24.10.2017 moses workshop sion christoph gentner

31
1 25.10.2017 24.10.2017– MOSES Workshop Sion Christoph Gentner A HT-PEM fuel cell system model for the electric power supply on ships

Upload: others

Post on 26-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 24.10.2017 MOSES Workshop Sion Christoph Gentner

125.10.2017

24.10.2017– MOSES Workshop Sion

Christoph Gentner

A HT-PEM fuel cell system model for the

electric power supply on ships

Page 2: 24.10.2017 MOSES Workshop Sion Christoph Gentner

225.10.2017

motivation

reduction of emissions

dieselgenerator(500 kW)

fuel cell system(2 x 5 kW)

state of the art- diesel electric ships

alternative- unconventional fuels

and energyconverter

- since 2012 HT-PEM

challenge- reduction of

emissions

source picture: Topaz – M. Fischbach; C18 – www.cat.com; H3 5000 Rack – www.serenergy.com

Page 3: 24.10.2017 MOSES Workshop Sion Christoph Gentner

325.10.2017

HT-PEM fuel cell system

known characteristics

fuel mix: S/C = 1,5

system efficiency

load acceptance

???

source picture: H3 5000 – www.serenergy.com, source efficiency: e4ships Brennstoffzellen im maritimen Einsatz 2009 – 2016 (2016)pilot plant: METHANOL POWERED FUEL CELL SYSTEMS FOR MARINE APPLICATIONS, C. Thiem, C. Gentner & G. Ackermann; SCC 2015

object of investigation

HT-PEM with water-methanol fuel mix

developed for TELCO industry

nominal power output: 5 kW el, DC

0.3

0.35

0.4

0.45

0.5

1 1.5 1.75 2 2.5 3 3.5 4 4.5 5

η

electric power output in kW

module efficiency

Page 4: 24.10.2017 MOSES Workshop Sion Christoph Gentner

425.10.2017

measurements

setupa) reactor with fluegas heat

exchangerb) evaporator with oil inlet and

exhaustgas pipec) heated oil tankd) heated measuring pipee) MFCs for air and hydrogenf) solid state relaisg) Labview compact rio

Page 5: 24.10.2017 MOSES Workshop Sion Christoph Gentner

525.10.2017

fuel cell system module- anode gas: synthesis gas (H2 + CO2 + H2O)- Methanol steam reforming in processing unit

called: reformer- stack waste heat recovery: fuel mix

evaporation

HT-PEM

FCS module and reformer

reformer- catalytic burner: burns anode off gas- reactor: CH3OH + H2O 3 H2 + CO2- evaporator uses waste heat from: stack,

fluegas & synthesis gas

cathodeexhaust

reformerexhaust

aircoolantfeedair

stackreformer &evaporator

catalyticburner

reactor

Fuel mixevaporator

Page 6: 24.10.2017 MOSES Workshop Sion Christoph Gentner

625.10.2017

physical model

reformer

Processunit

controlvolumes• every element has its own mass, connecting areas,

conductivity and specific heat. ሶ𝜗𝐶𝑉• elements (fluid & solid) are coupled by heat transition

and conduction

discretization in flow direction• 2 sections catalytic burner• 5 sections reformer• 5 sections evaporator

first principle of thermodynamics

d𝐸

d𝑡= ሶ𝑄 = ሶ𝜗𝐶𝑉 ⋅ 𝑚𝐶𝑉 ⋅ 𝑐𝑝,𝐶𝑉

ሶ𝑚𝐹𝑒𝑒𝑑,(𝑔)

ሶ𝑚𝐹𝑙𝑢𝑒𝑔𝑎𝑠

ሶ𝑚𝑆𝑦𝑛𝑔𝑎𝑠

(2)

(3)

(4)𝜗𝑊𝑎𝑙𝑙𝑘

𝜗𝑊𝑎𝑙𝑙𝑘+1

𝜗𝑇𝑜𝑝,𝑙𝑘

𝜗𝑆𝑦𝑛𝑔𝑎𝑠𝑘

𝜗𝑇𝑜𝑝,𝑐𝑘

𝜗𝑇𝑜𝑝,𝑟𝑘

Page 7: 24.10.2017 MOSES Workshop Sion Christoph Gentner

725.10.2017

model calibration

syngas rector in

syngas reactor out

syngas reformer out

time in seconds

fluegasrector in

fluegas rector out

fluegas reformer out

oil tank

oil evaporator in

oil evaporator out

ϑ in

°C

measurements

simulation

feed flow

parameter estimation- minimisation of the quadratic difference to measurements- simple geometry: identical geometric data in every section- time intense iterative procedure: ~ 100 Parameters to guess- direct feedback to the user: e.g. heat conduction in aluminum housing

