3-cdma-channels structure.ppt

Upload: abdul-rahim-shaikh

Post on 04-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    1/60

    Copyright 2003, ZTE CORPORATION

    CDMA CHANNEL

    STRUCTUREAND MODULATION

    2004.10.3

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    2/60

    Copyright 2003, ZTE CORPORATION

    Upon completion of this lesson, the student will be able tomaster:

    Objectives

    -- The forward channel in IS-95

    Pilot ;Sync ; Paging and Traffic

    -- The reverse channel in IS-95Access; Traffic

    -- CDMA Call Processing

    -- New Channels in CDMA20001X

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    3/60

    Copyright 2003, ZTE CORPORATION

    CDMA Forward Traffic

    Channels

    Used for the transmission of user and signalinginformation to a specific mobile station during a call.

    Maximum number of traffic channels: 64 minus one

    Pilot channel, one Sync channel, and 1 Paging channel. This leaves each CDMA frequency with at least 55 traffic

    channels.

    Unused paging channels can provide up to 6 additional channels.

    Forward Traffic Channel

    Forward Traffic Channel

    Sync

    Paging

    Forward Traffic Channel

    Forward Traffic Channel

    Pilot

    CDMA Cell Site

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    4/60

    Copyright 2003, ZTE CORPORATION

    Forward Traffic Channel

    Generation

    8 kb Vocoding

    Walshfunction

    PowerControl

    Bit

    I PN

    9600bps4800 bps2400 bps1200 bps(Vocoder) Convolutional

    EncodingandRepetition

    1.2288McpsLong PN Code

    Generation800Hz

    R=1/2, K=9

    Q PN

    Decimator DecimatorUserAddress

    Mask(ESN-based)

    19.2ksps

    1.2288Mcps

    Scrambling

    bits symbols chips

    19.2ksps

    CHANNEL ELEMENT

    MUX

    BlockInterleaving

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    5/60

    Copyright 2003, ZTE CORPORATION

    Rate 1/2, k=9 Convolutional

    Encoding

    Symbols generated as the information bits transit through the encoder, are relatedto all the bits currently in the register.

    Each information bit contributes to multiple symbols.

    Pattern of inter-relationships helps detect and correct errors.

    The length of shift register is called constraint (K=9) length.

    The longer the register, the better coding can correct bursty errors

    Reduces power required to achieve same accuracy with coding

    Here, two symbols are generated for every bit input (Rate 1/2).

    CodeSymbolOutput

    1 2 3 4 5 6 7 8

    g0

    g1

    c0

    c1

    DataBitInput

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    6/60

    Copyright 2003, ZTE CORPORATION

    Symbols areWritten In

    Symbols areRead Out

    1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361

    2 26 50 74 98 122 146 170 194 218 242 266 290 314 338 362

    3 27 51 75 99 123 147 171 195 219 243 267 291 315 339 363

    4 28 52 76 100 124 148 172 196 220 244 268 292 316 340 364

    5 29 53 77 101 125 149 173 197 221 245 269 293 317 341 365

    6 30 54 78 102 126 150 174 198 222 246 270 294 318 342 366

    7 31 55 79 103 127 151 175 199 223 247 271 295 319 343 367

    8 32 56 80 104 128 152 176 200 224 248 272 296 320 344 368

    9 33 57 81 105 129 153 177 201 225 249 273 297 321 345 369

    10 34 58 82 106 130 154 178 202 226 250 274 298 322 346 370

    11 35 59 83 107 131 155 179 203 227 251 275 299 323 347 371

    12 36 60 84 108 132 156 180 204 228 252 276 300 324 348 372

    13 37 61 85 109 133 157 181 205 229 253 277 301 325 349 373

    14 38 62 86 110 134 158 182 206 230 254 278 302 326 350 374

    15 39 63 87 111 135 159 183 207 231 255 279 303 327 351 375

    16 40 64 88 112 136 160 184 208 232 256 280 304 328 352 376

    17 41 65 89 113 137 161 185 209 233 257 281 305 329 353 377

    18 42 66 90 114 138 162 186 210 234 258 282 306 330 354 378

    19 43 67 91 115 139 163 187 211 235 259 283 307 331 355 379

    20 44 68 92 116 140 164 188 212 236 260 284 308 332 356 380

    21 45 69 93 117 141 165 189 213 237 261 285 309 333 357 381

    22 46 70 94 118 142 166 190 214 238 262 286 310 334 358 382

    23 47 71 95 119 143 167 191 215 239 263 287 311 335 359 383

    24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384

    16 Columns

    24Rows

    Full Rate Block Interleave Array

    The 384 modulation symbols in a frame are input into a 24 by 16 blockinterleave array read down by columns, from left to right

    The modulation symbols are then read out of the array in rows

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    7/60Copyright 2003, ZTE CORPORATION

    Full Rate Block Interleave

    Adjacent symbols are now separated in time This separation combats the effect of fast fading

    A burst of errors could effect the area in red above and after the frame iswritten into the block de-interleave function at the mobile we see the

    errors are spread out instead of being in consecutive order.

