2009 ct 4140 book of slides

Upload: mohdsolihat1

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 2009 CT 4140 Book of Slides

    1/72

    1

    Structural Dynamics

    Prof. Dr. Andrei V. Metrikine

    Lecture 1

    CT 4140 Structural Mechanics

    Faculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    CT 4140

    Section CM, Room 6.59, Tel.: 84749

     [email protected]://www.mechanics.citg.tudelft.nl

    1

  • 8/9/2019 2009 CT 4140 Book of Slides

    2/72

  • 8/9/2019 2009 CT 4140 Book of Slides

    3/72

    5

    Course Objectives

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    n-mass-spring

    system

    2-mass-spring

    system

    1-mass-spring

    systemrigid 

     body

    string

    string

     bar 

     bar 

     beam

     beam

     plate

     plate

    Main: Modelling of the dynamic behavior of civil engineering structures

    Models to be considered

    Lecture 1 General information about the course 6

    Earthquake-Induced Vibrations of Buildings

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Cause Result Model

    F(t)

    Earthquakes are extremely dangerous for

    metropolitans not to mention that they can causetsunami

    7

    Earthquake-Induced Vibrations of Buildings

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Earthquakes are also dangerous because of possible liquefaction(indirect effect)

    8

    Earthquake-Induced Vibrations of Buildings

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Banda Aceh (Indonesia 2004) Debris Detail(indirect effect through tsunami)

    3

  • 8/9/2019 2009 CT 4140 Book of Slides

    4/72

    9

    Wind-Induced Vibrations of Structures

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

     Vibrating Tacoma Narrows Bridge Skyscrapers Chimney

    Wind-farm

    ( ) ( )Wind force: ,WIND MEAN FLUCT  F f X f X t  = +

    Wind can cause intense vibrations of relatively flexiblestructures

    10

    Traffic-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Bullet train in Kyoto City Bullet train passing a bridge

    High-speed trains cause significant amplification of the dynamic response of railways

    Dynamic rail bucklingis a serious danger

    11

    Soil Vibration from a High-Speed Train

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering 12

    Super-fast Train

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Transatlantic Underwater Tunnel New-York -London

    4

  • 8/9/2019 2009 CT 4140 Book of Slides

    5/72

    13

    Super-fast Train

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Final.avi

    14

    Construction- and Production-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Pile driving Construction of a machine foundation

    The vibration level in the surrounding buildings must be low!

    15

    Human-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Millennium bridge experienced severe walking-induced lateral vibrations

    16

    Wave- and Flow-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Semi-submersible offshore platform Mega-Float in Tokyo Bay

    Floating offshore facility Installation of a riser

    Waves and currents are capableof causing violent vibrations of

    offshore structures

    5

  • 8/9/2019 2009 CT 4140 Book of Slides

    6/72

    17

    Cross-Flow-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Floating offshore facility

     Vortex Induced Vibration ofRisers

    18

     Axial-Flow-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Floating LNG factoryInstability of a submerged

    cantilever

    Guido 1.avi

    19

    Ice-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    Light-house surrounded by ice

    The Molikpaq

    IIV tests

    20

    Ice-Induced Vibrations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    ice sheet

    ice

    rubblescracks

    rigidrigid

    struct.struct.

    ice sheet

    ice

    rubblescracks

    rigidrigid

    struct.struct.

    Ice failure against cylinderIce failure against square

    shaped cross-section

    6

  • 8/9/2019 2009 CT 4140 Book of Slides

    7/72

    21

    Classification of Dynamic Loads

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Significance of dynamics for civil engineering

    harmonicF 

     pulseF 

     periodical

    Machines

    Vortex / Galopping

    Walking / Dancing

    Waves

    Wind

    Traffic

    Piling

    Earthquakes

    Explosions

    Collisions

    random

    transient

    22

    Examples of One-Degree-of-Freedom Idealizations

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 1 Recollection of knowledge regarding undamped 1 DOF systems

    m

     x(t )

    F (t )

    Idealization of bending motion of an offshore platform in waves

    m

     x(t )

    F (t )

    Unloaded

    static

     position

    Idealization of vertical vibration of a lorry on a bridge

    23

    1 DOF Systems without Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Equation of motion Model:and initial conditions:

    ( )

    ( ) ( )0 00 0

    mx+kx= F t  

     x x , x v= =

    &&

    &

    Free Vibrations

    m

     x(t )

    F (t )

     x

    ( )

    ( )

    0

    0

    0 0

    0

    0

    2

    n

    n

    mx + kx = x + x =

     x x k m

     x v

    ω 

    ω 

    = =

    =

    && &&

    &

    Lecture 1 Recollection of knowledge regarding undamped 1 DOF systems 24

    The General Solution for 1 DOFS without Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Equation of motion: The General Solution:

    02n

     x + x =ω &&   ( ) ( )2

    1

    exp , , complexk k k k  

     x t X s t X s=

    = −∑

    Equation of motion of N DOFS: The General Solution:

    ( ) ( ) ( ) ( )1 (1)1 11

    ... 0 exp N 

     N N 

     N N k k 

     x a x a x a x x t X s t −

    =

    + + + = = ∑

    Begin Generalization

    Characteristic Equation:

    2 2

    1,20 i eigenvaluesk n ns sω ω + = ⇒ = ± −

    Characteristic Equation:

    ( ) ( )11 1... 0

     N N 

    k k N k N  s a s a s a

    −+ + + =

    End Generalization

    Lecture 1 Recollection of knowledge regarding undamped 1 DOF systems

    7

  • 8/9/2019 2009 CT 4140 Book of Slides

    8/72

    25

    The General Solution in Real Form and Free Vibrationsof 1 DOFS without Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    The General Solution:

    ( ) ( ) ( ) ( ) ( )1 2exp i exp i cos sinn n n n x t X t X t A t B t ω ω ω ω  = + − = +

    ( ) ( ) ( ) ( )

    ( )

    00 0 0

    22

    0 0 0

    1   00

    0

    cos sin cos

    amplitude

    tan initial phase

    n n n

    n

    n

    n

    v x t x t t A t 

     A x v

    v

     x

    ω ω ω ϕ  ω 

    ω 

    ϕ ω 

    = + = −

    = + −

    ⎛ ⎞= −⎜ ⎟

    ⎝ ⎠

    Begin Important Formula

    Free Vibration:

    ( ) ( ) ( )exp i cos isinn n nt t t ω ω ω = +

    End Important Formula

    t     x

     x0  A0

    2π / ωn

    v0

    Lecture 1 Recollection of knowledge regarding undamped 1 DOF systems 26

    Contents of Lecture 2

    Lecture 2

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    1. Recollection of knowledge regarding undamped 1 DOF

    systems• vibrations under harmonic force, amplitude-frequency and phase- 

    frequency characteristics, resonance, vibrations under generaldisturbing force 

    2. Dirac delta-function and derivation of Duhamel’s integral

    3. Recollection of knowledge regarding 1 DOF systems withviscous damping 

    • Equation of motion, characteristic equation, aperiodic and dampedfree vibrations, forced vibration under harmonic and general-typeforce 

    4. Frequency-Domain Analysis of 1 DOFS

    • Integral Fourier transform, spectrum, frequency response function 

    27

    Forced Vibration of 1 DOFS without Damping underHarmonic Excitation

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    Equation of motion Beating:

    ( )

    ( ) ( )

    0

    0 0

    cos

    0 , 0

    mx kx F t  

     x x x v

    ω + =

    = =

    &&

    &

    ( ) ( ) ( )

    ( ) ( )( )

    00

    0

    2 2

    cos sin

    1cos cos

    1

    n n

    n

    n

    n

    v x t x t t 

    F t t 

    ω ω ω 

    ω ω ω ω 

    = +

    + −−

    The General Solution:

    The Steady-State Solution:   ( ) ( )02 2

    1cos

    1n

    F  x t t 

    k ω 

    ω ω =

    0 50 100 150 200 250time  t  [s]

    -30

    -20

    -10

    0

    10

    20

    30

        x            (    t            )     k            /     F        0

    28

     Amplitude-Frequency and Phase-FrequencyCharacteristics of 1 DOFS without Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Steady-state solution:

     Amplitude-Frequency Characteristic(Magnification Factor)

    ( ) ( ) ( )0 2 21

    cos cos1

      steady n

    n

    F  x t t x A t 

    k ω ω ϕ 

    ω ω = ⇒ = +

    0 1 2 3

    ω/ωn

    0

    1

    2

    3

    4

    5

         A     /    x

        s     t    a     t     i    c

    02 21

    1n

    F  Ak    ω ω = −

    0 1 2 3

    ω/ωn

    0

    90

    180

         ϕ

    Phase-Frequency Characteristic

    0, 1

    , 1

    n

    n

    ω ω ϕ 

    π ω ω 

    ⎧   ⎪⎩

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    8

  • 8/9/2019 2009 CT 4140 Book of Slides

    9/72

    29

    Resonance in 1 DOFS without Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Frequency-domain representation Time-domain representation

    of resonance : of resonance

    0 1 2 3

    ω/ωn

    0

    1

    2

    3

    4

    5

         A     /    x

        s     t    a     t     i    c

    0

    2 21

    1 n

    F  Ak    ω ω 

    =−

    0 5 10 15 20 25t  [s]

    -20

    -10

    0

    10

    20

        x        (     t        )      k        /     F

            0

    ( ) ( )0 sin2

    F  x t t t k 

    ω ω =

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems 30

     Vibrations of 1 DOFS without Damping underGeneral Disturbing Force

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Equation of motion and initial conditions:

    ( )

    ( ) ( )0 00 0

    mx+kx= F t  

     x x , x v= =

    &&

    &

    Solution in the form of Duhamel’s integral:

