2013 / material deformation { les houches - espci paris · pdf file12(1 2 ) introduction euler...

52
Introduction Euler buckles Instabilities Conclusion References Thin films, buckles and instabilies J.-Y. Faou, S. Grachev, G. Parry and E. Barthel Surface du Verre et Interfaces / SIMAP 2013 / Material deformation – Les Houches

Upload: phungduong

Post on 10-Feb-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Introduction Euler buckles Instabilities Conclusion References

Thin films, buckles and instabilies

J.-Y. Faou, S. Grachev, G. Parry and E. Barthel

Surface du Verre et Interfaces / SIMAP

2013 / Material deformation – Les Houches

Introduction Euler buckles Instabilities Conclusion References

Buckles

Introduction Euler buckles Instabilities Conclusion References

Thin films: multiple applications...

...and numerous issues !

Introduction Euler buckles Instabilities Conclusion References

A telephone cord

Mo on Ag

• Why do most buckles propagate as telephone cords ?

Introduction Euler buckles Instabilities Conclusion References

Straight buckles

ZnO/Ag multilayer

• Why is a straight buckle stable on the sides ?

• Why does it propagate at its rounded tip ?

Introduction Euler buckles Instabilities Conclusion References

Content

The straight buckleFirst ideas on bucklesMode Mix !

Beyond the straight buckleCircular buckles – instabilitiesTelephone cords and more...

Introduction Euler buckles Instabilities Conclusion References

Energy release rate – Definition

• Definition

G ≡ dEeldA

∣∣∣∣δ

• At equilibrium

G = GcA crack under remote loading σ

Introduction Euler buckles Instabilities Conclusion References

Thin film / plate – Stretching

G =h(∆σ)2

2E ?=

1

2E ?ε2h

• stress variation ∆σ = σ1 − σ0 = E ?ε• plane strain modulus E ? = E

(1−ν2)

Introduction Euler buckles Instabilities Conclusion References

Thin film / plate – Bending

G =1

2

M2

D=

1

2Dw ′′(0)2

Cantilever beam

• bending moment M = Dw ′′(0)

• bending modulus D = Eh3

12(1−ν2)

Introduction Euler buckles Instabilities Conclusion References

Thin film / plate – Bending

G =1

2

M2

D=

1

2Dw ′′(0)2

Cleavage

Energy release rate for a DCB test

G =3Eh3

8(1− ν2)

L2

)2

[Obreimov, 1930]

Introduction Euler buckles Instabilities Conclusion References

Content

The straight buckleFirst ideas on bucklesMode Mix !

Beyond the straight buckleCircular buckles – instabilitiesTelephone cords and more...

Introduction Euler buckles Instabilities Conclusion References

Plate equilibrium1D von Karman equation

D∂4w

∂y4− Nyy

∂2w

∂y2= 0

dNyy

dy= 0

• bending modulus

D =Eh3

12(1− ν2)

• transverse loadingNyy = σyyh

Introduction Euler buckles Instabilities Conclusion References

Plate equilibrium1D von Karman equation

D∂4w

∂y4− Nyy

∂2w

∂y2= 0

dNyy

dy= 0

with w = 12δ[1 + cos

(πyb

)]we find Dπ2

b2 − σch = 0

Buckling stress

σc =π2D

b2h

Introduction Euler buckles Instabilities Conclusion References

Strains in the plate – non linear

εy =du

dy+

1

2(dw

dy)2

elongation dl ′2 = (dy + du)2 + dw2 so that

dl ′

dl ' 1 + dudy + 1

2

(dwdy

)2

Introduction Euler buckles Instabilities Conclusion References

Strains in the plate – non linear

εy =du

dy+

1

2(dw

dy)2

2b∆σE? = b

2π2δ2

4b2 with plane strain modulus E ? = E(1−ν2)

Introduction Euler buckles Instabilities Conclusion References

Strains in the plate – non linear

εy =du

dy+

1

2(dw

dy)2

2b∆σE? = b

2π2δ2

4b2 with plane strain modulus E ? = E(1−ν2)

Buckle amplitude

ξ2 =4

3

σc− 1

)

Introduction Euler buckles Instabilities Conclusion References

Euler buckle• Energy release rate

G =1

2

(σ − σc)(σ + 3σc)

E ?

• Total elastic energy stored

G0 =1

2

hσ2

E ?

• ERR G = 12M2

D + 12h∆σ2

E?

• moment M = π2

2 D δb2

• traction ∆N = h∆σ = π2

16hE?δ2

b2

[Hutchinson and Suo, 1992]

Introduction Euler buckles Instabilities Conclusion References

Euler buckle – stability

[Hutchinson and Suo, 1992]

Introduction Euler buckles Instabilities Conclusion References

Euler buckle – stability

[Hutchinson and Suo, 1992]

Introduction Euler buckles Instabilities Conclusion References

Content

The straight buckleFirst ideas on bucklesMode Mix !

Beyond the straight buckleCircular buckles – instabilitiesTelephone cords and more...

