2015.09.13 12th icrp dialog seminar presentation

41
hayano Measure & Communicate 4.5 years, and beyond 測って伝える これまでの歩み、そしてこれから Ryugo S. Hayano 早野 龍五 Physics department, The University of Tokyo Sep 13, 2015, ICRP 12th dialogue seminar, Date City

Upload: ryu-hayano

Post on 15-Apr-2017

1.396 views

Category:

Social Media


2 download

TRANSCRIPT

Page 1: 2015.09.13 12th ICRP dialog seminar presentation

hayano

Measure & Communicate 4.5 years, and beyond 測って伝える これまでの歩み、そしてこれから Ryugo S. Hayano 早野 龍五Physics department, The University of Tokyo

Sep 13, 2015, ICRP 12th dialogue seminar, Date City

Page 2: 2015.09.13 12th ICRP dialog seminar presentation

“antimatter” at CERN Team leader since 1997

ジュネーブのCERN研究所で「反物質」を研究

No past experience in Radiation Protection nor Risk Communication - School lunch measurement - large-scale WBC surveys - BABYSCAN - “D-shuttle”

Photo CERN

2011年3月以前に放射線防護 リスクコミュニケーションの経験皆無 - 給食の放射能検査 - WBCによる内部被ばく測定と論文 - BABYSCANの開発・測定・論文 - “D-shuttle”による外部被ばく測定

Page 3: 2015.09.13 12th ICRP dialog seminar presentation

The No. of my twitter followers 僕のツイッターフォロワー数

←M

arch

201

1

←M

arch

201

2

←M

arch

201

3

←M

arch

201

4

←M

arch

201

5

Page 4: 2015.09.13 12th ICRP dialog seminar presentation

one summer day in 2011, I stepped out with my right foot, and stumbled upon Dr. Miyazaki

2011年夏のある日右足を出したところに宮崎先生がおられた

Page 5: 2015.09.13 12th ICRP dialog seminar presentation

1. 測る:最近の進展 measurement: recent developments

Page 6: 2015.09.13 12th ICRP dialog seminar presentation

Courtesy, NHK World

1. BABYSCAN

Page 7: 2015.09.13 12th ICRP dialog seminar presentation

Whole-body counter surveys of over 2700 babies and small children in and around Fukushima

Prefecture 33 to 49 months after the Fukushima Daiichi NPP accident

福島第一原発事故後33-49ヶ月間に実施した 福島県及び周辺県における

2700名以上の乳幼児・小児のホールボディーカウンターによる内部被ばく検査

Hayano et al., to be published in Proc. Japan Acad. B

早野ほか,日本学士院紀要10月号掲載

BABYSCANで昨年は2700人以上測定 → 論文来月公表 > 2700 babies scanned last year → to be published in Oct.

Page 8: 2015.09.13 12th ICRP dialog seminar presentation

セシウム検出者は一人もなし. Nobody had detectable level of radiocaesium

Page 9: 2015.09.13 12th ICRP dialog seminar presentation

3台のBABYSCANと 2700人の地理的分布 3 BABYSCANs were used to measure 2700 babies

Page 10: 2015.09.13 12th ICRP dialog seminar presentation

= =%水

avoid tap Water米

avoid Fukushima rice

野菜avoid Fukushima

vegetables

= =%

三春町南相馬市

←WHY?→

しかし内部被ばくに対する家庭のリスク認知には大きな地域差 Differences in risk perception in Minamisoma vs Miharu

57%

4%

Page 11: 2015.09.13 12th ICRP dialog seminar presentation

2. D-shuttle

フランスの高校生がD-shuttleを着けて来福 French students came to Fukushima with D-shuttle

Page 12: 2015.09.13 12th ICRP dialog seminar presentation

Jul 31 Aug 01 Aug 02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 070.0

0.2

0.4

0.6

0.8

1.0

µSv/h (含自然放射線:追加線量ではない)

← 福島 Fukushima →←  パリ Paris → ←東京 Tokyo→←いわき Iwaki

←富岡駅 Tomioka

CDG security→

French embassy security→

生徒8人引率者4人:データを重ねると D-shuttle data, 8 students, 4 teachers&experts

Page 13: 2015.09.13 12th ICRP dialog seminar presentation
Page 14: 2015.09.13 12th ICRP dialog seminar presentation