    Symbols areWritten In

    Symbols areRead Out

    1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361

    2 26 50 74 98 122 146 170 194 218 242 266 290 314 338 362

    3 27 51 75 99 123 147 171 195 219 243 267 291 315 339 363

    4 28 52 76 100 124 148 172 196 220 244 268 292 316 340 364

    5 29 53 77 101 125 149 173 197 221 245 269 293 317 341 365

    6 30 54 78 102 126 150 174 198 222 246 270 294 318 342 366

    7 31 55 79 103 127 151 175 199 223 247 271 295 319 343 367

    8 32 56 80 104 128 152 176 200 224 248 272 296 320 344 368

    9 33 57 81 105 129 153 177 201 225 249 273 297 321 345 369

    10 34 58 82 106 130 154 178 202 226 250 274 298 322 346 370

    11 35 59 83 107 131 155 179 203 227 251 275 299 323 347 371

    12 36 60 84 108 132 156 180 204 228 252 276 300 324 348 372

    13 37 61 85 109 133 157 181 205 229 253 277 301 325 349 37314 38 62 86 110 134 158 182 206 230 254 278 302 326 350 374

    15 39 63 87 111 135 159 183 207 231 255 279 303 327 351 375

    16 40 64 88 112 136 160 184 208 232 256 280 304 328 352 376

    17 41 65 89 113 137 161 185 209 233 257 281 305 329 353 377

    18 42 66 90 114 138 162 186 210 234 258 282 306 330 354 378

    19 43 67 91 115 139 163 187 211 235 259 283 307 331 355 379

    20 44 68 92 116 140 164 188 212 236 260 284 308 332 356 380

    21 45 69 93 117 141 165 189 213 237 261 285 309 333 357 381

    22 46 70 94 118 142 166 190 214 238 262 286 310 334 358 382

    23 47 71 95 119 143 167 191 215 239 263 287 311 335 359 383

    24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384

    16 Columns

    24

    Rows

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    8/60Copyright 2003, ZTE CORPORATION

    Data Scrambling

    Every 64th PN chip is modulo-2 added to a symbol

    Randomize transmitted data Effects of all 1s or 0s' traffic (impulse-like) is reduced

    Eliminates probability of Pilot Reuse Error Mobile might demodulate a distant cell with same PN offset

    BlockInterleaver

    Long

    Code PNGenerator

    19.2 KspsModulationSymbols

    User Address

    Mask (ESN)Decimator

    Divideby 64

    19.2Ksps

    1.2288Mcps

    19.2Ksps

    To PowerControl Mux

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    9/60Copyright 2003, ZTE CORPORATION

    Power Control Subchannel

    Base station receiver estimates received signal strength of mobileover a 1.25 ms period (800/s)

    A power control subchannel is transmitted continuously A power up/down command is sent 800 times a second

    A puncturing technique sends Power Control Bits at full power anduncoded

    19.2 Kspsfrom BlockInterleaver

    1.2288 Mcps

    User LongCode

    Decimator

    ScrambledModulationSymbol orPowerControl Bit19.2

    Ksps

    Decimator

    Data ScramblingMUX

    800 Hz Mux

    Timing

    Power ControlBit (800 bps)

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    10/60Copyright 2003, ZTE CORPORATION

    Orthogonal Spreading

    Each symbol output from the Mux is exclusive ORd bythe assigned Walsh function

    Walsh function has fixed chip rate of 1.2288 Mcps Result is 64 chips output for each symbol input

    Channels are distinguished from each other by Walshfunction

    Bandwidth used greatly exceeds source rate

    To QuadratureSpreading19.2

    Ksps

    MUX

    1.2288Mcps

    Walsh Functionfrom Index

    Wt800 Hz Mux

    Timing

    Power ControlBit (800 bps)

    ScrambledData

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    11/60Copyright 2003, ZTE CORPORATION

    Quadrature Spreading

    & Baseband Filtering

    The forward traffic channel is combined with twodifferent PN sequences: I and Q

    Baseband filtering ensures the waveforms are containedwithin the 1.25 MHz frequency range

    The final step is to convert the two baseband signals toradio frequency (RF) in the 800 MHz or 1900 MHzrange

    ConvolutionalEncoding

    Code SymbolRepetition

    VocoderProcessing

    Baseband Trafficto RF Section

    PCM Voice

    BlockInterleaving

    Data Scrambling

    Power ControlSubchannel

    OrthogonalSpreading

    QuadratureSpreading

    BasebandFiltering

    (SymbolPuncturing)

    WalshFunction

    1.2288Mcps

    19.2 kspsfrom PowerControl Mux

    I-Channel Pilot PN Sequence1.2288 Mcps

    BasebandFilter

    Baseband

    Filter

    I

    Q

    I

    Q

    Q-Channel Pilot PN Sequence1.2288 Mcps

    cos(2pfct)

    sin(2pfct)

    GAIN

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    12/60Copyright 2003, ZTE CORPORATION

    Composite I and Q

    Each CHM hasa combiner andworks in a serialarray to

    combine the Iand Q signalsfor all forwardchannels in a

    partition sector

    or cell.

