2014 02 18ufsc lec 1 classical optics fxk

Upload: ramya-s-naidu

Post on 17-Feb-2018

256 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    1/61

    IMPRS: Ultrafast Source Technologies

    1

    Franz X. Krtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 62/322

    Email & phone: [email protected], 040 8998 6350

    [email protected], 040 8998 2706

    Lectures: Tuesday 09.00-11.00 Geb 99, Sem Raum IV (1.OG)

    Thursday 09.00-11.00 Geb 99, Sem Raum IV (1.OG)

    Start: 18.02.2014

    Course Secretary:Christine Berber

    O3.095, phone x-6351, E-mail: [email protected].

    Class website: http://desy.cfel.de/ultrafast_optics_and_x_rays_division/

    teaching/ imprs_summer_semester_2014/lecture_notes

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    2/61

    Recommended Texts:

    Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, 1991.

    Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 2009.

    Ultrashort Laser Pulse Phenomena, Diels and Rudolph,

    Elsevier/Academic Press, 2006

    Optics, Hecht and Zajac, Addison and Wesley Publishing Co., 1979.

    Principles of Lasers, O. Svelto, Plenum Press, NY, 1998.

    Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, 1984.

    Prerequisites:Basic course in electrodynamics

    Text:Class notes will be distributed in class.

    Grade: None

    Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron RadiationSources,

    W. B. Peatman, Gordon and Breach Science Publishers, 1997.

    Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge University

    Press, 1999

    General Information

    2

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    3/61

    Schedule

    Lecturer Topic Time Location

    Krtner Classical Optics TuesdayFeb. 18, 9-11am

    Geb. 99Raum IV, 1.OG

    Uphues X-ray Optics Thursday

    Feb. 20, 9-11am

    Geb. 99

    Raum IV, 1.OG

    Krtner Ultrafast Lasers TuesdayFeb. 25, 9-11am Geb. 99Raum IV, 1.OG

    Uphues Synchrotron

    Radiation

    Thursday

    Feb. 27, 9-11am

    Geb. 99

    Raum IV, 1.OG

    Krtner Electron Sources

    and Accelerators

    Tuesday

    Mar. 04, 9-11am

    Geb. 99

    Raum IV, 1.OGUphues High Order

    Harmonic Gen.

    Thursday

    Mar. 06, 9-11am

    Geb. 99

    Raum IV, 1.OG

    3

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    4/61

    4

    2 Classical Optics2.1 Maxwells Equations and Helmholtz Equation

    2.1.1 Helmholtz Equation

    2.1.2 Plane-Wave Solutions (TEM-Waves) and Complex Notation

    2.1.3 Poynting Vectors, Energy Density and Intensity

    2.2 Paraxial Wave Equation

    2.3 Gaussian Beams

    2.4 Ray Propagation

    2.5 Gaussian Beam Propagation

    2.6 Optical Resonators

    Classical Optics

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    5/61

    2.1 Maxwells Equations of Isotropic Media

    Maxwells Equations: Differential Form

    Material Equations:

    Amperes Law

    Faradays Law

    Gausss Law

    No magnetic charge

    Polarization

    Magnetization

    Current due to free charges

    Free charge density

    Bring Life into Maxwells Equations

    2. Classical Optics

    5

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    6/61

    Vector Identity:

    Vacuum speed of light:

    6

    Classical Optics

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    7/61

    No free charges, No currents from free charges, Non magnetic

    Every field can be written as the sum of tansverse and longitudinal fields:

    Only free charges create a longitudinal electric field:

    Pure radiation field

    Simplified wave equation:

    Wave in vacuum Source term

    7

    Classical Optics

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    8/61

    2.1.1 Helmholtz Equation

    Linear, local medium

    dielectric susceptibility

    Medium speed of light: with

    Refractive Index

    8

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    9/61

    Real field:

    Dispersion relation:

    2.1.2 Plane-Wave Solutions (TEM-Waves) and Compl. Notation

    Artificial, complex field:

    Into wave equation (2.16):

    Wavelength

    9

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    10/6110

    TEM-Waves

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    11/61

    What about the magnetic field?

    Faradays Law:

    TEM-Waves

    11

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    12/61

    Characteristic Impedance

    Vacuum Impedance:

    Example: EM-Wave polarized along x-axis and propagation along z-direction:

    1 ( )r

    12

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    13/61

    Backwards Traveling Wave

    Backwards

    13

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    14/61

    2.1.3 Poynting Vector, Energy Density and Intensity

    1r

    relative permittivity:

    Example: Plane Wave:

    14

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    15/61

    15

    A plane wave is described by:

    zjkyjkxjkEezyxE

    zyxx exp

    ~),,(

    ~

    0

    Although a plane wave is a useful model, strictly speaking it cannot be

    realized in practice, because it fills whole space and carries infinite energy.

