26.5w ac/dc isolated flyback converter design - allgpc.com · aa24070l (mps3) 5.6va clamp forward...

48
26.5W AC/DC Isolated Flyback Converter Design by 斜阳古道:http://bbs.21dianyuan.com/thread-1764-1-1.html Eric Wen 注:[email protected] 2016-12-01 V1

Upload: lecong

Post on 11-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

26.5W AC/DC Isolated Flyback Converter Design

by 斜阳古道:http://bbs.21dianyuan.com/thread-1764-1-1.htmlEric Wen 注:[email protected] 2016-12-01 V1

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design

SPECIFICATION : Technical Specification on Sept 10, 2008

DATE : 15 Sept. 2008

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Customer Specification

fL 100Hz:= Line frequency

fs 100kHz:= Switching frequency

Vo1 5.0V:= Main output voltage

Io1_max 2A:= Main Nominal load current

Vo2 15.0V:= Io2_max 30mA:=

Vo3 15.0V:= Io3_max 30mA:=

Vo4 15.0V:= Io4_max 0.3A:=

Vo5 24.0V:= Io5_max 0.1A:=

Vo6 18.0V:= Io6_max 0.12A:=

Vo7 18.0V:= Io7_max 0.12A:=

Vo8 18.0V:= Io8_max 0.12A:=

Vo9 18.0V:= Io9_max 0.12A:=

+5V Output ripple voltageVr 100mV:=

+5VStep load output ripple voltageΔVostep 150mV:=

ΔIo5V Io1_max 80 %:= +5V Step load current amplitude

η 0.70:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Definition Of Symbols

u t( ) Φ t( ):= Unit step function

mΩ 103- Ω:= Milliohm

ms 103-s:= Millisecond

μs 106-s:= Microsecond

ns 109-s:= Nanosecond

mW 103-W:= Milliwatts

mJ 103-J:= Millijoule

μJ 106-J:= Microjoule

nC 109-C:= Nanocoulomb

μm 106-m:= Micrometer

μo 4 π 107-

H m1-

:= Permeability of free space

ρ θ( ) 1.724 1 0.0042 θ 20-( )+[ ] 106- Ω cm:= Resistivity of copper at q degC

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Component Summary

Primary FET - IRFBC30A - 600V, 3.6A, 2.2W

ζirfbc30a 1.7:= Channel resistance elevation factor to 100 degC

Ronirfbc30a 2.2Ω ζirfbc30a:= Channel resistance at 100 degC

Qgirfbc30a 23nC:= Total Gate charge at Vgs of 10V

VgMillerirfbc30a 5.5V:= Gate Miller plateau from Gate Charge Curve

Vthirfbc30a 4.5V:= Gate threshold voltage

Vdsirfbc30a 25V:= Vds test voltage for capacitance value

Crssirfbc30a 3.5pF:= Reverse transfer capacitance at Vds of 25V

Cissirfbc30a 510pF:= Input capacitance

Coss_effirfbc30a 70pF:= Effective output capacitance

American Wire Gauge Table Formulae

AWG 10 11, 40..:= American wire gauge range

Dxbare AWG( )2.54

π10

AWG-

20 cm:= Diameter of bare copper wire

Dxinsulated AWG( )Dxbare AWG( )

cm0.028

Dxbare AWG( )

cm+

cm:=

Diameter of wire with heavy insulation

Ax AWG( )π Dxbare AWG( )

2

4:= Bare copper cross section area

Rx θ AWG, ( )ρ θ( )

Ax AWG( ):= Resistance per unit length of AWG

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Converter Parameters

Ts1

fs:= Converter period

Vgnom 220V:= Nominal input voltage

Vgmin Vgnom 1 20%-( ):= Minimum input voltage

Vgmin 176V=

Vgmax Vgnom 1 20%+( ):= Maximum input voltage

Vgmax 264V=

Pout1 Vo1 Io1_max Vo2 Io2_max+ Vo3 Io3_max+:=

Pout2 Vo4 Io4_max Vo5 Io5_max+:=

Pout3 Vo6 Io6_max Vo7 Io7_max+ Vo8 Io8_max+ Vo9 Io9_max+:=

Pout Pout1 Pout2+ Pout3+:=

Pout 26.44W=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Input Capacitor and Minimum Input DC Voltage