Page 8: 24.10.2017 MOSES Workshop Sion Christoph Gentner

825.10.2017

physical model

bipolar plate

first principle of thermodynamics

air oil synthesisgas

boundary condition𝜗𝑙𝑒𝑓𝑡 = 𝜗𝑟𝑖𝑔ℎ𝑡

bipolar plate ~ 3 mm

not modelled:membrane

thermal model

bipolar plate- 1 plate represents the stackmassflows are scaled- simple geometry: identical geometric data in every section (total 5)- not validated with measurements- geometry known, pyhsical properties from literature

d𝐸

d𝑡= ሶ𝑄 = ሶ𝜗𝐶𝑉 ⋅ 𝑚𝐶𝑉 ⋅ 𝑐𝑝,𝐶𝑉

Page 9: 24.10.2017 MOSES Workshop Sion Christoph Gentner

925.10.2017

reformer control• 𝜆𝐻2-stack changes in

order to supply heat fora constant reactortemperature

feedflow

• 𝜆𝑂2-reactor follows themeasurements

airflow

HT-PEM model

aircoolantfeedair

stack control• electric power is a

control objective stack current

• 𝜆𝑂2-stack is constant cathode airflow

• oil mass flow iscontrolled to keep stacktemperature constant

oilmassflow

fuel cell system model- reformer- stack (5300 W)- auxiliaries (300 W)- control

Meyer-Werft measurements

power curvepolarization curves

Page 10: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1025.10.2017

simulation results

FCSM characteristics

characteristics- waste heat in cooling water and exhaustgas- fuel cell stack produces water- exhaustgas cooling recovers water (25 °C & 40 °C)

steam reforming

combustion

cooling water wh exhaust gas wh H2O overproduction

el. power FCSM in kW SM H2O > 0:self supply possible

Page 11: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1125.10.2017

FCSM results

• exhaustgas composition(humid air and CO2)

• waste heat use:(for seawater evaporation)

• efficiency(> 40 %)

simulation results:

• air demand(similar DG)

fuel supply

methanolbunker

water:recycle/ evaporate

new pol. curve (S 1), degraded (S 2)

Page 12: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1225.10.2017

energy simulation

system simulation- Input: measurements general consumers- Fuel cell system model with load dynamics- Transients loads for battery storage- Controlled variable: state of charge

Page 13: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1325.10.2017

single line diagram a- FCS independent (directional energy flow)- BS independent (bidirectional energy flow)- controlled SOC

integration

single line diagram b- FCS charges the battery storage- integrated system (unidirectional energy flow)- Controlled SOC

battery storage: Bs

fuel cell system: Bza

Page 14: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1425.10.2017

sizing of a battery storage

worst case scenario- load shedding (La3)- FCS ramps down- SOC increases (start: 60 %)

legend------------------------La1: 95 % 75 %La2: 95 % 50 %La4: 95 % 10 %------------------------

battery: 161 kWhC-Rate < 1------------------------

general consumer

fuel cell system

state of charge (battery)

Page 15: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1525.10.2017

energy simulation results

measured 12 dayScenario: ~ 1,5 MW

high speed diesel generator fuel cell system

specific mass 9 kg/kW 19 kg/kW (incl. battery)

specific volume 14 … 20 l/kW 20 l/kW

CO2 100 % 83 %

conclusion- FCS reduce air pollutants (humid air + CO2, low noise, no vibrations )- energy storage necessary- comparable size and volume to medium speed dieselgenerator- expensive

Page 16: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1625.10.2017

thank you for yourattention!

M. Sc. Christoph GentnerTUHH Institut M-4

Elektrische Energiesysteme und Automation

[email protected]

Page 17: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1725.10.2017

simulation results

FCSM characteristics

characteristics- from simulation extracted data for steady states- S1/S2 different operating modes- S1/S3 new degradated polarization curve OK efficiency match

el. power FCSM in kW

efficiency CH3OH consumption

air demand CO2 production exhaustgas temperature

Page 18: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1825.10.2017

energy simulation

load following mode or SOC boundary- FCS can follow the load in 80 % of all cases no significant change of SOC (high frequency switching: load - unload) SOC always at setpoint of 60 % (good to survive crtical load cases)- FCS can operate highly decoupled from load (Alternative II)

mode forcriticaloperations

mode foruncriticaloperations

Page 19: 24.10.2017 MOSES Workshop Sion Christoph Gentner

1925.10.2017

fuel cell systems vs

dieselgeneratorors (10.2017)

MSL SL PEM (H2) HT-PEM (CH3OH)

mass / power17

kg

kWel,AC9

kg

kWel,AC10

kg

kWel,DC12…15

kg

kWel,DC

volume / power

27 … 37l

kWel,AC14 … 20

l

kWel,AC14

l

kWel,DC17

l

kWel,DC

fuelconsumption

205g

kWh225

g

kWh72

g

kWh440

g

kWh

price280 …400

kWel,AC5000

kWel,DC5000

kWel,DC

electricenergy price

0,06€

kWhAC0,10

kWhAC0,68

kWhDC0,15

kWhDC

HFO = 294 €/t; MGO = 428 €/t; H2 = 9500 €/tCH3OH = 330€/t

Page 20: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2025.10.2017

Methodology

Measurements + Simulation

pilot plant (2 x 5 kW) AC operation exhaustgasanalysis waste heat potential

limited load change(8 %/min & 17 %/min)

methanol reformer- dynamics (syngas output: vane anemometer)- temperatures (fluids & body)- FC-stack waste heat (𝜗-controlled)- catalytic burner (controlled MFCs H2 & air)- synthesis gas composition

using gas chromatography

pilot plant: METHANOL POWERED FUEL CELL SYSTEMS FOR MARINE APPLICATIONS, C. Thiem, C. Gentner & G. Ackermann; SCC 2015