Jul 31 Aug 01 Aug 02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 070.0

0.2

0.4

0.6

0.8

1.0

µSv/h (含自然放射線:追加線量ではない)

← 福島 Fukushima →←  パリ Paris → ←東京 Tokyo→

生徒8人引率者4人:データを重ねると D-shuttle data, 8 students, 4 teachers&experts

←都路(Miyakoji)

Page 15: 2015.09.13 12th ICRP dialog seminar presentation
Page 16: 2015.09.13 12th ICRP dialog seminar presentation

Jul 31 Aug 01 Aug 02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 070.0

0.2

0.4

0.6

0.8

1.0

µSv/h (含自然放射線:追加線量ではない)

← 福島 Fukushima →←  パリ Paris → ←東京 Tokyo→

生徒8人引率者4人:データを重ねると D-shuttle data, 8 students, 4 teachers&experts

←会津 Aizu

←国見 Kunimi

Page 17: 2015.09.13 12th ICRP dialog seminar presentation
Page 18: 2015.09.13 12th ICRP dialog seminar presentation

Jul 31 Aug 01 Aug 02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 070.0

0.2

0.4

0.6

0.8

1.0

µSv/h (含自然放射線:追加線量ではない)

← 福島 Fukushima →←  パリ Paris → ←東京 Tokyo→

生徒8人引率者4人:データを重ねると D-shuttle data, 8 students, 4 teachers&experts

変わらないじゃん Not much difference

Page 19: 2015.09.13 12th ICRP dialog seminar presentation

2. 伝える:いつ 誰に どうやって communicate: when, to whom, how?

Page 20: 2015.09.13 12th ICRP dialog seminar presentation

1. 時間とともに Time factor

人々はいつ何を知りたがったか? google 検索キーワードから見る傾向

goole search keyword trends reveal…

Page 21: 2015.09.13 12th ICRP dialog seminar presentation

全世界で World-wide trend

Page 22: 2015.09.13 12th ICRP dialog seminar presentation

2011 2015

Germany

Austria

Switzerland

Luxembourg

Singapore

France

Belgium

Fukushima, TEPCOドイツ語圏で関心高い 半減期2か月ぐらい 時々ぶり返す German media coverage Half-life ~2mo, but recurs

Page 23: 2015.09.13 12th ICRP dialog seminar presentation

日本では Japanese trend

Page 24: 2015.09.13 12th ICRP dialog seminar presentation

2011 2015

Fukushima Daiichi accident

Bq, Sv

Page 25: 2015.09.13 12th ICRP dialog seminar presentation

ICRP ECRR

Internal & external exposures

2011 2015

Page 26: 2015.09.13 12th ICRP dialog seminar presentation

26

Thyroid cancer & screening

mostly from Fukushima

Fukushima

Page 27: 2015.09.13 12th ICRP dialog seminar presentation

2.空間:さまざまなレイヤー/レベル/対象でのコミュニケーションの必要性

2. Space:Need for communication at various layers, levels and audience

Page 28: 2015.09.13 12th ICRP dialog seminar presentation

28

This page was a movie,Pan from Date City office to Globe伊達市役所から世界へ ムービー
Page 29: 2015.09.13 12th ICRP dialog seminar presentation

Difficult to communicate

コミュニケートすることが非常に困難な方々

Convinced, unperturbed

動じない方々

unconvinced majority

揺れ動く世の中の「空気」

public-serviceresources行政のリソース

media

Expert?

social media

← リスクの考え方 risk perception →

Page 30: 2015.09.13 12th ICRP dialog seminar presentation

3. HOPE

Page 31: 2015.09.13 12th ICRP dialog seminar presentation
Page 32: 2015.09.13 12th ICRP dialog seminar presentation

Measurement and comparison of individual external doses of high-school

students

living in Japan, France, Poland and Belarus

– the “D-shuttle” project –

Adachi, N.,1 Adamovitch, V.,2 Adjovi, Y.,3 Aida, K.,4 Akamatsu, H.,5 Akiyama, S.,6 Akli, A.,7

Ando, A.,8 Andrault, T.,9 Antonietti, H.,3 Anzai, S.,10 Arkoun, G.,3 Avenoso, C.,11 Ayrault, D.,9

