21_krueger_rotmachines intro, design faults.pdf

Upload: bcqbao

Post on 16-Oct-2015

32 views

Category:

Documents


1 download

TRANSCRIPT

  • Michael Krger OMICRON

    ROTATING ELECTRICAL MACHINES Introduction

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 2

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Hydro Generator 11MVA

    Page 3

  • Hydro Generator

    Page 4

  • Hydro Generator 50MVA

    Page 5

  • 1000 MVA Generator (Steam Power Plant)

    Page 6

  • 90 MVA Generator (Steel Factory)

    Page 7

  • 14 MW Motors in a Steel Factory

    Page 8

  • Stator of a Hydro Generator 50MVA

    Page 9

  • Rotor Stator of a Hydro Generator

    Page 10

  • Rotor of a Hydro Generator

    Page 11

  • Rotor of a Synchonous Motor

    Page 12

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 13

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Design of a Machine Stator

    Page 14

  • Stator Slot with Winding

    Page 15

  • Conductor Design

    Page 16

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Stator Winding Insulation

    Page 18

    A. coating

    B. wedge/spacer

    C. main insulation (mica tape)

    D. end corona protection

    E. outer corona protection (OCP)

    F. inner corona protection (ICP)

    G. partial conductor insulation

    H. slot closure

    I. stator core

    outer corona protection, prevents slot discharges between the exterior surface of the insulation and the slot wall. Graphite paper or graphite coating

    end corona protection prevents surface discharges at the exit point of the conductor from the laminated stator core. Made of materials with non-linear conductivity (e.g. silicon carbide)

  • Stator Winding Insulation

    Page 23

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 24

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Damage to Hydro Generators

    Page 25

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Sources of Insulation Damages

    Page 26

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Why do Rotating Machines Fail?

    other; 3%

    rotor winding; 10%

    bearings and vibrations; 50%

    stator winding; 37%

    Page 27

    [IEEE85] Motor Reliability Working Group, Report of large motor reliability, survey of industrial and commercial installations-Part I, IEEE Trans. Ind. Applicat., vol. 21, July- August, 1985

  • Why do Rotating Machines Fail? Stator winding

    stator core; 3%

    partial conductor insulation; 11%

    mechanical elements; 22%

    main insulation; 64%

    Page 28

    [IEEE85] Motor Reliability Working Group, Report of large motor reliability, survey of industrial and commercial installations-Part I, IEEE Trans. Ind. Applicat., vol. 21, July- August, 1985

  • Why do Rotating Machines Fail?

    Page 29

  • Cigre Brochure 392 SURVEY OF HYDROGENERATOR FAILURES Working Group A1.10

    Page 30

  • Electrical Failures

    Page 31

    Delamination

    Mechanical Abrasion Insufficient contacting between corona and end winding protection surface

    Insufficient spacing, contamination

  • Electrical Failures

  • Perfect Mica Insulation

    Page 33

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Mica Insulation with Voids

    Page 34

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Electrical Treeing

    Page: 35

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Winding Insulation with Cracks

    Page 36

    Copper

    Cracks Main Insulation

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Abrasion of the Slot Corona Protection due to Vibration

    Page 37

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • New Hydro Generator Bar with Delamination in the Mica Insulation

    Page 38

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Hydro Generator Bar after 37 Years of Service

    Page: 39

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Hydro Generator Bar after 40 Years of Service

    Page 40

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Fault in the End Winding

    Page 41

  • Faults in the End Winding

    Page: 42

    Source: VATech Hydro Austria

  • PD Fault in the End Winding

    Page 43

    Source: VATech Hydro Austria

  • Discoloration due to Leakage of Cooling Water

    Page 44

    Source: Brtsch et al. "Insulation Failure Mechanisms of Power Generators", DEIS July/August 2008

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 45

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Insulation Resistance

    Page 46

    VE: Empfehlungen fr die Zustandserfassung der Aktivteile rotierender elektrischer Maschinen

    dry

    humid

  • Insulation Resistance Measurement

    Page 47

    Measurement Time Current

    U-VWE 60 s 25.9809 nA

    Measurement Time Current

    U-VWE 600s 3.7637 nA

    PI = 25.98 / 3.76 = 6.9

  • Time Constant

    Page 48

    dry

    humid

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 49

    Introduction

    Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Dielectric Response Combination of PDC and FDS

    Page: 50

    Cur

    rent

    [nA]

    Zeit [s]

    Trans- formation

    Frequency [Hz]

    Verlu

    stfa

    ktor

    0,001 0,001

    1

    1000

    1000 1

    100

    1

    Frequenz [Hz]

    Tan

    Del

    ta

    1000

    1

    0,001 0,1

    1. f > 0,1 Hz Frequency Domain

    2. f < 0,1 Hz Time Domain

    3. Transformation of the Time Domain Data into the Frequency Domain

    Polarisations- und DepolarisationsstromPDC

    Frequency Domain Spectroscopy FDS

    PresenterPresentation NotesResults in frequency domain are directly displayed.Results from time domain are at first transformed to frequency domain and then displayed.Time domain data (polarization current) can be shown as well.

