248221054 low temperature behavior of austenitic weldments

Upload: nikhilgyl93

Post on 07-Jul-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    1/25

     Welding of austenitic stainless steels forcryogenic LNG applicationsLow Temperature Behaviour of Austenitic Weldments

    Norbert Friedrich, Application Technology, Böhler Welding Austria GmbH, AustriaGerhard Posch, Head of Research & Development, Böhler Welding Austria GmbH, AustriaJosef Tösch, Research & Development, Böhler Welding Austria GmbH, AustriaJohann Ziegerhofer, Research & Development, Böhler Welding Austria GmbH, AustriaWalter Berger, Managing Director, Böhler Welding Austria GmbH, Austria

    Keywords: LNG, High alloyed weldments; controlled ferrite content, cryogenic application

    Abstract:Austenitic stainless steels of type AISI 304/304L and AISI 316/316L are commonly usedfor the storage and distribution of liquefied natural gas (LNG). The steels have to operateat very low temperatures, which is the reason why high requirements regarding toughnessand lateral expansion at -196°C are demanded. From the metallurgical point of view, lowamounts of delta ferrite in the weld metal are necessary to achieve the requirements. Thispaper deals with typical values for delta ferrite content and mechanic

    al properties whichcan be achieved with special designed filler metals for GTAW, SMAW and FCAW.Emphasis is also given to the hot cracking susceptibility, which increases dramatically withvery low delta ferrite contents.

    1 IntroductionThe demand for oil and gas is increasing steadily and forecasts (Figure 1) promote forexample a gas consumption in 2020 which is about three times higher compared to1980.To secure the supply with oil and gas new production plants, transport and storagesystems have to be installed within the next decade and many plates and tubes of variousmaterials have to be fitted together to establish the necessary tankand tubing systems.Welding plays thereby an important role.

    Figure 1: World oil and gas demand (forecast) [1]

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    2/25

    Form the materials point of view, the handling of gas is a very interesting topic. Due to thehigh volume of gas, storage and transportation should be done with liquefied gas, becausein this case the volume of the liquid is approx. 1/620 of the equivalent gas. The mainªdisadvantageº thereby is, that gas is liquid only at very deep temperatures and the

     usedmaterials have to exhibit strong toughness requirements at very low temperatures.In Figure 2 typical materials which fulfil the requirements for handling liquefied natural gas(LNG) are shown.

    Application Type AlloySpherical or prismatic storage tanks forship transportation of LNG.Tubing for the main cryogenic heatexchanger.

    Forgings such as flanges.Aluminium alloy 5083 (Al-4.5 % Mg)Alloy 5154 (Al - 3,5% Mg)Alloy 6000 (Al - Si)AlSometimes for large storage tankconstruction.Piping in critical applications.Low expansion 36 % Ni-Fe alloy 36NiFePiping; Small vessels.Sometimes for large storage tanksStainless steel type AISI 304 L 304 LStorage tanks

    9 % Ni Steel 9 NiApplication Type AlloySpherical or prismatic storage tanks forship transportation of LNG.Tubing for the main cryogenic heatexchanger.Forgings such as flanges.Aluminium alloy 5083 (Al-4.5 % Mg)Alloy 5154 (Al - 3,5% Mg)Alloy 6000 (Al - Si)AlSometimes for large storage tankconstruction.Piping in critical applications.Low expansion 36 % Ni-Fe alloy 36NiFePiping; Small vessels.Sometimes for large storage tanksStainless steel type AISI 304 L 304 LStorage tanks9 % Ni Steel 9 Ni Figure 2: Typical applications of established base materials used for LNG [2]

    The austenitic grades, especially the austenitic weldments are the focu

    s of this paper. Ithas to be mentioned that beside grade AISI 304L also type AISI 316L will be used more

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    3/25

    often in future. For joining these grades filler metal type 308L and 316L are used.The liquefaction temperature of Methane is -163°C ( -261°F) and this factdetermines theoperating temperature of the LNG plant. The test temperature for mechanical propertieshas been set to -196°C (-320°F) due to safety reaso ns but also of the easy reproduc

    ibilityof this test condition.Before setting up the requirements for LNG weldments the general mechanical propertiesof the austenitic steel and the main influences on the achieved testdata have to bediscussed.

    2 Strength properties austenitic steels for LNGapplication

    Strength design is primarily done using room temperature properties. The all weld metalproperties at room temperature are quite similar independent of the applied weldingprocess (Figure 3).