    ( ) ( ) ( ) ( ) ( )( )000

    1cos sin sin

    n n n

    n n

    v x t x t t F t t t dt 

    mω ω ω 

    ω ω ′ ′ ′= + + −∫

    The idea behind the Duhamel’s integral is representationof the force by a sequence of short pulses:

    t ’  dt ’ 

    ( ) ( ) ( )( )

    1sin ,

     p nn

     x t F t t t dt t t m

    ω ω 

    ′ ′ ′ ′= − >

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    31

    Dirac Delta-Function as Mathematical Representationof Impulsive Forces

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    How do we describe mathematically an impulsive force (force of short duration),which applies a momentum I = 1?

    t ’

    2dt 

    2

     I 

    dt    22

     I  I F t dt I 

    dt = Δ = =

    ( )2 ,

    0, otherwise

     I dt t dt t t dt F 

    ⎧   − < < +⎪= ⎨

    ⎪⎩

    Let us make the force shorter and shorter keeping I = 1.

    t ’

    ( )0

    0,lim

    ,dt 

    t t F t t 

    t t δ 

    ′≠⎧′= − = ⎨

    ′∞ =⎩

    Dirac Delta-Function

    ( )

    ( ) ( ) ( )

    1t t dt  

    F t t t dt F t  

    δ 

    δ 

    −∞

    −∞

    ′ ′− =

    ′ ′ ′− =

    Properties of Dirac Delta-Function

    Lecture 2 Dirac delta-function and derivation of Duhamel’s integral 32

    Derivation of Duhamel’s Integral

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Representation of the external force using Dirac delta-function:

    ( ) ( ) ( ) ( ) ( ) ( )0 0

    1s

    mx + kx = F t F t t t dt F t t t dt t  δ δ δ 

    ∞ ∞

    ′ ′ ′ ′ ′ ′ ′⎡ ⎤= − = − =⎣ ⎦∫ ∫&&

    Response to Dirac delta-function:

    ( )

    ( ) ( )   ( ) ( )

    01N s

    0 0 00 0 0 0

     p p p p

     p p p p

    m x + k x =mx + kx = I t   I 

     x , x I m x , x

    δ ⎧   ⎧⎪ ⎪⇔ =⎨ ⎨

    = == =   ⎪⎪   ⎩⎩

    &&&&

    &&

    ( ) ( ) ( ) ( )( )1 1

    sin , 0 sin , 0 p n p n

    n n

     x t t t x t t t t t t m m

    ω ω ω ω 

    ′ ′ ′= ≥ ⇒ − = − − ≥

    Response to the original force:

    ( ) ( ) ( ) ( ) ( )( )0 0

    1sin

     p p n

    n

     x t F t x t t dt F t t t dt m

    ω ω 

    ′ ′ ′ ′ ′ ′= − = −∫ ∫

    Lecture 2 Dirac delta-function and derivation of Duhamel’s integral

    9

  • 8/9/2019 2009 CT 4140 Book of Slides

    10/72

    33

    1 DOFS with Viscous Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Equation of motion Model:

    and initial conditions:( )

    ( ) ( )0 00 0

    mx+cx+kx= F t 

     x x , x v= =

    && &

    &

    Free Motion

    22 0,

    the natural frequency of undamped vibration

    2 damping factor 

    n

    n

     x nx x

    k m

    c m n

    ω 

    ω 

    + + =

    = −

    = −

    && &

    Lecture 1 Rec ol lec tion o f knowledge regarding 1 DOFS with v iscous damping

    m

     x(t )

    F (t )

     x

    c

    The general Solution:

    ( ) ( ) ( )   (   )   (   )(   )2

    2 2 2 2

    1 2

    1

    exp exp exp expn n n n

    n

     x t X s t nt X t n X t nω ω =

    = = − − + − −∑

    34

    Free Motion of 1 DOFS with Viscous Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Characteristic Equation: Eigenvalues:

    2 2 2 2 2 2

    1 22 0 ,n n ns ns s n n s n nω ω ω + + = = − + − = − − −

    Critical Damping:

    Lecture 2 Rec ol lect ion o f knowledge regarding 1 DOFS with v iscous damping

    ( )2 22crit crit nc km c c n   ω = = ⇔ = Aperiodic Motion: Damped Vibration:

        x

     x0

    ( ) ( ) ( )( )0 1 2 2 11 2

    exp exp x

     x t s s t s s t s s

    = −−

      ( ) ( ) ( ) ( )( )1 12 2

    1

    exp cos sin ,

    n

     x t nt A t B t 

    n

    ω ω 

    ω ω 

    = − +

    = −

    35

    Free Vibrations of 1 DOFS with Viscous Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Damped Vibration:

    Lecture 2 Rec ol lec tion o f knowledge regarding 1 DOFS with v iscous damping

        x

     x0

     

    ϕ0

    ω1

     A0

     A0exp(-nt )

    -A0exp(-nt )

    T 1=

     

    ω1

    ( ) ( ) ( ) ( )( )1 12 2

    1

    exp cos sin ,

    n

     x t nt A t B t 

    n

    ω ω 

    ω ω 

    = − +

    = −

    ( ) ( ) ( )0 1 02

    2   0 0 0 00 0 0

    1 1 0 1

    exp cos

    , arctan

     x t A nt t 

    v nx v nx A x

     x

    ω ϕ 

    ϕ ω ω ω 

    = − −

    ⎛ ⎞⎛ ⎞   += + + =   ⎜ ⎟⎜ ⎟

    ⎝ ⎠   ⎝ ⎠

    ( )0

    1 12 2

    0

    Amplitude: exp

    2Period: 2

    Phase angle:

    n

     A nt 

    T n

    π π ω 

    ω 

    ϕ 

    = =−

    36

    Forced Vibration of 1 DOFS with Viscous Dampingunder Harmonic Excitation

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    Equation of motion

    ( )

    ( ) ( )

    0

    0 0

    cos

    0 , 0

    mx cx kx F t  

     x x x v

    ω + + =

    = =

    && &

    &

    ( ) ( ) ( ) ( )( )   ( )1 1exp cos sin  part  x t nt A t B t x t ω ω = − + +

    The General Solution:

    Real form of particular solution:

    ( ) ( )

    ( )

    ( ) ( )

    2 2

    0 0

    2 22 2 2 2 2 2 2 2

    cos sin ,

    2,

    4 4

     part c s

    n

    c s

    n n

     x X t X t 

    F F n X X 

    m mn n

    ω ω 

    ω ω    ω 

    ω ω ω ω ω ω  

    = +

    −= =

    − + − +

    10

  • 8/9/2019 2009 CT 4140 Book of Slides

    11/72

    37

    Complex Form of Particular Solution for Dynamic Systemsunder Harmonic Excitation

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    ( )

    ( )  ( )

    auxiliarysystem

    0 0

    cosexp i

    sin

    t mx cx kx F mx cx kx F t  

    ω ω 

    ω 

    ⎧⎪+ + = ⇒ + + =⎨

    ⎪⎩

    && &&& & % % %

    Particular solution of the auxiliary problem is found as:

    Begin Generalization

    ( ) ( )( )   ( )2 00

    2 2

    exp i exp i i exp i

    1

    2i

    substitution

     part 

    n

     x X t X t m c k F t 

    F  X 

    m n

    ω ω ω ω ω  

    ω ω ω 

    = ⇒ − + + =

    =− + +

    %

    ( )( )   ( )

    ( )( )   ( )0

    0

    Re exp i , cos

    Im exp i , sin part 

     X t F F t 

     x  X t F F t 

    ω ω 

    ω ω 

    ⎧   =⎪

    = ⎨ =⎪⎩End Generalization

    38

    Steady-State Vibrations of 1 DOFS with Viscous Dampingunder Harmonic Excitation

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems

    Equation of motion

    ( ) ( ) ( ) ( )( )   ( )1 1exp cos sin cos , arg( ) x t nt A t B t X t X ω ω ω ϕ ϕ  = − + + − =The Steady-State Solution:

    ( ) ( ) ( )lim cossteadyt 

     x t x t X t ω ϕ →∞

    = = −

    0.0 0.5 1.0 1.5 2.0 2.5

    ω/ωn

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

         X     /    x

        s     t    a     t     i    c

    γ = 0

    γ = 2

    γ = 1 γ = 0.5

    γ = 0.3

    γ = 0.2

    Magnification factor (dynamicamplification factor):

    1/ 22

    2 22

    2 21

    2 2

    static n n

    n crit  

     X 

     x

    n c

    c

    ω ω γ 

    ω ω 

    γ ω 

    −⎛ ⎞⎛ ⎞⎜ ⎟= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    = =

    39

    ibrations of 1 DOFS with Viscous Damping underGeneral Disturbing Force

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Equation of motion and initial conditions:

    ( )

    ( ) ( )0 00 0

    mx+cx+kx= F t 

     x x , x v= =

    && &

    &

    The general solution in the form of Duhamel’s integral:

    ( ) ( ) ( ) ( )

    ( ) ( )( )   ( )( )

    0 00 1 1

    1 1

    1

    1   0

    exp cos sin

    1exp sin

    v nx x t nt x t t 

    F t n t t t t dt  m

    ω ω ω ω 

    ω ω 

    ⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    ′ ′ ′ ′+ − − −∫

    Reminder: the main idea behind this solution isthe representation of the external force by asequence of short pulses

    t ’  dt ’ 

    Lecture 2 Recollection of knowledge regarding undamped 1 DOF systems 40

    Frequency-Domain Analysis of Forced Vibrations of1 DOFS under General Disturbing Force

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Main idea: represent the external force as the superposition of harmonic vibrations.

