3 md-sampling s12 v5 2p

Upload: manish-pawar

Post on 21-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    1/18

    13 -

    D. Malah Video Signal Processing - Spring 2012

    Multidimensional Sampling.3

    Basics of Lattice Theory

    Sampling Over Lattices

    Sampling of Video Signals

    Filtering Operations in Cameras and Display Devices

    References

    Wang et. al., Ch. 3.

    Bovik, Ch. 2. (by E. Dubois)

    E. Dubois, The Sampling and Reconstruction of Time-Varying Imagery with

    Application in Video Systems, Proc. IEEE, Vol 73, No. 4, April 1985, pp. 502-522.

    Tekalp, Ch.3.

    23 -

    D. Malah Video Signal Processing - Spring 2012

    Basics of Lattice Theory

    As video sampling is done at points on a regular grid (not necessarily rectangular)

    in the 3-D space, Lattice Theory can provide the mathematical foundation for this

    operation.

    Lattice - definition:

    A lattice, ,in the real K-D space, , is the set of all possible vectors thatcan be represented as integer-weighted combinations of a set of K

    linearly independent basis vectors,

    K

    1 2v , , , ,Kk k K

    That is:

    1

    x x v ,K

    Kk k k

    k

    Lattice n n

    1 2V v ,v , ..., vKGenerating matrix:

    1 2, K

    Kn n n x Vn n [ , , ..., ]

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    2/18

    33 -

    D. Malah Video Signal Processing - Spring 2012

    Examples of Lattices

    1

    1 0

    0 1V =

    Orthogonal Lattice1

    3

    22 1

    2

    0

    1V =

    Hexagonal Lattice

    2

    [Wang]

    Unit Cells

    1x

    2x

    43 -

    D. Malah Video Signal Processing - Spring 2012

    Lattice Properties - 1

    The basis vectors uniquely define a Lattice.

    The basis vectors associated with a Lattice are non-unique.

    Examples

    3

    2

    3 12

    3

    0V =

    3 2;

    Any point on the grid of a Lattice is determined by a set of indices:

    1 2n [ , , , ] K

    Kn n n

    Theorem: Unit Cell

    For a given lattice , there exists a unit cell so that its translation to

    all lattice point form a covering of the entire space :

    K

    ( ifx

    x) = x ( y x yK

    ; ,

    where, is the translation of by x. ( |x p x p This is a tiling of by unit cells.

    K

    4

    1 1

    0 1

    V =

    4 1

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    3/18

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    4/18

    73 -

    D. Malah Video Signal Processing - Spring 2012

    Lattice Properties - 4

    Volume of a unit Cell

    All unit cells of a given lattice have the same volume: det| V |

    Sampling Density

    Number of unit cells in a unit volume of :K 1det

    () =| V |

    d

    Reciprocal Lattice

    Hence: andT T T T I V I V U UV U V U

    Let , and *x V m y Un then,

    x,y x y m V Un m nT T T T

    For a given lattice with a generating matrix , its reciprocal lattice

    Is defined as a lattice with a generating matrix U, given by:

    V *

    1U (V )T .

    Thus, the basis functions of V and U are biorthonormal:

    1

    ;0,

    ,

    v u ,,

    T

    k k

    k

    kk

    Useful property

    83 -

    D. Malah Video Signal Processing - Spring 2012

    1

    1 0

    0 1V =

    3

    22 1

    2

    0

    1V =

    1

    1 0

    0 1U =

    2 1

    3 3

    20 1

    U =

    1U (V )

    T V

    11() =d

    11*( ) =d

    Lattice Properties - 5

    Reciprocal Lattice Examples

    2

    2

    3( ) =d 2

    3

    2

    *( ) =d

    1

    2

    1

    *

    2

    *

    1det*( ) = | V |

    ()d

    d

    1det

    det| U |

    | V |

    2*( )

    2( )

    [Wang]

    1

    x

    1x

    2x 2f

    2f

    1

    f

    1f

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    5/18

    93 -

    D. Malah Video Signal Processing - Spring 2012

    D Periodic Signal-Lattice of a KPeriodicity

    1-D periodic signal:

    ; - non-singularx x Vn , n VK

    ,x x nT n

    K-D periodic signal:

    Hence, considering as the generating matrix of a lattice,

    the particular lattice is called: Periodicity Lattice.