    Pilot

    Channel

    WalshCode

    SyncChannel

    WalshCode

    Paging

    Channel(s)

    WalshCode

    Forward Traffic

    Channel(s)

    WalshCode

    IPN Code

    QPN Code

    CompositeI

    CompositeQ

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    13/60Copyright 2003, ZTE CORPORATION

    Quadrature Phase Shift Key

    (QPSK) Modulation

    Q1 sin (2 fct) + Q2 sin (2 fct) = ( Q1 + Q2 ) sin (2 fct)

    I1 cos (2 fct) + I2 cos (2 fct) = ( I1 + I2 ) cos (2 fct)

    : XOR

    S: Analog sum

    : Baseband x Carrier

    Every

    Channel

    Walshcode

    Q PN Code

    I PN Code

    Basebandfilter

    Basebandfilter

    cos (2pfct)

    sin (2pfc

    t)

    S

    S

    S

    Gain

    Control

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    14/60Copyright 2003, ZTE CORPORATION

    Forward Traffic Channel

    Generation (13 kb Vocoding)

    Walshfunction

    PowerControl

    Bit

    I PN

    14400bps7200 bps3600 bps1800 bps(Vocoder) Convolutional

    EncodingandRepetition

    1.2288Mcps

    Long PN CodeGeneration 800Hz

    R=1/2, K=9

    Q PN

    Decimator Decimator

    UserAddress

    Mask(ESN-based)

    19.2ksps

    1.2288

    McpsScrambling

    bits symbols chips

    28.8ksps

    CHANNEL ELEMENT

    MUX

    BlockInterleaving

    SymbolPuncturing(13 kb only) 19.2

    ksps

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    15/60Copyright 2003, ZTE CORPORATION

    Forward Channel Demodulation

    Three elements must be capable of demodulating multipathcomponents

    One must be a searcher that scans and estimates signal

    strength at each pilot PN sequence offset

    IS-95A/J-STD-008 requires a minimum of four processing elements thatcan be independently directed:

    DigitalRake Receiver

    ReceiverRF SectionIF, Detector

    TransmitterRF Section

    Vocoder

    Traffic Correlator

    PN xxx Walsh xx

    Traffic Correlator

    PN xxx Walsh xx

    Traffic Correlator

    PN xxx Walsh xx

    Pilot SearcherPN xxx Walsh 0

    ViterbiDecoder

    CPUDuplexer

    TransmitterDigital Section

    Long Code Gen.

    Open

    Loop

    Transmit Gain Adjust

    Messages

    Messages

    Audio

    Audio

    Packets

    Symbols

    SymbolsChips

    RF

    RF

    AGC

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    16/60Copyright 2003, ZTE CORPORATION

    Pilot Channel Used by the mobile station for initial system acquisition

    Transmitted constantly by the base station

    The same Short PN sequences are shared by all base stations

    Each base station is differentiated by a phase offset

    Provides tracking of:

    Timing reference

    Phase reference

    Separation by phase provides for extremely high reusewithin one CDMA channel frequency

    Acquisition by mobile stations is enhanced by:

    Short duration of Pilot PN sequence

    Uncoded nature of pilot signal Facilitates mobile station-assisted handoffs

    Used to identify handoff candidates

    Key factor in performing soft handoffs

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    17/60Copyright 2003, ZTE CORPORATION

    Pilot Channel Generation

    The Walsh function zero spreading sequence is applied to the Pilot

    The use of short PN sequence offsets allows for up to 512 distinct Pilots

    per CDMA channel

    The PN offset index value (0-511 inclusive) for a given pilot PN

    sequence is multiplied by 64 to determine the actual offset Example: 15 (offset index) x 64 = 960 PN chips

    Result: The start of the pilot PN sequence will be delayed

    960 chips x 0.8138 microseconds per chip = 781.25 microsecond

    PilotChannel(All 0s)

    1.2288Mcps

    I PN

    Q PN

    Walsh

    Function 0

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    18/60Copyright 2003, ZTE CORPORATION

    Pilot Channel Acquisition

    The mobile station starts generating the I and Q PN shortsequences by itself and correlating them with the received

    composite signal at every possible offset. In less than 15 seconds (typically 2 to 4 seconds) all possibilities

    (32,768) are checked.

    The mobile station remembers the offsets for which it gets thebest correlation (where the Ec/Io is the best.

    The mobile station locks on the best pilot (at the offset that resultsin the best Eb/N0), and identifies the pattern defining the start ofthe short sequences (a 1 that follows fifteen consecutive 0s).

    Now the mobile station is ready to start de-correlating with aWalsh code.

    0001 0001 0001 0001 0001 0001

    Pilot Channel(Walsh Code 0)

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    19/60Copyright 2003, ZTE CORPORATION

    What is Ec/Io? Ec/Io

    Measures the strength of the pilot Foretells the readability of the

    associated traffic channels

    Guides soft handoff decisions

    Is digitally derived as the ratio of goodto total energy seen by the searchcorrelator at the desired PN offset

    Never appears higher than Pilotspercentage of serving cells transmittedenergy

    Can be degraded by strong RF fromother cells, sectors

    Can be degraded by noise

    Ec/Io dB

    -25 -15 -10 0

    Ec

    Io

    Energy ofdesired pilot alone

    Total energy received

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    20/60Copyright 2003, ZTE CORPORATION