    ( )mx+cx+kx= F t && &

    Lecture 2 Frequency-Domain Analysis of 1 DOFS

    Mathematical tool: Integral Fourier Transform

    Equation of motion: Decomposition of the force and displacement:

    ( )( )

    ( )( )

      ( )1 exp i2

    F t    F  t d  x t    x

    ω  ω ω π    ω 

    −∞

    ⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎪ ⎪   ⎪ ⎪⎩ ⎭   ⎩ ⎭

    ∫%

    %

    Equation in the frequency domain and its solution:

    ( )   ( ) ( ) ( ) ( )   ( )2 2i im c k x F x F m c k  ω ω ω ω ω ω ω ω  − + + = ⇒ = − + +% %% %

    ( ) ( ) ( ) ( )and are frequency spectrums of andF x F t x t  ω ω %   %

    11

  • 8/9/2019 2009 CT 4140 Book of Slides

    12/72

    41

    The Frequency Response Function (FRF)

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Frequency Response Function of 1 DOFS with Viscous Damping:

    ( )   21i

    G im c k 

    ω ω ω 

    =− + +

    Physical Significance: G (i ω) is the complex amplitude of the steady-state responseof a dynamic system to a harmonic force of unit amplitude

    Mathematical definition: G (i ω) is the spectrum of the response of a dynamicsystem to the pulse load (Dirac delta function)

    Solution in the Frequency Domain:

    ( ) ( ) ( )i x G F ω ω ω =   %%

    Transformation of the Frequency Domain Solution to the Time Domain:

    ( ) ( ) ( ) ( )1

    i exp i2

     x t G F t d ω ω ω ω  π 

    −∞

    = ∫   %

    Lecture 2 Frequency-Domain Analysis of 1 DOFS 42

    The Integral Fourier Transform and Typical Spectrums

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    The Forward Fourier Transform: The Inverse Fourier Transform:

    ( ) ( ) ( ) ( ) ( ) ( )1exp i , exp i2

     f = f t t dt f t f t d ω ω ω ω ω  π 

    ∞ ∞

    −∞ −∞

    − =∫ ∫% %

    ( ) f t    ( ) f   ω %

    ( )t δ    1

    0 f 

    0t 

    ( )   ( )0 0 f t f H t t = −

    ( )... is the Heaviside (step) Function H 

    ( )  ( )00

    sin2

    t  f f 

    ω ω 

    ω =%

    0t −

    0 02 f t 

    ω 

    ( )0 f t t −   ( ) ( )0exp i f t ω ω −%

    Lecture 2 Frequency-Domain Analysis of 1 DOFS

    43

    Contents of Lecture 3

    Lecture 3

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    1. Unstable 1 DOFS – Galloping in Wind

    2. Unstable 1 DOFS under Harmonic Disturbing Force

    3. Recollection of knowledge regarding undamped 2 DOFS

    • equations of motion, matrix form of equations of motion, free

    vibrations, characteristic equation, natural frequencies and normalmodes, forced vibration under harmonic force, the undamped vibrationabsorber 

    44

    Unstable 1 DOFS – Galloping in Wind

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Unstable 1 DOFS – Galloping in Wind

    Prismatic bar subject to a steady wind blowing in x-direction:

    The Lift (across-wind) and Drag (along-wind) forces on the bar (small attack angles):

    Visco-elastically supported rigid prismatic bar in steady wind;

    the bar may move in the vert ical direction only.

     B

     B L

    2k v

    2k 

     z

     y x

    v

     z&

     zF 

     zF    cosv   α 

     z− &

    α 

    2c

    2 21 1,

    2 2 L L D D

    F v C BL F v C BL ρ ρ = =

    12

  • 8/9/2019 2009 CT 4140 Book of Slides

    13/72

    45

    Unstable 1 DOFS – Galloping in Wind

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Unstable 1 DOFS – Galloping in Wind

    Total force in z-direction:

     Approximation of C z:

    ( ) ( )0 0 0 0

    , 0 z z z L z DdC dC dC dC   z

    C C d v d d d  α α α α  α α  α α α α  = = = =

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞≈ ≈ − = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    &

    ( ) ( ) ( ) ( ) ( ) ( ) ( )21cos sin 2 z L D L D Z F F F F F v BLC  α α α α α α α ρ α  = + ≈ + =

     zF  L

    F  D

     xF α 

    v0

     zC 

    α 

    ∂⎡ ⎤⎢ ⎥∂⎣ ⎦

     zC 

    α 

    v

     z& z− &

    α 

    46

    Unstable 1 DOFS – Galloping in Wind

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Unstable 1 DOFS – Galloping in Wind

    Equation of vertical motion of the bar:

    Characteristic Equation and Eigenvalues:

    0

    0 0

    1- 02

    1can be negative since 0

    2

     zeff 

     z zeff 

    dC mz cz kz vBLz m z c z kzd 

    dC dC  c c vBL

    d d 

    α 

    α α 

     ρ α 

     ρ α α 

    =

    = =

    ⎛ ⎞+ + = ⇔ + + =⎜ ⎟⎝ ⎠

    ⎛ ⎞ ⎛ ⎞= + − % %&& & &

    13

  • 8/9/2019 2009 CT 4140 Book of Slides

    14/72

    49

    Unstable 1 DOFS under External Harmonic Force

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Unstable 1 DOFS under External Harmonic Force

    Linearized Equation of Motion and Initial Conditions

    ( )   ( ) ( ) ( )( )   ( )

    ( )

    1, 1,

    2 2

    1,

    exp cos sin cos arg( ) ,

    2 ,

    eff eff eff  

    eff eff eff eff n

     x t n t A t B t X t X 

    n c m n

    ω ω ω 

    ω ω 

    = − + + −

    = = −

    ( )( ) ( )

    0

    0 0

    cos , 0

    0 , 0

    eff eff  mx c x kx F t c

     x x x v

    ω + + = <= =

    && &

    &

    The General Solution:

    The Steady-State Solution

    ( ) ( ) ( )lim cossteadyt 

     x t x t X t ω ϕ →∞

    ≠= −

    The steady-state solution of the linearized problem does not exist if  ceff < 0 !

    The Fourier Transform is not applicable!

    50

    Recollection of Knowledge Regarding Undamped 2 DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Equations of motion: Model:

    ( ) ( )

    ( ) ( )

    1 1 1 1 3 1 2 1

    2 2 2 2 3 2 1 2

    m x k x k x x F t  

    m x k x k x x F t  

    + + − =

    + + − =

    &&

    &&

     x

    m1

     x1(t )

    F 1(t )

    m2

    F 2(t )

     x2(t )

    k 1

      k 2

    k 3

    Equations of motion in matrix form:

    , x x F + =&& M K    [ ]

    [ ]

    1 2

    1 2

    1

    2

    1 3 3

    3 2 3

    , Displacemetn Vector  

    , Force Vector  

    0Mass Matrix

    0

    Stiffness Matrix

     x x x

    F F F 

    m

    m

    k k k 

    k k k 

    =

    =

    ⎡ ⎤= ⎢ ⎥

    ⎣ ⎦

    + −⎡ ⎤= ⎢ ⎥− +⎣ ⎦

     M 

     K 

    51

    Free Vibrations of Undamped 2 DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Equations of motion:

    ( )

    ( )

    1 1 1 1 3 1 2

    2 2 2 2 3 2 1

    00

    0

    m x k x k x x x x

    m x k x k x x

    ⎧   + + − =⎪⇔ + =⎨

    + + − =⎪⎩

    &&

    &&

    &&

      M K 

    The General Solution:

    ( )   ( ) ( ) ( )   ( ) ( ) ( ) ( )4 4 4

    1 2

    1 2

    1 1 1

    exp , exp expn n n n n n

    n n n

     x t X s t x t X s t x t X s t = = =

    ⎧ ⎫= = ⇔ =⎨ ⎬

    ⎩ ⎭∑ ∑ ∑

    Substitution of the General Solution into Equation of Motion gives:

    The Characteristic Equation:

    ( )   ( ) ( )1 22 0, ,T 

    n n ns X X X X  ⎡ ⎤+ = = ⎣ ⎦ M K 

    ( )2

    2   1 1 3 3

    2

    3 2 2 3

    det 0nn

    n

    m s k k k  s

    k m s k k  

    + + −+ = =

    − + + M K 

    52

    Free Vibrations of Undamped 2 DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    The Characteristic Equation as Polynomial:

    The Frequency Equation:

    ( ) ( )2 2 2 4 2   1 3 2 3 1 2 1 3 2 31 1 3 2 2 3 31 2 1 2

    0 0n n n nk k k k k k k k k k  

    m s k k m s k k k s sm m m m

    ⎛ ⎞+ + + ++ + + + − = ⇔ + + + =⎜ ⎟

    ⎝ ⎠ All eigenvalues are imaginary!

    ( ) ( )

    4 2 2 2 2 2 4 0a b a b ab

    ω ω ω ω ω ω ω  − + + − =

    1 3

    1

    2 3

    2

    3

    1 2

    , - frequency

     partial frequencies

    'coupling frequency'

    a

    b

    ab

    s i

    k k 

    m

    k k 

    m

    m m

    ω ω 

    ω 

    ω 

    ω 

    =

    ⎫+=   ⎪

    ⎪⎬

    +   ⎪= ⎪⎭

    =

    m1

     x1(t )

    F 1(t )

     x

    m2

    F 2(t )

     x2(t )

    k 1

      k 2

    k 3

    14

  • 8/9/2019 2009 CT 4140 Book of Slides

    15/72

    53

    Natural Frequencies and Normal Modesof Undamped 2 DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Natural Frequencies (both real):

    The General Solution of the Governing Equations:

    ( ) ( )2 2

    2 2 2 2 4 2 2 2 2 4

    1 2

    1 14 , 4

    2 2n a b a b ab n a b a b abω ω ω ω ω ω ω ω ω ω ω ω  = + − − + = + + − +

    We have 4 initial conditions and 8 unknown constants to determine???