Banasiewicz, M.,12 Banaskiewicz, M.,13 Bernandini, L.,11 Bernard, E.,7 Berthet, E.,11

Blanchard, M.,3 Boreyko, D.,14 Boros, K.,15 Charron, S.,16 Cornette, P.,9 Czerkas, K.,15

Dameron, M.,11 Date, I.,17 De Pontbriand, M.,3 Demangeau, F.,9 Dobaczewski, L.,18

Dobrzynski, L.,19 Ducouret, A.,3 Dziedzic, M.,20 Ecalle, A.,9 Edon, V.,9 Endo, K.,21 Endo, T.,21

Endo, Y.,21 Etryk, D.,12 Fabiszewska, M.,18 Fang, S.,4 Fauchier, D.,9 Felici, F.,7 Fujiwara, Y.,10

Gardais, C.,9 Gaul, W.,20 Gurin, L.,9 Hakoda, R.,22 Hamamatsu, I.,6 Handa, K.,10 Haneda, H.,10

Hara, T.,10 Hashimoto, M.,1 Hashimoto, T.,8 Hashimoto, K.,21 Hata, D.,1 Hattori, M.,10

Hayano, R.,23, Hayashi, R.,22 Higasi, H.,5 Hiruta, M.,6 Honda, A.,6 Horikawa, Y.,8

Horiuchi, H.,24 Hozumi, Y.,17 Ide, M.,25 Ihara, S.,8 Ikoma, T.,24 Inohara, Y.,22 Itazu, M.,24

Ito, A.,8 Janvrin, J.,9 Jout, I.,11 Kanda, H.,5 Kanemori, G.,5 Kanno, M.,10 Kanomata, N.,10

Kato, T.,24 Kato, S.,24 Katsu, J.,5 Kawasaki, Y.,21 Kikuchi, K.,4 Kilian, P.,26 Kimura, N.,25

Kiya, M.,10 Klepuszewski, M.,15 Kluchnikov, E.,14 Kodama, Y.,5 Kokubun, R.,10 Konishi, F.,22

Konno, A.,6 Kontsevoy, V.,2 Koori, A.,6 Koutaka, A.,6 Kowol, A.,27 Koyama, Y.,4 Kozio l, M.,13

Kozue, M.,1 Kravtchenko, O.,14 Krucza la, W.,12 Kud la, M.,28 Kudo, H.,29 Kumagai, R.,24

Kurogome, K.,25 Kurosu, A.,29 Kuse, M.,25 Lacombe, A.,3 Lefaillet, E.,3 Magara, M.,17

Malinowska, J.,26 Malinowski, M.,18 Maroselli, V.,7 Masui, Y.,29 Matsukawa, K.,29

Matsuya, K.,17 Matusik, B.,20 Maulny, M.,9 Mazur, P.,27 Miyake, C.,29 Miyamoto, Y.,4

Miyata, K.,1 Miyata, K.,5 Miyazaki, M.,30 Moleda, M.,20 Morioka, T.,1 Morita, E.,24 Muto, K.,1

Nadamoto, H.,5 Nadzikiewicz, M.,28 Nagashima, K.,29 Nakade, M.,22 Nakayama, C.,25

Nakazawa, H.,17 Nihei, Y.,4 Nikul, R.,2 Niwa, S.,8 Niwa, O.,30 Nogi, M.,6 Nomura, K.,29

Ogata, D.,8 Ohguchi, H.,31 Ohno, J.,24 Okabe, M.,17 Okada, M.,22 Okada, Y.,6 Omi, N.,25

Onodera, H.,10 Onodera, K.,25 Ooki, S.,21 Oonishi, K.,29 Oonuma, H.,10 Ooshima, H.,8

Oouchi, H.,1 Orsucci, M.,11 Paoli, M.,11 Penaud, M.,9 Perdrisot, C.,9 Petit, M.,9 Piskowski, A.,15

P locharski, A.,15 Polis, A.,13 Polti, L.,3 Potsepnia, T.,14 Przybylski, D.,12 Pytel, M.,28

Quillet, W.,9 Remy, A.,3 Robert, C.,9 Sadowski, M.,19 Saito, M.,10 Sakuma, D.,1 Sano, K.,5

arX

iv:1

506.

