modeling and Data Preparation

• ETAP TS Study Outputs

• Power System TS Studies

• Solutions to Stability Problems

Page 143: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 143

What is Transient Stability

• TS is also called Rotor Angle StabilitySomething between mechanical system and

electrical system – energy conversion

• It is a Electromechanical PhenomenonTime frame in milliseconds

• All Synchronous Machines Must Remain in Synchronism with One AnotherSynchronous generators and motorsThis is what system stable or unstable means

Page 144: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 144

What is Transient Stability

• Torque Equation (generator case)

T = mechanical torque

P = number of poles

air = air-gap flux

Fr = rotor field MMF

= rotor angle

Page 145: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 145

What is Transient Stability

• Swing Equation

M = inertia constant

D = damping constant

Pmech = input mechanical power

Pelec = output electrical power

Page 146: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 146

What Causes System Unstable

• From Torque EquationT (prime mover)Rotor MMF (field winding)Air-Gap Flux (electrical system)

• From Swing EquationPmechPelecDifferent time constants in mechanical and

electrical systems

Page 147: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 147

What Causes System Unstable

• In real operationShort-circuitLoss of excitationPrime mover failureLoss of utility connectionsLoss of a portion of in-plant generationStarting of a large motorSwitching operationsImpact loading on motorsSudden large change in load and generation

Page 148: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 148

Effects When System Is Instable

Case 1: Steady-state stableCase 2: Transient stable Case 3: Small-signal unstable Case 4: First swing unstable

• Swing in Rotor Angle (as well as in V, I, P, Q and f)

Page 149: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 149

Effects When System Is Instable

• A 2-Machine Example

• At = -180º (Out-of-Step,Slip the Pole)

Page 150: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 150

Effects When System Is Instable

• Synchronous machine slip poles – generator tripping

• Power swing

• Misoperation of protective devices

• Interruption of critical loads

• Low-voltage conditions – motor drop-offs

• Damage to equipment

• Area wide blackout

• …

Page 151: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 151

• Examine One Generator

• Power Output Capability Curve

is limited to 180º

Transient Stability Definition

Page 152: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 152

Transient Stability Definition

• Transient and Dynamic Stability Limit

After a severe disturbance, the synchronous generator reaches a steady-state operating condition without a prolonged loss of synchronism

Limit: < 180 during swing

Page 153: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 153

• Synchronous Machine

Machine Exciter and AVR Prime Mover and Governor / Load Torque Power System Stabilizer (PSS) (Generator)

Modeling and Data Preparation

Page 154: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 154

Modeling and Data Preparation

Page 155: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 155

Modeling and Data Preparation

• Typical synchronous machine data

Page 156: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 156

Modeling and Data Preparation

• Induction Machine

Machine Load Torque

Page 157: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 157

Modeling and Data Preparation

• Power Grid

Short-Circuit Capability Fixed internal voltage and infinite inertia

Page 158: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 158

Modeling and Data Preparation

• Load

Voltage dependency Frequency dependency

Page 159: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 159

Modeling and Data Preparation

• Load

Page 160: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 160

Modeling and Data Preparation

• Events and Actions

Page 161: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 161

Modeling and Data Preparation

Device Type Action

Bus 3-P Fault L-G Fault Clear Fault

Branch Fraction Fault

Clear Fault

PD Trip Close

Generator Droop / Isoch

Start Loss Exc. P Change V Change Delete

Grid P Change V Change Delete

Motor Accelerate Load Change

Delete

Lumped Load Load Change

Delete

MOV Start

Wind Turbine Disturbance Gust Ramp

MG Set Emergency Main

Page 162: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 162

Power System TS Studies

• Fault3-phase and single phase faultClear faultCritical Fault Clearing Time (CFCT)Critical System Separation Time (CSST)

• Bus TransferFast load transferring

• Load SheddingUnder-frequencyUnder-voltage

• Motor Dynamic Acceleration Induction motorSynchronous motor

Page 163: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 163

Power System TS Studies

• Critical Fault Clearing Time (CFCT)

• Critical Separation Time (CSST)

unstable

unstableCycle

Clear faultClear fault

1 cycle

unstable

stable

1 cycle

Clear faultClear fault

CFCT

Fault

unstable

unstable

Cycle

1 cycleunstable

stable

1 cycle

CSST

SeparationSeparationSeparationSeparationFault

Page 164: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 164

Power System TS Studies

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Vmotor

s

• Fast Bus Transfer

Motor residual voltage

Page 165: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 165

• Fast Bus Transfer

Ttransfer 10 cycles

90 degrees

ER 1.33 per unit (133%)

Power System TS Studies

ES = System equivalent per unit volts per hertz

EM = Motor residual per unit per hertz

ER = Resultant vectorial voltage in per unit volts per hertz

Page 166: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 166

Power System TS Studies

• Load Shedding

Page 167: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 167

Power System TS Studies

• Motor Dynamic AccelerationImportant for islanded system operationMotor starting impact Generator AVR actionReacceleration

Page 168: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 168

• Improve System Design Increase synchronizing power

• Design and Selection of Rotating Equipment Use of induction machines Increase moment of inertia Reduce transient reactance Improve voltage regulator and exciter

characteristics

Solution to Stability Problems

Page 169: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 169

• Application of Power System Stabilizer (PSS)

• Add System Protections Fast fault clearance Load shedding System separationOut-Of-Step relay…

Solution to Stability Problems

Page 170: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Page 171: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 171

TEMA 4

Page 172: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Harmonic Analysis

Page 173: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 173

ARMONICAS

Exploración de frecuencia.

Flujo Armónico de Carga.

Dimensionamiento y Diseño de Filtros.

Evaluación Automática del límite de distorsión.

Factores de la influencia del teléfono (TIF & I*T)

Características principales:

Page 174: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 174

Page 175: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 175

Types of Power Quality Problems

Page 176: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 176

Waveform Distortion

• Primary Types of Waveform Distortion

– DC Offset

– Harmonics

– Interharmonics

– Notching

– Noise

Page 177: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 177

Harmonics

• One special category of power quality problems

• “Harmonics are voltages and/or currents present in an electrical system at some multiple of the fundamental frequency.”(IEEE Std 399, Brown Book)

Page 178: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 178

Nonlinear Loads

• Sinusoidal voltage applied to a simple nonlinear resistor

• Increasing the voltage by a few percent may cause current to double

Page 179: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 179

Fourier Representation

• Any periodic waveform can be expressed as a sum of sinusoids

• The sum of the sinusoids is referred to as Fourier Series (6-pulse)

)cos(

13cos13

111cos

11

17cos

7

13cos

5

1(cos

32

1h

hh

dac

thI

tttttII

Page 180: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 180

Harmonic Sources

• Utilities (Power Grid)

– Known as “Background Harmonic”

– Pollution from other irresponsible customers

– SVC, HVDC, FACTS, …

– Usually a voltage source

• Synchronous Generators

– Due to Pitch (can be eliminated by fractional-pitch winding) and Saturation

– Usually a voltage source

Page 181: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 181

Harmonic Sources (cont’d)

• Transformers

– Due to magnetizing branch saturation

– Only at lightly loaded condition

– Usually a current source

• Power Electronic Devices

– Charger, Converter, Inverter, UPS, VFD, SVC, HVDC, FACTS (Flexible alternating current transmission systems) …

– Due to switching actions

– Either a voltage source or a current source

Page 182: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 182

Harmonic Sources (cont’d)

• Other Non-Linear Loads

– Arc furnaces, discharge lighting, …

– Due to unstable and non-linear process

– Either a voltage source or a current source

• In general, any load that is applied to a power system that requires other than a sinusoidal current

Page 183: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 183

Harmonic I and V

Page 184: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 184

Classification of Harmonics

• Harmonics may be classified as:

– Characteristic Harmonics

Generally produced by power converters

– Non-Characteristic Harmonics

Typically produced by arc furnaces and discharge lighting (from non-periodical waveforms)

Page 185: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 185

Phase Angle Relationship

• Fundamental Frequency

Page 186: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 186

Phase Angle Relationship

• Third Order

Page 187: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 187

Phase Angle Relationship

• Fifth Order

• Seventh Order

Page 188: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 188

Order vs. Sequence

Page 189: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 189

Characteristic Harmonics

Page 190: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 190

Characteristic Harmonics (cont’d)