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    1 1 1 1 1 1 2 1 2

    2 2 1 2 1 2 2 2 2

    cos sin cos sin

    cos sin cos sin

    n n n n

    n n n n

     x t A t B t C t D t 

     x t A t B t C t D t 

    ω ω ω ω  

    ω ω ω ω  

    = + + +

    = + + +

    Mode 1 Mode 2

    54

    Mathematics behind Normal Modes

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Matrix Form of the General Solution with 8 unknowns:

    ( ) ( )4

    1

    expn nn

     x t X s t =

    = ∑

    Thus, only 4 unknowns remain in the general solution, which can be determined fromthe initial conditions.

    4 pairs of 2 algebraic equations (each pair is linearly dependent):

    ( )2 0, 1..4n ns X n+ = = M K 

    From these equations, one can find:

    ( )

    ( )

    2   2 2

    11 11 21 21

    2 2112 12 22 22

    n n n

    n nn

     X m s k m s k 

    m s k m s k   X 

    + += − = −

    + +

    55

    Physical Significance of Normal Modes

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    The General Solution with 4 unknowns in Real Form:

    Particular case of symmetrical system

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )( )   ( )   ( ) ( )( )   ( )

    1 1 1 2 2

    1 2 1 22 2 2 2

    2 1 1 1 2 2 22 2

    cos sin cos sin

    cos sin cos sin

    n n n n

    n n a n n n a n

    ab ab

     x t A t B t C t D t 

    m m m m x t A t B t C t D t 

    ω ω ω ω  

    ω ω ω ω ω ω ω ω  ω ω 

    = + + +

    = + − + + −

    m

     x1(t )

     x

    m

     x2(t )

    k    k 

    k 3

    Symmetrical system

    1 2 1 2,k k k m m m= = = =

    2 2

    a bω ω =

     x

    m

     x1(t )

    m

     x2(t )

    k    k 

    2 2

    1 2 1 2 1, 1n a ab   k m A A B Bω ω ω = − = = =

    Mode 1

    m

     x1(t )

     x

    m

     x2(t )

    k    k 

    32k  32k 

    Mode 2

    ( )2 22 3 2 1 2 12 1n a ab   k k m C C D Dω ω ω = + = + = = −

    56

    Undamped 2 DOFS under Harmonic Loading

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Equations of Motion:

    The Steady-State Solution:

    ( )   ( ) ( )

    ( )   ( ) ( )

    1

    1 1 1 1 3 1 2 0

    2

    2 2 2 2 3 2 1 0 0

    cos

    cos

    m x k x k x x F t  

    m x k x k x x F t  

    ω 

    ω ϕ 

    + + − =

    + + − = +

    &&

    &&

    ( ) ( )

    ( ) ( )

    1 1 1 0

    2 2 2 0

    cos cos

    cos cos

     x A t B t 

     x A t B t 

    ω ω ϕ 

    ω ω ϕ 

    = + +

    = + +

     Algebraic equations with respect to the amplitudes:

    ( )

    ( )

    2121 1 1 1 3 1 3 21 1 1 1 3 1 3 2 0

    22 2

    2 2 2 2 3 2 3 1 2 2 2 2 3 2 3 1 0

    0

    0

    m B k B k B k Bm A k A k A k A F  

    m A k A k A k A m B k B k B k B F  

    ω ω 

    ω ω 

    ⎧ ⎧− + + − =− + + − =⎪ ⎪⎨ ⎨

    − + + − = − + + − =⎪ ⎪⎩ ⎩

    15

  • 8/9/2019 2009 CT 4140 Book of Slides

    16/72

    57

    The Undamped Dynamic Absorber

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Model:

    Examples - a bridge and a vibrating machine:

     M 

     x1(t )

     x

    m

     x2(t )

     M 

    K /2

    m

    Bridge beam

    Auxiliary mass

    (a)m

     M 

    K /2

    (b)

    58

    The Undamped Dynamic Absorber

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Equations of Motion:

    The Steady-State Solution:

    ( ) ( )( )

    1 1 3 1 2 0

    2 2 1

    cos

    0

     Mx Kx k x x F t 

    mx k x x

    ω + + − =+ − =

    &&

    &&

    ( )

    ( )

    1 1

    2 2

    cos

    cos

     x A t 

     x A t 

    ω 

    ω 

    =

    =

     Algebraic equations with respect to the amplitudes:

    2

    1 1 1 1 3 1 3 2 0

    2

    2 2 2 2 3 2 3 1

      0

    m A k A k A k A F  

    m A k A k A k A

    ω 

    ω 

    ⎧− + + − =⎪⎨

    − + + − =⎪⎩

     M 

     x1

    (t )

     x

    m

     x2(t )

    59

    The Undamped Dynamic Absorber

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 3 Recollection of knowledge regarding undamped 2 DOFS

    Model:

    The Magnification Factors:

     M 

     x1(t )

     x

    m

     x2(t )

    ( )( )( )

    ( )( )

    2 2 2

    1

    2 2 2 2

    1 2

    2 2

    2

    2 2 2 2

    1 2

    n b

    static   n n

    n ab

    static   n n

     A

     x

     A

     x

    ω ω 

    ω ω ω ω  

    ω 

    μ ω ω ω ω  

    Ω −=

    − −

    Ω=

    − −

    ω

         A     /    x

         s      t     a      t       i     c

     A1

     A2

    ωa

      ωb

    ωn1

      ωn2

    , ,a b a b

    k K k k  

     M m   m M ω ω ω 

    += = =

    60

    Contents of Lectures 4&5

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    1. Unstable 2 DOFS – Flutter

    2. Formulation of equations of motion of a 3 DOFS using thedisplacement method

    3. Representation of a structure by N DOFS

    4. A numerical recipe for finding the stiffness matrix for a nodeof N DOFS.

    Lecture 4 & 5

    16

  • 8/9/2019 2009 CT 4140 Book of Slides

    17/72

    61

    Unstable 2 DOFS – Flutter

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Prismatic rigid bar of rectangular shape subject to a uniform flow:

    Equations of motion:

    vertical motion

    angular motion

     z

     y

    mz cz kz F  

     I c k M ϕ ϕ 

    ϕ ϕ ϕ 

    + + = −

    + + = −

    && &

    && &

     x

     z

    v

    2k ϕ 

    2 z

     L

     B

     H 

     y

    ϕ 

     z

    62

    Unstable 2 DOFS – Flutter

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    The vertical force and the moment:

    Resulting equations of motion:

    21 2 3

    2 2

    4 5 6

    12

    1

    2

     z

     y

     z BF v BL C C C  v v

     z B M v B L C C C 

    v v

    ϕ  ρ ϕ 

    ϕ  ρ ϕ 

    ⎛ ⎞= + +⎜ ⎟⎝ ⎠

    ⎛ ⎞= + +⎜ ⎟

    ⎝ ⎠

    &&

    &&

    ϕ 

     zv

    2 2

    1 2 3

    3 2 2 2

    5 6 4

    1 1 10

    2 2 2

    1 1 10

    2 2 2

    mz c vBLC z kz vB LC v BLC  

     I c vB LC k v B LC vB LC zϕ ϕ 

     ρ ρ ϕ ρ ϕ 

    ϕ ρ ϕ ρ ϕ ρ  

    ⎛ ⎞+ − + − − =⎜ ⎟

    ⎝ ⎠

    ⎛ ⎞ ⎛ ⎞+ − + − − =⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠

    &&& &

    && &   &

    The motion of the bar is governed by 2 coupled second-order differential equations

    63

    2

    2

    2

    4

    3

    6

    1

    2

    3

    5

    2 2

    11   1

    2

    1

    2

    2

    1

    2

    1

    2

    0

    0

    2v BLc

    k v B

    vB Lmz z kz

     I z

    vB LC 

    vBLC 

    c vB

     L L   C C ϕ    ϕ 

    ϕ ϕ 

    ϕ 

     ρ 

     ρ 

     ρ 

    ϕ ϕ    ρ  ρ 

     ρ + + − − =

    +  ⎛ ⎞

    −⎜ ⎟+ −⎝ ⎠

    ⎛ ⎞−⎜ ⎟

    ⎝ ⎠

    ⎛ ⎞−⎜ ⎟

    ⎝ ⎠  =

    &&& &

    && &   &

    Unstable 2 DOFS – Flutter

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    The meaning of the coefficients in the equations of motion:

    ϕ 

     z

    Effective damping of thevertical motion

    Effective damping of theangular motion

    Effective stiffness ofthe angular motion

     Velocity couplingcoefficients

     ‘Displacement’ coupling

    64

    Unstable 2 DOFS – Flutter

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Matrix form of the equations of motion:

    [ ]

    2 2

    1 2 3

    2 3 2 2

    4 5 6

    00, , ,

    0

    1 1 1

    2 2 2,

    1 1 10

    2 2 2

    T    m x x x x z

     I 

    c vBLC vB LC k v BLC  

    vB LC c vB LC k v B LC  ϕ ϕ 

    ϕ 

     ρ ρ ρ 

     ρ ρ ρ 

    ⎡ ⎤+ + = = = ⎢ ⎥

    ⎣ ⎦

    ⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥

    ⎢ ⎥ ⎢ ⎥= =⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥− − −⎜ ⎟ ⎜ ⎟

    ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

    && & M C K M 

    C K 

    The characteristic equation:

    ( )2 4 3 21 2 3 4det 0n n n n n ns s s a s a s a s a+ = + + + + = M C + K 

    17

  • 8/9/2019 2009 CT 4140 Book of Slides

    18/72

    65

    Unstable 2 DOFS – Flutter – Eigenvalue Analysis

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Suppose, that the vertical and angular motions are uncoupled, and the effectivedamping and stiffness coefficients are positive (C2= C3=C4=0, C1< 0, C5< 0, C6< 0):

    ( )

    ( )   ( )1 2 3

    2

    5 6 4

    0

    0, 2

    mz c QC z kz QBC QvC  

     I c QB C k QvBC QBC z Q vBLϕ ϕ 

    ϕ ϕ 

    ϕ ϕ ϕ ρ  

    + − + − − =

    + − + − − = =

    &&& &

    && &   &

    Wind velocity   Wind velocity

     

       V   i   b  r  a   t   i  o  n   f  r  e  q  u  e  n  c  y  –   I  m   (  s   )

       V

       i   b  r  a   t   i  o  n   d  e  c  r  e  m  e  n   t  –   R  e   (  s   )

    Stable vibrations!

