24.505 numerical*solution*of*themul...

4
1 24.505 Lecture 17 Numerical Solution of the Multi group Diffusion Equations I I Prof. Dean Wang 1. The Analytic Nodal method in 2D Cartesian Geometry The 2D Cartesian heterogeneous reactor configurations correspond to the case where the neuron flux is a function of two spatial variables. These cases cannot be solved analytically and the analytic nodal method (ANM) is an attempt to find the solution with the smallest possible approximation. Here we limit our investigations to a 2D Cartesian domain made from the assembly of many rectangular nodes which are infinite in the direction. In this case, the nuclear properties of the reactor are only a function of the independent variables x and y. The multigroup diffusion equation in 2D Cartesian geometry can be written as ! !" ! , !! ! !,! !" ! !" ! , !! ! !,! !" + Σ !,! , ! , = ! , (1a) where ! , = Σ ! ! ! , ! ! , ! ! ! !! + ! ! ! !"" νΣ !,!! , ! ! ! !! ! ! , (1b) Each node is assumed to be homogeneous, so that the corresponding nuclear properties ! , , Σ !,! , , Σ ! ! ! , and νΣ !,!! , are piecewise continuous as shown in Fig. 1, the reactor is divided into × regions of indices 1 and 1 , in such a way that the nuclear properties in node , are constant and equal to !,!,! , Σ !,!,!,! , Σ ! ! !,!,! , and νΣ !,! ! ,!,! . Fig. 1. 2D discretization. The linear transformation technique is applied on each node, leading to the linear transformation × matrix !,! and to a set of eigenvalues !,!,! on !!!/! < < (i, j1) Δxi (i, j) (i1, j) (i+1, j) (i, j+1) Δyi

Upload: vuongque

Post on 25-Mar-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 24.505 Numerical*Solution*of*theMul …faculty.uml.edu/Dean_Wang/24-505_files/Lecture18.pdfNucl.Eng.Tech.37(1):25 M78.!!! !! Title Microsoft Word - Lecture 17 Numerical Solution of

  1  

24.505  Lecture  17  Numerical  Solution  of  the  Multigroup  

Diffusion  Equations  II  

Prof.  Dean  Wang  

1. The  Analytic  Nodal  method  in  2D  Cartesian  Geometry  The  2D  Cartesian  heterogeneous  reactor  configurations  correspond  to  the  case  where  the  neuron  flux  is  a  function  of  two  spatial  variables.  These  cases  cannot  be  solved  analytically  and  the  analytic  nodal  method  (ANM)  is  an  attempt  to  find  the  solution  with  the  smallest  possible  approximation.  Here  we  limit  our  investigations  to  a  2D  Cartesian  domain  made  from  the  assembly  of  many  𝑥 − 𝑦  rectangular  nodes  which  are  infinite  in  the  𝑧  direction.      In  this  case,  the  nuclear  properties  of  the  reactor  are  only  a  function  of  the  independent  variables  x  and  y.  The  multigroup  diffusion  equation  in  2D  Cartesian  geometry  can  be  written  as  

 − !!"𝐷! 𝑥,𝑦

!!! !,!!"

− !!"𝐷! 𝑥,𝑦

!!! !,!!"

+ Σ!,! 𝑥,𝑦 𝜙! 𝑥,𝑦 = 𝑄! 𝑥,𝑦                         (1a)    where     𝑄! 𝑥,𝑦 = Σ!!→! 𝑥,𝑦 𝜙!! 𝑥,𝑦

!!!!! + !!

!!""νΣ!,!! 𝑥,𝑦!

!!!! 𝜙!! 𝑥,𝑦  (1b)  

Each  node  is  assumed  to  be  homogeneous,  so  that  the  corresponding  nuclear  properties  𝐷! 𝑥,𝑦 ,  Σ!,! 𝑥,𝑦 ,  Σ!!→! 𝑥,𝑦  and  νΣ!,!! 𝑥,𝑦  are  piecewise  continuous  as  shown  in  Fig.  1,  the  reactor  is  divided  into  𝐼×𝐽  regions  of  indices  1 ≤ 𝐼 ≤ 𝐼  and  1 ≤ 𝐽 ≤ 𝐽,  in  such  a  way  that  the  nuclear  properties  in  node   𝑖, 𝑗  are  constant  and  equal  to  𝐷!,!,! ,  Σ!,!,!,! ,  Σ!!→!,!,! ,  and  νΣ!,!!,!,! .                              