    22220 zyx kkkk free space wavenumber

    Maxwells equations are linear, so a sum of solutions is also a solution.

    An arbitrary beam can be can be formed as a superposition of multiple plane

    waves:

    yxzyx dkdkzjkyjkxjkEzyxE exp~),,(~ 0

    22220 zyx kkkk

    there is no integral over kzbecause once kxand ky

    are fixed, kzis constrained by dispersion relation

    2.2 Paraxial Wave Equation

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    16/61

    16

    Figure 2.2: Construction of paraxial beam by superimposing

    many plane waves with a dominant k-component in z-direction

    Consider a beam which consists of plane waves propagating at small angles

    with z axis

    zk

    y xzx kk

    zy kk

    kzcan be approximated as

    (paraxial approximation)

    such a beam

    is called aparaxial beam

    Paraxial Beam

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    17/61

    17

    yxzyxyx dkdkzjkyjkxjkkkEzyxE

    exp),(

    ~),,(

    ~0

    The beam

    can then be expressed as

    yxyx

    yx

    yxzjk

    dkdkyjkxjkzk

    kkjkkEezyxE

    0

    22

    02

    exp),(~

    ),,(~

    0

    slowly varying envelope

    (changing slowly along z)

    quickly varying

    carrier wave

    Allows to find field distribution at any point in space.

    The beam profile is changing as it propagates in free space.

    This is called diffraction.

    Paraxial Diffraction Integral

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    18/61

    18

    From the previous slide

    yxyx

    yx

    yxzjk

    dkdkyjkxjkzk

    kkjkkEezyxE

    0

    22

    02

    exp),(~

    ),,(~

    0

    At z=0

    yxyxyx dkdkyjkxjkkkEzyxE

    exp),(~)0,,(~ 0

    This is Fourier integral. Using Fourier transforms:

    dxdyyjkxjkzyxEkkE yxyx

    exp)0,,(~)2(

    1),(~20

    Given the field at some plane (e.g. z=0), how to find the field at any z?

    )0,,(~

    zyxEKnowing can find ),(~

    0 yx kkE and then ),,(~

    zyxE at any z.

    Paraxial Diffraction Integral Finding Field at Arbitrary z

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    19/61

    19

    Choose transverse Gaussian distribution of plane wave amplitudes:

    called Rayleigh range.

    Performing the integration (i.e. taking Fourier transforms of a Gaussian)

    with

    (Via Fourier transforms, this is equivalent to choosing Gaussian transversal

    field distribution at z=0)

    Substitution into paraxial diffraction integral gives

    2.3 Gaussian Beam

    G i B

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    20/61

    20

    The quantity can be expressed as

    )()(

    11222

    zwj

    zRzz

    jzz

    jzz R

    R

    R

    )/(1 Rjzz

    22)(

    1

    Rzz

    z

    zR

    222 )( R

    R

    zz

    z

    zw

    where R(z) and w(z) are introduced according to

    The pre-factor can be expressed as)/( Rjzzj

    ))(exp()(

    1))(exp(

    22 zjzwzzz

    zj

    jzz

    j

    RRR

    with Rzzz /)(tan

    )(

    )(2)(exp

    )(

    1~),(

    ~ 2

    02

    2

    0 zjzR

    rjk

    zw

    r

    zwzrE We get

    Gaussian Beam

    Fi l E i f G i B Fi ld

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    21/61

    21

    Finally, the field is normalized, giving

    )()(2)(

    exp)(

    14),(

    ~ 202

    20

    0 zjzR

    rjk

    zw

    r

    zw

    PZzrE F

    Field of aGaussian beam

    Normalization means that the total power carried by the beam is P:

    Final Expression for Gaussian Beam Field

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    22/61

    22

    Gaussian Beams: Spot Size and Rayleigh Range

    )(

    )(2)(exp

    )(

    14),(

    ~ 2

    02

    20

    0

    zjzR

    rjk

    zw

    r

    zw

    PZzrE F

    Field of a

    Gaussian beam

    We derived

    222 )( R

    R

    zz

    z

    zw

    22 1)(

    R

    Rz

    zzzw

    Spot size at

    z=0 is min2

    0

    2

    )0( wzw R

    2

    0 1)(

    Rz

    zwzw

    We have

    Defines transversal

    intensity distribution

    2

    0wzR Rayleigh

    range

    spot size as a

    function of z

    )(

    2exp~),(

    2

    2

    zw

    rzrI )(zw

    spot size

    G i B Ph Di t ib ti

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    23/61

    23

    2

    1)(z

    zzzR R

    Rzzz /arctan)(

    22)(

    1

    Rzz

    z

    zR

    Guoy phase

    shift

    Gaussian Beams: Phase Distribution

    )(

    )(2)(exp

    )(

    14),(

    ~ 2

    02

    20

    0

    zjzR

    rjk

    zw

    r

    zw

    PZzrE F

    Field of a

    Gaussian beam

    We derived

    defines phase

    distributionWe have

    Phase fronts (surfaces of constant phase) are parabolic, can be approximated

    as spherical for smallr. R

    (z) turns out to be the radius of the sphere.