Page 21: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2125.10.2017

simulation results

new vs degraded

Page 22: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2225.10.2017

steady state measurements

analysis of synthesis gas composition• H2 using a thermal conductivity sensor (WLD)• H2 using gas chromatography (GC)• CO2 … (GC)• CO … (GC)• CH3OH: condensate head space

analysis (GC)

ሶ𝑚𝐹𝑒𝑒𝑑 𝑥𝐶𝐻3𝑂𝐻𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑥𝐶𝐻3𝑂𝐻

𝐶𝑎𝑙𝑐

stoichiometric results: (Xi)

reformer

burner

Page 23: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2325.10.2017

Theoretical considerations

Steam to carbon ratio

𝑆

𝐶=

𝑛𝐻2𝑂𝑛𝐶𝐻3𝑂𝐻

𝑛𝑀𝑖𝑥 = 𝑛𝐻2𝑂 + 𝑛𝐶𝐻3𝑂𝐻

𝑥𝐶𝐻3𝑂𝐻 =𝑛𝐶𝐻3𝑂𝐻

𝑛𝐻2𝑂 + 𝑛𝐶𝐻3𝑂𝐻

The fuel mix (feed) consists of 60 vol.-% methanol and40 vol.-% water (S/C = 1,5).Is it the optimum?

How do the equilibrium states look like?Minimize the Gibbs energy.

Methanex 2006

Page 24: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2425.10.2017

Theoretical considerations

Steam to carbon ratio

substance amount fraction

𝑥𝑖 =𝑛𝑖σ𝑛𝑖

CO2CO

CH3OH H2O H2

X-axis: temperature in °CY-axis: S/C ratio

objective S/C temperature

H2 ↑ ~ 1 150 °C

CO ↓ high low

CH3OH ↓ high High

η ↑ High small

Page 25: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2525.10.2017

Theoretical considerations

Steam to carbon ratio

CO2CO

CH3OH H2O H2

X-axis: temperature in °CY-axis: S/C ratio

η

S/C = 1,5 (60 % CH3OH)OK!ϑ = 150 °C … 250 °C

Page 26: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2625.10.2017

Measurements

Sankey Diagram (Load = 100 %)

ሶ𝐻𝑂𝑢𝑡ሶ𝑄𝐼𝑛

=2,71

3,35 + 1,25= 59%

ሶ𝑄𝐿𝑜𝑠𝑠ሶ𝑄𝐼𝑛

=0,14

3,35 + 1,25= 3%

ሶ𝑄𝑊𝐻

ሶ𝑄𝐼𝑛=

0,75

3,35 + 1,25= 16 %

ሶ𝑄𝐶𝑜𝑛𝑑ሶ𝐻𝐸𝑣𝑎

=0,54

2,26 + 0,28= 21 %

combustion

exhaust heat loss

oil

feed

𝚫𝐑𝑯synthesis gas (Xi)standard state

cooling & condensation

Page 27: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2725.10.2017

Measurements

Dynamic behaviour

time in seconds time in seconds

mas

sflo

win

g/s

reasons for high order system with dead time• film flow evaporation causes timedelay• higher order due to series connection of

control volumes:1. evaporator2. superheater3. reactor4. heat exchanger

No hydrogen discontinuities are detected for changing feed flow!

insulated temperature controlled measuringsection with vane anemometer

Feed

Simulation

Measurement

Page 28: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2825.10.2017

Projekt Schiff Bz-Technologie Leistung / kW

Brennstoff

1985 ff.Studie

Vindicator MCFC 4 x 625 MDO

2003 ff.Demo.

Viking Lady MCFC 320 LNG

2006 ff.Demo.

Undine SOFC 20 CH3OH

2006 ff.Demo.

Alsterwasser PEM 50 H2O

Stand der Wissenschaft

Brennstoffzellen auf Schiffen

ab 2009 folgen: Rivercell, E4Ships, E4Ships 2 und viele weitere- Pa-X-ell (HT-PEM mit Methanol + Wasser) - ShiBZ (SOFC mit Diesel)

Vorangegangene Forschungsprojekte

Page 29: 24.10.2017 MOSES Workshop Sion Christoph Gentner

2925.10.2017

HT-PEM Modellierung

• Massenbilanz: Reaktorumsatz -> Polarisationskurve

• Energiebilanz: Fluid- & Festkörpertemperaturen

Page 30: 24.10.2017 MOSES Workshop Sion Christoph Gentner

3025.10.2017

Metrological investigation

Steady State Measurements

fluegas synthesis gas

feed in kg/hfeed in kg/h feed in kg/h

oil

Page 31: 24.10.2017 MOSES Workshop Sion Christoph Gentner

3125.10.2017

Systembeschreibung

H3 5000