    Sync Channel

    Used to provide essentialsystem parameters

    Used during system acquisitionstage

    Bit rate is 1200 bps

    Sync channel has a frameduration of 26 2/3 ms

    Frame duration matches theperiod of repetition of thePN Short Sequences

    Simplifies the acquisition of

    the Sync Channel once thePilot Channel has beenacquired

    Mobile Station re-synchronizesat the end of every call

    (Acquired Pilot)

    Sync Channel

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    21/60Copyright 2003, ZTE CORPORATION

    Sync Channel Generation

    1200 bps

    Walsh Function 32

    1.2288 Mcps

    IPN

    ConvolutionalEncoderand

    RepetitionBlock

    Interleaver

    R=1/2 K=9

    ModulationSymbols

    4800 sps 4800 sps

    Bits Chips

    QPN

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    22/60Copyright 2003, ZTE CORPORATION

    Sync Channel Message

    Body Format

    MSG_TYPE (00000001)

    P_REV

    MIN_PREV

    SID

    NID

    PILOT_PN

    LC_STATE

    SYS_TIME

    LP_SECLTM_OFF

    DAYLT

    PRAT

    CDMA_FREQ

    8

    8

    8

    15

    16

    9

    42

    36

    86

    1

    2

    11

    FieldLength(bits)

    Total : 170

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    23/60Copyright 2003, ZTE CORPORATION

    Sync Message Parameters Message Type (MSG_TYPE) Identifies this message and

    determines its structure (set to the fixed value of00000001)

    Protocol Revision Level (P_REV) Shall be set to 00000001

    Minimum Protocol Revision Level (MIN_P_REV) 8-bit unsignedinteger identifying the minimum protocol revision level required tooperate on the system. Only mobile stations that support revisionnumbers greater than or equal to this field can access the system.

    System ID (SID) 16-bit unsigned integer identifying the system

    Network ID (NID) 16-bit unsigned integer identifying the networkwithin the system (defined by the owner of the SID)

    Pilot PN Sequence Offset Index (PILOT_PN) Set to the pilot PNoffset for the base station (in units of 64 chips), assigned by thenetwork planner

    Long Code State (LC_STATE) Provides the mobile station with thebase station long code state at the time given by the SYS_TIME field,generated dynamically

    System Time (SYS_TIME) GPS system-wide time as 320 ms afterthe end of the last superframe containing any part of this message,minus the pilot PN offset, in units of 80 ms, generated dynamically

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    24/60

    Copyright 2003, ZTE CORPORATION

    Sync Channel Message

    Parameters (cont.)

    Leap Seconds (LP_SEC) Number of leap seconds that have occurredsince the start of system time (January 6, 1980 at 00:00:00 hours) asgiven in the SYS_TIME field, generated dynamically

    Local Time Offset (LTM_OFF) Twos complement offset of localtime from system time in units of 30 minutes, generated dynamically

    Current local = SYS_TIME LP_SEC + LTM_OFF

    Daylight savings time indicator(DAYLT) Determined by thenetwork planner

    1 if daylight savings in effect in this base station

    0 otherwise

    Paging Channel Data Rate (PRAT) The data rate of the pagingchannel for this system, determined by the network planner

    00 if 9600 bps

    01 if 4800 bps

    CDMA Frequency Assignment (CDMA_FREQ)

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    25/60

    Copyright 2003, ZTE CORPORATION

    Paging Channels

    There is one paging channel per sector per CDMAcarrier

    The Paging Channel uses Walsh function 1

    Two rates are supported: 9600 and 4800 bps

    Paging Channel

    Used by the base station totransmit system overhead informationand mobile station-specific messages.

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    26/60

    Copyright 2003, ZTE CORPORATION

    Paging Channel Generation

    Walsh code #1 is used to spread the data. This results in an increase to 1.2288Mcps

    That is, 24,576 9600 [4800] bps x 0.020 s = 192 [96] bits in a PagingChannel frame.

    The Rate 1/2 convolutional encoder doubles the bit rate, resulting 384 [192]

    code symbols in a Paging Channel frame.

    If the 4800 bps rate is used, the repetition process doubles the rate again, so that,at either rate, 384 modulation symbols per Paging Channel frame result

    384 modulation symbols per frame times 50 frames per second = 19.2 Ksps

    chips per Paging Channel frame, or 128 [256] chips per original bit at 9600[4800] bps

