2015 princeton-cefrc summer school june 22-26, 2015 lecture... · i dx d dx d i dy i dx = j ... c...

10
2015 Princeton-CEFRC Summer School June 22-26, 2015 Lectures on Dynamics of Gaseous Combustion Waves (from flames to detonations) Professor Paul Clavin Aix-Marseille Université ECM & CNRS (IRPHE) Lecture I1I Thermal propagation of flames 1 Copyright 2015 by Paul Clavin This material is not to be sold, reproduced or distributed without permission of the owner, Paul Clavin

Upload: vudiep

Post on 19-Oct-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

2015 Princeton-CEFRC Summer SchoolJune 22-26, 2015

Lectures onDynamics of Gaseous Combustion Waves

(from flames to detonations)Professor Paul Clavin

Aix-Marseille UniversitéECM & CNRS (IRPHE)

Lecture I1IThermal propagation of flames

1

Copyright 2015 by Paul ClavinThis material is not to be sold, reproduced or distributed

without permission of the owner, Paul Clavin

Page 2: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

Lecture 3: Thermal propagation

3-1. Quasi-isobaric approximation (Low Mach number)

3-2. One-step irreversible reaction

3-3. Unity Lewis number and large activation energy

3-4. Zeldovich & Frank-Kamenetskii asymptotic analysisPreheated zoneInner reaction layer

Matched asymptotic solution

3-5. Reaction di�usion wavesPhase space

Selected solution in an unstable medium

P.Clavin III

2

Page 3: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

Quasi-isobaric approximation. LowMach number

����1p

Dp

Dt

���������1T

DT

Dt

���� �����Dp

Dt

����������cp

DT

Dt

����

�(u.�)u � ��p � �p � ⇥u�u

p � �a2 � �p/p � u2/a2 �M2

�T = �oTo⇥cpDT/Dt = �.(��T ) +

j

Q(j)W (j)(T, ..Yk..)

�DYi/Dt = �.(�Di�Yi) +�

j

⇥(j)i MiW

(j)(T, ..Yk..),

mcpdT

dx� d

dx

��

dT

dx

�=

j

Q(j)W (j)(T, ..Yi..)

mdYi

dx� d

dx

��Di

dYi

dx

�=

j

⇥(j)i MiW

(j)(T, ..Yi� ..),

equations m?

x = �� : T = Tu, Yi = Yiu, Wj = 0

x = +� : dT/dx = 0, Yi = Yib, Wj = 0boundary conditions

frozen stateequilibrium state

III � 1)

3

P.Clavin III

m � �uUL = �bUb, Ub/UL � Tb/Tu, � 4� 8D/Dt = md/dx

Flame

Unburntmixture

Burntgas

Planar flame reference frame of flame

⇥cpDT/Dt = Dp/Dt +�.(��T ) +�

j

Q(j)W (j)

(in open space)

very subsonic flow

slow evolution �/�t � u.⇤ ⇥ a |⇤|

+

Page 4: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

R� P + Q

One-step irreversible reactionIII � 2)

R in an inert ; Y = mass fraction of R

x� +� : Y = 0

x� �� : Y = Yu, T = TumYu =

� +�

���Wdx

cp(Tb � Tu) = qm � qRYu

mdY

dx� d

dx

��D

dY

dx

�= ��W

mcpdT

dx� d

dx

��

dT

dx

�= ⇥qRW qR = energy released per unit of mass of R

m � �uUL unknown

Velocity and structure of the planar flame

4

Arrhenius law

�W = �bY

⇥r(T )1

�r(T )� e�E/kBT

�coll

1�rb

� e�E/kBTb

�coll

1�r(T )

=1

�rbe�

TbT �(1�⇥) � � E

kBTb

�1� Tu

Tb

�� � T � Tu

Tb � Tu� [0, 1]

P.Clavin III

Page 5: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

Unity Lewis number and large activation energyIII � 3)

5

� � E

kBTb

�1� Tu

Tb

�W

Yu= �b

⇥rbe�

TbT �(1�⇥)m

d�

dx� ⇥DT

d2�

dx2= ⇥

W

Y1u, m

d⇤

dx� ⇥DT

Led2⇤

dx2= �⇥

W

Y1u,

x = �� : � = 0,⇥ = 1, x = +� : � = 1,⇥ = 0

� � T � Tu

Tb � Tu� [0, 1] � � Y

Yu� [0, 1]

Reduced temperature and mass fractionLe � DT /D

Le = 1

� = 1� � md�

dx� ⇥DT

d2�

dx2= ⇥

W

Y1u,

x = �� : � = 0, x = +� : � = 1,

⇥W

Yu= ⇥b

(1� �)⇤rb

e�TbT �(1�⇥)

� � 1

P.Clavin III

(a) (b)

0 1

⇥W

Yu= ⇥b

w�(�)⇤rb

w�(�) � (1� �)e��(1��)

(reaction rate is non negligible only when T � Tb)

Page 6: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

6

(a) (b)

0 1

w�(�) � (1� �)e��(1��)

Zeldovich, Frank-Kamenetskii asymptotic analysisIII � 4)

Zeldovich 1938m

d�

dx� ⇥DT

d2�

dx2= ⇥

W

Y1u,

� ��

P.Clavin III

origin x = 0 : location of the reaction zone � = 1

W � 0

Page 7: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

7

(a) (b)