Page 191: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 191

Harmonic Spectrum

%

Page 192: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 192

Harmonic-Related Problems

• Motors and Generators

– Increased heating due to iron and copper losses

– Reduced efficiency and torque

– Higher audible noise

– Cogging or crawling

– Mechanical oscillations

Page 193: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 193

Harmonic-Related Problems (cont’d)• Transformers

– Parasitic heating

– Increased copper, stray flux and iron losses

• Capacitors (var compensators)

– Possibility of system resonance

– Increased heating and voltage stress

– Shortened capacitor life

Page 194: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 194

Harmonic-Related Problems (cont’d)• Power Cables

– Involved in system resonance

– Voltage stress and corona leading to dielectric failure

– Heating and derating

• Neutrals of four-wire systems (480/277V; 120/208V)

– Overheating

• Fuses

– Blowing

Page 195: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 195

Harmonic-Related Problems (cont’d)• Switchgears

– Increased heating and losses

– Reduced steady-state current carrying capability

– Shortened insulation components life

• Relays

– Possibility of misoperation

• Metering

– Affected readings

Page 196: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 196

Harmonic-Related Problems (cont’d)• Communication Systems

– Interference by higher frequency electromagnetic field

• Electronic Equipment (computers, PLC)

– Misoperation

• System

– Resonance (serial and parallel)

– Poor power factor

Page 197: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 197

Parallel Resonance

• Total impedance at resonance frequency increases

• High circulating current will flow in the capacitance-inductance loop

Page 198: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 198

Parallel Resonance

Page 199: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 199

Capacitor Banks

Page 200: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 200

Capacitor Banks

Page 201: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 201

Capacitor Banks

Say, Seventh Harmonic Current = 5% of 1100A = 55 A

Page 202: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 202

Capacitor Banks

Resistance = 1% including cable and transformerCAF = X/R = 7*0.0069/0.0012 =40.25Resonant Current = 55*40.25 = 2214 A

Page 203: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 203

Parallel Resonance (cont’d)

Cause:

Impacts: 1. Excessive capacitor fuse operation

2. Capacitor failures3. Incorrect relay tripping4. Telephone interference5. Overheating of equipment

Source inductance resonates with capacitor bank at a frequency excited by the facilities harmonic sources

Page 204: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 204

Harmonic Distortion Measurements

• Total Harmonic Distortion (THD)

– Also known as Harmonic Distortion Factor (HDF), is the most popular index to measure the level of harmonic distortion to voltage and current

– Ratio of the RMS of all harmonics to the fundamental component

– For an ideal system THD = 0%

– Potential heating value of the harmonics relative to the fundamental

Page 205: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 205

Harmonic Distortion Measurements (cont’d)

1

2

2

F

F

THDi

Where Fi is the amplitude of the ith harmonic,

and F1 is that for the fundamental component.

– Good indicator of additional losses due to current flowing through a conductor

– Not a good indicator of voltage stress in a capacitor (related to peak value of voltage waveform, not its heating value)

Page 206: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 206

Harmonic Distortion Example

Find THD for this waveform

Page 207: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 207

Harmonic Example

• Find THD for this Harmonic Spectrum

Page 208: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 208

Adjustable Speed Drive – Current Distortion

Page 209: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 209

Adjustable Speed Drive – Voltage Distortion

Page 210: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 210

Harmonic Distortion Measurements (cont’d)• Individual Harmonic Distortion (IHD)

- Ratio of a given harmonic to fundamental- To track magnitude of individual harmonic

1F

FIHD i

• Root Mean Square (RMS) - Total- Root Mean Square of fundamental plus all harmonics

- Equal to fundamental RMS if Harmonics are zero

1

2iFRMS

Page 211: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 211

Harmonic Distortion Measurements (cont’d)• Arithmetic Summation (ASUM)

– Arithmetic summation of magnitudes of all components (fundamental and all harmonics)

– Directly adds magnitudes of all components to estimate crest value of voltage and current

– Evaluation of the maximum withstanding ratings of a device

1

iFASUM

Page 212: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 212

Harmonic Distortion Measurements (cont’d)• Telephone Influence Factor (TIF)

– Weighted THD

– Weights based on interference to an audio signal in the same frequency range

– Current TIF shows impact on adjacent communication systems

2

1

2

1

i

ii

F

FW

TIF

Page 213: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 213

Harmonic Distortion Measurements (cont’d)

• I*T Product (I*T)

– A product current components (fundamental and harmonics) and weighting factors

H

hhh TITI

1

2)(

where Ih = current component

Th= weighting factor

h = harmonic order (h=1 for fundamental)H = maximum harmonic order to account

Page 214: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 214

Triplen Harmonics

• Odd multiples of thethird harmonic(h = 3, 9, 15, 21, …)

• Important issue forgrounded-wye systemswith neutral current

• Overloading and TIF problems

• Misoperation of devices due to presence of harmonics on the neutral

Page 215: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 215

Triplen Harmonics

Page 216: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 216

Winding Connections

• Delta winding provides ampere turn balance

• Triplen Harmonics cannot flow

• When currents are balanced Triplens behave as Zero Sequence currents

• Used in Utility Distribution Substations

• Delta winding connected to Transmission

• Balanced Triplens can flow

• Present in equal proportions on both sides

• Many loads are served in this fashion

Page 217: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 217

Implications

• Neutral connections are susceptible to overheating when serving single-phase loads on the Y side that have high 3rd Harmonic

• Measuring current on delta side will not show the triplens and therefore do not give a true idea of the heating the transformer is subjected to

• The flow of triplens can be interrupted by appropriate isolation transformer connection

• Removing the neutral connection in one or both Y windings blocks the flow of Triplen harmonic current

• Three legged core transformers behave as if they have a “phantom” delta tertiary winding

Page 218: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 218

Modeling in Harmonic Analysis

• Motors and Machines

– Represented by their equivalent negative sequence reactance

• Lines and Cables

– Series impedance for low frequencies

– Long line correction including transposition and distributed capacitance

Page 219: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 219

Modeling in Harmonic Analysis (cont’d)

• Transformers

– Leakage impedance

– Magnetizing impedance

• Loads

– Static loads reduce peak resonant impedance

– Motor loads shift resonant frequency due to motor inductance

Page 220: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 220

Reducing System Harmonics

• Add Passive Filters

– Shunt or Single Tuned Filters– Broadband Filters or Band Pass Filters– Provide low impedance path for harmonic

current– Least expensive

Page 221: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 221

Reducing System Harmonics (cont’d)

• Increase Pulse Numbers

– Increasing pulse number of convert circuits

– Limited by practical control problems

Page 222: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 222

Reducing System Harmonics (cont’d)• Apply Transformer Phase Shifting

– Using Phase Shifting Transformers

– Achieve higher pulse operation of the total converter installation

• In ETAP

– Phase shift is specified in the tab page of the transformer editor

Page 223: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 223

Reducing System Harmonics (cont’d)• Either standard phase shift or special phase

shift can be used

Page 224: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 224

Reducing System Harmonics (cont’d)• Add Active Filters

– Instantly adapts to changing source and load conditions

– Costly

– MVA Limitation

Page 225: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 225

Voltage Distortion Limits

Recommended Practices for Utilities (IEEE 519): Bus Voltage

At

PCC

Individual Distortion

(%)

Total Voltage Distortion

THD (%)

69 kV and below 3.0 5.0

69.001 kV through 161kV 1.5 2.5

161.001 and above 1.0 1.5

In ETAP:

Specify Harmonic Distortion Limits in Harmonic Page of Bus Editor:

Page 226: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 226

Current Distortion Limits

Recommended Practices for General Distribution Systems (IEEE 519):

Page 227: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 227

TEMA 5

Page 228: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Motor StartingDynamic Acceleration

Page 229: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 229

ARRANQUE DE MOTORES

Aceleración dinámica de motores.

Parpadeo (Flicker) de tensión.

Modelos dinámicos de motores.

Arranque estático de motores.

Varios dispositivos de arranque.

Transición de carga.

Características principales:

Page 230: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 230

Page 231: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 231

Why to Do MS Studies?