    9600 bps

    4800 bps

    Walshfunction

    1.2288Mcps

    Q PN

    1.2288Mcps

    19.2Ksps

    19.2KspsPaging Channel

    Address Mask

    R = 1/2 K=9

    Decimator

    ConvolutionalEncoder &Repetition

    I PN

    BlockInterleaving

    Scrambling

    Long PN CodeGenerator

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    27/60

    Copyright 2003, ZTE CORPORATION

    Paging Channel Time Slot Structure

    7

    6

    5

    4

    3

    2

    1

    0

    SCI 163.84 s

    T 2SCI

    SCI = Slot Cycle IndexT = Slot Cycle Length in 1.28 sunits 80 ms

    1.28 s

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    28/60

    Copyright 2003, ZTE CORPORATION

    MS How to Watch Paging Channel

    System Time

    Paging Channel Slots

    2047 0 1 2 3 4 12 13 14 15 16 17

    1.28 seconds

    Mobile Stationin Non-Active State

    Assigned PagingChannel Slot

    Re-acquisition ofCDMA System

    Mobile Stationin Non-Active State

    80 ms

    Paging Channel O erhead

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    29/60

    Copyright 2003, ZTE CORPORATION

    Paging Channel Overhead

    Messages

    Mobile-Station-DirectedMessages

    OverheadMessages

    Access Parameters Message

    System Parameters Message

    CDMA Channel List Message

    Extended System Parameters Message

    Extended Neighbor List Message

    ConfigurationParameterMessages

    Global Service Redirection Message

    PagingMessages

    ACC_MSG_SEQ

    CONFIG_MSG_SEQ

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    30/60

    Copyright 2003, ZTE CORPORATION

    CDMA Reverse Traffic

    Channels

    Used when a call is in progress to send: Voice traffic from the subscriber

    Response to commands/queries from the base station

    Requests to the base station

    Supports variable data rate operation for:

    8 Kbps vocoder Rate Set 1 - 9600, 4800, 2400 and 1200 bps

    13 Kbps vocoder

    Rate Set 2 - 14400, 7200, 3600, 1800 bps

    Reverse Traffic Channel

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    31/60

    Copyright 2003, ZTE CORPORATION

    9600 bps4800 bps

    2400 bps1200 bps

    28.8ksps

    R=1/3,K=9

    1.2288McpsUser Address

    Mask

    LongPN Code

    Generator

    28.8ksps OrthogonalModulation

    Data BurstRandomizer

    307.2kcps

    1.2288

    Mcps

    Q PN(no offset)

    I PN(no offset)

    D

    1/2 PNChipDelay

    DirectSequenceSpreading

    ConvolutionalEncoder &Repetition

    BlockInterleaver

    Reverse Traffic Channel

    Generation at 8 kb Vocoding

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    32/60

    Copyright 2003, ZTE CORPORATION

    +

    +

    +

    g0

    g1

    g2

    Information bits(INPUT)

    Code Symbols(OUTPUT)

    Code Symbols(OUTPUT)

    Code Symbols(OUTPUT)

    1 2 3 4 5 6 7 8

    Rate 1/3 Convolutional

    Encoder

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    33/60

    Copyright 2003, ZTE CORPORATION

    28.8 kspsFrom Coding& SymbolRepetition

    28.8 ksps toOrthogonalModulation

    Input Array(Normal

    Sequence)32 x 18

    Output Array(ReorderedSequence)

    32 x 18

    Reverse Traffic Channel

    Block Interleaving

    20 ms symbol blocks are sequentially reordered

    Combats the effects of fast fading

    Separates repeated symbols at 4800 bps and below

    Improves survivability of symbol data

    Spreads the effect of spurious interference

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    34/60

    Copyright 2003, ZTE CORPORATION

    Reverse Traffic Channel:

    64-ary Orthogonal Modulation

    For every six symbols in, 64 Walsh Chips are output

    Six symbols are converted to a decimal number from 0-63

    The Walsh code that corresponds to the decimal number becomes theoutput

    1 0 1 1 0 0 1 0 0 0 1 1

    Symbols

    3544 Walsh Lookup TableWalshChipwithina WalshFunction

    01234567

    11

    8901

    1111

    2345

    1111

    6789

    2222

    0123

    2222

    4567

    2233

    8901

    3333

    2345

    3333

    6789

    4444

    0123

    4444

    4567

    4455

    8901

    5555

    2345

    5555

    6789

    6666

    0123

    0

    1

    2

    3

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    4

    5

    6

    7

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    8

    9

    10

    11

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    12

    13

    14

    15

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    Wals

    16

    17

    18

    19

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    h

    Fu

    20

    21

    22

    23

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    ncti

    24

    25

    26

    27

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    onI

    2829

    30

    31

    00000101

    0011

    0110

    11111010

    1100

    1001

    11111010

    1100

    1001

    00000101

    0011

    0110

    11111010

    1100

    1001

    00000101

    0011

    0110

    00000101

    0011

    0110

    11111010

    1100

    1001

    00000101

    0011

    0110

    11111010

    1100

    1001

    11111010

    1100

    1001

    00000101

    0011

    0110

    11111010

    1100

    1001

    00000101

    0011

    0110

    00000101

    0011

    0110

    11111010

    1100

    1001

    ndex

    32

    33

    34

    35

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    36

    37

    38

    39

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    40

    41

    42

    43

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    44

    45

    46

    47

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    48

    49

    50

    51

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    52

    53

    54

    55

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    56

    57

    58

    59

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    60

    61

    62

    63

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1111

    1010

    1100

    1001

    1111

    1010

    1100

    1001

    0000

    0101

    0011

    0110

    1 0 0 0 1 . . . 1 1 0 1 0

    64 Chip Pattern ofWalsh Code # 35

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    35/60

    Copyright 2003, ZTE CORPORATION

    Reverse Traffic Channel:

    Direct Sequence Spreading

    Output of the randomizer is direct sequence spread by the

    long code The mobile station can use one of two unique long code

    masks:

