2015 12-10 chabert

44
Periodic Non-Uniform Sampling (PNS) for Satellite Communications Marie Chabert 1 , Bernard Lacaze 2 , Marie-Laure Boucheret 1 , Jean-Adrien Vernhes 1,2,3,4 1 Universit´ e de Toulouse, IRIT-ENSEEIHT 2 eSA laboratory 3 CNES (French Spatial Agency) 4 Thales Alenia Space [email protected]

Upload: scee-team

Post on 18-Jan-2017

30 views

Category:

Technology


0 download

TRANSCRIPT

Periodic Non-Uniform Sampling (PNS)for Satellite Communications

Marie Chabert1, Bernard Lacaze2, Marie-Laure Boucheret1,Jean-Adrien Vernhes1,2,3,4

1Universite de Toulouse, IRIT-ENSEEIHT 2TeSA laboratory3CNES (French Spatial Agency) 4Thales Alenia Space

[email protected]

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Outline

1 IntroductionProblem formulationProposed approach

2 The PNS solutionSignal modelSampling frequency requirementsPNS sampling scheme and reconstruction formulasPractical sampling device: the TI-ADCs

3 Improved PNSPrincipleConvergence speed improvementSelective reconstruction with interference cancelationAnalytic signal reconstruction

4 PNS delay estimationPNS delay estimation with a learning sequenceBlind PNS delay estimation

5 Conclusion

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 2 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Problem formulation

Satellite Communication Context

Context: increasing frequency bandwidth in satellitecommunications.

Technical challenge: onboard high-rate analog-to-digitalconversion.

Economical and ecological constraints: cost, complexity, weightand power consumption of electronic devices.

Trend: migration of signal processing from analog to digital world.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 3 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Proposed approach

Periodic Non uniform Sampling (PNS)

Electronic device: unsynchronized Time Interleaved ADCs.

Requirement: desynchronization estimation.

Additional functionalities:

fast convergence reconstruction,selective reconstruction and interference rejection.analytic signal reconstruction.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 4 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Outline

1 IntroductionProblem formulationProposed approach

2 The PNS solutionSignal modelSampling frequency requirementsPNS sampling scheme and reconstruction formulasPractical sampling device: the TI-ADCs

3 Improved PNSPrincipleConvergence speed improvementSelective reconstruction with interference cancelationAnalytic signal reconstruction

4 PNS delay estimationPNS delay estimation with a learning sequenceBlind PNS delay estimation

5 Conclusion

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 5 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Signal model

Signal model

Stationary random process: X = {X(t), t ∈ R} with zero mean,finite variance and power spectral density sX(f):

sX(f) =

∫ ∞

−∞e−2iπfτRX(τ) dτ

RX(τ) = E[X(t)X∗(t− τ)] correlation function of X

Bandpass process: sX(f) support included in the normalized kth

Nyquist band BN (k):

BN (k) =

(−(k +

1

2),−(k − 1

2)

)∪(k − 1

2, k +

1

2

)

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 6 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Nyquist band

Sx(f)

f

k- 12 k k+ 12

fmin fmax-k+ 12

-k-k- 12

B+N (k) = 1B−N (k) = 1

Figure: Nyquist band

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 7 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Sampling frequency requirements

Case of a high frequency pass-band signal

Uniform low-pass sampling: Shannon criterion fe = 2fmax.

Uniform band-pass sampling: constrained Landau criterionfe ≥ 2B.

Periodic Non Uniform Sampling (PNS): Landau criterionfe = 2B.

