2004 training seminars interpreting data

Upload: odadgari

Post on 15-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 2004 Training Seminars Interpreting Data

    1/57

    2004 Training Seminars

    DSC

    3

    Interpreting DSC Data

    Glass Transition & Melting

  • 7/23/2019 2004 Training Seminars Interpreting Data

    2/57

    Glass Transitions

    The glass transition is a step change inmolecular mobility (in the amorphous phase of

    a sample) that results in a step change in heat

    capacity

    The material is rigid below the glass transitiontemperature and rubbery above it. morphousmaterials flow! they do not melt (no "#$ melt

    pea%)

  • 7/23/2019 2004 Training Seminars Interpreting Data

    3/57

    Glass Transitions

    The change in heat capacity at the glasstransition is a measure of the amount of

    amorphous phase in the sample

    nthalpic recovery at the glass transition is a

    measure of order in the amorphous phase.nnealing or storage at temperatures 'ust

    below Tg permit development of order as the

    sample moves towards euilibrium

    l i

  • 7/23/2019 2004 Training Seminars Interpreting Data

    4/57

    Heat Flow & Heat Capacity at

    the Glass Transition

    eat *low

    eat $apacity

    Temperature +elow Tg, lower $p, lower -olume, lower $T&, higher stiffness, higher viscosity

    , more brittle, lower enthalpy

    Glass Transition is "etectable by "#$+ecause of a #tep,$hange in eat $apacity

    ,./

    ,/.0

    ,/.1

    ,/.2

    ,/.

    ,/.4

    ,/.5

    ,/.3

    67777789eat*low

    (m:)

    /.4

    ./

    .4

    ;./

    eat$apacity($)

    2/ 0/ /

    Temperature (>$)

    &o Hp Hniversal -3.1 T Instruments

    Polystyrene

  • 7/23/2019 2004 Training Seminars Interpreting Data

    5/57

    Measuring!eporting Glass Transitions

    " The glass transition is always a temperature range

    " The molecular motion associate# with the glasstransition is time #epen#ent$ There%ore Tg increases

    when heating rate increases or test %re'uency (MDSC)

    DM* D+* etc$, increases$

    " -hen reporting Tg it is necessary to state the test

    metho# (DSC DM* etc$, e.perimental con#itions

    (heating rate sample si/e etc$, an# how Tg was

    #etermine# Mi#point 1ase# on Cp or in%lection (pea3 in #eriatie,

  • 7/23/2019 2004 Training Seminars Interpreting Data

    6/57

    Glass Transition *nalysis

    Polystyrene

    5$67mg

    809Cmin

  • 7/23/2019 2004 Training Seminars Interpreting Data

    7/57

    Glass Transition *nalysis

    Polystyrene

    5$67mg

    809Cmin

  • 7/23/2019 2004 Training Seminars Interpreting Data

    8/57

    Step Change in Cp at the Glass Transition

    : *morphous ; 0$84

  • 7/23/2019 2004 Training Seminars Interpreting Data

    9/57

    Aged Epoxy Sample

  • 7/23/2019 2004 Training Seminars Interpreting Data

    10/57

    Effect of Annealing Time on Shape of Tg

  • 7/23/2019 2004 Training Seminars Interpreting Data

    11/57

    Importance of Enthalpic Relaxation

    Is enthalpic recovery at the glass transition important?

    >Sometimes" Glass transition temperature shape an# si/e proi#e use%ul

    in%ormation a1out the structure o% the amorphous component

    o% the sample$" This structure an# how it changes with time is o%ten

    important to the processing storage an# en#?use o% a

    material$" +nthalpic recoery #ata can 1e use# to measure an# pre#ict

    changes in structure an# other physical properties with time$

  • 7/23/2019 2004 Training Seminars Interpreting Data

    12/57

    +%%ect o% *ging on *morphous Materials

    Temperature

    Max TgStorage

    timeH

    MS

    +'uili1rium

    @i'ui#

    +'uili1rium

    Glass

    Aau/mannTempB @owest Tg

    (+ntropy o% Crystal,

    -here H ; High relatie cooling rate

    M ; Me#ium relatie cooling rat

    S ; Slow relatie cooling rate

    Decreases+ntropy

    Decreases+nthalpy

    DecreasesHeat Capacity

    DecreasesCoe%%icient o%+.pansion

    ncreasesMo#ulus

    DecreasesSpeci%ic olume

    !esponse on

    S

    Physical Property

    +ntropy

    +nthalpy

    Coe%%icient o%

    Mo#ulus

    Speci%ic olume

    !esponse on

    Storage Eelow Tg

    Physical Property

    !