Fig.  1.  2D  discretization.    The  linear  transformation  technique  is  applied  on  each  node,  leading  to  the  linear  transformation  𝐺×𝐺  matrix  𝑇!,!  and  to  a  set  of  𝐺  eigenvalues  𝜆!,!,!  on  𝑥!!!/! < 𝑥 <

(i,  j-­‐1)  

Δxi  

(i,  j)  (i-­‐1,  j)   (i+1,  j)  

(i,  j+1)  

Δyi  

Page 2: 24.505 Numerical*Solution*of*theMul …faculty.uml.edu/Dean_Wang/24-505_files/Lecture18.pdfNucl.Eng.Tech.37(1):25 M78.!!! !! Title Microsoft Word - Lecture 17 Numerical Solution of

  2  

𝑥!!!/!  and  𝑦!!!/! < 𝑦 < 𝑥!!!/!.  The  transformation  process  is  repeated  for  each  node,  leading  to  𝐼×𝐽  matrix  equations  written  as     !!

!!!Φ 𝑥,𝑦 + !!

!!!Φ 𝑥,𝑦 + FΦ 𝑥,𝑦 = 0              (2)  

with  

  Φ 𝑥,𝑦 =𝜙! 𝑥,𝑦

⋮𝜙! 𝑥,𝑦

                (3a)    

 F =

𝑓!! 𝑓!" ⋯ 𝑓!!𝑓!" 𝑓!! ⋯ 𝑓!!⋮ ⋮ ⋮ ⋮𝑓!! 𝑓!! ⋯ 𝑓!!

              (3b)  

where        𝑓!,!! =

!!! !,!

−Σ!,! 𝑥,𝑦 δ!!! + Σ!!→! +!!!!""

νΣ!,!! 𝑥,𝑦!!!!!     (3c)    

The  next  step  consists  in  finding  all  eigenvectors  𝑡!  of  matrix  F  with  the  associated  eigenvalues  𝜆!.  We  build  a  matrix  𝑇  as     𝑇 = 𝑡! 𝑡! ⋯ 𝑡!                 (4)  So  that     𝐹𝑇 = 𝑇𝑑𝑖𝑎𝑔(  𝜆!)                 (5)  So  we  have  

  Φ 𝑥,𝑦 = 𝑇𝜓 𝑥,𝑦 =

𝑡!! 𝑡!" ⋯ 𝑡!!𝑡!" 𝑡!! ⋯ 𝑡!!⋮ ⋮ ⋮ ⋮𝑡!! 𝑡!! ⋯ 𝑡!!

𝜓! 𝑥,𝑦𝜓! 𝑥,𝑦

⋮𝜓! 𝑥,𝑦

      (6)  

Substituting  (6)  into  (2)  gives     !!

!!!TΨ 𝑥,𝑦 + !!

!!!TΨ 𝑥,𝑦 + FTΨ 𝑥,𝑦 = 0           (7)  

Multiplying  (7)  with  T!!  yields     !!

!!!Ψ 𝑥,𝑦 + !!

!!!Ψ 𝑥,𝑦 + diag 𝜆! Ψ 𝑥,𝑦 = 0           (8)  

Each  equation  is  uncoupled  in  energy,  and  can  be  written  as  G  differential  equations  of  the  form     !!

!!!𝜓! 𝑥,𝑦 + !!

!!!𝜓! 𝑥,𝑦 + 𝜆!,!,!𝜓! 𝑥,𝑦 = 0         (9)  

where  𝑔 = 1,2, . .𝐺.    Unfortunately,  it  is  impossible  to  find  the  analytical  solution  of  (9)  because  its  dependent  variable  𝜓! 𝑥,𝑦  is  generally  not  separable.  The  ANM  is  based  on  transverse  integration  of  (9).  Transverse  integration  along  the  Y  axis  leads  to       𝑑𝑦 !!

!!!𝜓! 𝑥,𝑦

!!!!/!!!!!/!

+ 𝑑𝑦 !!