• Ensure that motor will start with voltage drop• If Tst<Tload at s=1, then motor will not start

• If Tm=Tload at s<sr, motor can not reach rated speed

• Torque varies as (voltage)^2

• Ensure that voltage drop will not disrupt other loads• Utility bus voltage >95%

• 3% Sag represents a point when light flicker becomes visible

• 5% Sag represents a point when light flicker becomes irritating

• MCC bus voltage >80%

• Generation bus voltage > 93%

Page 232: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 232

Why to Do MS Studies?

• Ensure motor feeders sized adequately (Assuming 100% voltage at Switchboard or MCC)

• LV cable voltage drop at starting < 20%

• LV cable voltage drop when running at full-load < 5%

• HV cable voltage drop at starting < 15%

• HV cable voltage drop when running at full-load < 3%

• Maximum motor size that can be started across the line• Motor kW < 1/6 kW rating of generator (islanded)

• For 6 MW of islanded generation, largest motor size < 1 MW

Page 233: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 233

Motor Sizing

• Positive Displacement Pumps / Rotary Pumps

• p = Pressure in psi

• Q = fluid flow in gpm

• n = efficiency

• Centrifugal Pumps

• H = fluid head in feet

Page 234: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 234

Motor Types

• Synchronous• Salient Pole

• Round Rotor

• Induction• Wound Rotor (slip-ring)

• Single Cage CKT Model

• Squirrel Cage (brushless) • Double Cage CKT Model

Page 235: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 235

Induction Motor Advantages

• Squirrel Cage• Slightly higher efficiency and power factor

• Explosive proof

• Wound Rotor• Higher starting torque

• Lower starting current

• Speed varied by using external resistances

Page 236: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 236

Typical Rotor Construction

• Rotor slots are not parallel to the shaft but skewed

Page 237: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 237

Wound Rotor

Page 238: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 238

Operation of Induction Motor• AC applied to stator winding

• Creates a rotating stator magnetic field in air gap

• Field induces currents (voltages) in rotor

• Rotor currents create rotor magnetic field in air gap

• Torque is produced by interaction of air gap fields

Page 239: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 239

Slip Frequency

• Slip represents the inability of the rotor to keep up with the stator magnetic field

• Slip frequencyS = (ωs-ωn)/ωs where ωs = 120f/P

ωn = mech speed

Page 240: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 240

Static Start - Example

Page 241: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 241

Static Start - Example

Page 242: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 242

Service Factor

Page 243: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 243

Inrush Current

Page 244: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 244

Resistance / Reactance

• Torque Slip Curve is changed by altering resistance / reactance of rotor bars.

• Resistance ↑ by ↓cross sectional area or using higher resistivity material like brass.

• Reactance ↑ by placing conductor deeper in the rotor cylinder or by closing the slot at the air gap.

Page 245: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 245

Rotor Bar Resistance ↑

• Increase Starting Torque

• Lower Starting Current

• Lower Full Load Speed

• Lower Efficiency

• No Effect on Breakdown Torque

Page 246: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 246

Rotor Bar Reactance ↑

• Lower Starting Torque

• Lower Starting Current

• Lower Breakdown Torque

• No effect on Full Load Conditions

Page 247: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 247

Motor Torque Curves

Page 248: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 248

Rotor Bar Design

• Cross section Large (low resistance) and positioned deep in the rotor (high reactance). (Starting Torque is normal and starting current is low).

• Double Deck with small conductor of high resistance. During starting, most current flows through the upper deck due to high reactance of lower deck. (Starting Torque is high and starting current is low).

Page 249: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 249

Rotor Bar Design

• Bars are made of Brass or similar high resistance material. Bars are close to surface to reduce leakage reactance. (Starting torque is high and starting current is low).

Page 250: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 250

Load Torque – ID Fan

Page 251: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 251

Load Torque – FD Fan

Page 252: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 252

Load Torque – C. Pump

Page 253: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 253

Motor Torque – Speed Curve

Page 254: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 254

Double Cage Motor

Page 255: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 255

Motor Full Load Torque

• For example, 30 HP 1765 RPM Motor

Page 256: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 256

Motor Efficiency

• kW Saved = HP * 0.746 (1/Old – 1/New)

• $ Savings = kW Saved * Hrs /Year * $/kWh

Page 257: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 257

Acceleration Torque

• Greater Acceleration Torque means higher inertia that can be handled by the motor without approaching thermal limits

Page 258: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 258

Acceleration Torque

P

Page 259: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 259

Operating Range

• Motor, Generator, or Brake

Page 260: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 260

0.8 1.0

kvar

Loa

d(k

va)

Terminal Voltage

Ter

min

al C

urre

nt

Terminal Voltage0.8 1.0

P = Tm Wm , As Vt ( terminal voltage ) changes from 0.8 to 1.1 pu, Wm changes by a very small amount. There fore, P is approx constant since Tm (α w²m) is approx. constant

L1 Ir

Rated Conditions• Constant Power

Page 261: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 261

0.9 1.0

Kva LR

Terminal Voltage Terminal Voltage0.9 1.0

.8 kvaLR

Vt (pu)

Vt (pu)

.9 I LR

I LR

PIt

KVA LR = Loched - rotor KVA at rated voltage = 2HP

2 ≡ Code letter factor ≡ Locked – rotor KVA ∕ HP

Z st = KVA B KVR ²

KVA LR KVB

Pu, Rst = Zst cos θ st , Xst= Zst sin θ st ______ ____

KVR = rated voltage KVB = Base voltage KVAB = Base power

Starting Conditions• Constant Impedance

Starting Conditions Constant Impedance

Page 262: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 262

ws wm

v1

p

R

Load

Voltage Variation

0

I

80% voltage

100% voltage

ws wm0

TT st T’ st

Tst α ( operating voltage) ²

Rated voltage_____________

Rated voltage_____________Ist α ( operating voltage)

• Torque is proportional to V^2

• Current is proportional to V

I

80% V

100% V

Page 263: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 263

Frequency Variation• As frequency decreases, peak torque shifts toward lower

speed as synchronous speed decreases.

• As frequency decrease, current increases due reduced impedance.

Tem

WS1 WS2 Wm

F1

F2 › F1

0

I

WS1 WS2 Wm

F1

F2 › F1

0

W3 = 120f

P ___ RPM

Adjustable speed drive : Typical speed range for variable torque loads such as pumps and fans is 3/1,maximun is 8/1 ( 1.5 to 60 Hz)

Page 264: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 264

Number of Poles Variation

• As Pole number increases, peak torque shifts toward lower speed as synchronous speed decreases.

Tem

W′S WSWm0

2 P - poles

P - poles

P

RLoad

Nro. of poles variation

W′S = WS___

2

Page 265: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 265

Rotor Z Variation

• Increasing rotor Z will shift peak torque towards lower speed.

S

RQ

P

r1

r2 r3 r4

r1 › r2 › r3 › r4

Rotor – Resistance Variation

Page 266: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 266

Modeling of Elements

• Switching motors – Zlr, circuit model, or characteristic model

• Synch generator - constant voltage behind X’d

• Utility - constant voltage behind X”d

• Branches – Same as in Load Flow

• Non-switching Load – Same as Load flow

• All elements must be initially energized, including motors to start

Page 267: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 267

Motor Modeling

1. Operating Motor

– Constant KVA Load

2. Starting Motor

– During Acceleration – Constant Impedance

– Locked-Rotor Impedance

– Circuit Models

Characteristic Curves

After Acceleration – Constant KVA Load

Page 268: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 268

Locked-Rotor Impedance

• ZLR = RLR +j XLR (10 – 25 %)

• PFLR is much lower than operating PD. Approximate starting PF of typical squirrel cage induction motor:

PO

WE

R F

AC

TO

R

HORSE POWER RATING

Page 269: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 269

Circuit Model I

• Single Cage Rotor

– “Single1” – constant rotor resistance and reactance

Page 270: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 270

Circuit Model II

• Single Cage Rotor

– “Single2” - deep bar effect, rotor resistance and reactance vary with speed [Xm is removed]

Page 271: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 271

Circuit Model III

• Double Cage Rotor

– “DB1” – integrated rotor cages

Page 272: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 272

Circuit Model IV

• Double Cage Rotor

– “DB2” – independent rotor cages

Page 273: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 273

Characteristic Model

• Motor Torque, I, and PF as function of Slip

– Static Model

Page 274: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 274

Calculation Methods I

• Static Motor Starting

– Time domain using static model

– Switching motors modeled as Zlr during starting and constant kVA load after starting