    A public long code mask based on the ESN

    A private long code mask

    1.2288Mcps

    User AddressMask

    LongCode PN

    Generator

    Data BurstRandomizer

    307.2kcps To Quadrature

    Spreading

    1.2288Mcps

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    36/60

    Copyright 2003, ZTE CORPORATION

    Offset Quadrature Spreading &

    Baseband Filtering

    The channel is spread by a pilot PN sequence with a zerooffset

    Baseband filtering ensures that the waveform is containedwithin the required frequency limits

    Baseband signals converted to radio frequency (RF) inthe 800 MHz or 1900 MHz range

    1.2288Mcps

    I-Channel Pilot PN Sequence1.2288 Mcps

    PN

    I

    Q

    I

    Q

    cos(

    2

    pfct)

    sin(2 fct)PN chip

    1.2288 Mcps

    FromData BurstRandomizer

    RF Converters

    D

    1/2 PN ChipTime Delay

    BasebandFilter

    BasebandFilter

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    37/60

    Copyright 2003, ZTE CORPORATION

    14400 bps7200 bps

    3600 bps1800 bps

    28.8

    ksps

    R=1/2,K=9

    1.2288McpsUser Address

    Mask

    LongPN Code

    Generator

    28.8

    ksps OrthogonalModulation

    Data BurstRandomizer

    307.2

    kcps

    1.2288Mcps

    Q PN(no offset)

    I PN(no offset)

    D

    1/2 PNChipDelay

    Direct

    SequenceSpreading

    ConvolutionalEncoder &Repetition

    BlockInterleaver

    Reverse Traffic Channel

    Generation at 13 kb Vocoding

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    38/60

    Copyright 2003, ZTE CORPORATION

    Reverse Channel Demodulation

    IS-95A/J-STD-008 requires a process that is complementary to the mobilestation modulation process

    CDMA processing benefits from multipath components

    Signals from several receive elements can be combined to improvereceive signal quality

    U/DCommand

    De-InterleaverSpeechOutput

    C

    ombiner

    BTS Receiver BSC

    Power ControlDecision

    ViterbiDecoder

    Vocoder

    Demodulator SearchCorrelator

    Demodulator SearchCorrelator

    Demodulator

    Search

    Correlator

    Demodulator SearchCorrelator

    PN+ tUser Long Code

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    39/60

    Copyright 2003, ZTE CORPORATION

    Access Channels

    Used by the mobile station to: Initiate communication with the base station

    Respond to Paging Channel messages

    Has a fixed data rate of 4800 bps

    Each Access Channel is associated with only one Paging

    Channel Up to 32 access channels (0-31) are supported per Paging

    Channel

    4800 bps

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    40/60

    Copyright 2003, ZTE CORPORATION

    28.8kspsConvolutional

    Encoder &Repetition

    R = 1/3

    1.2288Mcps

    Access ChannelLong Code Mask

    Long PN CodeGenerator

    28.8ksps Orthogonal

    Modulation

    307.2kcps

    1.2288Mcps

    Q PN (No Offset)

    I PN (No Offset)

    D

    1/2 PNChipDelay

    BlockInterleaver

    Access ChannelInformation

    (88 bits/Frame)

    4.8 kpbs

    DirectSequenceSpreading

    Access Channel Generation

    Message attempts are randomized to reduce probability ofcollision

    Two message types:

    A response message (in response to a base stationmessage)

    A request message (sent autonomously by the mobile

    station)

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    41/60

    Copyright 2003, ZTE CORPORATION

    Access Channel Long Code MaskAn Access Channel is scrambled by the longcode, offset by a mask constructed as follows:

    Where:

    ACN is the Access Channel Number,

    PCN is the Number of the associated Paging ChannelBASE_ID is the base station identification number, and

    PILOT_PN is the Pilot short PN code offset index

    1 1 0 0 0 1 1 1 1 PCNACN BASE_ID PILOT_PN

    41 33 32 028 27 25 24 9 8

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    42/60

    Copyright 2003, ZTE CORPORATION

    Access Channel Probing

    AccessProbe 1

    Access

    Probe 1

    Access

    Probe 1

    Access

    Probe 1

    Access Probe

    1 + NUM_STEP

    (16 max)

    System

    Time

    TA RT TA RT TA RT TA

    PI

    PI

    PI

    IP(InitialPower)

    See previous

    figure

    ACCESS

    PROBE

    SEQUENCE

    Select Access Channel (RA)

    initialize transmit power

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    43/60

    Copyright 2003, ZTE CORPORATION

    Access Channel Probing

    System

    Time

    See previousfigure

    ONE ACCESS CHANNEL SLOT

    ACH Frame(20 ms)

    ACCESS CHANNELPREAMBLE

    (Modulation Symbol 0)

    ACCESS CHANNELMESSAGE CAPSULE

    ACTUAL ACCESS PROBE TRANSMISSION

    PN Randomization Delay = RN chips = RN x 0.8138 s

    ACCESSPROBE

    1 + PAM_SZ(1 - 16 frames)

    3 + MAX_CAP_SZ(3 - 10 frames)

    4 + PAM_SZ + MAX_CAP_SZ(4 - 26 frames)

    Access ChannelSlot and Frame

    Boundary

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    44/60

    Copyright 2003, ZTE CORPORATION

    Access Channel Probing

    Seq 2 Seq 3

    Seq MAX_REQ_SEQ(15 max)

    RSRS

    Access Attempt

    PD

    System

    Time

    Access ProbeSequence 1

    REQUEST

    ATTEMPT

    Request messageready for transmission

    PD PD

    Seq 2 Seq 4Seq 3Seq MAX_RSP_SEQ

    (15 max)

    RSRS

    Access Attempt

    RS

    System

    Time

    Access ProbeSequence 1

    RESPONSEATTEMPT

    Response messageready for transmission

    Access Channel Probing

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    45/60

    Copyright 2003, ZTE CORPORATION

    Access Channel Probing

    Parameters RA - Access Channel Number. Random value between 0 and ACC_CHAN; generated before

    every sequence (maximum range is 0 - 31).