Cin 3μFW

Pout:=

Cin 79.32μF=

Cin 100μF:=

TC 2ms:=Estimated value

Dch TC fL:=

Dch 0.2=

VMIN 2 Vgmin( )22Pout 1 Dch-( )

η Cin fL-:=

VMIN 236.45V= Minimum input DC voltage

CinPout

η fL 2 Vgmin( )2 VMIN2

- asin

VMIN

2 Vgmin( )

:=

Cin 78.322μF=

Cin 100μF:=

VMAX 2 Vgmax:=

VMAX 373.352V=

Dmax 0.45:=Set maximum duty cycle at minimum input voltage

VRODmax

1 Dmax-VMIN:= VRO 193.459V=

VDS VRO VMAX+:= VDS 566.811V= Check Vds of primary MOSFET

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Primary Current Calculation

IpAVGPout

η VMIN:=

IpAVG 0.16A=

IP2 Pout

η VMIN Dmax:=

IP 0.71A=

IpRMS IPDmax

3:=

IpRMS 0.275A=

LmVMIN Dmax( )2 η

2 Pout fs:=

Lm 1.499mH=

Lm2 Pout

η IP2

fs:= Primary Inductance with Energy Transform Point

Lm 1.499mH=

Lm1VMIN Dmax

IP fs:= Primary Inductance with Core Saturated Point

Lm1 1.499mH=

Bm 1500gauss:=

KW 0.15:= Winding Utilized Factor

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

KJ 5 A mm2-

:=

APLm1 IP

2

Bm KW KJ cm4

1.14

cm4

:= AP22 Pout

η Bm3

Dmax fs

KW

2 KJ

:=

AP 0.635cm4

= AP2 0.52cm4

=

AP31.6 Pout

η Bm fs KW KJ cm4

1.14

cm4

:=AP4

Lm IP IpRMS

Bm KW KJ:=

AP3 0.492cm4

= AP4 0.26cm4

=

Power Transformer - EER28L/PC40 from TDK

AeEER35 107mm2

:= Effective cross section area

AwEER35 152.7mm2

:= Winding area base on BEER35-1112CPFR standardbobbin

APEER35 AeEER35 AwEER35:=

APEER35 1.634cm4

=

WtEER35 52g:=

AeEE35 89.3mm2

:= Effective cross section area

AwEE35 88.7mm2

:= Winding area base on BEE35-1112CPLFR standard bobbin

APEE35 AeEE35 AwEE35:=

APEE35 0.792cm4

=

:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

WtEE35 57g:=

AeEE32 83.2mm2

:= Effective cross section area

AwEE32 88.8mm2

:= Winding area base on BEE33-1112CPLFR standard bobbin

APEE32 AeEE32 AwEE32:=

APEE32 0.739cm4

=

WtEE32 32g:=

AeEE30 109mm2

:= Effective cross section area

AwEE30 44.5mm2

:= Winding area base on BE30-1110CPFR standard bobbin

APEE30 AeEE30 AwEE30:=

APEE30 0.485cm4

=

WtEE30 32g:=

AeEER28L 81.4mm2

:= Effective cross section area

AwEER28L 96.3mm2

:= Winding area base on BEER28L-1110CPFR standardbobbin

APEER28L AeEER28L AwEER28L:=

APEER28L 0.784cm4

=

WtEER28L 32g:=

μiPC40 2300:= Initial permeability of PC40 core material

VeEER28L 6150mm3

:= Core volume

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

leEER28L 75.5mm:= Effective path length

ALEER28L_PC40 2520 109-H:= Nominal inductance of ungapped core set

Tape 0.06mm:= Wrapping tape thickness

MLTEER28L 2 3.14 7.0 mm:= Average length of turn

HwEER28L21.2 9.9-

2mm:= Available winding height

BwEER28L 2 12.53 mm:= Available winding breadth

Kg2020AeEER28L

2AwEER28L

MLTEER28L:= Geometrical constant of core

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Power Transformer Flux Swing With EER28L-PC40 from TDK