0636

4v1

[phy

sics.m

ed-p

h] 2

1 Ju

n 20

15

2

Sasaki, Y.,24 Sato, N.,4 Schneider, T.,32 Schneider, C.,3 Schwartzman, K.,2 Selivanov, E.,14

Sezaki, M.,25 Shiroishi, K.,21 Shustava, I.,14 Sniecinska, A.,28 Stalchenko, E.,14 Staron, A.,27

Stromboni, M.,7 Studzinska, W.,26 Sugisaki, H.,17 Sukegawa, T.,21 Sumida, M.,22 Suzuki, Y.,17

Suzuki, K.,10 Suzuki, R.,10 Suzuki, H.,10 Suzuki, K.,6 Swiderski, W.,18 Szudejko, M.,33

Szymaszek, M.,27 Tada, J.,34 Taguchi, H.,22 Takahashi, K.,4 Tanaka, D.,5 Tanaka, G.,29

Tanaka, S.,24 Tanino, K.,4 Tazbir, K.,13 Tcesnokova, N.,14 Tgawa, N.,5 Toda, N.,6 Tsuchiya, H.,17

Tsukamoto, H.,8 Tsushima, T.,1 Tsutsumi, K.,25 Umemura, H.,8 Uno, M.,24 Usui, A.,25

Utsumi, H.,29 Vaucelle, M.,9 Wada, Y.,17 Watanabe, K.,4 Watanabe, S.,22 Watase, K.,29

Witkowski, M.,26 Yamaki, T.,21 Yamamoto, J.,4 Yamamoto, T.,17 Yamashita, M.,22 Yanai, M.,21

Yasuda, K.,22 Yoshida, Y.,1 Yoshida, A.,21 Yoshimura, K.,25 Zmijewska, M.,15 and Zuclarelli, E.7

1Adachi High School, 2-347 Kakunai, Nihonmatsu, Fukushima 964-0904, Japan

2Bragin High School, Bragin, Gomel region, Belarus

3Notre Dame High School, 1 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France

4Aizu Gakuho High School, Ikkimachi Oaza Yahata,

Yahata-1-1, Aizuwakamatsu, Fukushima 965-0003, Japan

5Nada High Shool, 8-5-1 Uozakikitamachi,

Higashinada-ku, Kobe, Hyogo 658-0082, Japan

6Iwaki High School, Taira Aza Takatsuki 7, Iwaki, Fukushima 970-8026, Japan

7Giocante de Casabianca High School, Avenue Jean Zuccarelli, 20200 Bastia, France

8Ena High School, 1023-1 Ohi-cho, Ena, Gifu 509-7201, Japan

9Bois d’Amour High School, 9 Rue de la Garenne, 86000 Poitiers, France

10Fukushima High School, 5-72 Moriaicho, Fukushima, Fukushima 960-8002, Japan

11Paul Vincensini High School, Rue de la Quatrieme Division Marocaine de Montagne, 20600 Bastia, France

12ZS nr 2 im. Marii Sk lodowskiej-Curie, Otwock, Poland

13I LO im. J. S lowackiego, Czestochowa, Poland

14Blaise Pascal High School n46, 14, rue de Clermont-Ferrand, 246027 Gomel, Belarus

15ZS nr 5 im. Unii Europejskiej, III LO, Ostroleka, Poland

16Institute for Protection and Nuclear Safety (IPSN) BP 6, 92265 Fontenay-aux-Roses, France

17Asaka High School, 5-25-63 Kaisei, Koriyama, Fukushima 963-8851, Japan

18ZS Centrum Edukacji im. Ignacego lukasiewicza, Plock, Poland

19National Centre for Nuclear Research, 05-400 Otwock, A.So ltana 7, Poland

20Publiczne Gimnazjum nr 1 im. Jana Paw la II, Zabki, Poland

21Tamura High School, Mochiaibata 8,Tamuragun Miharumachi, Fukushima 963-7763, Japan

22Fukuyama High School Attached to Hiroshima University,

5-14-1 Kasugacho, Fukuyama, Hiroshima 721-0907, Japan

日本フランスポーランドベラルーシ 高校生200人以上が著者となって英国の専門誌に投稿した 世界の高校生の個人線量比較論文

Japan-France-Poland-Belarus, >200 high school students co-authored a paper comparing personal dose (J. Radiol. Prot., under review)