    ER308LE308LT1-4E308LT1-1E308LT0-4E308LT0-1EC308LE308L-17

    E308L-15ER308L SiER308LAWS40 570 390FCAW EAS 2 PW-FD35404040423839A5[%]560 380FCAW EAS 2-FDEAS 2-UP//BB 202EAS 2-MCFOX EAS 2-AFOX EAS 2EAS 2 ±IG (Si)EAS 2 -IGBöhler Brand630 420

    GMAWSAWGMAW

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    4/25

    SMAWSMAWGTAWProcess610 430540 350550 350

    560 390580 400Rm[N/mm²]Rp0,2[N/mm²]ER308LE308LT1-4E308LT1-1E308LT0-4

    E308LT0-1EC308LE308L-17E308L-15ER308L SiER308LAWS40 570 390FCAW EAS 2 PW-FD35404040

    423839A5[%]560 380FCAW EAS 2-FDEAS 2-UP//BB 202EAS 2-MCFOX EAS 2-AFOX EAS 2EAS 2 ±IG (Si)EAS 2 -IGBöhler Brand630 420GMAWSAWGMAWSMAWSMAWGTAWProcess610 430540 350550 350

    560 390580 400R

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    5/25

    m[N/mm²]Rp0,2[N/mm²] Figure 3: Mechanical properties of consumables type 308L for various welding pro

    cesses

    The mechanical properties are also hardly influenced by variation of the delta ferritecontent and the electrode diameter as shown in Figure 4 using for example an electrodeof type E 308L-15.

    6,4 ± 7,6 550 401 3,2 E308L-156,9 ± 7,8 551 400 5,0 E308L-156,3 ± 7,5 547 395 4,0 E308L-15

    9,5 ± 10,3 603 421 2,5 E308L-15Rm[N/mm²]Rp0,2[N/mm²]Ø[mm]ElectrodetypeFerrite *[FN]

    6,4 ± 7,6 550 401 3,2 E308L-156,9 ± 7,8 551 400 5,0 E308L-156,3 ± 7,5 547 395 4,0 E308L-159,5 ± 10,3 603 421 2,5 E308L-15Rm[N/mm²]Rp0,2[N/mm²]Ø[mm]ElectrodetypeFerrite *[FN]*FERITSCOPE MP 30 Figure 4: Mechanical properties all weld metal BÖHLER FOX EAS 2 (AWS E308L-15)

    It is very well known that decreasing temperatures increase the strength of the austeniticsteel.

    Figure 5 shows some strain/stress curves for the base material at var

    ious temperaturesand points out the strong effect of the temperature on the strength.

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    6/25

     Figure 5: Tensile test specimen stress vs. strain curves of SS grade AISI 304

    3 Toughness properties of austenitic steels forLNG application

    As it clearly can bee seen in Figure 5 at lower temperature the elongation, but also thetoughness of the austenitic steel decreases. To establish safe LNG constructions it isnecessary to set strong toughness requirements at operating temperatures. Therefore thelateral expansion and the impact energy are very useful material property data fordescribing low temperature toughness behaviour of the metal.

    3.1 Lateral expansion and impact energy

    By comparing lateral expansion and impact energy a correlation also at  very lowtemperatures can be seen (Figure 6). This correlation is influenced by  the weldingprocess, type of welding consumable and slag system.

    0,40,60,811,220 30 40 50 60 70 80

    lat. expansion[mm]Ø 3,2/350 mmImpact energy [Joule] Figure 6: Relation between lateral expansion and impact energy at -196°C; consumable:BÖHLER FOX EAS 2 (E 308 L-15)

    3.2 Toughness and delta ferrite content

    A very important correlation can also be found between impact energy

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    7/25

    and delta ferritecontent of the weld metal. At higher ferrite levels the impact toughness is significant lowercompared to lower ferrite levels. As an example Figure 7 shows this influence dependingon the diameter of a stick electrode of type E308L-15 under quite extreme welding

    conditions.203040506070802 3 4 5 6 7 8 9 10 11 12Ferrite content [FN]Im

    pact valuesAv

    [J], ISO-VØ 4,0Ø 3,2Ø 2,5Pos. PF (3G)Heat input > 2,75 kJ/mm2,545°13304 L1.43064,03,2203040

    506070

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    8/25

    802 3 4 5 6 7 8 9 10 11 12Ferrite content [FN]Impa

    ct valuesAv[

    J], ISO-VØ 4,0Ø 3,2Ø 2,5Pos. PF (3G)

    Heat input > 2,75 kJ/mmPos. PF (3G)Heat input > 2,75 kJ/mm2,545°13304 L1.43064,03,2 Figure 7: BÖHLER FOX EAS 2 (E308L-15); Ferrite content versus impact propertiesat ±196°C; joint welded with very high heat input i n 3G (PF)

    The beneficial effect of a lower ferrite content on the deep temperature toughnessdescribed in Figure 7 also remains at higher temperatures (Figure 8).