VF 0.5V:=

nVRO

Vo1 VF+:= Transformer primary to secondary turn ratio

n 35.174=

Iplim 1.35 IP:=

Iplim 0.958A=

BsPC40 3500gauss:= Select number of secondary turn

BrPC40 500gauss:=

ΔBPC40 48% BsPC40 BrPC40-( ):=

ΔBPC40 1.44 103

gauss=

NpminLm Iplim

AeEER28L BsPC40:=

Npmin 50.419=

NpcalVMIN Dmax

AeEER28L ΔBPC40 fs:=

Npcal 90.775=

Np 106:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Ns1calNp

n:=

Ns1cal 3.014= Primary no of turns

Ns1 round Ns1cal( ):=

Ns1 3=VF2 0.7V:= Vcc 14V:=

NVc roundVcc VF2+( ) Ns1

Vo1 VF+

:= NVc 8=

Ns2 roundVo2 VF2+( ) Ns1

Vo1 VF+

:= Ns2 9=

Ns3 roundVo3 VF2+( ) Ns1

Vo1 VF+

:= Ns3 9=

Ns4 roundVo4 VF2+( ) Ns1

Vo1 VF+

:= Ns4 9=

Ns5 roundVo5 VF2+( ) Ns1

Vo1 VF+

:= Ns5 13=

Ns6 roundVo6 VF2+( ) Ns1

Vo1 VF+

:= Ns6 10=

Ns7 roundVo7 VF2+( ) Ns1

Vo1 VF+

:= Ns7 10=

Ns8 roundVo8 VF2+( ) Ns1

Vo1 VF+

:= Ns8 10=

Ns9 roundVo9 VF2+( ) Ns1

Vo1 VF+

:= Ns9 10=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Verification of Design Parameters

nactNp

Ns1:=

VROact nact Vo1 VF+( ):=

VROact 194.333V=

Vdson 0.5V:=

D Vg( )nact Vo1 VF+( )

nact Vo1 VF+( ) Vg+ Vdson-:=

DmaxactVROact

VROact VMIN+ Vdson-:=

Dmaxact 0.452=

DminactVROact

VROact VMAX+ Vdson-:=

Dminact 0.343=

Vdsact VMAX VROact+:=

Vdsact 567.686V=

lg μo AeEER28LNp

2

Lm

1

ALEER28L_PC40-

:=

lg 0.726mm=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Lmact Np2 μo μiPC40 AeEER28L

leEER28L μiPC40 lg+:= Nom inductance with ungapped core set

Lmact 1.514mH=

IpactVMIN Dmaxact

Lmact fs:= Ipact 0.705A=

BmLmact Ipact

Np AeEER28L:=

Bm 0.124T=

IpactVMAX Dminact

Lmact fs:= Ipact 0.845A=

BmLmact Ipact

Np AeEER28L:=

Bm 0.148T=

Bpp Vg( )Vg D Vg( )

Np AeEER28L fs:=

Bppmax maxBpp VMAX( )Bpp VMIN( )

:=

Bppmax 0.148T= Check flux density of transformer

Power Transformer Winding Current

ip Vg( )Vg D Vg( )

Lmact fs:= ip VMIN( ) 0.705A=

Vout LsIsp fs

Doff=

IoutIsp Doff

2=

solve Doff, 2 Iout

Isp

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

D1off2 Io1_max Lmact fs

nact2

Vo1:= D1off 0.311=

I1sp2 Io1_max

D1off:= I1sp 12.842A=

I1RMS I1spD1off

3:= I1RMS 4.138A=

I1AVG1

2I1sp D1off:= I1AVG 2A=

Cp 2:= Number of switching pulse to display

Imosfet Vg t, ( ) d D Vg( )

ip ip Vg( )

0

Cp 1-

n

ip fs

dt

n

fs-

u tn

fs-

un d+

fst-

=

:=

Idiode Vg t, ( ) d D Vg( )

ip ip Vg( )

0

Cp 1-

n

I1spfs- I1sp

D1offt

n d+

fs-

+

...

u tn d+

fs-

u

1 n+

fst-

=

:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

0 5 10 6- 1 10 5- 1.5 10 5- 2 10 5-0

5

10

Imosfet VMIN t, ( )