Sx(f)

fB− B+

−fc fc−fmax fmax−fmin fmin

Figure: Passband model

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 8 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Periodic Non uniform Sampling (PNS) of orderL

Definition

PNSL: L interleaved uniform sampling sequencesXi = {X(n+ δi), n ∈ Z}, δi ∈]0, 1[, i ∈ {0, L}.

t

nTe (n+ 1)Te (n+ 2)Te (n+ 3)Te

PNSL:

tL−1:

···

t2:

t1:

t0:

∆0

Te

∆1

Te

∆2

Te

∆L−1

Te

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 9 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Periodic Non uniform Sampling (PNS) of order 2

Definition

PNS2: 2 interleaved uniform sampling sequencesX0 = {X(n), n ∈ Z} and X∆ = {X(n+ ∆), n ∈ Z}, ∆ ∈]0, 1[.

t

nTe (n+ 1)Te (n+ 2)Te (n+ 3)Te

PNS2:

t1:

t0:

∆0 = 0

Te

∆1

Te

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 10 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Periodic Non uniform Sampling (PNS) of order 2

X(n)

t

X(n+Δ)

Figure: Example

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 11 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

PNS2 reconstruction - Filter formulation1

µt

ψt

⊕µ∆

⊕+−

X0

X∆ D

X0

XK

X

(a) Orthogonal scheme

ηt

ψt

⊕X0

X∆

X

X′0

X′K

(b) Symmetrical scheme

General filter expressions

µt(f) = St(f)S0(f)e

2iπft

ηt(f) = µt(f)− µ∆(f)ψt(f)

ψt(f) = e2iπf(t−∆) S0(f)St−∆(f)−S∗∆(f)St(f)

S20(f)−|St−∆(f)|2

with: Sλ(f) =∑n∈Z sX(f + n)e2iπnλ, f ∈ (− 1

2 ,12 )

1B. Lacaze. “Filtering from PNS2 Sampling”. In: Sampling Theory in Signal andImage Processing (STSIP) 11.1 (2012), pp. 43–53.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 12 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

PNS2 reconstruction - Interpolation formulas2

Closed-form reconstruction formulas

Hypothesis: Bandpass signal composed of two sub-bands, nooversampling.

Simple exact PNS2 reconstruction formulas :

X(t) =A0(t) sin [2πk(∆− t)] +A∆(t) sin [2πkt]

sin [2πk∆]

with Aλ(t) =∑n∈Z

sin [π(t− n− λ)]

π(t− n− λ)X(n+ λ)

if 2k∆ /∈ Z

2B. Lacaze. “Equivalent circuits for the PNS2 sampling scheme”. In: IEEETransactions on Circuits and Systems I: Regular Papers 57.11 (2010), pp. 2904–2914.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 13 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Practical sampling device

Time Interleaved Analog to Digital Converters (TI-ADCs)

Structure: L time-interleaved multiplexed low-rate (fs) ADCs sharethe high-rate (fe = Lfs) sampling operation.

Advantages: high sampling rates at low cost, low complexity, lowpower consumption.

Limitations: mismatch errors including desynchronization.

For uniform sampling: perfect synchronization required.

For Periodic Non Uniform Sampling (PNS): possiblyunsynchronized.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 14 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Synchronized Time Interleaved Analog toDigital Converters (TI-ADCs)

M

U

X

X[n]Lfs

X(t)

ADCL−1

nTs +L−1L

Ts

fs

ADCL−2

nTs +L−2L

Ts

fs

ADC2

nTs +2LTs

fs

ADC1

nTs +1LTs

fs

ADC0

nTs

fs

(c) Architecture

t∼ Lfs

Ts 2Ts 3Ts 4Ts

TI-ADC:

ADCL−1:

ADCL−2:

ADC2:

ADC1:

ADC0:

∼ fs

∼ fs

∼ fs

∼ fs

∼ fsTs

1LTs

2LTs

L−2L Ts

L−1L Ts

(d) Elementary and global sampling operations

Figure: Synchronized TI-ADCs

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 15 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Synchronized TI-ADCs: an ideal model

Synchronization at all price

Associated sampling scheme: uniform sampling.

In practice: design imperfections and operating conditions ⇒desynchronization.