Page 33: 2015.09.13 12th ICRP dialog seminar presentation

0

0.5

1

1.5

2

1 (Fukuyama)

2 (Nada)

3 (Nara)

4 (Tajimi)

5 (Ena)

6 (Kanagawa)

7 (Asaka)

8 (Iwaki)

9 (Aizu)

10 (Tamura)

11 (Adachi)

12 (Fukushima)

Poitiers (France)

Boulogne (France)

Bastia (France)

Belarus

Poland

mSv/y

Outside of Fukushima

EuropeInside of Fukushima

Comparison of the individual doses (annual basis)

同じ線量計で自然放射線を含む個人線量を世界比較 Same dosimeter, incl. natural background

Page 34: 2015.09.13 12th ICRP dialog seminar presentation

ミラノ万博 日本館 認定イベント 福島高校生徒さんと Milano EXPO, official event (with high school students)

Page 35: 2015.09.13 12th ICRP dialog seminar presentation

FOOD SAFETY CONFERENCEMILANO | 22 SETTEMBRE 2015

Sala Pirelli Consiglio Regionale della Lombardia Via Fabio Filzi 22

FUKUSHIMA

SICUREZZA ALIMENTARE E IMPATTO MEDIATICO ESPERIENZE TRA GIAPPONE E ITALIAA distanza di 4 anni dal disastro di Fukushima molte questioni rimangono aperte: che cosa è importante sapere sulla radioattività? I prodotti alimentari provenienti dalla zona dell’incidente sono nocivi? L’obiettivo della conferenza è di esaminare la percezione del consumatore in termini di sicurezza alimentare, come viene condizionata e come può cambiare, tema strettamente collegato alla fiducia del consumatore.Sarà l’occasione per parlare di sicurezza alimentare in modo approfondito ed esaminare le similitudini tra l’approccio giapponese e quello italiano.

PROGRAMMA14.30 Registrazione15.00 Saluto delle Autorità15.10 Introduzione Prof. Claudia Sorlini | Presidente Comitato Scientifico del Comune di Milano - Le università per Expo 2015 Dott. Ettore Prandini | Presidente Coldiretti Lombardia15.40 Radioactive data both in Fukushima and Europe Presentazione della ricerca di alcuni studenti di un liceo di Fukushima16.00 Fukushima dopo il 2011 Prof. Ryugo Hayano | Dip. di Fisica, Università di Tokyo16.30 Fukushima #nofilter Prof. Stefano Maria Iacus | Dip. di Economia, Management e Metodi Quantitativi, Università degli Studi di Milano Dott.sa Tiziana Carpi | Dip. di Scienze della Mediazione Linguistica e di Studi Interculturali, Università degli Studi di Milano17.00 Food Safety in Italia e in Giappone Intervengono: Mara Soffientini | Responsabile Servizio Consulenza - Food Safety, ChemService Controlli e Ricerche

Page 36: 2015.09.13 12th ICRP dialog seminar presentation

One more thing (for Date city) 伊達市用特別付録

Page 37: 2015.09.13 12th ICRP dialog seminar presentation

140.45 140.50 140.55 140.60 140.65 140.70 140.7537.65

37.70

37.75

37.80

37.85

37.90

37.952011/11/5

0

1

2

3

4

µSv/h432101

Airborne monitoring 2011/11

会場で見せたガラスバッジのスライド,公開版では省略
Page 38: 2015.09.13 12th ICRP dialog seminar presentation

How can I contribute? (may be, not much any more…)

僕にできることは何?(あまりないような気がするが…)

Page 39: 2015.09.13 12th ICRP dialog seminar presentation

22. Big-Bang cosmology 3

22.1.3. The Friedmann-Lemaıtre equations of motion :

The cosmological equations of motion are derived from Einstein’s equations

Rµν − 12gµνR = 8πGNTµν + Λgµν . (22.6)

Gliner [17] and Zeldovich [18] have pioneered the modern view, in which the Λ termis taken to the rhs and interpreted as an effective energy–momentum tensor Tµν for thevacuum of Λgµν/8πGN. It is common to assume that the matter content of the Universeis a perfect fluid, for which

Tµν = −pgµν + (p + ρ)uµuν , (22.7)

where gµν is the space-time metric described by Eq. (22.1), p is the isotropic pressure,ρ is the energy density and u = (1, 0, 0, 0) is the velocity vector for the isotropic fluid inco-moving coordinates. With the perfect fluid source, Einstein’s equations lead to theFriedmann-Lemaıtre equations

H2 ≡

!