Idiode VMIN t, ( )

Imosfet VMAX t, ( )

Idiode VMAX t, ( )

t

D2off2 Io2_max Lmact fs

Np

Ns2

2

Vo2

:= D2off 0.066=

I2sp2 Io2_max

D2off:= I2sp 0.908A=

I2RMS I2spD2off

3:= I2RMS 0.135A=

I2AVG1

2I2sp D2off:= I2AVG 0.03A=

D3off2 Io3_max Lmact fs

Np

Ns3

2

Vo3

:= D3off 0.066=

I3sp2 Io3_max

D3off:= I3sp 0.908A=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

I3RMS I3spD3off

3:= I3RMS 0.135A=

D4off2 Io4_max Lmact fs

Np

Ns4

2

Vo4

:= D4off 0.209=

I4sp2 Io4_max

D4off:= I4sp 2.872A=

I4RMS I4spD4off

3:= I4RMS 0.758A=

D5off2 Io5_max Lmact fs

Np

Ns5

2

Vo5

:= D5off 0.138=

I5sp2 Io5_max

D5off:= I5sp 1.452A=

I5RMS I5spD5off

3:= I5RMS 0.311A=

D6off2 Io6_max Lmact fs

Np

Ns6

2

Vo6

:= D6off 0.134=

I6sp2 Io6_max

D6off:= I6sp 1.791A=

I6RMS I6spD6off

3:= I6RMS 0.378A=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Evaluate Possible Wire Gauge

Window area should be allocated according to the apparent current of individual winding

IpRMS Vg( )Vg D Vg( )

Lmact fs

D Vg( )

3:=

IpRMS VMIN( ) 0.274A=

Kcutrf 0.2:= Window fill factor

Sm 2.5mm:= Safety creepage distance

Aw BwEER28L 2 Sm-:= Available bobbin breadth

Aw 20.06mm=

Primary winding Np 6 Secondary winding Ns1

AxpriKcutrf AwEER28L

Np:= Axs1

Kcutrf AwEER28L

Ns1 9:=

Axpri 0.182mm2

= Axs1 0.713mm2

=

KJPIpRMS VMIN( )Ax 28( )

:= KJP 3.363A

mm2

= KJs1I1RMS

Ax 28( ) 12:= KJs1 4.238

A

mm2

=

DxpAx 28( ) 4

π:= Dxs1

Ax 28( ) 4

π:=

Dxp 0.322mm= Dxs1 0.322mm=

turn_per_layerpri floorAw

Dxp

:= turn_per_layers1 floorAw

Dxs1 12

:=

turn_per_layerpri 62= turn_per_layers1 5=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Primary winding Np Secondary winding Ns1

layerpri roundNp

turn_per_layerpri

:= layers1 roundNs1

turn_per_layers1

:=

layerpri 2= layers1 1=

StackUppri layerpri Dxp Tape+( ):= StackUpsec 9 layers1 Dxs1 Tape+( ):=

StackUppri 0.764mm= StackUpsec 3.437mm=

TotalStackUpva StackUppri StackUpsec+ 5 Tape+:=

TotalStackUpva 4.501mm=

Resistance per unit length at 100 degC

Rwpri Rx 100 28, ( ):= Rws1 Rx 100 28, ( ):=

Rwpri 2.831 103-

Ω cm1-

= Rws1 2.831 103-

Ω cm1-

=

The dc resistance is then

Rdcpri MLTEER28L Rwpri Np:= Rdcs1 MLTEER28L Rws1Ns1

12:=

Rdcpri 1.319Ω= Rdcs1 3.111mΩ=

The ac resistance is

δskinρ 25( )

π μo fs:=

δskin 0.211mm=

RacpriDxbare 28( )

δskinRdcpri:= Racs1

Dxbare 28( )

δskinRdcs1:=

Racpri 2.011Ω= Racs1 4.742mΩ=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Transformer Copper Loss

Pcutx Vg( ) IpRMS IpRMS Vg( )

IpRMS2

Rdcpri IpRMS2

Racpri+ I1RMS2

Rdcs1 4+

I1RMS2

Racs1 4+

...