    66

    Unstable 2 DOFS – Flutter – Eigenvalue Analysis

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Suppose, that the velocity coupling is active and the velocity couplingcoefficients are positive (C3=0, C2 >0, C4 >0, C1< 0, C5< 0, C6< 0):

    ( )

    ( )   ( )1 2 3

    2

    5 6 4

    0

    0, 2

    mz c QC z kz QBC QvC  

     I c QB C k QvBC QBC z Q vBLϕ ϕ 

    ϕ ϕ 

    ϕ ϕ ϕ ρ  

    + − + − − =

    + − + − − = =

    &&& &

    && &   &

    Wind velocity   Wind velocity

     

       V   i   b  r  a   t   i  o  n   f  r  e  q  u  e  n  c  y  –   I  m   (  s   )

       V

       i   b  r  a   t   i  o  n   d  e  c  r  e  m  e  n   t  –   R  e   (  s   )

    Instability!

    67

    Unstable 2 DOFS – Flutter – Eigenvalue Analysis

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Suppose, that the velocity coupling is active and the velocity couplingcoefficients are negative (C3=0, C2

  • 8/9/2019 2009 CT 4140 Book of Slides

    19/72

    69

    Unstable 2 DOFS – Flutter – Eigenvalue Analysis

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Unstable 2 DOFS – Flutter

    Suppose, that both the velocity and displacement couplings are active and allcoupling coefficients are positive (C3>0,C2 >0, C4 >0, C1< 0, C5< 0, C6< 0):

    ( )

    ( )   ( )1 2 3

    2

    5 6 4

    0

    0, 2

    mz c QC z kz QBC QvC  

     I c QB C k QvBC QBC z Q vBLϕ ϕ 

    ϕ ϕ 

    ϕ ϕ ϕ ρ  

    + − + − − =

    + − + − − = =

    &&& &

    && &   &

    Wind velocity   Wind velocity

     

       V   i   b  r  a   t   i  o  n   f  r  e  q  u  e  n  c  y  –   I  m   (  s   )

       V

       i   b  r  a   t   i  o  n   d  e  c  r  e  m  e  n   t  –   R  e   (  s   )

    Instability!

    70

    Formulation of equations of motion of a 3 DOFSusing the displacement method

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Demonstration of the displacement method on 3 DOFS

     A rigid foundation block:

    1k 

    3k 

    2k 

    a   b

    e

    h

    g

    2F 

    1F 

    1 x   3 x

    2 x

    3F 

    This block has 3 DOF: 2 translational (horizontal and vertical) and 1 rotational

    71

    Formulation of equations of motion of a 3 DOFSusing the displacement method

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 4 & 5 Demonstration of the displacement method on 3 DOFS

    Three positions of the block, in each of which only one degree of freedom is activated:

    Equations of motion:

    1 1k x 2 1k x

    1 x

    3 2k x

    2 x

    1 3k ax

    2 3k b x

    3 3k h x

    3ax

    3hx

    2 3

    k bx

    3b x

    1 1 1 2 1 1 3 2 3 1

    2 3 2 3 3 2

    3 1 1 2 1 3 2 3 3

    1 3 2 3 3 1 2

    m x k x k x k ax k bx F  

    m x k x k hx F  

     J x k x a k x b k x h k hx h

    k a x a k bx b F eF gF  

    = − − − + +

    = − − +

    = − ∗ + ∗ − ∗ − ∗

    − ∗ − ∗ + + −

    &&

    &&

    &&

    1k 

    3k 

    2k 

    a   b

    e

    h

    g

    2F 1

    1 x   3 x

    2 x

    3F 

    72

    Formulation of equations of motion of a 3 DOFSusing the displacement method

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 4 & 5 Demonstration of the displacement method on 3 DOFS

    Matrix form of the equations of motion:

    [ ]

    [ ]

    1 2 3

    1 2 3

    1 2 1 2

    3 3

    2 2 2

    1 2 3 1 2 3

    , , generalized displacement vector 

    , , generalized force vector  

    0 0

    0 0 mass matrix

    0 0

    0

    0 stiffness matrix

     x x x x

    F F F F  

    m

    m

     J 

    k k a k b k  

    k h k 

    a k b k h k a k b k h k  

    = −

    = −

    ⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦

    + −⎡ ⎤⎢ ⎥= −⎢ ⎥⎢ ⎥− + +⎣ ⎦

     M 

     K 

    , x x F + =&& M K 

    19

  • 8/9/2019 2009 CT 4140 Book of Slides

    20/72

    73

    Representation of a structure by N DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Representation of a structure by N DOFS

     A road sign: Discrete Element or Finite Element mesh:

    2F 

    1F 

    1 x 3 x

    2 x3F 

    1 x

    2 x3 x

    7 x

    8 x9 x

    4 x

    5 x6 x

    10 x

    11 x12 x

    13 x

    14 x15 x

    16   0 x   =

    17   0 x   =18   0 x   =

    1F 

    2F 

    Internodal connection

    74

     A numerical recipe for finding the stiffness matrix for anode of N DOFS

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 4 & 5 Nodal Stiffness Matrix

    Three consecutive calculations giving a nodal stiffness matrix:

    1 11F k =

    1

    2

    3

    1

    0

    0

     x

     x

     x

    ===

    3 31F k =

    2 21F k =

    1 12F k =

    1

    2

    3

    0

    1

    0

     x

     x

     x

    ===

    3 32F k =

    2 22F k =

    1 13F k =

    1

    2

    3

    0

    0

    1

     x

     x

     x

    ===

    3 33F k =

    2 23F k =

    [ ] [ ]

    11 12 13

    nodal nodal nodal nodal 21 22 23 nodal 1 2 3 nodal 1 2 3

    31 32 33

    , , , , , , ,T T 

    k k k 

     x F k k k x x x x F F F F 

    k k k 

    ⎡ ⎤

    ⎢ ⎥= = = =⎢ ⎥⎢ ⎥⎣ ⎦

     K K 

    75

    Contents of Lecture 6

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    1. Free Vibrations of Undamped N DOFS - General

    2. Example: 3 DOF Foundation Block 

    3. The Orthogonality Property

    4. The Modal Mass Matrix and Modal Stiffness Matrix

    5. The Matrix of Natural Frequencies

    Lecture 6 76

    Free Vibrations of Undamped N DOFS - General

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 6 Free Vibrations of Undamped N DOFS

    Equations of Motion:

    0 x x+ =&& M K 

    The General Solution:

    ( ) ( ) ( )2   for undamped systems only

    1 1

    ˆexp sin N N 

    i i i i i

    i i

     x t X s t X t ω ϕ = =

    = = +∑ ∑The corresponding system of N linear algebraic equations (the eigenvalue and the

    eigenfrequency problems):

    ( ) ( )2 2det 0 or det 0i is   ω + = − + = M K M K 

    ( ) ( )2 2 ˆ0 or 0i i i is X X ω + = − + = M K M K 

    The Characteristic Equation: The Frequency Equation:

    The natural frequencies are the positive roots of the frequency equation (this definition will begeneralized to the case of systems with damping later)

    complexreal

    20

    21

  • 8/9/2019 2009 CT 4140 Book of Slides

    21/72

    77

    Free Vibrations of Undamped N DOFS - General

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 6 Free Vibrations of Undamped N DOFS

    The General Solution can be written as:

    ( ) ( ) ( ) ( )1 1 1

    ˆ   ˆ ˆsin sin ,

    ˆ   eigenvectors (independent of initial conditions)

    natural frequencies (independent of initial conditions)

     phase angles (to be determined by

     N N N 

    i i i i i i i i i

    i i i

    i

    i

    i

     x t X t x A t x u t 

     x

    ω ϕ ω ϕ  

    ω 

    ϕ 

    = = == + = + =

    ∑ ∑ ∑

    )

    unknown constants (

    initial conditions

    to be determined by initial condit n )io si

     A   −

    ( ) ( )   2sin these satisfy 0i i i i i i iu t A t u uω ϕ ω = + + =&&

    The Eigenfunctions:

    The Eigenmatrix:

    1 2ˆ ˆ ˆ...