R

R

"2

=8π GN ρ

3−

k

R2 +Λ

3, (22.8)

andR

R=

Λ

3−

4πGN

3(ρ + 3p) , (22.9)

where H(t) is the Hubble parameter and Λ is the cosmological constant. The first of theseis sometimes called the Friedmann equation. Energy conservation via Tµν

;µ = 0, leads to a

third useful equation [which can also be derived from Eq. (22.8) and Eq. (22.9)]

ρ = −3H (ρ + p) . (22.10)

Eq. (22.10) can also be simply derived as a consequence of the first law of thermodynamics.

Eq. (22.8) has a simple classical mechanical analog if we neglect (for the moment) thecosmological term Λ. By interpreting −k/R2 Newtonianly as a ‘total energy’, then wesee that the evolution of the Universe is governed by a competition between the potentialenergy, 8πGNρ/3, and the kinetic term (R/R)2. For Λ = 0, it is clear that the Universemust be expanding or contracting (except at the turning point prior to collapse in a closedUniverse). The ultimate fate of the Universe is determined by the curvature constantk. For k = +1, the Universe will recollapse in a finite time, whereas for k = 0,−1, theUniverse will expand indefinitely. These simple conclusions can be altered when Λ = 0 ormore generally with some component with (ρ + 3p) < 0.

August 21, 2014 13:17

26. Dark energy3

More generally, one can search for signatures of modified gravity by comparing the

history of cosmic structure growth to the history of cosmic expansion. Within GR, these

two are linked by a consistency relation, as described below (Eq. (26.2)). Modifying

gravity can change the predicted rate of structure growth, and it can make the growth

rate dependent on scale or environment. In some circumstances, modifying gravity alters

the combinations of potentials responsible for gravitational lensing and the dynamics of

non-relativistic tracers (such as galaxies or stars) in different ways (see Sec. 22.4.7 in this

Review), leading to order unity mismatches between the masses of objects inferred from

lensing and those inferred from dynamics in unscreened environments.

At present there are no fully realized and empirically viable modified gravity theories

that explain the observed level of cosmic acceleration. The constraints on f(R) models

now force them so close to GR that they cannot produce acceleration without introducing

a separate dark energy component [18]. The DGP model is empirically ruled out by

several tests, including the expansion history, the integrated Sachs-Wolfe effect, and

redshift-space distortion measurements of the structure growth rate [19]. The elimination

of these models should be considered an important success of the program to empirically

test theories of cosmic acceleration. However, it is worth recalling that there was no

fully realized gravitational explanation for the precession of Mercury’s orbit prior to the

completion of GR in 1915, and the fact that no complete and viable modified gravity

theory exists today does not mean that one will not arise in the future. In the meantime,

we can continue empirical investigations that can tighten restrictions on such theories or

perhaps point towards the gravitational sector as the origin of accelerating expansion.

26.2.2.Expansion History and Growth of Structure :

The main line of empirical attack on dark energy is to measure the history of cosmic

expansion and the history of matter clustering with the greatest achievable precision

over a wide range of redshift. Within GR, the expansion rate H(z) is governed by

the Friedmann equation (see the articles on Big Bang Cosmology and Cosmological

Parameters—Secs. 22 and 24 in this Review). For dark energy with an equation of state

w(z), the cosmological constant contribution to the expansion, ΩΛ , is replaced by a

redshift-dependent contribution with the evolution of the dark energy density following

from Eq. (22.10),ΩDE ρDE (z)ρDE(z = 0) = Ω

DE exp!

3"

z

0[1 + w(z ′)] dz ′

1 + z ′

#

DE (1 + z) 3(1+w),(26.1)

where the second equality holds for constant w. If Ωm , Ωr , and the present value of Ωtot

are known, then measuring H(z) pins down w(z). (Note that ΩDE is the same quantity

denoted Ωv in Sec. 22, but we have adopted the DE subscript to avoid implying that dark

energy is necessarily a vacuum effect.)