:=

Pcutx VMAX( ) 0.809W=

Pcutx VMIN( ) 0.787W=

Transformer Core Loss Estimation

Core loss estimation based on empirical curve fit formula and fit parameters from TDK for PC40 material data within afrequency range of 100 to 200kHz, assumming transformer temperature of 100 degC.

Cm 0.928:=

x 1.61:=

y 2.68:=

Pcoretx Vg( ) Cmfs

Hz

x

Bpp Vg( )

2 T

y

W

m3

VeEER28L:=

Pcoretx VMAX( ) 0.6W= Transformer core loss

Pcoretx VMIN( ) 0.37W=

Total Transformer Losses

Ptx Vg( ) Pcutx Vg( ) Pcoretx Vg( )+:=

Ptx VMAX( ) 1.409W= Power transformer loss at high line, FL

Ptx VMIN( ) 1.157W= Loss at low line, FL

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

250 300 3501.1

1.2

1.3

1.4

Ptx Vg( )

Vg

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Secondary Rectifier Stress

Vs1diode Vo1 VMAXNs1

Np+:= Vs1diode 15.567V=

Vs2diode Vo2 VMAXNs2

Np+:= Vs2diode 46.7V=

Vs3diode Vo3 VMAXNs3

Np+:= Vs3diode 46.7V=

Vs4diode Vo4 VMAXNs4

Np+:= Vs4diode 46.7V=

Vs5diode Vo5 VMAXNs5

Np+:= Vs5diode 69.788V=

Vs6diode Vo6 VMAXNs6

Np+:= Vs6diode 53.222V=

Vs7diode Vo7 VMAXNs7

Np+:= Vs7diode 53.222V=

Vcdiode Vcc VMAXNVc

Np+:= Vcdiode 42.178V=

Pdrectifier VF Io1_max VF2 Io2_max+ VF2 Io3_max+ VF2 Io4_max+ VF2 Io5_max+ 4 VF2 Io6_max+:=

Pdrectifier 1.658W=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Output Filtering Capacitance Stress

Cout1 2200μF:= ESR1 5mΩ:=

Cout2 220μF:= ESR2 20mΩ:=

Cout3 220μF:= ESR3 20mΩ:=

Cout4 440μF:= ESR4 10mΩ:=

Cout5 220μF:= ESR5 20mΩ:=

Cout6 220μF:= ESR6 20mΩ:=

Is1cap I1RMS2

Io1_max2

-:= Is1cap 3.623A=

ΔVs1Io1_max Dmax

Cout1 fsI1sp ESR1+:= ΔVs1 0.068V=

Is2cap I2RMS2

Io2_max2

-:= Is2cap 0.131A=

ΔVs2Io2_max Dmax

Cout2 fsI2sp ESR2+:= ΔVs2 0.019V=

Is3cap I3RMS2

Io3_max2

-:= Is3cap 0.131A=

ΔVs3Io3_max Dmax

Cout3 fsI3sp ESR3+:= ΔVs3 0.019V=

Is4cap I4RMS2

Io4_max2

-:= Is4cap 0.696A=

ΔVs4Io4_max Dmax

Cout4 fsI4sp ESR4+:= ΔVs4 0.032V=

Is5cap I5RMS2

Io5_max2

-:= Is5cap 0.295A=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

ΔVs5Io5_max Dmax

Cout5 fsI5sp ESR5+:= ΔVs5 0.031V=

Is6cap I6RMS2

Io6_max2

-:= Is6cap 0.359A=

ΔVs6Io6_max Dmax

Cout6 fsI6sp ESR6+:= ΔVs6 0.038V=

Capacitance requirement - Transient response dependence

τ 15 Ts:= Assume delay time before converter response to a changein load current

ΔVocapΔIo

Coτ= Capacitive voltage change due to load step

ΔVoesr ΔIo Resr= Voltage change across esr due to a load step

ΔVo ΔVocap ΔVoesr+= Output voltage change due to a load step ignoring effect ofESL