    Radius ofwavefront

    curvature

    Defines extra phase shift as compared to plane wave

    G i B All E ti i O Slid

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    24/61

    24

    Gaussian Beams: All Equations in One Slide

    )(

    )(2)(exp

    )(

    14),(

    ~ 2

    02

    20

    0 zjzR

    rjk

    zw

    r

    zw

    PZzrE F

    Gaussian Beam

    Field

    0w

    2

    0 1)(

    Rz

    zwzw min spot size (z=0)

    20wzR Rayleigh range

    Spot size

    2

    1)(z

    zzzR R

    Rz

    z

    z arctan)( Guoy phase shift

    Radius of wavefront curvature

    (2.56)

    (2.54)

    (2.55)

    (2.65)

    I t it Di t ib ti

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    25/61

    25

    Intensity Distribution

    Figure 2.3: The normalized beam intensity I/I

    as a function of the radial

    distance r at different axial distances: (a) z=0, (b) z=zR(c) z=2zR.

    z=0 z=zR z=2zR

    S t Si F ti f

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    26/61

    26

    Spot Size as a Function of z2

    0 1)(

    Rz

    zwzwSpot size w(z

    R)=w0 2At z = zR

    Rayleigh range : distance from the

    waist at which the spot area doubles

    Waist: minimum radius

    3 2 1 0 1 2 34

    2

    0

    2

    4

    4

    4

    w z( )

    w z( )

    0

    33 z

    z.R

    0

    )(

    w

    zw )(zw

    0w

    waist

    20w

    Rz Rz2 Rz3Rz3 Rz2 Rz 0

    zR

    Di A l d C f l P t

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    27/61

    27

    Figure 2.5: Gaussian beam and its characteristics

    Beam Divergence:

    Confocal parameter and depth of focus:

    RR z

    zw

    z

    zwzw 0

    2

    0 1)(

    For large z

    Divergence

    angleRz

    w

    z

    zw 0)(

    Divergence Angle and Confocal Parameter

    Smaller spot size

    larger divergence

    A i l I t it Di t ib ti

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    28/61

    Figure 2.4: Normalized beam intensity I(r=0)/I

    on the beam axis as a function of

    propagation distance z.

    r=0Intensity distribution along Z

    axis (r=0)

    Axial Intensity Distribution

    28

    P C fi t

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    29/61

    29

    Power Confinement

    99% of the power is within radius of 1.5 w(z) from the axis

    Which fraction of the total power is confined within radius r0from the axis?

    Dependence is

    exponential

    Wavefront

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    30/61

    30

    Figure 2.8: Wavefronts of Gaussian beam

    Wavefronts, i.e. surfaces of constant phase, are parabolic

    constant

    Wavefront

    Wavefront and Radius of Curvature

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    31/61

    31

    Figure 2.7: Radius of curvature R(z)

    Wavefront radius of curvature:

    2

    1)(z

    zzzR R

    Wavefront and Radius of Curvature

    Comparison to Plane and Spherical Waves

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    32/61

    32

    Comparison to Plane and Spherical Waves

    Figure 2.9: Wave fronts of (a) a uniform plane wave, (b) a spherical wave;

    (c) a Gaussian beam.

    Guoy Phase Shift

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    33/61

    33

    Figure 2.6: Phase delay of Gaussian beam, Guoy-Phase-Shift

    Phase delay of Gaussian Beam, Guoy-Phase Shift:

    Guoy Phase Shift

    Gaussian Beams: Summary

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    34/61

    34

    Planes of const.Phase

    Beam Waist

    z/z R

    Gaussian Beams: Summary Solution of wave equation in paraxial approximation

    Wave confined in space and with finite amount of power

    Intensity distribution in any cross-section has the same shape (Gaussian),only size and magnitude is scaled

    At the waist, the spot size is minimum and wave fronts are flat

    Lasers are usually built to generate Gaussian beams

    2 4 Ray Propagation

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    35/61

    Figure 2.10: Description of optical ray propagation by its distance and

    inclination from the optical axis.

    Z

    r1

    r2r2r1

    12

    Optical

    System

    35

    2.4 Ray Propagation

    Ray Matrix: Transition medium 1 to 2

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    36/61

    Figure 2.11: Snells law for paraxial rays.