    In this diagram the temperature dependence of the impact toughness can be seen.Takingthe relation between impact energy and lateral expansion as describedearlier intoaccount, same considerations are also valid for the lateral expansion.

    I

    mpa

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    9/25

    ct ener

    gy , ISO-V [

    Joule]Impact 

    energy , ISO-V [Joule]Testing Temperature [°C]La

    ter

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    10/25

    al Expa

    nsion [mm] 2,4

    1201001,6 801,2 600,8 400,4 20+20 +20 -120 -120 -196 -1962,32140All weld metal1,101,321,06

    1,060,68665450877974Heat input ~ 1,1 - 1,25 kJ/mm0,702,0Ferrite acc.FERITSCOPE MP 309,1 - 11,7 FN7,1 - 9,2 FN4,3 - 6,3 FNFerrite acc.FERITSCOPE MP 309,1 - 11,7 FN7,1 - 9,2 FN4,3 - 6,3 FNSpecimen acc.AWS A5.4(Testing acc. ASTM E23)140 

    Figure 8: BÖHLER FOX EAS 2 (E308L-15): Influence of the ferrite content on the impactproperties down to -196°C

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    11/25

     As it is clearly shown, the delta ferrite content has a major influence on the deeptemperature toughness of the austenitic weld metal and the relation is  quite strong: Thelower the delta ferrite content the higher toughness properties like impact energy and

    lateral expansion [3]. From this point of view, the ferrite level should be kept as low aspossible to guarantee high toughness values at -196°C.On the other hand, a minimum delta ferrite is required to prevent hot cracking at all. As aminimum level therefore 3FN has been committed for SMAW, GMAW, SAW and GTAW toguarantee crack-free joints also in case of welding procedures with high heat inputs. Atferrite levels below 3FN the hot cracking susceptibility is increaseddrastically, asnumerous results of PVR-tests have shown (Figure 9).

    Elongation ra

    te [mm/min]d dd d+g gg g - -- - Primary d dd d - -- -Vol. % (Förster 1.053)FNmax. elon

     

    ation rate9080706050403020100

    011,8

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    12/25

    23,034,145,45

    6,667,8crystallization Fi

     

    ure 9: Ferrite content vs. hot crackin 

     susceptibility (PVR  test) [4]

    Goin 

     to the lower metallur 

    ical limits of the 

    elta ferrite content it is necessary to consi

     

    erall a

     

    itional effects which can lea 

      to a wel 

      metal which is below  the lower limit,

    in 

    epen 

    ent of the chemical composition of the consumable. The most important pointsthereby are the

     

    etermination of the ferrite content an 

      the arc, especially the arc len

     

    thon the chemical composition of the wel

     

     metal.

    3.2.1. Measure 

     vs. calculate 

     FN valuesDealin

     

     with electro 

    es which are 

    esi 

    ne 

     for lowest safe FN  levels the 

    iscussion mayrise if measure

     

      or base 

      on the chemical composition calculate 

      FN values areman

     

    atory. As the 

    elta ferrite content in the wel 

     metal is a very 

    oo 

     in 

    ication for the

    soli  ification mo  e of the liqui   wel   metal (ferritic or austentic) the actual, the measure

     

     ferrite value is therefore characteristic. Investi

     

    ations have shown, that there are 

    ifferences between the measure 

     an 

     calculate 

     values [5] but there are also 

    ifferencesbetween results of

     

    ifferent labs [6]. This fact shoul 

      be consi 

    ere 

     by settin

     

      up therequirements for LNG projects with specifie

     

     ferrite contents.

    3.2.2. Influence of arc len 

    th on 

    elta ferrite contentThe metallur

     

    ical 

    esi 

    oal for LNG consumables is to secure very low ferritecontentsin the wel

     

      metal to 

    et satisfyin 

      tou 

    hness values but also to 

    uarantee sufficient hotcrackin

     

      resistance. By reachin 

      lowest, controlle 

      ferrite levels in the wel

     

      metal theinfluence of the wel

     

    er must also be taken into account. The arc len 

    th is stron 

    lyinfluence

     

     by the wel 

    er.