    IPInitial Open-Loop Power. Calculated in dBm as follows:

    IP = k - Mean Input Power (dBm) + NOM_PWR (dB)

    - NOM_PWR_EXT x 16 (dB) + INIT_PWR (dB)

    where k = -73 for 800 MHz Cellular and -76 for 1900 PCS.

    PIPower Increment. Equal to PWR_STEP in dB (range is 0 to 7 dB). TAAcknowledgment Response Timeout (timeout from the end of the slot). Calculated in ms

    as follows (range is 160 to 1360 ms):

    TA = 80 x (2 + ACC_TMO)

    RTProbe Backoff. Random value between 0 and 1 + PROBE_BKOFF; generated before

    every sequence (maximum range is 0 - 16 slots).

    RSSequence backoff. Random value between 0 and 1 + BKOFF; generated before everysequence (except the first sequence). Maximum range of values is 0 to 16 slots

    PDPersistence delay. (Value used to implement the persistence test).

    RNPN Randomization Delay. (0 to 511 chips) . Generated before every sequence, between

    0 and 2 PROBE_PN_RAN - 1, by hash, using ESN_S.

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    46/60

    Copyright 2003, ZTE CORPORATION

    CDMA MS Call ProcessingPower-Up

    Initialization

    Idle

    SystemAccess

    Traffic

    Mobile stationhas fully acquired

    system timing

    Mobile station receives a PagingChannel message requiring ACK

    or response, originates a call, orperforms registration

    Mobile station is directedto a Traffic Channel

    Mobile station ends useof the Traffic Channel

    Mobile station receives an ACK toan Access Channel transmission

    other than an Origination Messageor a Page Response Message

    Mobile station is in idle handoffwith NGHBR_CONFG equal to

    011 or is unable to receivePaging Channel Message

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    47/60

    Copyright 2003, ZTE CORPORATION

    Mobile Station Originated Call

    Allocatesresources

    Mobile Station Base Station

    Detects user-initiated call

    Sends Origination Message

    ACCESS

    (FW null traffic is arriving but themobile station does not know onwhat channel; therefore, the mobile

    station cannot start decoding it)

    Sends message with thisinformation to the switch

    Sends Base Station Acknowledge-ment Order

    FW TRAFFIC

    Allocates resources for ServiceOption 1

    Begins transmitting null ReverseTraffic Channel Data

    Sends Service Request Messagefor Service Option 1 RV TRAFFIC

    Acquires the Reverse TrafficChannel

    Sends Base Station Acknowledge-ment Order

    FW TRAFFIC

    Sets up Traffic Channel

    Receives N5m=2 consecutive validframes

    Begins sending the Reverse TrafficChannel Preamble

    Sends Channel AssignmentMessage

    PAGING

    RV TRAFFIC

    Switch

    Sets up Traffic Channel

    Begins sending null traffic

    Stops probingPAGING

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    48/60

    Copyright 2003, ZTE CORPORATION

    Mobile Station Originated Call

    (User Conversation)

    Optional

    Applies ring back from audio path

    Optional

    Removes ring back from audio path

    Begins processing primary traffic inaccordance with Service Option 1

    Sends Service ConnectCompletion Message

    Optional

    Sends Origination ContinuationMessage

    RV TRAFFIC

    RV TRAFFIC

    Optional

    Sends Alert With InformationMessage (ring back tone)

    Optional

    Sends Alert With InformationMessage (tones off)

    Message sent to the switchindicating that the mobile stationis ready

    FW TRAFFIC

    FW TRAFFIC

    Completesthe call

    (User Conversation)

    Allocates resources for ServiceOption 1

    Sends Service Connect Message

    Mobile Station Base Station Switch

    FW TRAFFIC

    M bil S i T i d C ll

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    49/60

    Copyright 2003, ZTE CORPORATION

    Mobile Station Terminated Call

    Stops probing

    (FW null traffic is arriving but themobile station does not know onwhat channel; therefore, the mobilestation cannot start decoding it)

    Sets up Traffic Channel

    Begins sending null TrafficChannel data

    Acquires the Reverse TrafficChannel

    Sends Base Station Acknowledge-ment Order

    Sets up Traffic Channel

    Receives N5m=2 consecutivevalid frames

    Begins sending the ReverseTraffic Channel Preamble

    Begins transmitting null TrafficChannel data

    Sends General Page Message

    Sends Page Response Message ACCESS

    PAGING

    RV TRAFFIC

    FW TRAFFIC

    PAGING

    FW TRAFFIC

    RV TRAFFIC

    Switch

    Mobile Station Base Station

    Sends Channel AssignmentMessage

    Sends Base Station Acknowledge-ment Order

    Sends message to switchindicating that the mobile stationhas responded

    Allocates

    resources

    PAGING

    Switch

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    50/60

    Copyright 2003, ZTE CORPORATION

    Mobile Station Terminated Call

    Sends Alert With InformationMessage (ring)