    Z

    r1r2

    r2

    r1

    1 2

    n1 n2

    2

    1

    36

    Ray Matrix: Transition medium 1 to 2

    M = 1 0

    0 1

    Ray Matrix: Propagation over Distance L

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    37/61

    Figure 2.12: Free space propagation

    Z

    r1

    r2

    r2

    r1

    1 2

    L

    37

    Ray Matrix: Propagation over Distance L

    Prop in Medium with Index n over Distance L

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    38/61

    Figure 2.13: Ray propagation through a medium with refractive index n.

    Z

    r1 r2

    r2

    r1

    1 2

    L

    38

    Prop. in Medium with Index n over Distance L

    Thin Plano-convex Lens

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    39/61

    Figure 2.14: Derivation of ABCD-matrix of a thin plano-convex lens.

    Z

    r1 r2

    r2

    r1

    n1 n2

    0

    R

    39

    Thin Plano-convex Lens

    for

    Biconvex Lens and Focussing

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    40/61

    f

    r1

    z

    40

    Biconvex Lens and Focussing

    Figure 2.15: Imaging of parallel rays through a lens with focal length f

    Biconvex LensM =

    1 0

    -

    1

    f 1

    Concave Mirror with ROC R

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    41/61

    Figure 2.16: Derivation of Ray matrix for concave mirror with Radius R.

    Z

    r1

    r2

    r2

    r1

    0

    -R

    r1

    41

    Concave Mirror with ROC R

    Table of Ray Matrices

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    42/61

    42

    Table of Ray Matrices

    Application: Gauss Lens Formula

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    43/61

    Figure 2.17: Gausslens formula.

    fr1

    z

    d1 d2

    r2

    I II

    43

    Application: Gauss Lens Formula

    An Image is formed?

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    44/61

    44

    An Image is formed?

    Gaussian Beam Propagation

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    45/61

    Figure 2.18: Gaussian beam transformation by ABCD law.

    45

    Gaussian Beam Propagation

    2= 1+1+

    e0( ) = ( )exp 0

    2 + 22 ( )

    (2.84)

    e0( ) = 2 exp ( )

    2 + 2

    2 0

    (2.85)

    Telescope

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    46/61

    Figure 2.19: Focussing of a Gaussian beam by a lens.

    d1 d2

    zR1 zR2

    46

    Telescope

    Gaussian Beam Optics: Physical Optics

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    47/61

    47

    Gaussian Beam Optics: Physical Optics

    Ray Optics: B = 0

    Physical Optics: Real part of Eq. (2.90) = 0

    Gausslens formula:

    2 6 Optical Resonators

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    48/61

    Figure 2.20: Fabry-Perot Resonator with finite beam size.

    z1

    w0

    L

    z2

    R1 R2

    2.6 Optical Resonators

    48

    Curved - Flat Mirror Resonator

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    49/61

    Figure 2.21: Curved-Flat Mirror

    Resonator

    Curved Flat Mirror Resonator

    with

    49

    Curved - Flat Mirror Resonator

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    50/61

    Figure 2.22: Beam waists of the curved-flat mirror resonator as a

    function of L/R1.

    For given R1

    50

    Curved Flat Mirror Resonator

    Two Curved Mirror Resonator

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    51/61

    Figure 2.20: Fabry-Perot Resonator with finite beam size.

    z1

    w0

    L

    z2

    R1 R2

    Two Curved Mirror Resonator

    51

    Two Curved Mirror Resonator

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    52/61

    Two Curved Mirror Resonator

    by symmetry:

    and:

    Or:

    52

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    53/61

    Figure 2.23: Two curved

    mirror resonator.

    53

    Resonator Stability

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    54/61

    Figure 2.75: Stable regions (black) for the two-mirror resonator

    L

    0 R2 1R +R2R1

    eso ato Stab ty

    Or introduce cavity parameters:

    54

    Geometrical Interpretation

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    55/61

    Figure 2.24: Stability Criterion

    p

    55

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    56/61

    Figure 2.26: Stable and unstable resonators

    R1 R2 R1

    R2

    Stable Unstable

    R1

    R2

    R2

    R1

    R2

    R2

    56

    Hermite Gaussian Beams

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    57/61

    Other solutions to the paraxial wave equation:

    Hermite Polynomials:

    57

    Hermite Gaussian Beams

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    58/61

    Figure 2.27: Hermite Gaussians Gl(u)

    58

    Hermite Gaussian Beams

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    59/61

    Figure 2.28: Intensity profile of TEMlm-beams. by ABCD law.

    59

    Axial Mode Structure:

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    60/61

    Special Case: Confocal Resonator: L = R

    Roundtrip Phase = 2 p

    Resonance Frequencies:

    2 1( ) ( ) 2z z

    60

    Resonance Frequencies

  • 7/23/2019 2014 02 18UFSC Lec 1 Classical Optics FXK

    61/61

    Figure 2.29: Resonance frequencies of the confocal Fabry-Perot resonator,

    d=L

    q