    Ferr

    ite

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    13/25

     conten

    tacc. Förste

    r 1.053 [FN]short arc (~ 3 mm)

    135 A / 26 Vlon

     

     arc (~ 8 mm)135 A / 35 VFerrite contentacc. Fö

    rst

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    14/25

    er 1.05

    3 [FN]short arc (~ 3 mm)135 A / 26 Vlon

     

     arc (~ 8 mm)135 A / 35 V Fi

     

    ure 10: E308L  17: Influence of arc len 

    th on ferrite content; PVR test specim

    en [4]Wel

     

    in 

     with a very lon 

     arc increases the nitro 

    en pick up an 

     burn off rates of alloyin

     

     elements which is responsible for a re

     

    uction of the ferrite contentin the wel

     

      metal. InFi

     

    ure 10 this effect is shown usin 

     a laboratory stick electro 

    e of type E 308L  17 with anominal ferrite content in the wel

     

      metal of 3FN. Increasin 

      the arclen

     

    th from 3mm to8mm the ferrite level

     

    ecreases from 3FN to about 1FN [4]. In case of the very low ferritewel

     

      metal cracks at the PVR test specimen are visible. But it has

    to be mentione    thatbasic electro

     

    es are much more safety re 

    ar 

    in 

     this phenomena.

    3.3 All wel 

     metal vs. 304L 

    base metal joints

    As earlier mentione 

    , for wel 

    in 

      of the base metal of type 304L afiller of type 308L isuse

     

     an 

     the tou 

    hness values of the all wel 

     metal are not equal to values from the joint.Comparin

     

      Fi 

    ure 8 an 

      Fi 

    ure 11 this influence is shown by wel 

    ments  with a stickelectro

     

    e of type E308L 

    15.

    Impact ener 

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    15/25

    , ISO 

    V

     [Joule]Impa

    ct ener 

    y , I

    SO 

    V [Joule]Testin

     

     temperature [°C]Lateral expa

    nsi

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    16/25

    on [mm]

     2,4 1201001,6 801,2600,8400,420+20 +20

     

    120 

    120 

    196 

    1961,99

    0,880,650,71473911256480,532,0Ferrite acc. Förster 1.0537,8    10,2 FN5,0    6,1 FN

    Ferrite acc. Förster 1.0537,8

     

     10,2 FN5,0    6,1 FNThickness: 13 mmWel

     

    in 

     position: 1G/PABase metal: 1.4301 (AISI 304L) Fi

     

    ure 11: BÖHLER FOX EAS 2 (E308L  15): Impact ener 

    y versus ferrite content inV

     

    joint wel 

    s

    It can be seen, that at   196°C for the low ferrite type the lateral expansion 

    rops from 1,06mm in the all wel

     

     metal 

    own to 0,71 mm in the joint; similar the charpy impact ener

     

    y:from 66J to 47J. This ten

     

    ency is also vali 

     for the hi 

    her ferrite 

    ra 

    es.

    3.4 Wel 

    in 

     position

    Impacte

    ner

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    17/25

     

    y , IS

    V [Joule]Test temperature [°C]

    Lateral expan

    sion [mm] 2,4 1201001,6 801,2600,8400,420+20 +20

     

    120 

    120 

    196 

    1962,141,200,850,7143

    4111162

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    18/25

    540,592,0Ferrite acc. FERITSCOPE3,2    4,3 FN (1G)3,3    4,8 FN (3G)1,68

    93Thickness: 15 mmWel

     

    in 

     position: 1G/3G3G1GBase metal: 1.4301 (AISI 304L)Impact

    ener 

    y , ISO 

    V [Joule]Impactener 

    y , I

    SO 

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    19/25

    V [Joul

    e]Test temperature [°C]Lateral e

    xpansion [mm]

     2,4 1201001,6 801,2600,8400,420+20 +20   120   120   196   1962,141,200,850,71434111162540,592,0Ferrite acc. FERITSCOPE3,2

     

     4,3 FN (1G)3,3

     

     4,8 FN (3G)

    Ferrite acc. FERITSCOPE3,2    4,3 FN (1G)3,3

     

     4,8 FN (3G)

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    20/25

    1,6893Thickness: 15 mmWel

     

    in 

     position: 1G/3GThickness: 15 mmWel

     

    in 

     position: 1G/3G3G

    1GBase metal: 1.4301 (AISI 304L) Fi

     

    ure 12: BÖHLER EAS2 PW  FD (LF) (E308LT1  4):Impact ener

     

    y in various wel 

    in 

     positions: 1G/PA an 

     3G/PF

    In Fi 

    ure 12 the influence of the wel 

    in 

      position on the tou 

    hnessproperties is shown.It´s not

     

    etrimental by comparin 

      the charpy values, more si 

    nificant 

    eviations aremeasure

     

     in case of the lateral expansion.

