3. karbohidrat ii glikolisis

24
GLIKOLISIS

Upload: andrew-gates

Post on 30-Jun-2015

67 views

Category:

Science


6 download

DESCRIPTION

What is glycolysis?  Ten step metabolic pathway to convert glucose into two molecules of pyruvate and two molecules each of NADH and ATP.  All carbohydrates to be catabolized must enter the glycolytic pathway. Glycolysis is central in generating both energy and metabolic intermediaries. Also known as Embden-Meyerhof-Parnas (EMP) pathway

TRANSCRIPT

Page 1: 3. karbohidrat ii glikolisis

GLIKOLISIS

Page 2: 3. karbohidrat ii glikolisis

Fate of glucose

Completely oxidized to CO2 and H2O.Cellular respiration

Converted to lactate.Cori cycle converts lactate back to glucose.

Converted to acetyl CoA.Enters Kreb’s cycle* or is used to synthesize fat.

Converted to other monosaccharidesPentose phosphate shunt

Stored as glycogen in muscles and liver.

Page 3: 3. karbohidrat ii glikolisis

Glucose MetabolismGlucose Metabolism

Page 4: 3. karbohidrat ii glikolisis

GlycolysisGlycolysisWhat is glycolysis?

Ten step metabolic pathway to convert glucose into two molecules of pyruvate and two molecules each of NADH and ATP.

All carbohydrates to be catabolized must enter the glycolytic pathway.

Glycolysis is central in generating both energy and metabolic intermediaries.

Also known as Embden-Meyerhof-Parnas (EMP) pathway

Page 5: 3. karbohidrat ii glikolisis

Glycolysis has two stages.Glycolysis has two stages.

(i) An energy investment phase. Reactions, 1-5. Glucose to two glyceraldehyde -3-phosphate molecules. 2 ATPs are invested.

(ii) An energy payoff phase. Reactions 6-10. two glyceraldehyde 3-phosphate molecules to two pyruvate plus four ATP molecules.

-- A net of two ATP molecules overallplus two NADH.

Page 6: 3. karbohidrat ii glikolisis

Why oxidize glucose in stages?

G˚’ = -686 kcal/mol

• Direct combustion of glucose occurs at temperatures incompatible with life.

Page 7: 3. karbohidrat ii glikolisis

Glycolysis: Step 1

Hexokinase and glucokinase catalyzes irreversible phosphorylation of glucose (G-6-P).

OH

OH

H

OH

H

OHH

OH

CH2

O

PO32-

D-Glucose-6-phosphate( G-6-P )

OH

OH

H

OH

H

OHH

OH

CH2OH

D-Glucose

ATP ADP

Mg2+

hexokinase,glucokinase

Page 8: 3. karbohidrat ii glikolisis

Glycolysis: Step 2

Phosphoglucoisomerase converts G-6-P into fructose-6-phosphate (F-6-P).

Makes C1 of hexose available for phosphorylation.

OH

CH2OH

H

H OH

OH H

O

CH3

O

PO32-

D-Fructose-6-phosphate( F-6-P )

OH

OH

H

OH

H

OHH

OH

CH2

O

PO32-

D-Glucose-6-phosphate( G-6-P )

phosphoglucoisomerase

Page 9: 3. karbohidrat ii glikolisis

Glycolysis: Step 3

Phosphofructokinase (PFK-1) catalyzes irreversible phosphorylation of F-6-P to form fructose-1,6-diphosphate (F-1,6-DP).

OH

CH2

H

H OH

OH H

O

CH3

OO

PO32-PO3

2-

D-Fructose-1,6-diphosphate( F-1,6-DP )

OH

CH2OH

H

H OH

OH H

O

CH3

O

PO32-

D-Fructose-6-phosphate( F-6-P )

ATP ADP

Mg2+

phosphofructokinase

Page 10: 3. karbohidrat ii glikolisis

Glycolysis: Step 4

Fructose diphosphate aldolase catalyzes the cleavage of F-1,6-DP to form dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G-3-P).

CH2O

CH

OHCH

O

PO32-

D-Glyseraldehide-3-phosphate

H2C

O

HOH2C

O

Dihydroxy acetone phosphate

PO32-

( DHAP )( G-3-P )

+

fructosediphosphate

aldolase

OH

CH2

H

H OH

OH H

O

CH3

OO

PO32-PO3

2-

D-Fructose-1,6-diphosphate( F-1,6-DP )

Page 11: 3. karbohidrat ii glikolisis

Glycolysis: Step 5

Triose phosphate isomerase converts DHAP to G-3-P.

G-3-P continues through glycolysis.

Triosa phosphate isomerase

H2C

O

HOH2C

O

Dihydroxy acetone phosphate

PO32-

( DHAP )

CH2O

CH

OHCH

O

PO32-

D-Glyseraldehide-3-phosphate( G-3-P )

Page 12: 3. karbohidrat ii glikolisis

Glycolysis: Step 6

G-3-P dehydrogenase catalyzes oxidation and phosphorylation of G-3-P to form 3-Phosphoglyceroil phosphate

CH2O

CH

OHCH

O

PO32-

D-Glyseraldehide phosphatedehydrogenase

NADH + H+

NAD+Pi

D-Glyseraldehide-3-phosphate

CH2O

CH

OHC

O

PO32-

3-Phosphoglyceroil phosphate

O

PO32-

Page 13: 3. karbohidrat ii glikolisis

Glycolysis: Step 7

Phosphoglycerate kinase (PGK) transfers phosphate from 3-PGP to ADP to form ATP (substrate-level phosphorylation) and 3-phosphoglycerate (3-PG).