    Begins processing primary traffic inaccordance with Service Option 1

    Sends Service ConnectCompletion Message

    Starts ringing

    User answers call

    Stops ringing

    Sends Connect Order

    (User Conversation) (User Conversation)

    FW TRAFFIC

    RV TRAFFIC

    RV TRAFFIC

    Sends Service Connect MessageFW TRAFFIC

    Sends message to the switchindicating that the mobilestation is ready

    Call proceeds

    Allocates resources for ServiceOption 1

    Sends Service Response Messageaccepting Service Option 1

    RV TRAFFIC

    Sends Service Request Msgfor Service Option 1

    FW TRAFFIC

    Begins transmitting null TrafficChannel data RV TRAFFIC

    SwitchMobile Station Base Station

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    51/60

    Copyright 2003, ZTE CORPORATION

    CDMA20001XRtt

    New Channel Structure

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    52/60

    Copyright 2003, ZTE CORPORATION

    Benefits of the CDMA2000

    1x Standards

    Increased mobile standby battery life (via Quick Paging

    Channel)

    Total backward compatibility to reuse switch and call

    processing features

    2-3 dB better coverage

    High speed 153.6 kbps packet data capabilities

    CDMA2000 1x = 1.25 MHz Radio Transmission Technology

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    53/60

    Copyright 2003, ZTE CORPORATION

    Backward Compatible with

    IS-95 Air Interface

    No need to change any RF infrastructure

    Capacity improvements will not be realized until most IS-95 subscribers disappear

    IS-95 mobiles are supported in the IS-2000 standardfor 1xRTT:

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    54/60

    Copyright 2003, ZTE CORPORATION

    Cdma2000 1xRtt Channel(Qualcomm)

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    55/60

    Copyright 2003, ZTE CORPORATION

    Channel List: 1xRTT vs. IS-95 IS-95B built on the IS-95A channels, and introduced two new channels

    Fundamental channel was the same as IS-9A traffic channel

    Supplemental code channels assigned to support rates above14.4Kbps

    IS-2000 1xRTT continue to build on the IS-95 channels

    IS-95 channels continue to be supported in IS-2000 to support IS-95 mobiles

    Pilot channelSync channelPaging channel Access channelForward Traffic Channel Reverse Traffic Channel

    Fundamental channel Fundamental channelSupplemental Code channel (F-SCCH) Supplemental Code channel (R-SCCH)

    Supplemental channel (F-SCH) Supplemental channel (R-SCH)Quick Paging channel (F-QPCH) Reverse Pilot channel (R-PICH)

    IS-95B

    1xRTT

    IS-95A

    Forward Reverse

    F d S l t l

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    56/60

    Copyright 2003, ZTE CORPORATION

    Forward Supplemental

    Channel (F-SCH) Assigned for high-speed packet data (>9.6 kbps) in the forward

    direction; (FCH is always assigned to each call)

    Up to 2 F-SCH can be assigned to a single mobile

    SCH cannot exist without having a fundamental channelestablished

    F-SCH supports Walsh code lengths of 4 - 1024 depending on data rateand chip rate

    SCH-1 File transfer at 144 kbps

    FCH Voice, power control and link continuity

    Mobile 1

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    57/60

    Copyright 2003, ZTE CORPORATION

    Reverse Supplemental

    Channel (R-SCH) Used for high-speed packet data (>9.6 kbps)

    Difference between F-SCH and R-SCH is in Walsh code basedspreading

    F-SCH supports Walsh code lengths of 4 to 128 (1xRTT) or 1024

    (3xRTT) depending on data rate and chip rate R-SCH uses either a 2-digit or 4-digit Walsh code; rate matching

    done by repetition of encoded and interleaved symbols

    Walsh code allocation sequence is pre-determined andcommon to all mobiles

    Users are differentiated using long PN code with user mask

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    58/60

    Copyright 2003, ZTE CORPORATION

    Reverse Pilot Channel

    (R-PICH)

    Mobile transmits well-known pattern (pilot)

    Allows base station to do timing corrections withouthaving to guess where mobile is (in search window)

    Mobile can transmit at lower power, reducing interference

    to others

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    59/60

    Copyright 2003, ZTE CORPORATION

    Quick Paging Channel

    (F-QPCH) More efficient monitoring of paging channel by mobile, enhancement

    to slotted paging

    Mobile monitors QPCH to determine if there is a page forthcoming on

    paging channel in its slot (looks at 1-bit paging indicator)

    If no flag, then mobile goes back to sleep; if flag, then mobile monitors

    appropriate slot and decodes general page message

    Without QPCH, mobile must monitor regular paging channel slot and

    decode several fields to determine whether page is for it or not; this

    drains mobile batteries quickly

    The main purpose of QPCH is to save mobile battery life.

  • 7/29/2019 3-CDMA-Channels STRUCTURE.ppt

    60/60

    The End!