– Run load flow when any change in system

• Dynamic Motor Starting

– Time domain using dynamic model and inertia model

– Dynamic model used for the entire simulation

– Requires motor and load dynamic (characteristic) model

Page 275: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 275

Calculation Methods II

Page 276: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 276

Static versus Dynamic

• Use Static Model When

– Concerned with effect of motor starting on other loads

– Missing dynamic motor information

• Use Dynamic Model When

– Concerned with actual acceleration time

– Concerned if motor will actually start

Page 277: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 277

MS Simulation Features

• Start/Stop induction/synchronous motors

• Switching on/off static load at specified loading category

• Simulate MOV opening/closing operations

• Change grid or generator operating category

• Simulate transformer LTC operation

• Simulate global load transition

• Simulate various types of starting devices

• Simulate load ramping after motor acceleration

Page 278: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 278

Automatic Alert• Starting motor terminal V

• Motor acceleration failure

• Motor thermal damage

• Generator rating

• Generator engine continuous & peak rating

• Generator exciter peak rating

• Bus voltage

• Starting motor bus

• Grid/generator bus

• HV, MV, and LV bus

• User definable minimum time span

Page 279: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 279

Starting Devices Types

• Auto-Transformer

• Stator Resistor

• Stator Reactor

• Capacitor at Bus

• Capacitor at Motor Terminal

• Rotor External Resistor

• Rotor External Reactor

• Y/D Winding

• Partial Wing

• Soft Starter

• Stator Current Limit

– Stator Current Control

– Voltage Control

– Torque Control

Page 280: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 280

Starting Device

• Comparison of starting conditions

Page 281: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 281

Starting Device – AutoXFMR

• C4 and C3 closed initially

• C4 opened, C2 is closed with C3 still closed. Finally C3 is open

Page 282: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 282

Starting Device – AutoXFMR

• Autotransformer starting

MCCM

Autotransformer starter

line

Vmcc

EX. 50% Tap

VMCC50%

tap

5VMCC IST

3IST

VM

PFST ( with autotransformer) = PFST ( without autotransformer)

Page 283: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 283

Starting Device – YD Start

• During Y connection Vs = VL / √3

• Phase current Iy = Id / √3 and 3 to 1 reduction in torque

Page 284: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 284

Starting Device – Rotor R

Page 285: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 285

Starting Device – Stator R• Resistor

VMCC50%

tap

5VMCC VMRLR

XLR

RL XL

PFST ( with resistor) = 1-[pu tap setting ]² * [ 1- (PFST without resistor)²]

= 1- (0.5)² * [1-(PFST)²]

Page 286: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 286

VMCC50%

tap

5VMCC VMRLR

XLR

RL XL

Starting Device Stator X

• Reactor

PFST ( with reactor) = [pu tap setting ] * PFST (without reactor)

Page 287: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 287

Transformer LTC Modeling

• LTC operations can be simulated in motor starting studies

• Use global or individual Tit and Tot

V limit

Tit Tot

T

Page 288: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 288

MOV Modeling I

• Represented as an impedance load during operation– Each stage has own impedance based on I, pf, Vr

– User specifies duration and load current for each stage

• Operation type depends on MOV status– Open statusclosing operation

– Close statusopening operation

Page 289: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 289

MOV Modeling II

• Five stages of operationOpening ClosingAcceleration Acceleration

No load No load

Unseating Travel

Travel Seating

Stall Stall

• Without hammer blow Skip “No Load” period

• With a micro switch Skip “Stall” period

• Operating stage time extended if Vmtr < Vlimit

Page 290: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 290

MOV Closing

• With Hammer Blow- MOV Closing

Page 291: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 291

MOV Opening

• With Hammer Blow- MOV Opening

Page 292: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 292

UNSETTING

TRAVEL

VMTR < V LIMIT

STALLACCL

I

MOV Voltage Limit• Effect of Voltage Limit Violation

Tacc TposTravel Tstl

Page 293: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 293

TEMA 6

Page 294: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Short-CircuitANSI Standard

Page 295: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 295

CORTO CIRCUITO

Estándar de ANSI/IEEE & IEC.

Análisis de fallas transitorias (IEC 61363).

Efecto de Arco (NFPA 70E-2000)

Integrado con coordinación de dispositivos de protección.

Evaluación automática de dispositivos.

Características principales:

Page 296: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 296

Page 297: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 297

Types of SC Faults•Three-Phase Ungrounded Fault•Three-Phase Grounded Fault•Phase to Phase Ungrounded Fault•Phase to Phase Grounded Fault•Phase to Ground Fault

Fault Current

•IL-G can range in utility systems from a few percent to

possibly 115 % ( if Xo < X1 ) of I3-phase (85% of all faults).

•In industrial systems the situation IL-G > I3-phase is rare.

Typically IL-G .87 * I3-phase

•In an industrial system, the three-phase fault condition is frequently the only one considered, since this type of fault generally results in Maximum current.

Short-Circuit Analysis

Page 298: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 298

Purpose of Short-Circuit Studies• A Short-Circuit Study can be used to determine

any or all of the following:

– Verify protective device close and latch capability

– Verify protective device Interrupting capability

– Protect equipment from large mechanical forces (maximum fault kA)

– I2t protection for equipment (thermal stress)

– Selecting ratings or settings for relay coordination

Page 299: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 299

System Components Involved in SC Calculations• Power Company Supply

• In-Plant Generators

• Transformers (using negative tolerance)

• Reactors (using negative tolerance)

• Feeder Cables and Bus Duct Systems (at lower temperature limits)

Page 300: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 300

System Components Involved in SC Calculations• Overhead Lines (at lower temperature limit)

• Synchronous Motors

• Induction Motors

• Protective Devices

• Y0 from Static Load and Line Cable

Page 301: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 301

Elements That Contribute Current to a Short-Circuit

• Generator

• Power Grid

• Synchronous Motors

• Induction Machines

• Lumped Loads(with some % motor load)

• Inverters

• I0 from Yg-Delta Connected Transformer

Page 302: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 302

Elements Do Not Contribute Current in PowerStation

• Static Loads

• Motor Operated Valves

• All Shunt Y Connected Branches

Page 303: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 303

)tSin(Vmv(t)

i(t)v(t)

Short-Circuit Phenomenon

Page 304: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 304

Offset) (DC

TransientState Steady

t) - sin(

Z

Vm ) - tsin(

Z

Vmi(t)

(1) ) t Sin(Vmdt

di L Riv(t)

LR

-e

expression following theyields 1equation Solving

i(t)v(t)

Page 305: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 305

DC Current

AC Current (Symmetrical) with No AC Decay

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 305

Page 306: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 306

AC Fault Current Including the DC Offset (No AC Decay)

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 306

Page 307: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 307

Machine Reactance ( λ = L I )

AC Decay Current

Page 308: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 308

Fault Current Including AC & DC Decay

Page 309: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 309

1) The ANSI standards handle the AC Decay by varying machine impedance during a fault.

2) The ANSI standards handle the the dc offset by applying multiplying factors. The ANSI Terms for this current are:

•Momentary Current•Close and Latch Current•First Cycle Asymmetrical Current

ANSI

ANSI Calculation Methods

Page 310: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 310

Sources•Synchronous Generators•Synchronous Motors & Condensers•Induction Machines•Electric Utility Systems (Power Grids)

ModelsAll sources are modeled by an internalvoltage behind its impedance.

E = Prefault VoltageR = Machine Armature ResistanceX = Machine Reactance (X”d, X’d, Xd)

Sources and Models of Fault Currents in ANSI Standards

Page 311: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 311

Synchronous Reactance

Transient Reactance

Subtransient Reactance

Synchronous GeneratorsSynchronous Generators are modeled in three stages.

Synchronous Motors & CondensersAct as a generator to supply fault current. This current diminishes as the magnetic field in the machine decays.

Induction MachinesTreated the same as synchronous motors except they do not contribute to the fault after 2 sec.

Electric Utility SystemsThe fault current contribution tends to remain constant.

Page 312: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 312

½ Cycle Network

This is the network used to calculate momentary short-circuit current and protective device duties at the ½ cycle after the fault.