While some observations can probe H(z) directly, others measure the distance-redshift

relation. The basic relations between angular diameter distance or luminosity distance

and H(z) are given in Ch. 22 —and these are generally unaltered in time-dependent dark

energy or modified gravity models. For convenience, in later sections, we will sometimes

refer to the comoving angular distance, DA,c (z) = (1 + z)D

A (z).

August 21, 201413:17

(as a physicist)Space-time perspective

(物理学者としては)

時空を考えねば

22.Big-B

ang cosmolog

y 1

22.BIG-BANG COSMOLOGY

RevisedSeptember 2013

by K.A. Olive(Univers

ity of Minnesota) and J.A. Peaco

ck

(University of Edinburgh).

22.1. Introductio

n to Standard

Big-Bang Model

The observed expansion

of the Universe [1–3

] is a natural (almost inevitable) resu

lt of

anyhomogen

eous and isotropic cosm

ological

model basedon general

relativity.

However,

by itself, the Hubble expansion

does not provide sufficientevidence for what we generall

y

referto as the Big-B

ang model of cosmolog

y. While generalrelat

ivity is in principle

capable of describing the cosm

ology of any

givendistrib

utionof matter

, it is extremely

fortunate

that our Universe appears

to be homogeneous and isotr

opic on largescale

s.

Together, homogen

eityand isotr

opyallow

us to extend the CopernicanPrinciple to the

Cosmological

Principle, stating that all spatial

positions in the Univers

e are essentially

equivalent.

The formulatio

n of the Big-Bang model began

in the 1940s with the work

of George

Gamow and his collaborat

ors,Alpher and Herman. In order to acco

unt for the possibility

that the abundancesof the elem

entshad a cosm

ological

origin, they proposed

that

the earlyUnivers

e which was once veryhot and dense (enough so as to allow

for the

nucleosynthetic

processing of hydroge

n), and has expanded and cooledto its presen

t

state[4,5]

. In 1948, Alpher and Herman predicted

that a directconsequence of this

model is the presence of a relic

background radiatio

n with a temperature of order a few

K [6,7]. Of course this radiatio

n was observed 16 year

s lateras the microw

ave background

radiation [8].

Indeed, it was the observation

of the 3 K background radiatio

n that singled

out the Big-Bang model as the prime candidate

to describe our Univers

e. Subsequent

workon Big-B

ang nucleosynthesis

further confirmed the necessity of our hot and dense

past.(See the review

on BBN—Sec. 23 of this Review for a detail

ed discussionof BBN.)

These relativistic

cosmolog

icalmodels face

severe problems with their initial

conditions,

to which the best modernsolution

is inflationary

cosmolog

y, discussedin Sec. 22.3

.5. If

correct, these ideas

would strictly render the term

‘Big Bang’ redundant,since it was

first coined by Hoyle to represen

t a criticism

of the lackof understa

nding of the initial

conditions.

22.1.1.

The Robertson

-Walker Univer

se :

The observed homogen

eityand isotr

opyenable us to descri

be the overall geom

etry

and evolution

of the Universe in term

s of two cosmolog

icalparam

etersacco

unting for

the spatialcurvat

ure and the overall expansion

(or contracti

on) of the Universe. These

two quantities appear in the most general

expression for a space-t

ime metricwhich has a

(3D) maximallysymmetric

subspace of a 4D space-time, known as the Robertso

n-Walker

metric: ds

2 = dt2 − R

2 (t)

! dr2

1 − kr2+ r

2 (dθ2 + sin

2 θ dφ2 )

"

.

(22.1)

Note that we adopt c = 1 throughout. By rescaling the radial coordinate,

we canchoose

the curvature constan

t k to takeonly the discre

te values +1, −1, or 0 corre

sponding

to closed, open, or spatial

ly flat geometrie

s. In this case, it is often

more convenient

to

re-express

the metricas

K.A. Oliveet al. (PDG), Chin. Phys. C38, 0900

01 (2014) (http

://pdg.lbl.gov

)

August 21,201

413:1

7

Page 40: 2015.09.13 12th ICRP dialog seminar presentation

知ろうとすること。

新潮文庫

早野龍五

東京大学大学院

理学系研究科教授

糸井重里

十万部超 >100,000 copies printed so far (also in e-book)

Page 41: 2015.09.13 12th ICRP dialog seminar presentation

英語版も出ました English Kindle version now available