Common solution: calibration and hardware corrections.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 16 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Unsynchronized TI-ADC

X[n]

R

E

C

O

N

S

T

Lfs

δi, i = 0, ..., L− 1

X(t)

ADCL−1

nTs + δL−1

fs

ADCL−2

nTs + δL−2

fs

ADC2

nTs + δ2

fs

ADC1

nTs + δ1

fs

ADC0

nTs + δ0

fs

(a) Realistic/desynchronizedTI-ADC architecture

t∼ Lfs

Ts 2Ts 3Ts 4Ts

TI-ADC:

ADCL−1:

ADCL−2:

ADC2:

ADC1:

ADC0:

∼ fs

∼ fs

∼ fs

∼ fs

∼ fs

δ0

δ1

δ2

δL−2

δL−1

(b) Elementary and global (non uniform)sampling operations

Figure: Realistic/desynchronized TI-ADC model

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 17 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Unsynchronized TI-ADCs: a realistic model

Contributions: ”desynchronization... so?”

Proposed sampling scheme: Periodic Non uniform Sampling.

No hardware correction of the desynchronization required.

Estimation of the desynchronization:

hypothesis: slow variations of the desynchronization,from a training sequence,blindly.

Complexity moved from analog to digital world:

Digital compensation of the desynchronization.Additional functionalities:

improved reconstruction speed,selective reconstruction with interference rejection,analytic signal reconstruction.

Dirty RF paradigm: how to cope with low-cost imperfect analogdevices thanks to subsequent digital processing.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 18 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Outline

1 IntroductionProblem formulationProposed approach

2 The PNS solutionSignal modelSampling frequency requirementsPNS sampling scheme and reconstruction formulasPractical sampling device: the TI-ADCs

3 Improved PNSPrincipleConvergence speed improvementSelective reconstruction with interference cancelationAnalytic signal reconstruction

4 PNS delay estimationPNS delay estimation with a learning sequenceBlind PNS delay estimation

5 Conclusion

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 19 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Improved PNS

Principle

Integration of a filtering operation in the reconstruction step.

Condition: oversampling.

Joint filter H with transfer function H(f).

Reconstruction of U = H(X) from the filtering ofX0 = {X(n), n ∈ Z} and X∆ = {X(n+ ∆), n ∈ Z} by:

ηHt (f) = ie2iπftH(f + k)e2iπk(t−∆) −H(f − k)e−2iπk(t−∆)

2 sin 2πk∆,

ψHt (f) = ie2iπf(t−∆)H(f − k)e−2iπkt −H(f + k)e2iπkt

2 sin 2πk∆.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 20 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Improved PNS

Additional functionalities

Convergence speed improvement for an increasing joint filtertransfer function regularitya.

Selective signal reconstruction with interference rejection for awell-chosen joint filter bandb.

Analytical signal reconstruction for analytic joint filtersc.

aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodicnonuniform sampling of order 2”. In: IEEE ICASSP 2012.

bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Numerique-Analogiqueselective d’un signal passe-bande soumis a des interferences”. In: GRETSI 2013.

cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-UniformlySampled Bandpass Signal”. In: IEEE ICASSP 2014.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 21 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Rectangular filter

HR(f)

f

1

fcfmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Figure: Rectangular filter

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 22 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Trapezoidal filter

HT (f)

f

1

fc

Btr Btr

fmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Figure: Trapezoidal filter

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 23 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Raised cosine filter

HCS(f)

f

1

fc

Btr Btr

fmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Figure: Raised Cosine Filter

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 24 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Convergence speed improvement: performanceanalysis

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30010−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

N

EQ

MN

Filtre rectangulaireFiltre trapezoıdalFiltre en cosinus sureleve

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 25 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Selective reconstruction with interferencecancelation

f

k + 12k − 1

2

Btot

Sx1(f) Sx2

(f) Sx3(f)

B B BBtr Btr Btr Btr

H1(f) H2(f) H3(f)