     N  x x x⎡ ⎤= ⎣ ⎦ E

    78

    Example: 3 DOF Foundation Block 

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 6 Example: 3 DOF Foundation Block  

    Equations of Motion:

    1k 

    3k 

    2k 

    a   b

    e

    h

    g

    2F 1F 

    1 x   3 x

    2 x

    3F 

    1 11 2 1 2

    2 3 3 2

    2 2 2

    1 2 3 1 2 33 3

    0 0 0

    0 0 0 0

    0 0

     x xm k k a k b k  

    m x k h k x

     J a k b k h k a k b k h k  x x

    + −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− + +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

    &&

    &&

    &&

     Assume that the parameters are such that:

    1

    111

    1 1 21 1

    31

    12

    2 2 22 2

    32

    fundamantal natural frequencyˆ   2.0 2.0

    therad ˆ ˆ2.3 ; 1.6 1.6

    and the eigenvector s1.0 1.0ˆ

    ˆ   0.8rad 

    ˆ ˆ5.7

    firs

    ; 1.0s

    1 0

    t

     x

     x x

     x

     x

     x x

     x

    α 

    ω α 

    ω α 

    =⎡ ⎤   ⎡ ⎤ ⎡ ⎤⎢ ⎥   ⎢ ⎥ ⎢ ⎥= = = = −⎢ ⎥   ⎢ ⎥ ⎢ ⎥⎢ ⎥   ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

    ⎡ ⎤   ⎡ ⎤⎢ ⎥   ⎢ ⎥= = =⎢ ⎥   ⎢⎢ ⎥   ⎢−⎣ ⎦⎣ ⎦

    2

    3

    1

    13 1/2

    3 3 23 3

    33

    0.8the natural frequency

    1.0and the eigenvector 

    1.0

    ˆ  1.0 0.5 the natural frequencyrad 

    ˆ ˆ19.8 ; 1.0 0.5s

    2.

    s

    0 1

    third 

    econd 

    s c nd 

    e o

    .

     x

     x x

     x

    α 

    α 

    ω α 

    =−

    =

    −⎡ ⎤⎢ ⎥= − −⎥ ⎢ ⎥

    ⎥ ⎢ ⎥⎣ ⎦

    ⎡ ⎤  ⎡ ⎤ ⎡ ⎤⎢ ⎥   ⎢ ⎥ ⎢ ⎥= = = − = − −⎢ ⎥   ⎢ ⎥ ⎢ ⎥

    ⎢ ⎥   ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦third and the eigenvector 

    79

    Example: 3 DOF Foundation Block 

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 6 Example: 3 DOF Foundation Block  

    The General Solution:

    ( ) ( ) ( )3 3

    1 1

    ˆ ˆsini i i i i ii i

     x t x A t x u t ω ϕ = =

    = + =∑ ∑

    The Eigenmatrix:

    11 12 13

    21 22 23

    31 32 33

    ˆ ˆ ˆ   2.0 0.8 0 .5

    ˆ ˆ ˆ   1.6 1.0 0.5

    ˆ ˆ ˆ   1.0 1 .0 1.0

     x x x

     x x x

     x x x

    ⎡ ⎤   −⎡ ⎤⎢ ⎥   ⎢ ⎥= = − −⎢ ⎥   ⎢ ⎥

    ⎢ ⎥   ⎢ ⎥⎣ ⎦⎣ ⎦

     E

    12ˆ   0.8 x   =

    22ˆ   1 x   =

      32ˆ   1 x− =

    2ω 

    2 RC 

    13ˆ   1 x   =

    33ˆ   2 x   =

    23ˆ   1 x− =

    3ω 

    3 RC 

    11ˆ   2 x   =

    21ˆ   1.6 x   =

    31ˆ   1 x   =

    1ω 

    1 RC 

    80

    The Orthogonality Property

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 6 The Orthogonality Property

    The Eigenfrequency Problem:

    ( )2 2ˆ ˆ ˆ0 or i i i i i X X X ω ω − + = = M K M K 

    Consider two different solutions . These satisfy:( ) ( )2 2ˆ ˆ, and ,r r s s X X ω ω 2 2ˆ ˆ ˆ ˆ,r r r s s s X X X X ω ω = = M K M K 

    Pre-multiplying these equations by , respectively, we obtainˆ ˆand T T s r 

     X X 

    2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,T T T T  s r r s r r s s r s X X X X X X X X ω ω = = M K M K 

    The following equality holds for any symmetric matrix: . Thus, asare symmetric, we may rewrite the above equations as

    T T  x y y x= A A   and  M K 

    ( )2 2 2 2ˆ ˆ ̂ ̂ˆ ˆ ˆ ˆ ˆ, 0ˆT T T s s r T T r r    s r s r s r s s r   X X X X X  X X X X X ω ω ω ω  = = ⇒ − = M K M K M 

    21

    22

  • 8/9/2019 2009 CT 4140 Book of Slides

    22/72

    81

    The Modal Mass Matrix and Modal Stiffness Matrix

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 6 The Orthogonality Property

    The orthogonality with respect to the mass matrix:

    ˆ ˆ 0 if T 

    s r  X X r s= ≠ M 

    The orthogonality with respect to the stiffness matrix:

    2ˆ ˆ ˆ ˆ ˆ ˆ0 if (follows from )T T T s r s s r s r   X X r s X X X X ω = ≠ = K M K 

    Definitions:

    the Modal Mass Matrix (diagonal)

    the Modal Stiffness Matrix (diagonal)

    where is the eigenmatrix

    = −

    = −

    *

    *

     M E M E

     K E K E

     E

    82

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 6 The Orthogonality Property

    Demonstration that the modal mass matrix is diagonal:

    11 1 1 2 1

    2 2 1 2 2 2

    1 2

    1 2

    1 1

    2 2

    ˆ ˆ ˆ ˆ ˆ ˆ ˆ.

    ˆ ˆ ̂ ̂ ̂ ˆ ̂.ˆ ˆ ˆ...

    . . . ..

    ˆ ˆ ˆ ˆ ˆ ˆ.ˆ

    ˆ ˆ   0 . 0

    ˆ ˆ0 . 0

    . . . .

    ˆ ˆ0 0 .

    T  T T T 

     N 

    T T T T  

     N T 

     N 

    T T T T 

     N N N N  N 

     N N 

     x  x x x x x x

     x x x x x x x x x x

     x x x x x x x

     x x

     x x

     x x

    ⎡ ⎤   ⎡ ⎤⎢ ⎥   ⎢ ⎥⎢ ⎥   ⎢ ⎥⎡ ⎤= = =⎢ ⎥   ⎣ ⎦   ⎢ ⎥⎢ ⎥   ⎢ ⎥⎢ ⎥   ⎢ ⎥⎣ ⎦⎣ ⎦

    ⎡ ⎤⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    *

     M M M 

     M M M  M E M E = M 

     M M M 

     M 

     M 

     M 

    *

    11

    *

    22

    *

    0 . 0

    0 . 0

    . . . .

    0 0 .  NN 

    m

    m

    m

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    The Modal Mass Matrix and Modal Stiffness Matrix

    83

    The Matrix of Natural Frequencies

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 6 The Matrix of Natural Frequencies

    The Eigenfrequency Problem:

    ( )2 2 2ˆ ˆ ˆ   ˆ ˆ0 or or  r r r r r r r r   X X X x xω ω ω − + = = = M K M K M K 

    Pre-multiplying by , we obtain which can be written asˆT 

    s x

      2 ˆ ˆ ˆ ˆT T r s r s r   x x x xω    = M K 

    2 2 2

    1 1 1 2 1 2 1 1 1 1 2 1

    2 2 2

    1 2 1 2 2 2 2 2 1 2 2 2

    2 2 2

    1 1 2 2 1 2

    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. .

    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. .

    . . . . . . . .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. .

    T T T T T T  

     N N N 

    T T T T T T  

     N N N 

    T T T T T T  

     N N N N N N N N N 

     x x x x x x x x x x x x

     x x x x x x x x x x x x

     x x x x x x x x x x x x

    ω ω ω 

    ω ω ω 

    ω ω ω 

    ⎡ ⎤⎢ ⎥⎢ ⎥ =⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

     M M M K K K 

     M M M K K K 

     M M M K K K 

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    Using the orthogonality,this simplifies to:

    2 * *

    1 11 11

    2 * *

    2 22 22

    2 * *

    0 . 0 0 . 0

    0 . 0 0 . 0

    . . . . . . . .

    0 0 . 0 0 . N NN NN 

    m k 

    m k 

    m k 

    ω 

    ω 

    ω 

    ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    84

    The Matrix of Natural Frequencies

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Introducing the matrix of natural frequencies as:

    We can write:

    2

    1

    2

    2   2

    2

    0 . 0

    0 . 0

    . . . .

    0 0 .  N 

    ω 

    ω 

    ω 

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

     

    2 * *

    1 11 11

    2 * *

    2 22 22

    2 * *

    0 . 0 0 . 0

    0 . 0 0 . 0

    . . . . . . . .0 0 . 0 0 . N NN NN 

    m k 

    m k 

    m k 

    ω 

    ω 

    ω 

    ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=

    ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    Instead of 

    2 * *

    1 11 11

    2 * *

    2 22 22

    2 * *

    0 . 0 0 . 0 0 . 0

    0 . 0 0 . 0 0 . 0

    . . . . . . . . . . . .

    0 0 . 0 0 . 0 0 . N NN NN 

    m k 

    m k 

    m k 

    ω 

    ω 

    ω 

    ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    2 * *= M K 

    Lecture 6 The Matrix of Natural Frequencies

    22

    23

  • 8/9/2019 2009 CT 4140 Book of Slides

    23/72

    85

    Contents of Lecture 7

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    1. Modal Analysis of Forced Vibrations of Undamped N DOFS

    • General

    • Use of Initial Conditions

    • The Steady-State Response to a Harmonic Load

    2. Finding the Forced Response of N DOFS using IntegralFourier Transform

    Lecture 7 86

    Modal Analysis of Forced Vibrations of UndampedN DOFS - General

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 7 Modal Analysis of Forced Vibrations of Undamped N DOFS

    Equations of Motion:

    ( ) x x F t + =&& M K 

    The main idea of the Modal Analysis is to represent the forced motion as thesuperposition of the normal modes of free vibrations multiplied by unknownfunctions of time:

    ( ) ( ) ( )1

    ˆ N 

    i i

    i

     x t x u t u t =

    = =∑   E

    Substitution of the above into the equations of motion gives:

    u u F + =&& M E K E

    Pre-multiplying this by  E T , we obtain:

    * *T T T T  u u F u u F  + = ⇒ + =&& && E M E E K E E M K E

    87

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 7 Modal Analysis of Forced Vibrations of Undamped N DOFS

    Uncoupled System of Equations:

    ( ) ( )

    2 * *

    * * * * 2 * * 2

    2 * * *

    ˆ

    or 

    ˆ, where

    T T T 

    ii i ii i i i

    i i i i ii i i

    u u F u u F m u m u x F  

    u u F t m F t x F  

    ω 

    ω 

    =

    + = ⇒ + = ⇔ + =

    + = =

    && && &&

    &&

     M K 

     M K E M M E

     