    The Voronoi cell of the lattice is then called the Fundamental Period.

    V

    103 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Over Lattices

    The lattice structure provides a tool for uniform sampling of

    multidimensional signals, but not necessarily on a rectangular (hypercube)

    grid.

    Sampling on a lattice

    n Vn , n Ks c where,

    - Continuous space signal,(x) x Kc

    - Sampled space signal,(n) n Ks

    Alternatively, Impulse Sampling:

    n(x) n x Vn , xKK

    s s

    Sampled multi-

    dimensional Signal

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    6/18

    113 -

    D. Malah Video Signal Processing - Spring 2012

    Sampled Space Fourier Transform - SSFT

    exp 2n

    f n f VnK

    Ts s j

    SSFT:

    Recall,

    DSFT: exp 2n

    (f ) (n) ( f n)K

    T

    sd j

    CSFT: ( ) ( ) exp( 2 )f x f x xK

    T

    cc j d

    If V = I, SSFT reduces to the DSFTRemark:

    Discrete Space

    F. T.

    Continuous Space

    F. T.

    123 -

    D. Malah Video Signal Processing - Spring 2012

    Since and , we get:

    Periodicity of the SSFT

    The SSFT is periodic: 1

    ;f Um f U VTs s

    Thus, U, the periodicity lattice, is the generating matrix of the

    reciprocal lattice and the fundamental period is the

    Voronoi cell

    *

    *( )

    Proof

    f Vn : (f Um) Vn f Vn m U VnT T T T T

    2n

    f n exp f VnK

    Ts s j

    exp 2 1 ;( )j

    exp 2 exp 2( (f Um) Vn) ( f Vn)T Tj j

    TU V I

    m nT

    .f Vn m nT T

    [Wang]

    2

    1f

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    7/18

    133 -

    D. Malah Video Signal Processing - Spring 2012

    Inverse SSFT

    1

    exp 2*( )

    n f f Vn f , n

    T Ks s j d

    d

    *1

    | det( ) |d Vol

    V

    Proof by:

    exp 20

    T d

    j dotherwise

    *( )

    , n mf V(n m) f

    ,

    where,

    Linear convolution of signals sampled on the same lattice:

    SSFT

    K

    s c s c

    s s s s

    s s s s

    h h

    h h

    h H

    m

    n Vn ; n Vn

    n * n n m m

    n * n f f

    Then,

    Let:

    143 -

    D. Malah Video Signal Processing - Spring 2012

    Generalized Nyquist Theorem

    If a continuous signal is sampled over a lattice , with a

    Generating matrix V, then the SSFT of the sampled signal

    , ,(x) Kc

    x

    n Vn , n Ks c

    Is given in terms of the CSFT of the original continuous signal by:

    SSFTm

    f n f UmK

    s s cd

    And, it is possible to reconstruct the original signal from ,

    Iff the support region of the CSFT of the original signal is limited within

    the Voronoi cell of the reciprocal lattice, i.e.,

    (x)c ns

    0c for *f f The reconstruction can then be done by filtering the sampled signal

    (impulse sampling) by a filter whose CSFT is:

    1

    0

    *, f

    ,

    r

    fdH

    otherwise

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    8/18

    153 -

    D. Malah Video Signal Processing - Spring 2012

    [Wang]

    fs

    1f 1f

    1f

    1f

    11

    f

    2f

    2

    2

    2f

    2

    2f

    1 3/r

    1 2/

    1 2/

    1 2/

    1 2/

    1 2/

    1 2/

    1 2/

    1 2/

    163 -

    D. Malah Video Signal Processing - Spring 2012

    Proof of the Generalized Nyquist Theorem

    Since we can apply the Inv-CSFT to determine : n Vn ,s c ns

    2(n) (V n) (f )exp( f Vn) f K

    T

    s c c j d

    exp 2*m ( )

    f Um ( (f Um) Vn) f K

    Tc j d

    Using: exp 2 exp 2 (since )T T T T T j j ( (f Um) Vn) ( f Vn) m U Vn m n

    we get:

    exp 2

    exp 2

    K

    K

    Ts c

    Tc

    j d

    d

    *

    *

    m ( )

    m( )