ΔVoΔIo

Coτ ΔIo Resr+=

Coτ

ΔVo

ΔIoResr-

> Capacitance required for a voltage deviation of DVo withsay Resr

no_of_cap 1:= Select number of capacitor required

ResrESR1

no_of_cap:=

Resr 5mΩ= Effective ESR with capacitor chosen

Capacitor ripple current and effective current handling capacity

ΔIcap I1RMS2

Io1_max2

-:= AC rms current seen by cap

ΔIcap 3.623A=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Output ripple voltage with selected capacitors

ΔVr I1sp ESR1:= Output ripple voltage due to esr

ΔVr 64.21mV= Maximum output voltage ripple at room temperature

At low temperature, esr of capacitor changes significantly

Resrlotemp Resr 2:=

Resrlotemp 0.01Ω=

ΔVrlotemp ΔIcap Resrlotemp:=

ΔVrlotemp 0.036V= Maximum output ripple at low temperature

κripple 1ΔVrlotemp

Vr-:=

κripple 63.775%= Ripple voltage design margin at low temperature

Step load ripple voltage

Comin no_of_cap Cout1 1 10%-( ):=

ΔVo ΔIo5V Resrlotempτ

Comin+

:= Voltage change due to step load

ΔVo 0.137V=

κstep 1ΔVo

ΔVostep-:=

κstep 8.525%= Step response ripple deviation design margin at lowtemperature

Estimate Power Loss In Capacitor ESR

Pesr Vg( )ΔIcap

2

1

3

2

Resr:=

Pesr VMAX( ) 5.468mW=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Design RCD Snubber

Lpleak Lmact 0.2 %:= Lpleak 3.028μH=

Vsn 220V:=Maximum snubber capacitor voltage

KVsn 5%:=

VROact 194.333V=

PsnRES1

2Vsn Ipact fs

Lpleak

Vsn VROact- Ipact:=

PsnRES 0.926W=

RsnVsn

2

PsnRES:= Rsn 52.244KΩ=

CsnVsn

KVsn Vsn Rsn fs:= Csn 3.828nF=

Primary FET Voltage Stress

Vdsmax Vg( ) Vg Vsn 1 KVsn+( )+:=

250 300 350450

500

550

600

Vdsmax Vg( )

Vg

Vdsmax maxVdsmax VMIN( )Vdsmax VMAX( )

:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Vdsmax 604.352V= Peak switch voltage stress at high line

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Primary Switch Current

Main FET conducts the transformer primary current

IQ Vg t, ( ) Imosfet Vg t, ( ):= Main switch current

IQRMS Vg( )Vg D Vg( )

Lmact fs

D Vg( )

3:= Main switch rms current

IQpk Vg( )Vg D Vg( )

Lmact fs:= Main switch peak current

Primary FET Loss Estimation - IRFBC30A

Gate drive loss

Vgate 10V:= Gate drive voltage

Pgate Vgate Qgirfbc30a fs:=

Pgate 0.023W= Gate drive loss

Saturation loss

PQon Vg( ) IQRMS Vg( )2

Ronirfbc30a:=

PQon VMAX( ) 0.305W= Saturation loss at high line, FL

PQon VMIN( ) 0.28W=

Output capacitance loss

PQcap Vg( )1

2Coss_effirfbc30a Vg

2 fs:=

PQcap Vgmax( ) 0.244W= Output capacitance loss at high line

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Switch loss

Vplt VgMillerirfbc30a:= Gate Miller plateau voltage

Vth Vthirfbc30a:= Gate threshold voltage

Rgate 5.6Ω:= Gate series resistor

IgaVgate 0.5 Vplt Vth+( )-

Rgate:= Gate current that charges the input capacitance from

from gate threshold to Vplt

Iga 0.893A=

IgbVgate Vplt-

Rgate:= Gate current that discharge Miller capacitance Crss when

drain voltage starts to fall to zero

Igb 0.804A=

ton Vg( ) Cgd 2 Crssirfbc30aVdsirfbc30a

Vg

Cissirfbc30aVplt Vth-

Iga Cgd

Vg

2 Igb+

:=

PQswitch_on Vg( ) ton ton Vg( )

IQpk IQpk Vg( )

1

2Vg IQpk ton fs

:=

PQswitch_on VMIN( ) 7.556 103-

W=

PQswitch_on VMAX( ) 0.016W=

Assumming the same order of magnitude for the switch turn off lost with a fast turn off gate drive circuit, the totalswitch loss is,