    3.5 Influence of shrinka 

    e on impact ener 

    y

    A very 

    etrimental influence was observe 

      cause 

      by internal stresses.If these stressesare re

     

    uce 

      by plastic 

    eformation (visible as shrinka 

    e), it was notpossible to improvethe tou

     

    hness by usin 

     an optimise 

     bea 

     sequence with small bea 

    s´. An example as itcan be seen in the GTAW samples (Fi

     

    ure 13).

    low shrinka 

    e 74 6 (9)

    hi  h shrinka  e 53 6 (9)hi

     

    h shrinka 

    e 54 8 (13)Remarks Impact ener

     

    yISO  V [Joule]avera

     

    eLayers(Bea

     

    s)Bea

     

     sequencelow shrinka

     

    e 74 6 (9)hi

     

    h shrinka 

    e 53 6 (9)hi

     

    h shrinka 

    e 54 8 (13)Remarks Impact ener

     

    yISO

     

    V [Joule]avera

     

    eLayers(Bea

     

    s)Bea

     

     sequenceBase metal: AISI 304L; Wel

     

    in 

     position: 1G/PA; Thickness: 15 mm (Gap: 3 mm) Fi

     

    ure 13: GTAW with BÖHLER EAS 2 

    IG; impact ener 

    y of joint wel 

    s at 

    196°C

    3.6 Test specimen preparation

    Besi  e the above mentione    aspects a further point has to be taken into account when 

    iscussin 

      

    eep temperature tou 

    hness properties: the preparation of the test sp

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    21/25

    ecimens.Investi

     

    ations have shown, that the achieve 

     impact tests results at very low temperaturesare stron

     

    ly influence 

     how the notch into the test specimen was ma 

    e. The sharper thecutter use

     

      for preparin 

      the notch the hi 

    her the impact values (Fi 

    ure 14). With

    increasin   wear of the cutter the plastic   eformation at the   roun   of the notch increasesan

     

     the measure 

     Charpy impact value 

    ecreases.

    102030405060U

    se 

    Hi 

    h spee 

     steel cutterType HSS  E (SCHNADT)Carbi

     

    e millin 

     cutterType CK20 (SCHNADT)NewImp

    act ener 

    yAv[Joule], ISO  

    V55

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    22/25

    4840325248Ne

    wSpecimen from V  JointAISI304; th. = 12 mm; 1G4944Use 

     Fi

     

    ure 14: Influence of new an 

     use 

     cutters for preparin 

     the notch on charpy test

    specimen on tou 

    hness values at 

    196°C

    4 Settin 

     up requirements for LNG stainlesssteels wel

     

    ments

    To achieve an optimum between 

    eep temperature tou 

    hness an 

      hot crackin

     

     susceptibility, a narrow win

     

    ow for the ran 

    e of 

    elta ferrite for the  wel

     

      metal has to be 

    efine 

     as shown in Fi 

    ure 15 vali 

     for BÖHLER FOX EAS 2 (E308L 

    15).

    80

    6040203 6 1227 J4

     

     12 FN*Deltaferrite [FN]Inpact ener 

    y[Joul

    e] 

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    23/25

    ISO  

    VRisk for

    hotcrackin

     

    9Best ran

     

    e inwel

     

     joints3    8 FN*Acc. to IIW;All wel

     

     metal;General applications1 2 Fi

     

    ure 15: BÖHLER FOX EAS 2 (E308L  15); Ferrite content versus impact ener 

    y at  

    196° Besi

     

    e this ªmetallur 

    icalº orientate 

      requirement re 

    ar 

    in 

      the 

    elta ferrite contentvarious

     

    esi 

    n co 

    es 

    efine minimum values for tou 

    hness to secure safe constructions.