1 ½ to 4 Cycle Network

This network is used to calculate the interrupting short-circuit current and protective device duties 1.5-4 cycles after the fault.

30-Cycle Network

This is the network used to calculate the steady-state short-circuit current and settings for over current relays after 30 cycles.

Page 313: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 313

  

½ Cycle 1 ½ to 4 Cycle 30 Cycle

UtilityX”d X”d X”d

Turbo GeneratorX”d X”d X’d

Hydro-Gen with Amortisseur

winding

X”d X”d X’d

Hydro-Gen without Amortisseur

winding

0.75*X”d 0.75*X”d X’d

CondenserX”d X”d

Synchronous Motor

X”d 1.5*X”d

Reactance Representation forUtility and Synchronous Machine

Page 314: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 314

  

½ Cycle 1 ½ to 4 Cycle

>1000 hp , <= 1800 rpm

X”d 1.5*X”d

>250, at 3600 rpm X”d 1.5*X”d

All others, >= 50 hp 1.2*X”d 3.0*X”d

< 50 hp 1.67*X”d

Reactance Representation for Induction Machine

Note: X”d = 1 / LRCpu

Page 315: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 315

  ½ Cycle Currents(Subtransient

Network)

1 ½ to 4 Cycle Currents

(Transient Network)

HV Circuit BreakerClosing and Latching

CapabilityInterruptingCapability

LV Circuit Breaker Interrupting Capability ---

Fuse Interrupting Capability

---

SWGR / MCC Bus Bracing ---

Relay Instantaneous Settings

---

Device Duty and Usage of Fault Currents

from Different Networks

30 Cycle currents are used for determining overcurrent settings.

Page 316: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 316

MFm is calculated based on:• Fault X/R (Separate R & X Networks)• Location of fault (Remote / Local generation)

  

SC Current Duty Device Rating

HV CB Asymmetrical RMSCrest

C&L RMSC&L RMS

HV Bus Asymmetrical RMSCrest

Asymmetrical RMSCrest

LV Bus Symmetrical RMSAsymmetrical RMS

Symmetrical RMSAsymmetrical RMS

Comparisons of Momentary capability (1/2 Cycle)

Momentary Multiplying Factor

Page 317: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 317

   SC Current Duty Device Rating

HV CBAdj. Symmetrical RMS* Adj. Symmetrical RMS*

LV CB & FuseAdj. Symmetrical RMS*** Symmetrical RMS

Comparisons of Interrupting Capability (1 ½ to 4 Cycle)

MFi is calculated based on:• Fault X/R (Separate R & X Networks)• Location of Fault (Remote / Local generation)• Type and Rating of CB

Interrupting Multiplying Factor

Page 318: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 318

Calculate ½ Cycle Current (Imom, rms, sym) using ½ Cycle Network.

• Calculate X/R ratio and Multiplying factor MFm

• Imom, rms, Asym = MFm * Imom, rms, sym

HV CB Closing and Latching Duty

Page 319: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 319

Calculate 1½ to 4 Cycle Current (Imom, rms, sym) using ½ Cycle Network.

• Determine Local and Remote contributions (A “local” contribution is fed predominantly from generators through no more than one transformation or with external reactances in series that is less than 1.5 times generator subtransient reactance. Otherwise the contribution is defined as “remote”).

• Calculate no AC Decay ratio (NACD) and multiplying factor MFi

NACD = IRemote / ITotal

ITotal = ILocal + IRemote

(NACD = 0 if all local & NACD = 1 if all remote)

• Calculate Iint, rms, adj = MFi * Iint, rms, Symm

HV CB Interrupting Duty

Page 320: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 320

• CB Interrupting kA varies between Max kA and Rated kA as applied kV changes – MVAsc capability.

• ETAP’s comparison between CB Duty of Adj. Symmetrical kA and CB capability of Adjusted Int. kA verifies both symmetrical and asymmetrical rating.

• The Option of C37.010-1999 standard allows user to specify CPT.

• Generator CB has higher DC rating and is always compared against maximum through SC kA.

HV CB Interrupting Capability

Page 321: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 321

LV CB Interrupting Duty

• LV CB take instantaneous action.

• Calculate ½ Cycle current Irms, Symm (I’f) from the ½

cycle network.

• Calculate X/R ratio and MFi (based on CB type).

• Calculate adjusted interrupting current Iadj, rms, symm =

MFi * Irms, Symm

Page 322: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 322

Calculate ½ Cycle current Iint, rms, symm from ½ Cycle Network.

• Same procedure to calculate Iint, rms, asymm as for CB.

Fuse Interrupting Duty

Page 323: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 323

L-G FaultsL-G Faults

Page 324: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 324

Symmetrical Components

L-G Faults

Page 325: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 325

Sequence Networks

Page 326: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 326

0

ZZZ

V3I

I3I

021

efaultPrf

af 0

g Zif

L-G Fault Sequence Network Connections

Page 327: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 327

21

efaultPrf

aa

ZZ

V3I

II12

L-L Fault Sequence Network Connections

Page 328: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 328

0

ZZZZ

Z

VI

I0III

20

201

efaultPrf

aaaa 012

g Zif

L-L-G Fault Sequence Network Connections

Page 329: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 329

Transformer Zero Sequence Connections

Page 330: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 330

grounded.

solidly areer transformConnected Y/

or Generators if case thebemay This

I

: then trueare conditions thisIf

&

: ifgreater

becan faultsG -L case. severemost

theisfault phase-3 aGenerally

1f3

1021

fI

ZZZZ

Solid Grounded Devices and L-G Faults

Page 331: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 331

Complete reports that include individual branch contributions for:

•L-G Faults

•L-L-G Faults

•L-L Faults

One-line diagram displayed results that include:

•L-G/L-L-G/L-L fault current contributions

•Sequence voltage and currents

•Phase Voltages

Unbalanced Faults Display & Reports

Page 332: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 332© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 332

Page 333: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 333© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 333

Page 334: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 334

SC Study Case Info Page

Page 335: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 335

SC Study Case Standard Page

Page 336: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 336

Tolerance Adjustments

•Transformer Impedance

•Reactor Resistance

•Overload Heater Resistance Temperature

Corrections

•Transmission Line Resistance

•Cable Resistance

Adjust Fault Impedance

•L-G fault Impedance

SC Study Case Adjustments Page

Length Adjustments

•Cable Length

•Transmission Line Length

Page 337: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 337

ToleranceLengthLength

ToleranceLengthLength

ToleranceZZ

onLineTransmissionLineTransmissi

CableCable

rTransformerTransforme

)1(*'

)1(*'

)1(*'

Adjustments can be applied Individually or Globally

Tolerance Adjustments

Positive tolerance value is used for IEC Minimum If calculation.

Negative tolerance value is used for all other calculations.

Page 338: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 338

C in limit etemperatur ConductorTc

C in etemperatur base ConductorTb

etemperatur operating at ResistanceR'

retempereatu base at ResistanceR

Tb

TcRR

Tb

TcRR

BASE

BASEAlumi

BASECopper

)1.228(

)1.228(*'

)5.234(

)5.234(*''

Temperature Correction can be appliedIndividually or Globally

Temperature Correction

Page 339: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 339

TransformersT1 X/R PS =12PT =12ST =12T2 X/R = 12

Power Grid U1X/R = 55

Lump1Y open grounded

Gen1Voltage ControlDesign Setting:%Pf = 85MW = 4 Max Q = 9Min Q = -3

System for SC Study

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 339

Page 340: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 340

System for SC Study

Tmin = 40, Tmax = 90

Page 341: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 341

System for SC Study

Page 342: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 342

Short-Circuit Alerts

• Bus Alert

• Protective Device Alert

• Marginal Device Limit

Page 343: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 343

Type of Device Monitored Parameter Condition Reported

MV Bus (> 1000 Volts)Momentary Asymmetrical. rms kA Bracing Asymmetrical

Momentary Asymmetrical. crest kA Bracing Crest

LV Bus (<1000Volts)Momentary Symmetrical. rms kA Bracing Symmetrical

Momentary Asymmetrical. rms kA Bracing Asymmetrical

Bus SC Rating

Device Type ANSI Monitored Parameters IEC Monitored Parameters

LVCB Interrupting Adjusted Symmetrical. rms kA Breaking

HV CB

Momentary C&L Making

Momentary C&L Crest kA N/A

Interrupting Adjusted Symmetrical. rms kA Breaking

Fuse Interrupting Adjusted Symmetrical. rms kA Breaking

SPDT Momentary Asymmetrical. rms kA Making

SPST Switches Momentary Asymmetrical. rms kA Making

Protective Device Rating

Page 344: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 344

Run a 3-phase Duty SC calculation for a fault on Bus4. The display shows the Initial Symmetrical Short-Circuit Current.