  • FDS Result

    Page 51

  • PDC Result

    Page 52

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 53

    Introduction

    Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Measurement of Dielectric Losses

    Page 54

    Dielectric losses in insulating systems (tan ) conducting losses (tan C) polarization losses (tan P) partial discharge losses (tan PD)

    tan = tan C + tan P + tan PD

    Dielectric losses: tan = f (U)

    Tip-Up Test according to IEEE 286 Tan-Delta Test according to IEC 60894

  • Test Equipment

    Page 55

  • C-Range with 2 CR500

    Page 56

    LCf

    LCCL

    2111

    ===

    L = 20H

  • Test Current with different Inductors

    Page 57

    0 H 80 H 40 H 26.6 H = 80 II 40

    cap

    ind

  • Test Setup C-Tan-Delta Measurement

    Page 58

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 59

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • PD Limits

    Page 60

  • Offline Test IEC 60037-27 U (V,W+Stator)

    Page 61

    IEC 60034-27

  • IEEE Std 1434-2000

    Page 62

  • Cigre Brochure 258

    Page 63

  • IEC 60034-27

    Page 64

  • Rotating Electrical Machines Design, Faults and Diagnostic Measurement Methods

    Page 65

    Introduction

    Stator Winding Design

    Faults on Generators

    Insulation Resistance and the Polarisation Index (PI)

    Dielectric Response

    Capacitance and Dielectric Dissipation (Power) Factor

    Partial Discharge (PD) Measurement

    Case Study - Measurements on a Hydro Generator

  • Measurement on a 20MVA Generator

    Page 66

  • C-Tan-Delta-Measurement

    Page 67

  • C-Tan-Delta-Measurement

    1,20

    1,30

    1,40

    1,50

    1,60

    1,70

    1,80

    1,90

    0,0V 1000,0V 2000,0V 3000,0V 4000,0V 5000,0V 6000,0V 7000,0V

    %

    Tan Delta [%]RST

    Page 68

  • C-Tan-Delta-Measurement

    -0,20

    -0,10

    0,00

    0,10

    0,20

    0,0V 1000,0V 2000,0V 3000,0V 4000,0V 5000,0V 6000,0V 7000,0V

    %

    delta Tan Delta

    RST

    Page 69

  • C-Tan-Delta-Measurement

    Page 70

    Tan Delta (f) at 2kV

    1.001.101.201.301.401.501.60

    0.0 Hz 100.0 Hz 200.0 Hz 300.0 Hz 400.0 Hz

    %

    RST

  • FDS / PDC Measurement

    Page 71

  • FDS Measurement

    Page 72

  • PDC Measurement

    Page 73

    Measurement Time Current

    U-VWE 60 s 25.9809 nA

    Measurement Time Current

    U-VWE 600s 3.7637 nA

    PI = 25.98 / 3.76 = 6.9

  • Synchronous 4-Channel Partial PD Measurement

    Page 74

  • Channel 1 = U1

    Page 75

  • Channel 2 = U2

    Page 76

  • Channels 3 and 4 = V1 and W1

    Page 77

  • PD Calibration Matrix

    Page 78

    Cal Input 2nC 1 2 3 4

    1 1.00 0.28 0.30 0.272 0.37 1.00 0.30 0.283 0.27 0.09 1.00 0.284 0.27 0.07 0.30 1.00

    Channel

  • Synchronous 4-Channel PD Measurement

    Page 79

  • 3PARD

    Page 80

    3PARD = 3 Phase Amplidude Related Diagram

    or in this case:

    3 Channel Amplitude Related Diagram

  • Synchronous 3-Channel PD Measurement with 3PARD Filtering Cluster A

    Page 81

    A

  • Synchronous 3-Channel PD Measurement with 3PARD Filtering Cluster B

    Page 82

    B

  • [email protected]

    Questions and Remarks?

    ROTATING ELECTRICAL MACHINESIntroductionRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsHydro Generator 11MVAHydro GeneratorHydro Generator 50MVA1000 MVA Generator (Steam Power Plant)90 MVA Generator (Steel Factory)14 MW Motors in a Steel FactoryStator of a Hydro Generator 50MVARotor Stator of a Hydro GeneratorRotor of a Hydro GeneratorRotor of a Synchonous MotorRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsDesign of a Machine StatorStator Slot with WindingConductor DesignStator Winding InsulationStator Winding InsulationRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsDamage to Hydro GeneratorsSources of Insulation DamagesWhy do Rotating Machines Fail?Why do Rotating Machines Fail? Stator windingWhy do Rotating Machines Fail?Cigre Brochure 392SURVEY OF HYDROGENERATOR FAILURESWorking GroupA1.10Electrical FailuresElectrical FailuresPerfect Mica InsulationMica Insulation with VoidsElectrical TreeingWinding Insulation with CracksAbrasion of the Slot Corona Protection due to VibrationNew Hydro Generator Bar with Delamination in the Mica InsulationHydro Generator Bar after 37 Years of ServiceHydro Generator Bar after 40 Years of ServiceFault in the End WindingFaults in the End WindingPD Fault in the End WindingDiscoloration due to Leakage of Cooling WaterRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsInsulation ResistanceInsulation Resistance MeasurementTime ConstantRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsDielectric ResponseCombination of PDC and FDSFDS ResultPDC ResultRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsMeasurement of Dielectric LossesTest EquipmentC-Range with 2 CR500Test Current with different InductorsTest Setup C-Tan-Delta MeasurementRotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsPD LimitsOffline TestIEC 60037-27 U (V,W+Stator)IEEE Std 1434-2000Cigre Brochure 258IEC 60034-27Rotating Electrical Machines Design, Faults and Diagnostic Measurement MethodsMeasurement on a 20MVA GeneratorC-Tan-Delta-MeasurementC-Tan-Delta-MeasurementC-Tan-Delta-MeasurementC-Tan-Delta-MeasurementFDS / PDC MeasurementFDS MeasurementPDC MeasurementSynchronous 4-Channel Partial PD MeasurementChannel 1 = U1Channel 2 = U2Channels 3 and 4 = V1 and W1PD Calibration MatrixSynchronous 4-Channel PD Measurement3PARDSynchronous 3-Channel PD Measurement with 3PARD Filtering Cluster ASynchronous 3-Channel PD Measurement with 3PARD Filtering Cluster BSlide Number 83