    Once the modal displacements are known, the structural displacements can becalculated as:

    The general solution to the modal equation of motion (Duhamel’s integral):

    ( )   ( )   ( ) ( )( )**0

    1sin sin

    where and are to be determined from the initial conditions

    i i i i i i

    i ii

    i i

    u t A t F t d  m

     A

    ω ϕ τ ω τ τ  ω 

    ϕ 

    = + + −∫

    ( )iu t 

    ( ) ( ) ( )1

    ˆ N 

    i i

    i

     x t x u t u t =

    = =∑   E

    Modal Analysis of Forced Vibrations of UndampedN DOFS- General

    88

    Modal Analysis of Forced Vibrations of UndampedN DOFS – Use of Initial Conditions

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lecture 7 Modal Analysis of Forced Vibrations of Undamped N DOFS

    Explicit form for the vector-displacement and vector-velocity:

    ( ) ( )   ( )   ( ) ( )( )

    ( ) ( )   ( )   ( ) ( )( )

    *

    *1 1 0

    *

    *1 1 0

    1ˆ ˆ sin sin

    1ˆ ˆ cos cos

    t  N N 

    i i i i i i i i

    i i   i ii

    t  N N 

    i i i i i i i i i

    i i   ii

     x t x u t x A t F t d m

     x t x u t x A t F t d m

    ω ϕ τ ω τ τ  ω 

    ω ω ϕ τ ω τ τ  

    = =

    = =

    ⎛ ⎞= = + + −⎜ ⎟⎜ ⎟

    ⎝ ⎠

    ⎛ ⎞= = + + −⎜ ⎟

    ⎝ ⎠

    ∑ ∑   ∫

    ∑ ∑   ∫& &

    To determine the unknown constants, we consider the above expressions at t=0:

    ( ) ( ) ( ) ( ) ( )   ( )1 1 1 1

    ˆ ˆ ˆ ˆ0 0 sin , 0 0 cos N N N N 

    i i i i i i i i i i i

    i i i i

     x x u x A x x u x Aϕ ω ϕ = = = =

    = = = =∑ ∑ ∑ ∑& &

    Pre-multiplying these equations by , we obtainˆT  j x   M 

    ( ) ( ) ( )   ( )1 1

    ˆ ˆ ˆ ˆ ˆ ˆ0 sin , 0 cos N N 

    T T T T  

     j j i i i j j i i i i

    i i

     x x x x A x x x x Aϕ ω ϕ = =

    = =∑ ∑& M M M M 

    23

    24

  • 8/9/2019 2009 CT 4140 Book of Slides

    24/72

    89

    Modal Analysis of Forced Vibrations of UndampedN DOFS – Use of Initial Conditions

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lecture 7 Modal Analysis of Forced Vibrations of Undamped N DOFS

    Using the orthogonality with respect to the mass matrix, we obtain:

    ( )   ( )   ( )   ( )ˆ ˆ ˆ ˆ ˆ ˆ0 sin , 0 cosT T T T   j j j j j j j j j j j x x x x A x x x x Aϕ ω ϕ = =& M M M M 

    Squaring the above equations and subsequently summing them up we obtain thefollowing expression for the amplitudes:

    ( ) ( )22

    * *

    ˆ ˆ0 0T T  j j j

     jj j jj

     x x x x A

    m mω 

    ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎜ ⎟   ⎜ ⎟

    ⎝ ⎠   ⎝ ⎠

    & M M 

    The phases are found by dividing the first above equation by the second:

    ( )

    ( )

    ˆ 0arctan

    ˆ 0

     j

     j j  T  j

     x x

     x xϕ ω 

    ⎛ ⎞=   ⎜ ⎟

    ⎜ ⎟⎝ ⎠&

     M 

     M 

    90

    Modal Analysis of Undamped N DOFS - The

    Steady-State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

    Consider a N DOFS under a synchronous harmonic load:

    ( )ˆ sin x x F t + = Ω&& M K 

    Rewriting these equations in the form of the uncoupled system yields:

    ( )2*

    ˆˆsin

    i

    i i i

    ii

     x F u u t 

    mω + = Ω&&

    In the steady-state regime, the N DOFS has to vibrate on the frequency of theexternal load, i.e.:

    ( )   ( )2 2 * 2 2 *

    2 2 *

    ˆ ˆˆ ˆ1ˆ ˆ ˆsin

    ˆ1ˆor 

    T T 

    i i

    i i i i i

    ii i ii

    i ii

     x F x F u u t u u

    m m

    F u

    m

    ω ω 

    ω 

    = Ω ⇒ −Ω + = ⇒ =− Ω

    =− Ω

     E

    91

    Modal Analysis of Undamped N DOFS - The

    Steady-State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

    The Modal Frequency Response Function of the mode i to the harmonic force

    applied to the degree of freedom  p:

     Varying i and  p, one can compose the

    following (not symmetric) ModalFrequency Response Matrix:

    ( )2 2 *

    2 2 * 2 2 *

    ˆ FRF of mode to the force applied toˆ 1-

    ˆ degree of freedo

    ˆ ˆˆ ˆ1 1ˆ ˆ ˆ0 0 ...

     

    0

    mi p

    T T 

    i pi p

     p i

    i ii i i

     piiu F 

    i ii p

    i

     x F    x F F F 

     x   iu H 

     pmF 

    um mω ω 

    ω 

    ⎡ ⎤= ⇒ = =⎣ ⎦ − Ω − Ω

    Ω = =

    − Ω

    1 1 1 2 1

    2 1 2 2 2

    1 2

    .

    .

    . . . .

    .

     N 

     N 

     N N N N 

    u F u F u F  

    u F u F u F  

    uF 

    u F u F u F  

     H H H 

     H H H 

     H H H 

    ⎡ ⎤⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

     H 

    92

    Modal Analysis of Undamped N DOFS - The

    Steady-State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences

    2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

    General expression for the modal amplitudes:

    ˆˆuF 

    u F =  H 

    The original vector-displacement is given as:

    ( ) ( )( ) ( ) ( ) ( )ˆ ˆsin , sin

    ˆ ˆˆ ˆ

    ˆˆ , where

     x t x t u t u t 

     xF xF uF 

    uF xF   x

     x

    t u t x u F  

    F = Ω = Ω

    = ⇒ = =

    = =

    = E E E

     H 

     H 

     H E H 

     H 

    The Frequency Response Matrix:1 1 1 2 1

    2 1 2 2 2

    1 2

    .

    .

    . . . .

    .

     N 

     N 

     N N N N 

     x F x F x F 

     x F x F x F 

     xF 

     x F x F x F 

     H H H 

     H H H 

     H H H 

    ⎡ ⎤⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

     H 

    24

    25

  • 8/9/2019 2009 CT 4140 Book of Slides

    25/72

    93

    Modal Analysis of Undamped N DOFS - The

    Steady-State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

    Expressions for the amplitude of vibrations of a particular degree of freedom:

    1 1 1 2 1

    1

    1

    2

    2

    1

    1.

    .. . .

    ˆ ˆ .ˆ ˆ :

    . . .

    ˆ

    ˆ.

    .

    .

    ˆ

    .

    q q q

     N 

    q p

     N N N N 

     N  x F x F x F    q

     N 

     x F x F x F 

     N 

     xF q x F p

     p

     x F x F x F 

     H H H 

     x F x H F 

     H H H 

     H H H    F 

    =

    ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

    ∑ H 

    Elaborating further we obtain:

    1

    2 2 * 2 2 *1 1 1

    ˆˆ , where

    ˆ ˆ ˆ1 1ˆ ˆ

    q p

    q p i p

     N 

    q x F p

     p

     N N N 

     pi qi pi x F qi u F qi

    i i ii ii i ii

     x H F 

     x x x H x H x

    m mω ω 

    =

    = = =

    =

    = = =− Ω − Ω

    ∑ ∑ ∑

    FRF of degree of freedom to the force

    applied to degree of freedom

    i

     p

    94

    Modal Analysis of Undamped N DOFS –The

    Steady-State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

     A representative plot of FRF for 5 DOFS:q p x F  H 

    1ω  2ω  3ω  4ω  5ω  Ω

    q p x F  H 

    95

    Finding the Forced Response of N DOFS by usingIntegral Fourier Transform

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 7 The Steady-State Response of Undamped N DO FS to a Harmonic Load

    Equations of Motion:

    ( ) x x F t + =&& M K 

    ( )

    ( )

    ( )

    ( )  ( )

    1exp

    2

    F t    F i t d 

     x t    x

    ω ω ω 

    π    ω 

    −∞

    ⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

    ⎪ ⎪   ⎪ ⎪⎩ ⎭  ⎩ ⎭

    ∫%

    %

    Fourier Transform: Inverse Fourier Transform

    ( )

    ( )

    ( )

    ( )  ( )exp

    F t F i t dt  

     x t  x

    ω ω 

    ω 

    −∞

    ⎧ ⎫   ⎧ ⎫⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬

    ⎪ ⎪⎪ ⎪   ⎩ ⎭⎩ ⎭  ∫

    %

    %

    Equation of Motion and its Solution in the Frequency Domain:

    ( )   ( ) ( ) ( )   ( )   ( )1

    2 2 x F x F ω ω ω ω ω ω  −

    − + = ⇒ = − +% %% % M K M K 

    Solution in the Time Domain:

    ( )   ( )   ( ) ( )1

    21 exp2

     x t F i t d ω ω ω ω  π 

    ∞−

    −∞

    = − +∫   % M K 

    96

    Contents of Lecture 8

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    1. Modal Analysis of Forced Vibrations of N DOFS with ViscousDamping

    • General

    • Use of Initial Conditions

    • The Steady-State Response to a Harmonic Load

    Lecture 8

  • 8/9/2019 2009 CT 4140 Book of Slides

    26/72

    27

  • 8/9/2019 2009 CT 4140 Book of Slides

    27/72

    101

    Modal Analysis of Forced Vibrations of UndampedN DOFS – Use of Initial Conditions