    (n) f Um ( f Vn) f

    f Um ( f Vn) f

    Comparing with the expression for the Inv-SSFT:

    1

    exp 2*( )

    n f f Vn f , n

    T Ks s j d

    d

    we find,

    m

    f f UmK

    s cd

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    9/18

    173 -

    D. Malah Video Signal Processing - Spring 2012

    Reconstruction by Interpolation

    y

    x x y y yK

    r r sh d

    n y

    x n x y y Vn yK K

    r s rh d

    n

    (y) n y Vn , yK

    Ks s

    Using impulse sampling:

    Hence,

    and we get the Interpolation Formula:

    n

    x n x VnK

    r s rh

    Reconstructed

    Signal

    183 -

    D. Malah Video Signal Processing - Spring 2012

    Summary of Relations between Fourier Transforms

    ( ) ( ) exp( 2 )f x f x xK

    T

    cc j d

    CSFT:

    DSFT: 2n

    (f ) (n)exp( f n)K

    T

    sd j

    exp 2n

    f n f VnK

    Ts s j

    SSFT:

    Sampling: n Vn , n K

    s c

    1

    Unit Hypercube

    K

    K

    Ts d

    Kd s

    T Ts d d s

    s c

    Kd c

    I

    d

    d I

    *

    *

    m

    m

    f V f , f

    f Uf , f

    f Uf ; f V f U V

    f f Um , f

    f Uf Um , f

    1 1f Uf V f ; f V f U f T Tc d d d c c

    If is band-limited to within then:( )xc * f Uf , f Kd cd I Note

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    10/18

    193 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Efficiency

    1 (no aliasing)

    *() =

    ( )

    Vol Unit Sphere

    Vol

    Sampling Efficiency:

    Assume that the support of signal spectrum is a unit sphere.

    To avoid aliasing, should enclose the sphere.*( )

    Definition

    Since *( ) ()Vol d () =()

    Vol Unit Sphere

    d

    The closer is to 1 (from below), the higher the effinciency()

    Examples (2D)

    Vol Unit Sphere

    2D:

    3D:43

    [Wang]

    4 4d ( ) ; ( ) / 4 4d ( ) ; ( ) / 2 3 2 3d ( ) ; ( ) /

    203 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling of Video Signals

    From the properties of the HVS

    To avoid flicker: 60 to 70 frames/sec (orfps) (high illumination)

    At a viewing distance of 3 times screen height:

    3180 180

    ( )s s sf df f f cpdh

    Thus, for 25 cpd (low visibility of lines), the spatial resolution required is:

    180 18025 480

    3 3( / )

    sf f lines cycles picture height

    and, for an image aspect ratio (IAR) of 4:3, we get 640 pixels/line

    NTSC: 60 fields/sec (Interlaced), 240 active lines/ field

    HDTV: IAR=16:9, 60 fps, 720 1080 lines/fr, 1280 1920 pixels/line

    Computer Display: 72 fps (progressive), 1024 lines, 1280 pixels/line

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    11/18

    213 -

    D. Malah Video Signal Processing - Spring 2012

    Video Raster Scan

    Corresponds to Sampling of the 3D Video signal in the temporal and

    vertical directions.

    Thus, we consider sampling a continuous 2D video signal along the

    temporal and vertical axes.