Figure: Selective reconstruction with interference cancelation

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 26 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Selective reconstruction with interferencecancelation: performance analysis

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30010−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N

EQ

MN

Filtre rectangulaireFiltre trapezoıdal

Filtre en cosinus sureleve

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 27 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Analytic signal reconstruction

HR(f)

f

1

fcfmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 28 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Analytic signal reconstruction

HT (f)

f

1

fc

Btr Btr

fmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 29 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Analytic signal reconstruction

HCS(f)

f

1

fc

Btr Btr

fmin fmax-fc -fmin-fmax

B+N (k)B−N (k)

k- 12 k+ 12-k+ 1

2-k- 12

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 30 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Analytic signal reconstruction: performanceanalysis

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 30010−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N

EQ

MN

Filtre rectangulaireFiltre trapezoıdal

Filtre cosinus sureleve

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 31 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Outline

1 IntroductionProblem formulationProposed approach

2 The PNS solutionSignal modelSampling frequency requirementsPNS sampling scheme and reconstruction formulasPractical sampling device: the TI-ADCs

3 Improved PNSPrincipleConvergence speed improvementSelective reconstruction with interference cancelationAnalytic signal reconstruction

4 PNS delay estimationPNS delay estimation with a learning sequenceBlind PNS delay estimation

5 Conclusion

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 32 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

PNS delay estimation with a learning sequence3

Using a learning sequence

Principle:Learning sequence with a priori known spectrum:

cosine wave,bandlimited white noise.

Sampling using the unsynchronized TI-ADC.PNS reconstruction for varying delays.Criterion optimization w.r.t the delay.

Limitation: no superimposition with the signal of interest

part of the Built-In Self Test (BIST),online updates during silent periods.

Advantages:

low complexity and thus low consumption.

3J.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay ina Periodic Non-uniform Sampling Scheme”. In: SampTA 2015.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 33 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Principle: orthogonality property

Known delay: orthogonal equivalent scheme

Orthogonality between D = {D(n), n ∈ Z} and X0 = {X(n), n ∈ Z}:

E[D(n)X∗0 (m)] = 0 , ∀(n,m) ∈ Z

with:D(n) = X(n+ ∆)− µ∆[X0](n)

µt

ψt

⊕µ∆

⊕+−

X0

X∆ D

X0

XK

X

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 34 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Principle: orthogonality property

Unknown delay: loss of orthogonality

Sampling sequences: X0,X∆.

Reconstruction using a wrong delay ∆ ∈]0, 1[, ∆ 6= ∆.

Loss of orthogonality criterion:

σ2∆

= E[|X(n+ ∆)− µ∆[X0](n)|2

]

=

∫ ∞

−∞

∣∣e2iπf∆ − µ∆(f)∣∣2 sX(f) df

For simplificity:

Baseband learning sequence: sX(f) = 0 for f /∈(− 1

2, 1

2

)Delay filter µ∆(f): µ∆[X0](n) = X(n+ ∆)

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 35 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Principle: orthogonality property

Unknown delay: loss of orthogonality

Simplified criterion closed-form expression:

σ2∆

= E[|X(n+ ∆)−X(n+ ∆)|2

]

=∫ 1

2

− 12

∣∣∣e2iπf(∆−∆) − 1∣∣∣2

sX(f) df

with:

µ∆[X0](n) = X(n+ ∆) =∑

k

sin[π(∆− k)]

π(∆− k)X(n+ k)

Comparison between closed-form expression and empiricalestimation for particular learning sequences ⇒ ∆ estimation.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 36 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Examples of learning sequences

Cosine wave

Learning sequence: Cosine wave at frequency f0 defined by

sX(f) =1

2(δ(f − f0) + δ(f + f0)) , − 1

2< f0 <

1

2

Criterion closed-form expression:

σ2∆

= 4 sin2[πf0(∆−∆)

]

Estimation of ∆:

∆ = ∆− 1

2πf0arccos

[1−

σ2∆

2

]