    4.1 Requirements for austenitic LNG wel 

    ments

    There are 2 main 

    esi 

    n co 

    es available an 

     they 

    escribe the tou 

    hness requirements in 

    etail: ASME Co 

    e [7] focuses on lateral expansion an 

      set the minimu

    m   esi   n limit to³0,38mm. The comparable European Co

     

    e, TÜV [8], favours the charpy impactener

     

    y.The minimum allowable value has to be ³32J. Depen

     

    in 

      on the use 

      

    esi 

    n co 

    e thelateral expansion or the charpy impacts values are the characteristic material property

     

    atafor selection of the filler metal.Besi

     

    e these major 

    esi 

    n co 

    es various customer 

    relate 

      requirements are existin

     

    .They are often a mix of these two co

     

    es an 

      can be exten 

      with some furtherrequirements re

     

    ar 

    in 

      

    elta ferrite content an 

    /or minimum heat input.To fulfil these requirements special low ferrite electro

     

    es for use in  LNG plants were 

    evelope 

    . Fi 

    ure 16 

    ives a small overview an 

      points out the essential selectioncriterions as FN (measure

     

    ), lateral expansion an 

     charpy tou 

    hness at 

    196°C.

    65

     

    73

     

    64  88

     

    11FN

    40 0,60FCAW E316LT1  4E316LT1

     

    1

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    24/25

    EAS 4 PW  FD (LF)67 0,60 SMAW E316L  15 FOX EAS 4 M (LF)45 0,75FCAW E308LT1  4E308LT1  1EAS 2 PW  FD (LF)1,06

    1,17Lateral expansion[mm]  196°CFOX EAS 2EAS 2   IGBöhler Bran

     

    SMAWGTAWProcess112ER308L

    66ISO  V[J]  196°CE308L  15AWS3

     

    65  73  64

     

    88

     

    11FN40 0,60

    FCAW E316LT1  4E316LT1

     

    1EAS 4 PW  FD (LF)67 0,60 SMAW E316L  15 FOX EAS 4 M (LF)45 0,75FCAW E308LT1

     

    4E308LT1  1EAS 2 PW  FD (LF)1,061,17Lateral expansion[mm] 

    196°CFOX EAS 2EAS 2   IGBöhler Bran

     

    SMAWGTAWProcess112ER308L66ISO  V[J] 

    196°C

    E308L  15AWS 

  • 8/18/2019 248221054 Low Temperature Behavior of Austenitic Weldments

    25/25

    Fi 

    ure 16: Special 

    esi 

    ne 

    , mostly low  ferrite filler metals for LNG applications withtypical values

    5 Conclusion

    As it can be shown, the   elta ferrite content of the austenitic wel   metal has a hu

     

    einfluence on the tou

     

    hness properties of especially at low temperatures. The lower theferrite content the hi

     

    her the tou 

    hness of the wel 

      metal. But there

     

    uction of the 

    eltaferrite has its limits: a minimum ferrite level is necessary to prevent hot crackin

     

    .Dealin

     

     with LNG applications of austenitic steels an 

     wel 

    ments it is necessary to controlthe ferrite content by the chemical composition an

     

      the wel 

    in 

      parameters to fin

     

      an

    optimum between hi 

    h tou 

    hness properties an 

      hot crackin 

      resistance.To 

    evelopªsafeº filler metals also the influence of hi

     

    her heat inputs, plastic 

    eformation,but also thearc len

     

    th on the impact values has to taken into account.

    6 References

    [1] Information from OMV; 2005

    [2] L. Smith: ªProperties of metallic materials for LNG servicesº; Stainless Stell

    Worl  ,Oct. 2001

    [3] G. Holloway, Z. Zhan 

    , A. Marshall: ªStainless Steel Arc Wel 

    in 

     Consumables forCryo

     

    enic Applicationsº; Stainless Steel Worl 

     2004; KCI Publishin 

     BV

    [4] E. Folkhar 

      et al: ªWel 

    in 

      Metallur 

    y of Stainless Steelsº, Sprin 

    erVerla

     

    , Wien,1988

    [5] J. Tösch, G. Posch, J. Zie 

    erhofer: ¹Ferrite contents in stainless steel FCAW

     

    wel 

    sª; IIW 

     

    oc. II 

    C 289 

    04

    [6] J. C. M. Farrar: ªThe Measurement of Ferrite Number (FN) in Real Wel 

    mentsº;IIW

     

    Doc. II 1531 

    04

    [7] Internat. Pipin 

     co 

    e ASME B31.3.

    [8] V 

    TÜV Information Sheet ªGui 

    elines on suitability of wel 

    in 

     filler metalsº; 1980