    The Sampling Lattices for Progressive and Interlaced scans are:

    Progressive:

    Interlaced:

    12

    1 1 1

    02 0= =

    00V U

    t

    y

    t

    y

    12

    2 2 1 12

    02

    = =0V U

    t

    t y

    t t

    y

    Where: - time between fields; - distance between consecutive linest y

    223 -

    D. Malah Video Signal Processing - Spring 2012

    11

    12

    1 1 1

    02 0= =

    00

    T t

    y

    t

    y

    (V )V U

    1

    1

    *

    Progressive ScanNearest

    aliasing

    centers

    [Wang]

    (Fig. 3.6)

    t

    yf

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    12/18

    233 -

    D. Malah Video Signal Processing - Spring 2012

    2

    2

    *

    Interlaced ScanNearest

    aliasing

    centers

    [Wang]

    (Fig. 3.6)

    1

    2

    1

    22 2 1 1

    2

    02= =0

    T

    t

    y y

    t ty

    (V )V U

    t

    243 -

    D. Malah Video Signal Processing - Spring 2012

    Comparison of Interlaced and Progressive Scans

    Same sampling density: 1 21 2

    1 1 1

    det det 2() = ( ) =

    | V | | V |d d

    t y

    Same nearest aliases along the vertical frequency axis, at .1

    y No motion: Same vertical resolution.

    With motion, Interlaced has a closer alias, hence a lower resolution.

    1

    2 t In temporal direction, nearest alias for Progressive is closer, at ,

    hence Interlaced has less flicker.

    Different mixed (off-axis) aliases: for Progressive;

    for Interlaced, resulting in Interline flicker for Interlaced.

    1 1

    2( , )

    t y 1 1

    2 2( , )

    t y

    For a signal with isotropic spectral support, the interlaced scan ismore efficient (assuming equal temporal and spatial frequency

    scales).

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    13/18

    253 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Video in 3D - 1

    Assume frequency axes were calibrated., ,x y tf f f

    Assume signal spectrum support in the normalized frequency

    domain to be a Unit Sphere.

    Progressive sampling intervals: , ,x y t

    Aligned samples 3D Cube - Orthorhombic Lattice (ORT)

    To avoid aliasing: 12

    x y t 4388 6

    ( ) ; ( )d ORT ORT

    Progressive

    1

    1

    1

    0 0

    00

    0 0

    x

    y

    t

    U=

    [Wang]

    (Fig. 3.7)

    x

    y

    tfx

    fy

    ft

    t1 / t

    1 / x

    1 /

    263 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Video in 3D 2

    Interlaced sampling intervals: 2 2, , /x y t

    Vertically aligned samples ALI Lattice

    To avoid aliasing: 1 12 3;x y t 434 3

    4 3 3 3( ) ; ( )d ALI ALI

    Interlaced - 1

    [Wang]

    (Fig. 3.7)

    1

    12

    1 2

    0 0

    00

    0

    U=

    x

    y

    t t

    x

    y

    t

    fx

    fy

    ft

    2/t

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    14/18

    273 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Video in 3D 3

    Interlaced sampling intervals: 2 2, , /x y t

    Horizontally shifted samples by BCO Lattice

    To avoid aliasing: 1 12 2 2

    ;x t y 4 23 2

    ( ) ; ( )d BCO BCO

    Interlaced - 2

    2/x

    [Wang]

    (Fig. 3.7)

    x

    y

    t

    fx

    fy

    ft

    283 -

    D. Malah Video Signal Processing - Spring 2012

    Sampling Video in 3D 4

    Interlaced sampling intervals: 2 2, , /x y t

    each field contains all the lines, but the samples in the same

    field are interleaved in the even and odd lines

    FCO Lattice To avoid aliasing: 1 1

    2 2;x y t 4 2

    3 2( ) ; ( )d FCO FCO

    Interlaced - 3

    Same as BCO, but better visually.

    [Wang]

    (Fig. 3.7)

    xy

    tfx

    fy

    ft

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    15/18

    293 -

    D. Malah Video Signal Processing - Spring 2012

    [Wang]

    Sampling Video in 3D 5

    Summary

    303 -

    D. Malah Video Signal Processing - Spring 2012

    1-On Spatial and Temporal Aliasing

    Moving Sinusoidal Pattern (vertical lines)

    1 /h

    f cycle cm

    Q. The pattern is moving horizontally at the speed of 3 cm/sec.

    If we sample the pattern at:

    What is the apparent motion and sinusoidal frequency?