CH2O

CH

OHC

O

PO32-

3-Phosphoglyceroil phosphate

O

PO32-

CH2O

CH

OHC

O

PO32-

O-

3-Phosphoglycerate

ADP ATP

Mg2+

Phosphoglycerate kinase

Page 14: 3. karbohidrat ii glikolisis

Glycolysis: Step 8

3-PG is converted to 2-PG by phosphoglycerate mutase.

Moving phosphate closer to carboxyl group makes molecule more unstable ( G) and thus more likely to transfer phosphate to another substrate.

CH2O

CH

OHC

O

PO32-

O-

3-Phosphoglycerate

CH2OH

CH

OC

O

O-

PO32-

2-Phosphoglycerate

Mg2+

Phosphoglycerate mutase

Page 15: 3. karbohidrat ii glikolisis

Glycolysis: Step 9

Dehydration of 2-PG to form phosphoenolpyruvate (PEP) is catalyzed by enolase.

Traps PEP in enol form (tautomer), which is very unstable facilitating transfer of phosphate to ADP in step 10.

CH2OH

CH

OC

O

O-

PO32-

2-Phosphoglycerate

CH2

C

OC

O

O-

PO32-

Phosphoenolpyruvate

K+,Mg2+

enolase

Page 16: 3. karbohidrat ii glikolisis

Glycolysis: Step 10

Pyruvate kinase catalyzes irreversible transfer of phosphate from PEP to ADP to form ATP (2nd substrate-level phosphorylation) and pyruvate.

CH2

C

OC

O

O-

PO32-

Phosphoenolpyruvate

ADP ATPMg2+

Pyruvate kinase

CH3

C

C

O

O-

O

Pyruvate

Page 17: 3. karbohidrat ii glikolisis

PyruvatePyruvate

Alcohol AnaerobicAlcohol Anaerobic FermentationFermentation GlycolysisGlycolysis

Aerobic GlycolysisAerobic Glycolysis

What Happens to Pyruvate?

Page 18: 3. karbohidrat ii glikolisis

-PyruvatePyruvate can be further processed:

a) anaerobically : to lactatelactate in muscle

b) anaerobically : to ethanolethanol (fermentation)

c) aerobically to CO2 and H2O via the citric acid cycle.

Page 19: 3. karbohidrat ii glikolisis

a) Lactic Acid Fermentation

• Occurs in muscles.

O

O

O-

pyruvateOH

O

O-

lactate

NADH + H+ NAD+

Page 20: 3. karbohidrat ii glikolisis

Siklus Cory

Liver Glycogen

Blood GlucoseLactate acid

Muscle Glycogen

Page 21: 3. karbohidrat ii glikolisis

b) Alcoholic Fermentation

O

O

O-

pyruvate

+ H+

CO2

O

acetaldehyde

HO

ethanol

NADH+H+ NAD+

1 2

1. Pyruvate decarboxylase – irreversible

2. Alcohol dehydrogenase – reversible

Note : NADH used up

Page 22: 3. karbohidrat ii glikolisis

Glikogen

Glukosa1-fosfat

Glukosa6-fosfat

Fruktosa6-fosfat

Fruktosa1,6-difosfat

Gliseraldehida3-fosfat

OH

H

H

OH

H

OHH

OH

CH2OH

O

D-Galaktosa

OH

CH2OH

H

OH H

H OH

CH2OHO

D-Fruktosa

OH

OH

H

OH

H

OHH

OH

CH2OH

D-Glukosa

OH

OH

H

OH

OH

HH

OH

CH2OH

D-manosa

UDP-galaktosa

UDP-glukosa

Manosa 6-fosfat

Fruktosa 1-fosfat

Gliseraldehida + Dehidroksiaseton fosfat

Metabolism of Other Sugars

ATP

ATP

ATP

ATP

ATP

Pi

fosforilase

Fosfogluko-mutase

heksokinase

Fosfomano-isomerase

heksokinase

heksokinase

fruktokinase

triosa kinase

triosa fosfatisomerase

Fruktosa fosfat aldolase

Page 23: 3. karbohidrat ii glikolisis

SummarySummary GlucoseGlucoseof Reactionsof Reactions 2 ATP 2 NADH 2 pyruvate 2 NADH 2 NADH anaerobicanaerobic anaerobicanaerobic 2 ethanol + CO2 2 lactate

2 CO2 + 2 acetyl CoA

  O2 aerobicaerobic

4 CO2 + 4 H2O

Page 24: 3. karbohidrat ii glikolisis

Summary of Energy Relationship for Summary of Energy Relationship for GlycolysisGlycolysis  

Input = 2 ATP 1. glucose + ATP glucose-6-P 2. fructose-6-P + ATP fructose 1,6

diphosphateOutput = 4 ATP + 2 NADHa. 2 glyceraldehyde-3-P + 2 Pi + 2 NAD+ 2 (3-phosphoglyceroil phosphate) + 2 NADHb. 2 (3-phosphoglyceroil phosphate) + 2 ADP 2 (3-P-glycerate) + 2 ATPc. 2 PEP + 2 ADP 2 pyruvate + 2 ATPNet = 2 ATP and 2 NADH