!!!𝜓! 𝑥,𝑦

!!!!/!!!!!/!

+ 𝜆!,!,! 𝑑𝑦𝜓! 𝑥,𝑦!!!!/!!!!!/!

= 0                         (10)  which  can  be  rewritten  as       !

!

!!!𝜓!,!! 𝑥 + 𝜆!,!,!𝜓!,!

! 𝑥 = !!!!

𝐹!,!! 𝑥           (11)  

where  Δ𝑦! = 𝑦!!!/! − 𝑦!!!/!,  

Page 3: 24.505 Numerical*Solution*of*theMul …faculty.uml.edu/Dean_Wang/24-505_files/Lecture18.pdfNucl.Eng.Tech.37(1):25 M78.!!! !! Title Microsoft Word - Lecture 17 Numerical Solution of

  3  

  𝜓!,!! 𝑥 = !

!!!𝑑𝑦𝜓! 𝑥,𝑦

!!!!/!!!!!/!

            (12)  

and  where  we  introduce  the  X-­‐directed  transverse  leakage  term  as      𝐹!,!

! 𝑥 = − 𝑑𝑦 !!

!!!𝜓! 𝑥,𝑦

!!!!!

!!!!!

= − !!"𝜓! 𝑥,𝑦

!!!!/!

!!!!/!       (13)  

Similarly,  the  transverse  integration  along  the  𝑋  axis  leads  to         !

!

!!!𝜓!,!! 𝑦 + 𝜆!,!,!𝜓!,!! 𝑦 = !

!!!𝐹!,!! 𝑦           (14)  

where  Δ𝑥! = 𝑥!!!/! − 𝑥!!!/!,     𝜓!,!! 𝑦 = !

!!!𝑑𝑥𝜓! 𝑥,𝑦

!!!!/!!!!!/!

            (15)  and  where  we  introduce  the  Y-­‐directed  transverse  leakage  term  as      𝐹!,!! 𝑦 = − !!

!!!𝜓! 𝑥,𝑦

!!!!/!!!!!/!

= − !!"𝜓! 𝑥,𝑦

!!!!/!

!!!!/!       (16)  

(11)  and  (14)  can  be  solved  analytically,  provided  that  the  x  and  y  variation  of  the  transverse  leakage  terms  𝐹!,!

! 𝑥  and  𝐹!,!! 𝑦  are  known.  This  is  where  we  introduce  the  unique  approximation  of  the  ANM.  Many  possibilities  exist  to  predict  this  variation,  and  have  been  investigated  in  the  seventies.  Shober  initially  assumed  that  the  transverse  leakages  and  the  1D  fluxes  had  the  same  shape  as     𝐹!,!

! 𝑥 = 𝐵!,!,!! 𝜓!,!

! 𝑥                 (17a)     𝐹!,!! 𝑦 = 𝐵!,!,!! 𝜓!,!! 𝑦               (17b)  This  buckling-­‐type  approximation  would  be  exact  if  the  dependent  variable  𝜓! 𝑥,𝑦  were  spatially  separable  within  node   𝑖, 𝑗 .  However,  Shober  found  that  the  use  of  the  buckling  approximation  led  to  large  errors  in  highly  nonseparable  cases  [1].  As  an  alternative  to  the  buckling  approximation,  Shober  proposed  to  use  a  flat  leakage  approximation  in  which  the  transverse  leakage  shape  is  spatially  flat  over  the  each  node,  leading  to       𝐹!,!

! 𝑥 = 𝐹!,!,!! = 𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/!           (18a)  

 𝐹!,!! 𝑦 = 𝐹!,!,!! = 𝐽!,!! 𝑥!!!/! − 𝐽!,!

! 𝑥!!!/!         (18b)  where  the  transformed  current  are  defined  as     𝐹!,!

