28-11-01 solar orbiter_______________________________________________

15
28-11-01 Solar orbiter____________________________________________ ___

Upload: lillian-cobb

Post on 18-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

Page 2: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

Martin CaldwellOptical Systems GroupSpace Science & technology Dept.Rutherford Appleton Lab.

Design & layout of EUS for Solar Orbiter.

Summary.

•Requirements: Spatial, spectral, collecting power.

•Telescope options:

Front-end grating + 1-mirror telescope (Univ. Padova)

2-mirror on-axis (strawman).

2-mirror off-axis.

•Instrument layout.

•Spectrometer with holographic grating.

•Basic tolerances.

Summary.

Page 3: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Requirements, optical

Imaging.

Spatial: 0.5arcsec pixel, FOV 34 arcmin.

Spectral: 580-630ang, in 34 arcmin

Square detector

~ 4000 x 4000}Collecting power.

4.1012 photons/cm2.sr per second (typical line)

~ 600 ang

t ~ 1 second exposure

Page 4: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Requirements: Imaging

Spatial.

APS detector, min. size p~5m for min. focal length FL

FL = p/(0.5arcsec) = 2.06 metres

Detector size 4000*5um= 20mm

Spectral.

dm sin. - .sin

= 0 - normal incidence at detector m=-1

1st-order differential with respect to :-

d-

gr/mm) (1/4800

.50

R

20mm Angst

R ~ 800mm

(1:1 imaging,

conservative grating technology )

Page 5: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Collecting power

Parameter Name Value Units Commenteta detector efficiency 0.4tau mirrors throughput 0.008 3 mirrorsg grating efficiency 0.3

B photon radiance 4.00E+12 photons/cm 2̂.srA aperture area 113.097336 cm 2̂ 12cm apertureomega pixel fov solid angle 5.8758E-12 steradian 0.5 arcsec pixelt exposure time 1 secondsProduct 2.55 photons

• 12cm aperture is reasonable limit given heat load problem

==> F-number = 2.06/0.12 ~ 17

Solar: 1371 watts/m2*25*0.0113 = 390 watts.

• Have to limit to 3 reflections.

Page 6: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Instrument layout & trade-offs

Inputslit Grating

(spherical,holographic)

Detectorarray

RowlandCircle diameter = RD

2-mirror telescope

1:1 spectrometer for simplestgrating. Approx. Rowland circle

~ 1:2 spectrometer for shorteroverall length =

Length D << FL.M2 size ~ (D/FL)*M1 size ~ 1 metre for current grating d=1/4800 gr/mm.

Scales with: d, 1/

12cm

Page 7: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Telescope options

1. Front-end GI grating + single mirror telescope + spectrometer.

•Previously proposed (Univ. Padova) to separate heat at front-end.

•Light is pre-dispersed before spectrometer input slit.

•Relatively large size ~2m x 0.2m, tilted.

•Single mirror telescope (parabola), aberration control only at limited FOV

•Spatial: Possibility to improve via grating design.

•Spectral: No improvement possible after entrance slit.

•Assume 1m focal length (requiring 1:2 spectrometer), have ~15m spot size at slit at FOV edge.

Page 8: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

Y

Z-99.9999,-246.231 mm

100,26.2319PROFILES

ASAP Pro v7.0 2001-11-27 11:46

Telescope option 2. Two-mirror on-axis (straw-man).

2. Good aberration control over required FOV.

• Image (slit) plane close to M1 to minimise length.

• M2 ~ (D/FL). M1

• D ~ 200 to 400mm

(D/FL) ~ 10 to 20 %

M2 ~ 12 to 24 mm

• Well-corrected, but

Field curvature ~ 2mm

D = 200mm

20mmDiameter ~12mm

Page 9: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Telescope option 2. Two-mirror on-axis (straw-man).

Y

Z

100,26.2319rays from sun centre & sun limb

Heat dissipation.

Load on M2 is high, due to :

Beam concentration.

Limited motion of beam on M2versus field angle :-

Sun centre

Sun limb

~ 80% of power from M1 hits M2

•M1 must be thermally absorbing

•Stringent opto-mechanical design

•large radiator panel needed

Page 10: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Telescope option 3. Two-mirror, off-axis.

Off-axis telescope & rays from full solar disc, blocked at heat stop

Y

Z-184.294,-553.362 mm

307.017,115.962PROFILES

ASAP Pro v7.0 2001-11-27 13:51

Sun rays

+ - 1.25 deg

Heat stop

Entrance slit

perpendicular to page

Field curv. ~0.7mm

D = 400mm

Page 11: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________ Telescope option 3. Two-mirror off-axis.

• Solar image in M1, size ~ 2.5deg x 400mm = 17mm

• Heat stop aperture has to be curved & oversized due to aberrations.

select e.g. 34 x 10 arcmin = 2 % of solar power

Reduced flux on M2.

Reduced total load on spectrometer slit (same local flux)

• Design should allow M1 & stop to be heat-reflecting.

Reduced total absorbed power & so relaxed the cooler & radiator requirements.

Page 12: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

Heat stop

M1

M2

Entrance slit

Telescope option 3. Two-mirror off-axis.

Page 13: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

Y

Z-480.518,-1156.93 mm

480.519,152.3011:1 spherical VLS grating

ASAP Pro v7.0 2001-11-27 16:00

Input slitperpendicularto page

Detector array

Grating

4800gr/mm

1:1 design, spherical variable-space holographic grating.

Spectrometer

•Normal incidence on detector.

•Off-rowland for holographic form

•580-630 Angst

800mm, =16.7 deg

Page 14: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

X

Y-18.3542,-15.4667 mm

4.96957,16.3077F/5 DOE LENS WITH SIMPLE QUADRATIC PHASE

ASAP Pro v7.0 2001-11-27 15:44

Spectrometer performance

1:1 design, spherical holographic grating.

Spot diagram cf. 10um square (shown in blue)

Hologram provides insufficient correction, need higher order grating function.

Spatial

On-axis

17 arcmin60

5A O

n-ax

is

580

A

630

A

Spectral

Page 15: 28-11-01 Solar orbiter_______________________________________________

28-11-01

Solar orbiter_______________________________________________

1. absolute wavelength calibration, i.e. No requirement for stability between ground & use. The spectrometer is self-calibrating in flight by being able to recognise known spectra.

2. Pointing is also calibrated in flight, e.g. by position of the solar limb.

(If these calibrations weren't so, optics would have to be stable to < 1 pixel, 0.5arcsec.)

3. Telescope Focus. If the focused spot were allowed to degrade by 2 um in diameter (~1/2 pixel) at the slit, the allowable two-mirror axial separation change would be ~3um, i.e. ~3um/200mm = 15 ppm relative. Active focus required ?

4. Slit axial position to telescope. 2um as above multiplied by F-no =17, giving ~34um.

4. Spectrometer focus. Grating axial (z) position relative to the telescope. For a 2um increase in spot size at the detector this motion is allowed to be ~50um. Similar motions are allowed in slit & detector position WRT the spectrometer.

Tolerance sizes.