3-Phase Duty SC Results

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 344

Page 345: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 345

Unbalance Fault Calculation

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit ANSI Slide 345

Page 346: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 346

TEMA 7

Page 347: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Transient Stability

Page 348: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 348

Time Frame of Power System Dynamic Phenomena

Page 349: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 349

Introduction

• TS is also called Rotor Stability, Dynamic Stability

• Electromechanical Phenomenon

• All synchronous machines must remain in synchronism with one another

• TS is no longer only the utility’s concern

• Co-generation plants face TS problems

Page 350: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 350

Analogy

• Which vehicles will pushed hardest?

• How much energy gained by each vehicle?

• Which direction will they move?

• Height of the hill must they climb to go over?

Page 351: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 351

Introduction (cont’d)

• System protection requires consideration of:Critical Fault Clearing Time (CFCT)Critical Separation Time (CST)Fast load transferringLoad Shedding…

Page 352: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 352

Causes of Instability

• Short-circuits

• Loss of utility connections

• Loss of a portion of in-plant generation

• Starting of a large motor

• Switching operations (lines or capacitors)

• Impact loading on motors

• Sudden large change in load and generation

Page 353: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 353

Consequences of Instability

• Synchronous machine slip poles – generator tripping

• Power swing

• Misoperation of protective devices

• Interruption of critical loads

• Low-voltage conditions – motor drop-offs

• Damage to equipment

• Area wide blackout

• …

Page 354: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 354

Synchronous Machines

• Torque Equation (generator case)

T = mechanical torque

P = number of poles

air = air-gap flux

Fr = rotor field MMF

= rotor angle

Page 355: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 355

Swing Equation

Page 356: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 356

Synchronous Machines (cont’d)• Swing Equation

M = inertia constant

D = damping constant

Pmech = input mechanical power

Pelec = output electrical power

Page 357: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 357

Rotor Angle Responses

• Case 1: Steady-state stable

• Case 2: Transient stable

• Case 3: Small-signal unstable

• Case 4: First swing unstable

Page 358: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 358

Power and Rotor Angle (Classical 2-Machine Example)

Page 359: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 359

Power and Rotor Angle (cont’d)

Page 360: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 360

Power and Rotor Angle (Parallel Lines)

Page 361: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 361

Both Lines In Service

Page 362: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 362

One Line Out of Service

Page 363: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 363

Equal Area Criterion

Page 364: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 364

Equal Area Criterion

Page 365: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 365

Equal Area - Stable

Page 366: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 366

Equal Area – Unstable

Page 367: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 367

Equal Area - Unstable

Page 368: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 368

Power System Stability Limit

• Steady-State Stability Limit

After small disturbance, the synchronous generator reaches a steady state operating condition identical or close to the pre-disturbance

Limit: < 90

Page 369: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 369

Power System Stability Limit (con’d)• Transient and Dynamic Stability Limit

After a severe disturbance, the synchronous generator reaches a steady-state operating condition without a prolonged loss of synchronism

Limit: < 180 during swing

Page 370: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 370

Generator Modeling

• MachineEquivalent Model / Transient Model / Subtransient Model

• Exciter and Automatic Voltage Regulator (AVR)

• Prime Mover and Speed Governor

• Power System Stabilizer (PSS)

Page 371: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 371

Generator Modeling (con’d)

• Typical synchronous machine data

Page 372: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 372

Factors Influencing TS

• Post-Disturbance Reactance seen from generator. Reactance Pmax

• Duration of the fault clearing time.

Fault time Rotor Acceleration Kinetic Energy Dissipation Time during deceleration

• Generator Inertia.

Inertia Rate of change of Angle Kinetic Energy

• Generator Internal Voltage Internal Voltage Pmax

Page 373: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 373

Factors Influencing TS

• Generator Loading Prior To Disturbance Loading Closer to Pmax. Unstable during acceleration

• Generator Internal Reactance

Reactance Peak Power Initial Rotor Angle Dissipation Time during deceleration

• Generator Output During Fault

Function of Fault Location and Type of Fault

Page 374: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 374

Solution to Stability Problems• Improve system design Increase synchronizing power

• Design and selection of rotating equipment Use of induction machines Increase moment of inertia Reduce transient reactance Improve voltage regulator and exciter

characteristics

Page 375: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 375

Solution to Stability Problems• Reduction of Transmission System

Reactance

• High Speed Fault Clearing

• Dynamic Braking

• Regulate Shunt Compensation

• Steam Turbine Fast Valving

• Generator Tripping

• Adjustable Speed Synchronous Machines

Page 376: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 376

Solution to Stability Problems• HVDC Link Control

• Current Injection from VSI devices

• Application of Power System Stabilizer (PSS)

• Add system protections Fast fault clearance Load Shedding System separation

Page 377: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 377

TEMA 8

Page 378: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC

Load Flow Analysis

Page 379: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 379

FLUJO DE CARGA

Cálculo de los flujos de potencia.

Diversas representaciones de las cargas.

Cálculo de los perfiles de tensión.

Corrección del factor de potencia.

Diagnóstico automático de equipos.

Corrección automática de impedancias por temperatura.

Cálculo de pérdidas activas y reactivas.

Características principales:

Page 380: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 380

Page 381: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 381

System ConceptsSystem Concepts

Page 382: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 382

jQP

IV

SS

IVS

LL

LN

*

13

*1

3

3

Lagging Power Factor Leading Power Factor

Inductive loads have lagging Power Factors. Capacitive loads have leading Power Factors.

Current and Voltage

Power in Balanced 3-Phase Systems

Page 383: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 383

Leading Power Factor

Lagging Power Factor

ETAP displays lagging Power Factors as positive and leading Power Factors as negative. The Power Factor is displayed in percent.

jQ P

Leading & Lagging Power Factors

P - jQ P + jQ

Page 384: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 384

B

2B

B

B

BB

MVA

)kV(Z

kV3

kVAI

B

actualpu

B

actualpu

Z

ZZ

I

II

B

actualpu

B

actualpu

S

SS

V

VV

B

2B

B

B

BB

S

VZ

V3

SI

ZI3V

VI3S If you have two bases:

Then you may calculate the other two by using the relationships enclosed in brackets. The different bases are:

•IB (Base Current)

•ZB (Base Impedance)

•VB (Base Voltage)

•SB (Base Power)

ETAP selects for LF:

•100 MVA for SB which is fixed for the entire system.

•The kV rating of reference point is used along with the transformer turn ratios are applied to determine the base voltage for different parts of the system.

3-Phase Per Unit System

Page 385: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 385

Example 1: The diagram shows a simple radial system. ETAP converts the branch impedance values to the correct base for Load Flow calculations. The LF reports show the branch impedance values in percent. The transformer turn ratio (N1/N2) is 3.31 and the X/R = 12.14

2B

1B kV

2N

1NkV

Transformer Turn Ratio: The transformer turn ratio is used by ETAP to determine the base voltage for different parts of the system. Different turn ratios are applied starting from the utility kV rating.

To determine base voltage use:

2

pu

pu

RX

1

RX

ZX

Transformer T7: The following equations are used to find the impedance of transformer T7 in 100 MVA base.

RX

xR pu

pu

1BkV

2BkV

Page 386: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 386

Impedance Z1: The base voltage is determined by using the transformer turn ratio. The base impedance for Z1 is determined using the base voltage at Bus5 and the MVA base.

06478.0)14.12(1

)14.12(065.0X

2pu

005336.014.12

06478.0R pu

The transformer impedance must be converted to 100 MVA base and therefore the following relation must be used, where “n” stands for new and “o” stands for old.