PQswitch Vg( ) 2 PQswitch_on Vg( ):=

PQswitch VMIN( ) 0.015W=

PQswitch VMAX( ) 0.031W= Total transitional loss at high line, FL

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Total Primary FET loss

PQ Vg( ) Pgate PQon Vg( )+ PQcap Vg( )+ PQswitch Vg( )+:=

PQ VMIN( ) 0.514W=

PQ VMAX( ) 0.847W= Primary switch losses at high line, FL

Design Feeback Control Loop

Bode Plot of Power Stage

n 0 1, 50..:= f n( ) 101

n

10+

Hz:= ω n( ) 2 π f n( ):=

Gpwm1

2 2

2 2 750+VMIN

:= Gpwm 0.7971

V= Small signal moel with feedfoward of UCC25706

Small signal model of DCM flyback converter operated in voltage mode control

fz11

2π Cout1 ESR1:= fz1 14.469KHz=

fz2 Vg( )

Np

Ns1

2 Vo1

Io1_max 1 D Vg( )-( )

2

2π Lmact D Vg( ):=

fz2 VMIN( ) 218.443KHz=

fz2 VMAX( ) 413.81KHz=

fo Vg( )

Np

Ns11 D Vg( )-( )

2π Lmact Cout1:= fo VMIN( ) 1.69KHz=

fo VMAX( ) 2.026KHz=

Q Vg( )

Np

Ns1

Vo1

Io1_max 1 D Vg( )-( )

2πLmact

Cout1

:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Gdo Vg( )Vg

Np

Ns11 D Vg( )-( )

2

:=

Tpwr Vg ω, ( )

Gpwm Gdo Vg( ) 1i ω

2π fz1+

1i ω

2π fz2 Vg( )-

1i ω

2π fo Vg( ) Q Vg( )+

ω2

2π fo Vg( )( )2-

:=

Gpwr Vg ω, ( ) 20 log Tpwr Vg ω, ( )( ):=Ppwr Vg ω, ( )

180

π

arg Tpwr Vg ω, ( )( ):=

Gpwrmin ω( ) Gpwr VMIN ω, ( ):= Ppwrmin ω( ) Ppwr VMIN ω, ( ):=

Gpwrmax ω( ) Gpwr VMAX ω, ( ):= Ppwrmax ω( ) Ppwr VMAX ω, ( ):=

10 100 1 103 1 104 1 105 1 10640-

28.75-

17.5-

6.25-

5

16.25

27.5

38.75

50Power Gain

Frequency

Gain

- dB

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

10 100 1 103 1 104 1 105 1 106200-

152.778-

105.556-

58.333-

11.111-

36.111

83.333

130.556

177.778

225Power Stage Phase

Frequency

Phase

-

Degree

s

Loop stability criteria

How to arrange the crossover frequency?It is the best with as high as possible bandwidth. But the crossover frequency islimited by the parameters:1. Sampling theory limit the crossover freqency not to over 1/2 operationfrequency.2. The effect fo right plane zero which is changed followed with input voltage,load, and filtering inductance. It can't be compensated. Therefore, the bandwidthshall be far away the right plane zero, 1/4--1/5 of RHZ.3. The limitation of error amplifier bandwidth. 1/6-1/10 of operation frequency.

fcfz2 VMIN( )

30:= fc 7.281KHz= fc 3KHz:=

Phase π- atanfc

fz1

+ atanfc

fz2 VMIN( )

-

180

π:= Phase 169.073-=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Because of LC resonant at the output, the phase big change and close to 180degree. As a result, the compensation of type III will be used to boost the phase. Zero-pole arrangement:1. 1st pole at the origin to boost the gain at the low frequencies.2. 2 zeros at LC resonant point.3. 2nd pole at the output capacitor esr zero.4. 3nd pole at the RHZ.