0 1

md⇤

dx� m

⇥⇤

dr� ⌅bDTb

drdL

1�

⌅bDTbd2⇤

dx2� ⌅bDTb

⇥⇤

d2r

� ⌅bDTb

d2r

1�

⌅b

⇧rbw�(⇤) � ⌅b

⇧rb⇥⇤ � ⌅b

⇧rb

1�

dr ��

DTb�rb

md�/dx� ⇥DT d2�/dx2 =⇥b

⇤rb(1� �)e��(1�⇥)

m = ⇥b

�(2/�2)DTb/⇤rb, UL = m/⇥u,

dimensional analysisUL �

�DTb/�rb

�DTb

2ddx

�d�

dx

�2

� 1⇥rb

(1� �)e��(1�⇥) d�

dx

� = �(1� �) ⇤rbDTb

2

�d⇥

dx

�2

�� 1

⇥(1� ⇥)e��(1�⇥)d⇥ =

1�2

� �(1�⇥)

0�e��d��

m = �DT /dL�⇥⇤ = O(1/�)

dr � dL

Inner reaction layer

Matching. Solution

⇥bDTbd�/dx|�=1 = m� � 1 :

upstream exit of the inner layer

downstream entrance of the external zone

�(1� ⇥)�� : DTbd⇥/dx��

(2/�2)DTb/⇤rb

P.Clavin III

� dr/dL = O(1/�)

Page 8: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

8

Metastable state Stable equilibrium state Unstable state Stable equilibrium state

⇥�

⇥t� ⇥2�

⇥x2= w(�), � ⇥ 0, x = ±⇤ : � = 0, w = 0

d�/d� = �w(�) � = 1, w = 0

unstable or metastable

stable state

non-dimensional form

Con

cent

ratio

n of

sca

lar

Upstreamunstable state

Downstreamequilibrium state

� � x + µt

⇥ = �� : � = 0, w = 0, ⇥ = +� : � = 1, w = 0

µd�

d⇥� d2�

d⇥2= w(�)

µ

propagating wave at constant velocity

unknown, number of solutions ?

limitation � > 0

III � 5) Reaction diffusion wavesP.Clavin III

Kolmogorov 1937

Page 9: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

9

X � �, Y � µd�/d⇥

dY /dX = µ2[Y � w(X)]/Y

Number of solutions ? Phase spaceP.Clavin III

� � 0

Con

cent

ratio

n of

sca

lar

Upstreamunstable state

Downstreamequilibrium state µ ?

µdX

d�� d2X

d�2= �(X)

�X = A+e� r+ + A�e� r� , �Y = k+A+e� r+ + k�A�e� r�

Two eigenvalues r+and r� and two eigendvectors k+and k�

µd�X

d�� d2�X

d�2= ��

��X µr � r2 � ��� = 0 2r± = µ±

�µ2 � 4��

Y = µdX

d�k± = µr±

Saddle

Metastable orequilibrium state

Saddle

Equilibriumstate

One solutionr� < 0, r+ > 0 r+ > 0, r� < 0

� � �� � ����

� < 0��� < 0

Unstable state

Saddle

Equilibrium state

Non

deg

ener

ate

Particu

lar

trajec

tory

Degenerate

Infinite numbers of solutionsOne particular solution

r+ > 0, r� < 0r+ > r� > 0� � �� � ��

��� < 0��

� > 0

(equilibrium state)Linearisation about X = 0, Y = 0 and X = 1, Y = 0

� � �� � ����

� < 0

Unstable state

FocusSaddle

Equilibrium state

No solution (� � 0)

r+ > 0, r� < 0Im r� �= 0, Im r+ �= 0� � �� � �� ��

� < 0��

� > 0

Re r± > 0

dX/d� = Y/µ dY/d� = µ [Y � �(X)]

Page 10: 2015 Princeton-CEFRC Summer School June 22-26, 2015 Lecture... · i dx d dx D i dY i dx = j ... c ul ar ec t y D ege ne rate Infinite numbers of solutions One particular solution

10

Unstable medium

⌅�/⌅t� ⌅2�/⌅⇥2 = ⇤�o�, where ⇤�

o ⇥ ⌅w/⌅�|�=0 > 0

�(⇥, t) � Z(⇥, t)e+��ot ⇥Z/⇥t� ⇥2Z/⇥�2 = 0

Z = e��2/4t/�

t � � exp[�⇥2/4t + ⇤�ot� ln(t)/2] �2 � 4⇥�

ot2

the lower bound solution is selected µmini � 2�

dw/d�|�=0

Kolmogorov 1937

µflame �

2� 1

0w(�)d��=

Clavin, Linan 1984

OK for a soft term �(�)Wrong for a sti� term �(�)

The lower bound solution changes of nature when �(�) get sti�er

Soft �(�) = �(1� �)

Sti� w(⇥, �) = (�2/2)⇥(1� ⇥)e��(1��), � � 1

P.Clavin III

2r± = µ±�

µ2 � 4���

µ wave velocity

µmini

continuous spectrum with a lower bound

Unstable state

FocusSaddle

Equilibrium state

Unstable state

Saddle

Equilibrium state

Non

deg

ener

ate

Particu

lar

trajec

tory

Degenerate

t = 0

1

0

t�� t��

µ = µminiµ = µmini

r+ = r� = µ/2 k+ = k�lower bound :µmini � 2�

dw/d�|�=0

soft case � collapse of the 2 eigenvaluessoft nonlinear term �(�)