)3538.1j1115.0(5

100

5.13

8.13)06478.0j1033.5(

S

S

V

VZZ

23

oB

nB

2

nB

oBo

punpu

38.135j15.11Z100Z% pu

0695.431.3

5.13

2N1N

kVV utility

B

165608.0100

)0695.4(

MVA

VZ

22B

B

Page 387: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 387

8.603j38.60Z100Z% pu

)0382.6j6038.0(1656.0

)1j1.0(

Z

ZZ

B

actualpu

The per-unit value of the impedance may be determined as soon as the base impedance is known. The per-unit value is multiplied by one hundred to obtain the percent impedance. This value will be the value displayed on the LF report.

The LF report generated by ETAP displays the following percent impedance values in 100 MVA base

Page 388: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 388

Load Flow AnalysisLoad Flow Analysis

Page 389: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 389

Load Flow Problem• Given

– Load Power Consumption at all buses

– Configuration

– Power Production at each generator

• Basic Requirement

– Power Flow in each line and transformer

– Voltage Magnitude and Phase Angle at each bus

Page 390: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 390

Load Flow Studies• Determine Steady State Operating Conditions

– Voltage Profile

– Power Flows

– Current Flows

– Power Factors

– Transformer LTC Settings

– Voltage Drops

– Generator’s Mvar Demand (Qmax & Qmin)

– Total Generation & Power Demand

– Steady State Stability Limits

– MW & Mvar Losses

Page 391: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 391

Size & Determine System Equipment & Parameters• Cable / Feeder Capacity

• Capacitor Size

• Transformer MVA & kV Ratings (Turn Ratios)

• Transformer Impedance & Tap Setting

• Current Limiting Reactor Rating & Imp.

• MCC & Switchgear Current Ratings

• Generator Operating Mode (Isochronous / Droop)

• Generator’s Mvar Demand

• Transmission, Distribution & Utilization kV

Page 392: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 392

Optimize Operating Conditions• Bus Voltages are Within Acceptable Limits

• Voltages are Within Rated Insulation Limits of Equipment

• Power & Current Flows Do Not Exceed the Maximum Ratings

• System MW & Mvar Losses are Determined

• Circulating Mvar Flows are Eliminated

Page 393: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 393

Assume VR

Calc: I = Sload / VR

Calc: Vd = I * Z

Re-Calc VR = Vs - Vd

Calculation Process

• Non-Linear System

• Calculated Iteratively

– Assume the LoadVoltage (Initial Conditions)

– Calculate the Current I

– Based on the Current,Calculate Voltage Drop Vd

– Re-Calculate Load Voltage VR

– Re-use Load Voltage as initial condition until the results are within the specified precision.

Page 394: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 394

1. Accelerated Gauss-Seidel Method

• Low Requirements on initial values, but slow in speed.

2. Newton-Raphson Method

• Fast in speed, but high requirement on initial values.

• First order derivative is used to speed up calculation.

3. Fast-Decoupled Method

• Two sets of iteration equations: real power – voltage angle, reactive power – voltage magnitude.

• Fast in speed, but low in solution precision.

• Better for radial systems and systems with long lines.

Load Flow Calculation Methods

Page 395: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 395

kV

kVAFLA

kV

kVAFLA

EffPF

HP

EffPF

kWkVA

Rated

Rated

RatedRated

1

33

7457.0

Where PF and Efficiency are taken at 100 % loading conditions

kV

kVA1000I

)kV3(

kVA1000I

kVA

kWPF

)kVar()kW(kVA

1

3

22

Load Nameplate Data

Page 396: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 396

Constant Power Loads

• In Load Flow calculations induction, synchronous and lump loads are treated as constant power loads.

• The power output remains constant even if the input voltage changes (constant kVA).

• The lump load power output behaves like a constant power load for the specified % motor load.

Page 397: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 397

• In Load Flow calculations Static Loads, Lump Loads (% static), Capacitors and Harmonic Filters and Motor Operated Valves are treated as Constant Impedance Loads.

• The Input Power increases proportionally to the square of the Input Voltage.

• In Load Flow Harmonic Filters may be used as capacitive loads for Power Factor Correction.

• MOVs are modeled as constant impedance loads because of their operating characteristics.

Constant Impedance Loads

© 1996-2008 Operation Technology, Inc. – Workshop Notes: Load Flow Analysis Slide 397

Page 398: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 398

• The current remains constant even if the voltage changes.

• DC Constant current loads are used to test Battery discharge capacity.

• AC constant current loads may be used to test UPS systems performance.

• DC Constant Current Loads may be defined in ETAP by defining Load Duty Cycles used for Battery Sizing & Discharge purposes.

Constant Current Loads

Page 399: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 399

Constant Current Loads

Page 400: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 400

Exponential Load

Polynomial Load

Comprehensive Load

Generic Loads

Page 401: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 401

Feedback Voltage •AVR: Automatic Voltage Regulation•Fixed: Fixed Excitation (no AVR action)

Generator Operation Modes

Page 402: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 402

Governor Operating Modes• Isochronous: This governor setting allows the

generator’s power output to be adjusted based on the system demand.

• Droop: This governor setting allows the generator to be Base Loaded, meaning that the MW output is fixed.

Page 403: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 403

Isochronous Mode

Page 404: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 404

Droop Mode

Page 405: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 405

Droop Mode

Page 406: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 406

Droop Mode

Page 407: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 407

Adjusting Steam Flow

Page 408: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 408

Adjusting Excitation

Page 409: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 409

Swing Mode•Governor is operating in Isochronous mode•Automatic Voltage Regulator

Voltage Control•Governor is operating in Droop Mode•Automatic Voltage Regulator

Mvar Control•Governor is operating in Droop Mode•Fixed Field Excitation (no AVR action)

PF Control•Governor is operating in Droop Mode•AVR Adjusts to Power Factor Setting

In ETAP Generators and Power Grids have four operating modes that are used in Load Flow calculations.

Page 410: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 410

• If in Voltage Control Mode, the limits of P & Q are reached, the model is changed to a Load Model (P & Q are kept fixed)

• In the Swing Mode, the voltage is kept fixed. P & Q can vary based on the Power Demand

• In the Voltage Control Mode, P & V are kept fixed while Q & are varied

• In the Mvar Control Mode, P and Q are kept fixed while V & are varied

Page 411: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 411

Generator Capability Curve

Page 412: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 412

Generator Capability Curve

Page 413: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 413

Generator Capability Curve

Page 414: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 414

Field Winding Heating Limit

Armature Winding Heating Limit

Machine Rating (Power Factor Point)

Steady State Stability Curve

Maximum & Minimum Reactive Power

Page 415: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 415

Field Winding Heating Limit Machine Rating

(Power Factor Point)

Steady State Stability Curve

Generator Capability Curve

Page 416: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 416

Load Flow Loading Page

Generator/Power Grid Rating Page

10 Different Generation Categories for Every Generator or Power Grid in the System

Generation Categories

Page 417: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 417

X

V)*COS(

X

*VVQ

)(*SINX

*VVP

X

V)(*COS

X

*VVj)(*SIN

X

*VV

jQPI*VS

22

2121

2121

22

2121

2121

222

111

VV

VV

Power Flow

Page 418: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 418

Example: Two voltage sources designated as V1 and V2 are connected as shown. If V1= 100 /0° , V2 = 100 /30° and X = 0 +j5 determine the power flow in the system.

I

var536535.10X|I|

268j1000)68.2j10)(50j6.86(IV

268j1000)68.2j10(100IV

68.2j10I

5j

)50j6.86(0j100

X

VVI

22

*2

*1

21

Page 419: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 419

2

1

0

1

Real Power FlowReactive Power Flow

Power Flow1

2

V E( )

Xsin

V E( )

Xcos

V2

X

0

The following graph shows the power flow from Machine M2. This machine behaves as a generator supplying real power and absorbing reactive power from machine M1.