! 𝑥 ≡ − !!"𝜓!,!! 𝑥               (19a)  

𝐹!,!! 𝑦 ≡ − !!"𝜓!,!! 𝑦                 (19b)  

Later,  Smith  introduced  a  quadratic  leakage  approximation  in  the  ANM  [2].  The  expansion  coefficients  of  the  leakage  fit  are  calculated  by  assuming  that  the  quadratic  polynomial  extends  over  the  two  neighboring  nodes  and  satisfies  the  average  leakages  in  the  central  and  two  neighboring  nodes.  The  quadratic  leakage  fit  does  not  rely  on  the  diffusion  equation  itself  and  can  only  be  justified  if  the  transverse  leakages  vary  smoothly  across  the  three  nodes.  Such  an  approximation  can  be  constructed  for  node   𝑥,𝑦 ,  in  the  X-­‐direction,  using  𝐹!,!!!,!

! ,  𝐹!,!,!!  and  𝐹!,!!!,!

! ,  the  transverse  leakage  terms  without  linear  transformation.      Under  these  conditions,  (11)  is  rewritten  as         !

!

!!!𝜓!,!! 𝑥 + 𝜆!,!,!𝜓!,!

! 𝑥 = !!!!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/!     (20)  

Page 4: 24.505 Numerical*Solution*of*theMul …faculty.uml.edu/Dean_Wang/24-505_files/Lecture18.pdfNucl.Eng.Tech.37(1):25 M78.!!! !! Title Microsoft Word - Lecture 17 Numerical Solution of

  4  

Integration  of  (20)  over  node   𝑥,𝑦  leads  to  the  transformed  nodal  balance  equation,  written  as     𝜓!,!,! =

!!!!!!,!,!

𝐽!,!! 𝑥!!!/! − 𝐽!,!

! 𝑥!!!/!  

 + !!!!!!,!,!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/!           (21)  

Let  us  first  consider  the  case  where  𝜆!,!,! ≥ 0.  In  energy  group  g  and  in  node   𝑥,𝑦 ,  (20)  has  an  analytical  solution  of  the  form      𝜓!,!

! 𝑥 = !!!!!!,!,!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/!  

  +𝐴!,!,!cos 𝜆!,!,!𝑥 + 𝐵!,!,!sin 𝜆!,!,!𝑥         (22)  Integrating  (22)  over  the  node  leads  to       𝜓!,!,! =

!!!!!!,!,!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/! + !!,!,!

!!! !!,!,!sin 𝜆!,!,!𝑥 !!!!/!

!!!!/!  

    − !!,!,!

!!! !!,!,!cos 𝜆!,!,!𝑥 !!!!/!

!!!!/!     (23)  

Differentiating  (22)  over  the  node  gives     𝐽!,!

! 𝑥 = 𝐴!,!,! 𝜆!,!,!sin 𝜆!,!,!𝑥 − 𝐵!,!,! 𝜆!,!,!cos 𝜆!,!,!𝑥     (24)      If    𝜆!,!,! < 0,  we  have      𝜓!,!

! 𝑥 = !!!!!!,!,!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/!  

  +𝐶!,!,!cosh −𝜆!,!,!𝑥 + 𝐸!,!,!sin −𝜆!,!,!𝑥       (25)     𝜓!,!,! =

!!!!!!,!,!

𝐽!,!! 𝑦!!!/! − 𝐽!,!! 𝑦!!!/! + !!,!,!

!!! !!!,!,!sinh −𝜆!,!,!𝑥 !!!!/!

!!!!/!  

    − !!,!,!

!!! !!!,!,!cosh −𝜆!,!,!𝑥 !!!!/!

!!!!/!     (26)  

  𝐽!,!! 𝑥 = −𝐶!,!,! −𝜆!,!,!sinh −𝜆!,!,!𝑥 − 𝐸!,!,! −𝜆!,!,!cosh −𝜆!,!,!𝑥 (27)    

   References  1. R.  A.  Shober  and  A.  F.  Henry,  “Nonlinear  Methods  for  Solving  the  Diffusion  

Equations,”  M.I.T.  Report  MITNE-­‐196,  1976.  2. K.  S.  Smith,  “An  Analytic  Nodal  Method  for  Solving  the  Two-­‐Group,  

Multidimensional,  Static  and  Transient  Neutron  Diffusion  Equation,”  Nuclear  Engineer’s  Thesis,  MIT,  Department  of  Nuclear  Engineering,  1979.  

3. N.  Z.  Cho,  “Fundamentals  and  Recent  Developments  of  Reactor  Physics  Methods,”  Nucl.  Eng.  Tech.  37  (1):  25-­‐78.