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 37 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Learning sequence example 2

Bandlimited white noise

Learning sequence: bandlimited white noise defined by

sX(f) =

{1 on (− 1

2 + ε, 12 − ε) , 0 < ε < 1

2

0 elsewhere

Criterion closed-form expression:

σ2∆≈

∫ 12−ε− 1

2 +ε

∣∣∣e2iπf(∆−∆) − 1∣∣∣2

df

≈ 2(1− 2ε)(

1− sinc[π(∆−∆)(1− 2ε)])

Estimation of ∆ from:

sinc[π(∆−∆)(1− 2ε)] = 1−σ2

2(1− 2ε)

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 38 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Performance analysis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

10−8

10−7

10−6

10−5

N

E[ |∆−

∆|2]

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 39 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Blind PNS delay estimation4

Principle: stationarity property

Property: wide sense stationarity of the reconstructed signal

X(∆) = {X(∆)(t), t ∈ R} if and only if ∆ = ∆. In particular:

P (∆)(tm) = E

[∣∣∣X(∆) (tm)∣∣∣2], tm =

m

M + 1, m = 1, ...,M

independent of tm.

Strategy: estimation of the reconstructed signal power P (∆)(tm)for m = 1, ...,M for different values of ∆:

P (∆)(tm) =1

N

N2∑

n=−N2

∣∣∣X(∆) (n+ tm)∣∣∣2

, m = 1, ...,M.

4J.-A. Vernhes et al. “Estimation du retard en echantillonnage periodique nonuniforme - Application aux CAN entrelaces desynchronises”. In: GRETSI 2015.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 40 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Performance analysis

0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.3310−1

100

101

102

103

P(∆

)m

(a) Estimated power at differenttimes tm

0.17 0.18 0.19 0.2 0.21 ∆ 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.3310−4

10−3

10−2

10−1

100

101

102

103

104

105

(b) Variance of the estimatedpower

Figure: Blind estimation principle

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 41 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Outline

1 IntroductionProblem formulationProposed approach

2 The PNS solutionSignal modelSampling frequency requirementsPNS sampling scheme and reconstruction formulasPractical sampling device: the TI-ADCs

3 Improved PNSPrincipleConvergence speed improvementSelective reconstruction with interference cancelationAnalytic signal reconstruction

4 PNS delay estimationPNS delay estimation with a learning sequenceBlind PNS delay estimation

5 Conclusion

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 42 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Conclusion

Contributions

PNS as an alternative sampling scheme proposed for TI-ADCs.

Additional functionalities for telecommunications:

improved convergence speeda,selective reconstruction with interference rejectionb,analytical signal reconstructionc.

Estimation of the desynchronisation:

from a learning sequenced, blindlye.

aM. Chabert and B. Lacaze. “Fast convergence reconstruction formulas for periodicnonuniform sampling of order 2”. In: IEEE ICASSP 2012.

bJ.-A. Vernhes, M. Chabert, and B. Lacaze. “Conversion Numerique-Analogiqueselective d’un signal passe-bande soumis a des interferences”. In: GRETSI 2013.

cJ.-A. Vernhes et al. “Selective Analytic Signal Construction From A Non-UniformlySampled Bandpass Signal”. In: IEEE ICASSP 2014.

dJ.-A. Vernhes et al. “Adaptive Estimation and Compensation of the Time Delay ina Periodic Non-uniform Sampling Scheme”. In: SampTA 2015.

eJ.-A. Vernhes et al. “Estimation du retard en echantillonnage periodique nonuniforme - Application aux CAN entrelaces desynchronises”. In: GRETSI 2015.

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 43 / 44

Introduction The PNS solution Improved PNS PNS delay estimation Conclusion

Thanks for your attention

Questions?

Marie Chabert IRIT-ENSEEIHT – TeSA – CNES – TAS

Periodic Non-Uniform Sampling (PNS) for Satellite Communications 44 / 44