Bode Plot of Error Amplifier

K-Factor Method: ϕm 45:=

Pshift 360 ϕm-:= Pshift 315=

Perrorpermitted Pshift Phase+:= Perrorpermitted 145.927=

Kfac tan450 Perrorpermitted-

4

π180

:= Kfac 4.016=

fz3fc

Kfac:= fz4 fz3:= fz3 0.747KHz=

fp2 fc Kfac:= fp3 fp2:= fp2 12.049KHz=

Gpwr.fc Gpwr VMIN 2π fc, ( ):= Gpwr.fc 18.471=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Gerror.fz3 Gpwr.fc- 20logfc

fz3

-:= Gerror.fz3 30.547-=

X1

C2

R3

C1

R1

R2

C3

Vref

R1 20KΩ:=

31.233- 20logR2

R1

= solve R2, 0.54875690204124249564 KΩ

R2 R1 10

Gerror.fz3

20:=

R2 0.594KΩ=

C21

2π fp2 R2:= C2 0.022μF=

C11

2π fz3 R2:= C1 0.359μF=

C31

2π fz4 R1:= C3 0.011μF=

R31

2π fp3 C3:= R3 1.24KΩ=

fp11

2π R1 C1:=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Tcomp ω( )

1i ω

2 π fz3+

1i ω

2 π fz4+

i ω

2 π fp11

i ω

2 π fp2+

1i ω

2 π fp3+

:=

Gcomp ω( ) 20 log Tcomp ω( )( ):=Pcomp ω( )

180

π

arg Tcomp ω( )( ):=

10 100 1 103 1 104 1 105 1 10630-

23-

16-

9-

2-

5Compensation Gain

Frequency

Gain -

dB

10 100 1 103 1 104 1 105 1 106100-

50-

0

50

Compensation Phase

Frequency

Pha

se -

Deg

rees

Gcompfc Gcomp 2π fc( ):=Gcompfc 18.471-=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Bode Plot of Closed-Loop

Tloop Vin ω, ( ) Tcomp ω( ) Tpwr Vin ω, ( ):=

Gloop Vin ω, ( ) 20 log Tloop Vin ω, ( )( ):= Ploop Vin ω, ( )180

π

arg Tloop Vin ω, ( )( ):=

Gmaxmax ω( ) Gloop VMAX ω, ( ):= Gminmax ω( ) Gloop VMIN ω, ( ):=

Pminmax ω( ) Ploop VMIN ω, ( ):= Pmaxmax ω( ) Ploop VMAX ω, ( ):=

10 100 1 103 1 104 1 105 1 10650-

39.375-

28.75-

18.125-

7.5-

3.125

13.75

24.375

35

Min VinMax Vin0 dB

Loop Gain

Frequency

Gain -

dB

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

10 100 1 103 1 104 1 105 1 106180-

135-

90-

45-

0

45

90

135

180Loop Phase

Frequency

Phase

-

Degree

s

Phaseloop Phaseπ2

- 2atanfc

fz3

+ atanfc

fp2

- atanfc

fp3

-

180

π+:=

Phaseloop 135-=

Margin 180 Phaseloop+:= Margin 45=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Winding area base on BEE35-1112CPLFR standard bobbin

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Winding area base on BEE33-1112CPLFR standard bobbin

Winding area base on BE30-1110CPFR standard bobbin

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Secondary winding Ns4

Axs4Kcutrf AwEER28L

Ns4 9:=

Axs4 0.238mm2

=

KJs4I4RMS

Ax 28( ) 3:= KJs4 3.105

A

mm2

=

Dxs4Ax 28( ) 4

π:=

Dxs4 0.322mm=

turn_per_layers4 floorAw

Dxs4 3

:=

turn_per_layers4 20=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Secondary winding Ns4

layers4 roundNs4

turn_per_layers40.05+

:=

layers4 1=

Rws4 Rx 100 28, ( ):=

Rws4 2.831 103-

Ω cm1-

=

Rdcs4 MLTEER28L Rws4Ns4

3:=

Rdcs4 37.331mΩ=

Racs4Dxbare 28( )

δskinRdcs4:=

Racs4 56.905mΩ=

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Core loss estimation based on empirical curve fit formula and fit parameters from TDK for PC40 material data within a

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

Assume delay time before converter response to a change

Output voltage change due to a load step ignoring effect of

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail

AA24070L (MPS3) 5.6VA Clamp Forward Power Rail