S

Page 420: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 420

ETAP displays bus voltage values in two ways

•kV value

•Percent of Nominal Bus kV

%83.97100%

5.13

min

alNo

Calculated

Calculated

kV

kVV

kV 8.13min alNokV

%85.96100%

03.4

min

alNo

Calculated

Calculated

kV

kVV

kV 16.4min alNokV

For Bus4:

For Bus5:

Bus Voltage

Page 421: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 421

Page 422: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 422

Lump Load Negative Loading

Page 423: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 423

Load Flow Adjustments• Transformer Impedance

– Adjust transformer impedance based on possible length variation tolerance

• Reactor Impedance– Adjust reactor impedance based on specified tolerance

• Overload Heater– Adjust Overload Heater resistance based on specified tolerance

• Transmission Line Length– Adjust Transmission Line Impedance based on possible length

variation tolerance

• Cable Length– Adjust Cable Impedance based on possible length variation tolerance

Page 424: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 424

Adjustments applied

•Individual

•Global

Temperature Correction

• Cable Resistance

• Transmission LineResistance

Load Flow Study Case Adjustment Page

Page 425: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 425

Allowable Voltage DropNEC and ANSI C84.1

Page 426: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 426

Load Flow Example 1 Part 1

© 1996-2009 Operation Technology, Inc. - Workshop Notes: Load Flow AnalysisSlide 426

Page 427: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 427

Load Flow Example 1 Part 2

Page 428: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 428

Load Flow Alerts

Page 429: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 429

Bus Alerts Monitor Continuous Amps

Cable Monitor Continuous Amps

Reactor Monitor Continuous Amps

Line Monitor Line Ampacity

Transformer Monitor Maximum MVA Output

UPS/Panel Monitor Panel Continuous Amps

Generator Monitor Generator Rated MW

Equipment Overload Alerts

Page 430: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 430

Protective Devices Monitored parameters % Condition reported

Low Voltage Circuit Breaker Continuous rated Current OverLoad

High Voltage Circuit Breaker Continuous rated Current OverLoad

Fuses Rated Current OverLoad

Contactors Continuous rated Current OverLoad

SPDT / SPST switches Continuous rated Current OverLoad

Protective Device Alerts

Page 431: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 431

If the Auto Display feature is active, the Alert View Window will appear as soon as the Load Flow calculation has finished.

© 1996-2009 Operation Technology, Inc. – Workshop Notes: Load Flow Analysis Slide 431

Page 432: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 432

Advanced LF TopicsAdvanced LF Topics

Load Flow Convergence

Voltage Control

Mvar Control

Page 433: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 433

Load Flow Convergence

• Negative Impedance

• Zero or Very Small Impedance

• Widely Different Branch Impedance Values

• Long Radial System Configurations

• Bad Bus Voltage Initial Values

Page 434: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 434

Voltage Control

• Under/Over Voltage Conditions must be fixed for proper equipment operation and insulation ratings be met.

• Methods of Improving Voltage Conditions:

– Transformer Replacement

– Capacitor Addition

– Transformer Tap Adjustment

Page 435: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 435

Under-Voltage Example• Create Under Voltage

Condition

– Change Syn2 Quantity to 6. (Info Page, Quantity Field)

– Run LF

– Bus8 Turns Magenta (Under Voltage Condition)

• Method 1 - Change Xfmr

– Change T4 from 3 MVA to 8 MVA, will notice slight improvement on the Bus8 kV

– Too Expensive and time consuming

• Method 2 - Shunt Capacitor

– Add Shunt Capacitor to Bus8

– 300 kvar 3 Banks

– Voltage is improved

• Method 3 - Change Tap

– Place LTC on Primary of T6

– Select Bus8 for Control Bus

– Select Update LTC in the Study Case

– Run LF

– Bus Voltage Comes within specified limits

Page 436: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 436

Mvar Control

• Vars from Utility

– Add Switch to CAP1

– Open Switch

– Run LF

• Method 1 – Generator

– Change Generator from Voltage Control to Mvar Control

– Set Mvar Design Setting to 5 Mvars

• Method 2 – Add Capacitor

– Close Switch

– Run Load Flow

– Var Contribution from the Utility reduces

• Method 3 – Xfmr MVA

– Change T1 Mva to 40 MVA

– Will notice decrease in the contribution from the Utility

Page 437: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 437

Panel SystemsPanel Systems

Page 438: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 438

Panel Boards• They are a collection of branch circuits

feeding system loads

• Panel System is used for representing power and lighting panels in electrical systems

Click to drop once on OLVDouble-Click to drop multiple panels

Page 439: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 439

A panel branch circuit load can be modeled as an internal or external load

Advantages:1. Easier Data Entry2. Concise System Representation

Representation

Page 440: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 440

Pin 0 is the top pin of the panel ETAP allows up to 24 external load connections

Pin Assignment

Page 441: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 441

Assumptions

• Vrated (internal load) = Vrated (Panel Voltage)

• Note that if a 1-Phase load is connected to a 3-Phase panel circuit, the rated voltage of the panel circuit is (1/√3) times the rated panel voltage

• The voltage of L1 or L2 phase in a 1-Phase 3-Wire panel is (1/2) times the rated voltage of the panel

• There are no losses in the feeders connecting a load to the panel

• Static loads are calculated based on their rated voltage

Page 442: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 442

Line-Line ConnectionsLoad Connected Between Two Phases of a3-Phase System

A

B

C

Load

IBCIC = -IBC

A

B

C

LoadB

IB = IBC

Angle by which load current IBC lags the load voltage = θ Therefore, for load connected between phases B and C: SBC = VBC.IBC

PBC = VBC.IBC.cos θ

QBC = VBC.IBC.sin θ

For load connected to phase B SB = VB.IBPB = VB.IB.cos (θ - 30)QB = VB.IB.sin (θ - 30) And, for load connected to phase C SC = VC.ICPC = VC.IC.cos (θ + 30)QC = VC.IC.sin (θ + 30)

Page 443: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 443

3-Phase 4-Wire Panel3-Phase 3-Wire Panel1-Phase 3-Wire Panel1-Phase 2-Wire Panel

NEC SelectionA, B, C from top to bottom or left to right from the front of the panel

Phase B shall be the highest voltage (LG) on a 3-phase, 4-wire delta connected system (midpoint grounded)

Info Page

Page 444: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 444

Intelligent kV CalculationIf a 1-Phase panel is connected to a 3-Phase bus having a nominal voltage equal to 0.48 kV, the default rated kV of the panel is set to (0.48/1.732 =) 0.277 kV

For IEC, Enclosure Type is Ingress Protection (IPxy), where IP00 means no protection or shielding on the panel

Select ANSI or IEC Breakers or Fuses from Main Device Library

Rating Page

Page 445: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 445

Schedule Page

  Circuit Numbers with Column Layout

Circuit Numbers with

Standard Layout

Page 446: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 446

Description TabFirst 14 load items in the list are based on NEC 1999Last 10 load types in the Panel Code Factor Table are user-definedLoad Type is used to determine the Code Factors used in calculating the total panel loadExternal loads are classified as motor load or static load according to the element typeFor External links the load status is determined from the connected load’s demand factor status

Page 447: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 447

Rating Tab

Enter per phase VA, W, or Amperes for this load.

For example, if total Watts for a 3-phase load are 1200, enter W as 400 (=1200/3)

Page 448: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 448

Loading Tab

For internal loads, enter the % loading for the selected loading category

For both internal and external loads, Amp values are calculated based on terminal bus nominal kV

Page 449: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 449

Protective Device Tab

Library Quick Pick - LV Circuit Breaker (Molded Case, with Thermal Magnetic Trip Device) or

Library Quick Pick – Fuse will appear depending on the Type of protective device selected.

Page 450: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 450

Feeder Tab

Page 451: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 451

Action Buttons

Copy the content of the selected row to clipboard. Circuit number, Phase, Pole, Load Name, Link and State are not copied.

Paste the entire content (of the copied row) in the selected row. This will work when the Link Type is other than space or unusable, and only for fields which are not blocked.

Blank out the contents of the entire selected row.

Page 452: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 452

Summary Page

Continuous Load – Per Phase and Total

Non-Continuous Load – Per Phase and Total

Connected Load – Per Phase and Total (Continuous + Non-Continuous Load)

Code Demand – Per Phase and Total

Page 453: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 453

Output Report

Page 454: 34786407-8-Shortcircuit-IEC

©1996-2009 Operation Technology, Inc. – Workshop Notes: Short-Circuit IEC Slide 454

Panel Code Factors

Code demand load depends on Panel Code Factors

The first fourteen have fixed formats per NEC 1999

Code demand load calculation for internal loads are done for each types of load separately and then summed up