27 april 2012 egu general assembly 2012

15
ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes 27 April 2012 EGU General Assembly 2012 Pietro Paolo Bertagnolio, Giovanni Muscari, Irene Fiorucci and Massimo Mari Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy Department of Earth Sciences, University of Siena Distributed under Creative Commons Attribution 3.0

Upload: waldo

Post on 23-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Introducing VESPA-22: a ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes. Pietro Paolo Bertagnolio , Giovanni Muscari, Irene Fiorucci and Massimo Mari. 27 April 2012 EGU General Assembly 2012. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 27 April 2012 EGU General Assembly 2012

Introducing VESPA-22: a ground-based microwave spectrometer for

measuring middle atmospheric water vapour at polar latitudes

27 April 2012EGU General Assembly 2012

Pietro Paolo Bertagnolio, Giovanni Muscari, Irene Fiorucci and Massimo Mari

Istituto Nazionale di Geofisica e Vulcanologia, Rome, ItalyDepartment of Earth Sciences, University of Siena

Distributed under Creative Commons Attribution 3.0

Page 2: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Our goal

To observe changes in the water vapour concentration profile in the stratosphere and mesosphere in the polar regions

Long-term (decadal trends)

Short-term (diurnal cycle)

With a new ground-based microwave spectrometer to measure the 22.235 GHz transition of water vapour as part of the NDACC network

Page 3: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Outline

• Stratospheric H2O and its impact on PSCs

• The observational challenges of the 22-GHz H2O line

• How does the technique work?

• Our instrumental setup• First measured and

calibrated spectra• Conclusions and future

work

Page 4: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Decadal change in stratospheric H2O as yet not well understood

• Steady rise since 1980• 10% decrease in 2000• Influence on surface warming 30%

of GHG from “Contributions of stratospheric water

vapor to decadal changes in the rate of global warming.” S. Solomon et al. – Science - 2010

Page 5: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Impact of H2O increase on Arctic PSC formation

from “Quantifying Denitrification and Its Effect on Ozone Recovery”, Tabazadeh at al. – Science - 2000

+ 1 ppmvH2O

Page 6: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

The observational challenge

tropo

strato

meso

thermo

Page 7: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Balanced Beam-Switching Measurement Technique

Troposphere

CompensatingSheet

Receiver

Stratosphere

Signal beam

𝑻 𝒛∗𝑨𝑺

𝑇 𝑡𝑟𝑜𝑝𝜖𝑡𝑟𝑜𝑝,𝑆

Referencebeam

𝑻 𝒛∗𝑨𝑹

𝑇 𝑡𝑟𝑜𝑝𝜖𝑡𝑟𝑜𝑝 ,𝑅

𝑻 𝒄𝝐𝒄

𝑇 𝑆−𝑇 𝑅=𝑇 𝑧∗ (𝐴𝑆𝛼𝑡𝑟𝑜𝑝 ,𝑆−𝐴𝑅𝛼 𝑡𝑟𝑜𝑝 ,𝑅𝛼𝑐 )

Page 8: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

VESPA-22 (water Vapor Emission Spectrometer for Polar Atmospheres at 22 GHz)

Parabolic mirror

Choppermirror

Quarter-wavelength shift

Receiver

Page 9: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Parabolic antenna

Half-Power Beam Width (HPBW) = 3.5°Sidelobes < -40 dB below main lobeCross-polarization < -24 dB below main polarization

Page 10: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Noise diode calibration

Cold body (LN2) Calibration sources

Hot body𝑇 𝑠−𝑇 𝑅=𝐺 (𝑉 𝑠−𝑉 𝑅 )=𝑇𝑁𝐷

𝑉 𝑁𝐷+𝑅−𝑉 𝑅(𝑉 𝑠−𝑉 𝑅)

Page 11: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Noise diode calibration

0 5000 10000 150000.5

1

1.5

2

x 108

FFT Channels

FFT

Cou

nts

"Raw" Calibration Spectra

Cold Target (77 K)Hot Target (295 K)Noise Diode 1 (84 K)Noise Diode 2 (131 K)

Trec = 312 K

Page 12: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

22.15 22.2 22.25 22.3-2000

-1000

0

1000

2000

3000

Frequency [GHz]

Brig

htne

ss T

empe

ratu

re [m

K]

Calibrated Spectrum18-04-2012 13:20-17:20

Effective Integration Time 80'

Page 13: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

22.225 22.23 22.235 22.24 22.245-100

0

100

200

300

Frequency [GHz]

Brig

htne

ss T

empe

ratu

re [m

K]

Water Vapour Emission Line @ 22.235 GHz18-19/04/2012

Effective Integration Time 3h40'

Page 14: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Future work (now the fun starts…)• Improve baseline flatness:

– λ/4 wobbler instead of fixed shift– Delrin compensating sheet– Front-end optimization

• Improve sensitivity and Trec– Test single-sideband mixer

• Test with longer integration times from an high-altitude observatory (Gran Sasso)

• Set up inversion algorithm

Conclusions• Long-term monitoring of polar stratospheric water vapour is

needed• We designed and built a new 22-GHz spectrometer for polar

observations• We measured the first atmospheric spectra (“first light”)

Page 15: 27 April 2012 EGU General Assembly 2012

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

References• Bertagnolio, P. P., Muscari, G., & Baskaradas, J. (2012). Development of a 22 GHz

ground-based spectrometer for middle atmospheric water vapour monitoring. European Journal of Remote Sensing, 51-61. doi:10.5721/EuJRS20124506

• Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner, G.-K. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science (New York, N.Y.), 327(5970), 1219-23. doi:10.1126/science.1182488

• Tabazadeh, A., Santee, M. L., Danilin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., & Mergenthaler, J. L. (2000). Quantifying Denitrification and Its Effect on Ozone Recovery. Science, 288(5470), 1407-1411. doi:10.1126/science.288.5470.1407

Thank you for your attention!