Introduction Euler buckles Instabilities Conclusion References

Crack tip stress field – mode I

Orthoradial stress distribution σ̃(θ)

σ(r , θ) = KI√2πr

σ̃(θ) [Erdogan and Sih, 1963]

Introduction Euler buckles Instabilities Conclusion References

Crack tip stress field – mode II

Orthoradial stress distribution σ̃(θ)

σ(r , θ) = KII√2πr

σ̃(θ) [Erdogan and Sih, 1963]

Introduction Euler buckles Instabilities Conclusion References

Edge crack for a thin film

Mode mixity for anedge crack

Mode mixity angle tan(ψ) = KIIKI

[Hutchinson and Suo, 1992]

Introduction Euler buckles Instabilities Conclusion References

Edge crack for a thin film

Pressure blade making [Pelegrin, 2005]

Mode mixity for anedge crack

Introduction Euler buckles Instabilities Conclusion References

Edge crack for a thin film

KI =cosω√

2Ph−

12 +√

6 sinωMh−32

KII =sinω√

2Ph−

12 −√

6 cosωMh−32

with ω ' 52◦Mode mixity for an

edge crack

Introduction Euler buckles Instabilities Conclusion References

Mixed Mode Toughness

[Chai and Liechti,1992]

Introduction Euler buckles Instabilities Conclusion References

Mixed Mode Toughness

[Chai and Liechti,1992]

f (ψ) =Gc(ψ)

GIc= 1 + tan(ηψ)2

Introduction Euler buckles Instabilities Conclusion References

Impact for Euler buckle

Mode mixity

tanψ =cosω +

√3

4 ξ sinω

− sinω +√

34 ξ cosω

with ω ' 52◦

• Straight buckles CAN be stable on the sides

Introduction Euler buckles Instabilities Conclusion References

Impact for Euler buckle

Mode corrected ERR

• Straight buckles CAN be stable on the sides

Introduction Euler buckles Instabilities Conclusion References

Content

The straight buckleFirst ideas on bucklesMode Mix !

Beyond the straight buckleCircular buckles – instabilitiesTelephone cords and more...

Introduction Euler buckles Instabilities Conclusion References

Buckles, spalls...

A. Benedetto (SGR)

Introduction Euler buckles Instabilities Conclusion References

Energy release rate Mode mixity

Circular buckle Hutchinson et al. [1992]

Introduction Euler buckles Instabilities Conclusion References

Circular buckle – mode adjusted ERR

• circular buckles are seldom stable

• a straight buckle propagates at its rounded tip

Hutchinson et al. [1992]

Introduction Euler buckles Instabilities Conclusion References

Circular buckle – mode adjusted ERR

• circular buckles are seldom stable

• a straight buckle propagates at its rounded tip

Hutchinson et al. [1992]

Introduction Euler buckles Instabilities Conclusion References

... and scalloped buckles!

A. Benedetto (SGR)

Introduction Euler buckles Instabilities Conclusion References

Circular buckle – Instability

• Perturbation: u(r) = u(0)(r) + εu(1)(r) cos(nθ)• Response: F = F (0)(σ/σc) + εF (1)(σ/σc , n) cos(nθ)

Hutchinson et al. [1992]

Introduction Euler buckles Instabilities Conclusion References

Circular buckle – Instability

• Perturbation: u(r) = u(0)(r) + εu(1)(r) cos(nθ)• Response: F = F (0)(σ/σc) + εF (1)(σ/σc , n) cos(nθ)

Hutchinson et al. [1992]

Introduction Euler buckles Instabilities Conclusion References

Content

The straight buckleFirst ideas on bucklesMode Mix !

Beyond the straight buckleCircular buckles – instabilitiesTelephone cords and more...

Introduction Euler buckles Instabilities Conclusion References

FEM simulation –Cohesive zonemodel

Introduction Euler buckles Instabilities Conclusion References

FEM simulation –Cohesive zonemodel

Cohesive elements

Introduction Euler buckles Instabilities Conclusion References

FEM simulation –Cohesive zonemodel

Cohesive elements

Introduction Euler buckles Instabilities Conclusion References

Telephone cord – simulation

[Faou et al., 2012]

Introduction Euler buckles Instabilities Conclusion References

Telephone cord – simulation

[Faou et al., 2012]

Introduction Euler buckles Instabilities Conclusion References

[Faou et al., 2012]

Telephone cord – mode mixity

Introduction Euler buckles Instabilities Conclusion References

Telephone cord – wavelength

σ

E ?(hL

)2≡ 1√

G0GIc− 1

Introduction Euler buckles Instabilities Conclusion References

Experiments – mixed mode toughness from λ

Introduction Euler buckles Instabilities Conclusion References

Branched telephone cord – simulations

Introduction Euler buckles Instabilities Conclusion References

Branched telephone cord – simulations

Introduction Euler buckles Instabilities Conclusion References

Branched telephone cord – simulations

Introduction Euler buckles Instabilities Conclusion References

A phase diagram

Introduction Euler buckles Instabilities Conclusion References

Conclusion

For thin films with large compressive stresses

• mode-dependent interface toughness

• couples with non-linear plate buckling deformation

• drives configurational instability

Introduction Euler buckles Instabilities Conclusion References

Y. Chai and K. Liechti. Asymmetric shielding in interfacial fracture underin-plane shear. Journal of applied mechanics, 59:295, 1992.

F. Erdogan and G. Sih. On the crack extension in plates under plane loadingand transverse shear. Journal of basic engineering, 85:519, 1963.

J.-Y. Faou, G. Parry, S. Grachev, and E. Barthel. How does adhesion inducethe formation of telephone cord buckles? Physical Review Letters, 108(11):116102, 2012.

J. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advancesin applied mechanics, 29(63):191, 1992.

J. Hutchinson, M. Thouless, and E. Liniger. Growth and configurationalstability of circular, buckling-driven film delaminations. Acta metallurgica etmaterialia, 40(2):295–308, 1992.

J. W. Obreimov. The splitting strength of mica. Proc. Roy. Soc. A, 127:290,1930.

J. Pelegrin. Remarks about archaeological techniques and methods of knapping:elements of a cognitive approach to stone knapping. Stone knapping: thenecessary condition for a uniquely hominid behaviour, pages 23–33, 2005.