    3 3 sec, , ,

    / ; /s x s y s tf f samples cm f frames

    Qualititative answer: On the camera image plane well get a stationary image.

    1 0 0( , , ) ( , , )h v t

    f f f

    [Wang](Fig. 3.8)

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    16/18

    313 -

    D. Malah Video Signal Processing - Spring 2012

    Analytic Answer

    Applying the CSFT:

    1 0 1 0

    3 3

    ( , ) ( , ), ( , )

    ( ) ,

    x y

    t x x y y

    f f

    f f v f v

    Thus, the 3D CSFT has a pair of impulses at: 1 0 3 1 0 3( , , ) ( , , ),( , , )x y tf f f

    1-1

    3

    3-

    xf

    tftf

    x

    f 3, , ,s x s y s t

    f f f

    ,: 2 6s t tAliasing f < f

    1 0 0 1 0 0

    :

    ( , , ) ( , , ), ( , , )x y t

    Aliased components at

    f f f

    2-On Spatial and Temporal Aliasing

    [Wang](Fig. 3.8)

    tf

    323 -

    D. Malah Video Signal Processing - Spring 2012

    Filtering Operations in Cameras and Display Devices

    Camera Aperture

    , ,x y t Consider a cubic sampling lattice at intervals:

    sampling frequencies, , ,

    1 1 1, ,s x s x s tf f f

    x y t

    Ideal pre-filter would be a lowpass filter with cutoff frequenciesat half the sampling frequencies.

    Practically we have the following image acquisition characteristics:

    Temporal Aperture

    - Integration over exposure time , corresponding to a temporal filter:e

    ,

    1, [0, ]

    ( )

    0,p t

    t eh t e

    otherwise

    CSFT ,sin( )

    ( ) exp( ) tp t t tt

    f eH f j f e

    f

    Thus, the cutoff freq. is . Since usually , we get aliasing.1

    e e t

    This is preferred on the blurring due to selection of a larger .e

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    17/18

    333 -

    D. Malah Video Signal Processing - Spring 2012

    Spatial Aperture

    Spatial sensor integration is modeled by:

    2 2 2

    , ,

    1( , ) exp( ( ) / 2 )2

    p x yh x y x y

    2 2 2, , ,( ) exp( ( ) / 2 )

    CSFT

    p x y x y x yH f f f f

    1

    2

    Is selected so that the normalized filters response is 0.5 at half

    the sampling frequencies (horizontal & vertical). Hence for:

    , ,

    , , , ,2 ln 2

    s x y

    s x s y s x y

    ff f f

    Combined Aperture

    , , ,( , , ) ( ) ( , ) CSFT

    p p t p x yh x y t h t h x y , , , ,( , ) ( ) ( , )p x y t p t t p x y x yH f f f H f H f f

    343 -

    D. Malah Video Signal Processing - Spring 2012

    ,1 ; 480 / .60

    s ye t f lines pic height

    ( , )ph y t

    ( , )p y tH f f

    tf

    f

    t

    y

    Combined Aperture

    ( 0)x

    At f

    [Wang]

  • 7/24/2019 3 MD-Sampling S12 v5 2p

    18/18

    353 -

    D. Malah Video Signal Processing - Spring 2012

    Comments

    Human Vision Considerations

    Human viewer tolerates more aliasing than resolution

    loss (blurring).

    The preservation of the signal in the pass-band is more important

    to the viewer than attenuation outside the pass-band.

    Digital cameras may capture at higher sampling rates and then

    implement explicit filtering before converting to lower resolution.

    Digital Filtering

    In a CRT, a beam scans a phosphor screen. Width of beam

    determines vertical filtering. A Wide beam causes blurring, hence a

    thin beam is preferred (viewer may observe scan lines).

    Temporal filtering is determined by phosphor response decay time.

    HVS performs temporal interpolation

    Note: Combination of camera and display apertures results in a maximum

    vertical resolution that is only K=0.7 of the theoretical limit

    (K - Kell factor).

    Display Aperture