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Explicit form for the vector-displacement and vector-velocity:

    ( ) ( ) ( )   (   ){

    ( ) ( )(   )   ( )( )

    ( ) ( )

    ( )   (   )   (   )(   ){

    ( )

    2

    1 1

    * 2

    * 20

    1

    2 2 2

    1

    *

    * 20

    ˆ ˆ exp sin 1

    1sin 1 exp

    1

    ˆ

    ˆ exp sin 1 1 cos 1

    sin 11

     N N 

    i i i i i i i i i

    i i

    i i i i i

    ii i i

     N 

    i i

    i

     N 

    i i i i i i i i i i i i

    i

    ii i i

    ii i

     x t x u t x A t t 

    F t t d  m

     x t x u t 

     x t t t 

    F m

    ξ ω ω ξ ϕ  

    τ ω ξ τ ξ ω τ τ  ω ξ 

    ω ξ ω ξ ω ξ ϕ ξ ω ξ ϕ  

    ξ τ ω ξ 

    ξ 

    = =

    =

    =

    = = − − +

    ⎫⎪+ − − − −   ⎬

    −   ⎪⎭

    =

    = − − − + + − − +

    − −−

    ∑ ∑

    & &

    ( )(   )   ( )( )

    ( ) ( )(   )   ( )( )

    2

    * 2

    *

    0

    exp

    1cos 1 exp

    i i

    i i i i i

    ii

    t t d 

    F t t d  m

    τ ξ ω τ τ  

    τ ω ξ τ ξ ω τ τ  

    − − −

    ⎫+ − − − −   ⎬⎭

    Lecture 8 Modal Analysis of Forced Vibrations of Damped N DOFS 102

    Modal Analysis of Forced Vibrations of UndampedN DOFS – Use of Initial Conditions

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    To determine the unknown constants, we consider the above expressions at t=0:

    ( ) ( ) ( )

    ( ) ( )   ( ) ( )(   )1 1

    2

    1 1

    ˆ ˆ0 0 sin ,

    ˆ ˆ0 0 sin 1 cos

     N N 

    i i i i i

    i i

     N N 

    i i i i i i i i i

    i i

     x x u x A

     x x u x A

    ϕ 

    ω ξ ϕ ξ ϕ  

    = =

    = =

    = =

    = = − + −

    ∑ ∑

    ∑ ∑& &

    Pre-multiplying these equations by , and using the orthogonality, we obtainˆT 

     j x   M 

    ( ) ( )   ( )

    ( )   ( ) ( )(   )

    ( )   ( )(   )

    *

    1

    2

    1

    * 2

    ˆ ˆ ˆ0 sin sin

    ˆ ˆ ˆ0 sin 1 cos

    sin 1 cos

     N T T 

     j j i i i jj j j

    i

     N T T 

     j j i i i i i i i

    i

     jj j j j j i j

     x x x x A m A

     x x x x A

    m A

    ϕ ϕ 

    ω ξ ϕ ξ ϕ  

    ω ξ ϕ ξ ϕ  

    =

    =

    = =

    = − + −

    = − + −

    ∑&

     M M 

     M M 

    Lecture 8 Modal Analysis of Forced Vibrations of Damped N DOFS

    103

    ( )  ( )

    ( ) ( )

    ( ) ( ) ( )

    ( )

    2

    2

    * 2

    ˆ1 0tan ,

    ˆ ˆ0 0

    ˆ ˆ ˆ0 0 01

    ˆ1 0

    i i j

     j   T T 

     j i j j

    T T T 

     j j i j j

     jT 

     jj i i j

     x x

     x x x x

     x x x x x x A

    m   x x

    ω ξ ϕ 

    ω ξ 

    ω ξ 

    ω ξ 

    −=

    +

    ⎛ ⎞+⎜ ⎟= +⎜ ⎟

    −⎝ ⎠

    &

    &

     M 

     M M 

     M M M 

     M 

    Modal Analysis of Forced Vibrations of UndampedN DOFS – Use of Initial Conditions

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    From the above two equations, the following expressions can be derived:

    Lecture 8 Modal Analysis of Forced Vibrations of Damped N DOFS

    Mathematically, the problem has been solved. But … what about our assumptionconcerning the diagonality of the Modal Damping Matrix?

    104

    Proportional (Rayleigh) Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    The proportional damping is defined as follows:

    Lecture 8 Proportional Damping

    To identify the unknown constants, one has to know the Modal Damping Ratios forat least two modes. Suppose, these are known for the first two modes. Then

    0 1 0 1, with and unknown constantsa a a a+ −C = M K  

    The modal damping takes the form:

    ( )* * *0 1 0 1 0 1T T T T  a a a a a a= + +C E C E = E M K E = E ME + E KE = M K  

    The modal Modal Damping Ratio takes the form:

    * * *

    0 1 0 1* *2 2 2 2ii ii ii i

    i

    ii i ii i i

    c a m a k a am m

    ω ξ ω ω ω += = = +

    ( ) ( )1 2 1 2 2 1 2 2 1 10 12 2 2 2

    2 1 2 1

    2 2,a a

    ω ω ξ ω ξ ω ξ ω ξ ω  

    ω ω ω ω  

    − −= =

    − −

    28

  • 8/9/2019 2009 CT 4140 Book of Slides

    28/72

    105

    Proportional Damping

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Three Cases(assuming ω1 > < <

    > ≤ ≤

    ≤ > ≤

    1

    2

    0 1a a

    ξ 

    ξ 

    1ω 

    2ω 

    0 1a a

    1

    2  i

    aω 

    0

    2i

    a

    ω 

    case A

    iω 

    iξ 

    1 2 2

    2 1 1

    ω ξ ω 

    ω ξ ω < <

    1

    2

    ξ 

    ξ 

    iξ 

    0 1a a−

    1ω  2ω 

    0

    2i

    a

    ω 

    1

    2  i

    aω 

    iω 

    2 1

    1 2

    ξ ω 

    ξ ω ≤ case B

    2

    1

    ξ 

    ξ 

    0 1a a−

    1ω 

    iξ 

    2ω 

    0

    2i

    a

    ω 

    1

    2  i

    aω 

    iω 

    case C

    2 2

    1 1

    ξ ω 

    ξ ω ≥

    106

    Modal Analysis of Damped N DOFS - The Steady-

    State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 8 The Steady-State Response of Damped N DOF S to a Harmonic Load

    Consider a N DOFS under a synchronous harmonic load:

    ( )ˆ sin x x x F t + + = Ω&& & M C K 

    Rewriting these equations in the form of the uncoupled system yields:

    ( )2*

    ˆˆ2 sin

    i

    i i i i i i

    ii

     x F u u u t  

    mξ ω ω + + = Ω&& &

    In the steady-state regime, the N DOFS has to vibrate on the frequency of theexternal load but with a certain phase shift, i.e.:

    ( )

    ( )( )   ( )   ( )22 *22 2

    ˆ sin

    ˆˆ 21 1

    ˆ , tan 11 2

    substitution

    i i i

    i   i i

    i i

    i ii ii i i

    u u t 

     x F 

    u m

    ϕ 

    ξ ω 

    ϕ ω    ω ω ξ ω 

    = Ω − ⇒

    Ω

    = = − Ω− Ω + Ω

    107

    Modal Analysis of Damped N DOFS - The Steady-

    State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 8 The Steady-State Response of Damped N DOF S to a Harmonic Load

    The Modal Amplitude-Frequency Response Characteristic:

     Varying i and  p, one can compose the

    following (not symmetric) Modal Amplitude-Frequency Response Matrix:

    ( )The ratio of the amplitude of the displacement of modeˆ

     -ˆ  to that of the force applied to degree of freedomi p

     A   iu F 

     p

    iu H 

     pF Ω =

    1 1 1 2 1

    2 1 2 2 2

    1 2

    .

    .

    . . . .

    .

     N 

     N 

     N N N N 

    u F u F u F  

    u F u F u F   A

    uF 

    u F u F u F  

     H H H 

     H H H 

     H H H 

    ⎡ ⎤⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

     H 

    ( )

    ( )( )   ( )2 *2

    2 2

    ˆ1 1

    1 2i p

     pi A

    u F 

    i ii

    i i i

     x H 

    mω ω ξ ω 

    Ω =− Ω + Ω

    108

    Modal Analysis of Damped N DOFS - The Steady-

    State Response to a Harmonic Load

    CT 4140 Structural MechanicsFaculty of Civil Engineering and Geosciences2009 Delft, The Netherlands

    Lec ture 8 The Steady-State Response of Damped N DOF S to a Harmonic Load

    The typical shape of the Modal Amplitude-Frequency Response Characteristic andthe Modal Phase-Frequency Response Characteristic:

    i p

     A

    u F  H 

    ( )   ( )22 22

    ˆ1 1ˆ ˆ

    1 2

    i p

     pi

    u F    T 

    i i i

    iii

     x H 

     x M xω ξ 

    ω ω 

    =⎧ ⎫   ΩΩ−   +⎨ ⎬⎩ ⎭

    2

    ˆ

    ˆ ˆ2

     pi

    i i i i

     x

     x M xξ ω 

    2

    ˆ

    ˆ ˆ

     pi

    i i i

     x

     x M xω 

    0   iω    Ω

    ( )2

    2

    arctan

    1

    ii

    i

    i

    ξ ω 

    φ 

    ω 

    Ω⎛ ⎞⎜ ⎟

    =   ⎜ ⎟Ω⎜ ⎟−⎜ ⎟

    ⎝ ⎠

    0   iω    Ω

    2π 

    π 

    0

    iφ 

    29

  • 8/9/2019 2009 CT 4140 Book of Slides

    29/72

    109

    Modal Analysis of Damped N DOFS - The Ste