  • 7/23/2019 2004 Training Seminars Interpreting Data

    13/57

    Suggestions %or Fin#ing -ea3

    Glass Transitions" Anow your empty?pan 1aseline

    " Get as much material in the amorphous state

    " Cool slowly through the glass transition

    region

    " Heat rapi#ly through glass transition region

    " se MDSC)

    " r use uasi?sothermal MDSC

  • 7/23/2019 2004 Training Seminars Interpreting Data

    14/57

    Glass Transition Summary

    " The glass transition is #ue to *morphous

    material

    " The glass transition is the reersi1le change

    %rom a glassy to ru11ery state & ice?ersa

    " DSC #etects glass transitions 1y a step

    change in Cp

  • 7/23/2019 2004 Training Seminars Interpreting Data

    15/57

    Melting De%initions

    " Melting the process o% conerting crystalline

    structure to a li'ui# amorphous structure

    " Thermo#ynamic Melting Temperature the

    temperature where a crystal woul# melt i% it ha# a

    per%ect structure (large crystal with no #e%ects,

    " Metasta1le Crystals Crystals that melt at lower

    temperature #ue to small si/e (high sur%ace area, an#poor 'uality (large num1er o% #e%ects,

  • 7/23/2019 2004 Training Seminars Interpreting Data

    16/57

    De%initions (cont$," Crystal Per%ection the process o% small less per%ect

    crystals (metasta1le, melting at a temperature 1elowtheir thermo#ynamic melting point an# then (re,

    crystalli/ing into larger more per%ect crystals that

    will melt again at a higher temperature

    " True Heat Capacity Easeline

    o%ten calle# thethermo#ynamic 1aseline it is the measure# 1aseline

    (usually in heat %low rate units o% m-, with all

    crystalli/ation an# melting remoe#>$ assumes no

    inter%erence %rom other latent heat such as

    polymeri/ation cure eaporation etc$ oer the

    crystalli/ationmelting range

  • 7/23/2019 2004 Training Seminars Interpreting Data

    17/57

    Melting o% n#ium

    42./>$

    4./>$;1.4/$=min

    ,;4

    ,;/

    ,4

    ,/

    ,4

    /

    eat*low(m

    :)

    4/ 44 / 4

    Temperature (>$)

    &Go Hp Hniversal -5./+ T Instruments

    @ea% Temperature

    trapolated

    Jnset

    Temperature

    eat of

    *usion

    *or pure! low

    molecular weight

    materials (mwK4//

    g=mol) usetrapolated Jnset as

    Melting Temperature

  • 7/23/2019 2004 Training Seminars Interpreting Data

    18/57

    Melting o% P+T

    ;50.2/>$

    ;3.4>$4;.0$=min

    ,2

    ,

    ,4

    ,5

    ,3

    ,;

    ,

    eat*low(m:)

    ;// ;/ ;;/ ;3/ ;5/ ;4/ ;/ ;2/

    Temperature (>$)

    &Go Hp Hniversal -5./+ T Instruments

    trapolated

    Jnset

    Temperature

    @ea% Temperature

    eat of

    *usion

    *or polymers! use @ea% as Melting Temperature

  • 7/23/2019 2004 Training Seminars Interpreting Data

    19/57

    Comparison o% Melting

    ;50.2/>$

    ;3.4>$4;.0$

    4./>$;1.4/$=min

    @&T.20mg/>$=min

    ,;4

    ,;/

    ,4

    ,/

    ,4

    /

    eat*low(m:)

    5/ / 1/ ;// ;;/ ;5/ ;/ ;1/

    Temperature (>$)&Go Hp Hniversal -5./+ T Instruments

  • 7/23/2019 2004 Training Seminars Interpreting Data

    20/57

    *naly/ingnterpreting !esults

    " t is o%ten #i%%icult to select limits %orintegrating melting pea3s

    ntegration shoul# occur 1etween two points on

    the heat capacity 1aseline

    Heat capacity 1aselines %or #i%%icult samples can

    usually 1e #etermine# 1y MDSC)or 1y

    comparing e.periments per%orme# at #i%%erent

    heating ratesSharp melting pea3s that hae a large shi%t in the

    heat capacity 1aseline can 1e integrate# with a

    sigmoi#al 1aseline

  • 7/23/2019 2004 Training Seminars Interpreting Data

    21/57

    Easeline Due to Cp

  • 7/23/2019 2004 Training Seminars Interpreting Data

    22/57

    Easeline Type

  • 7/23/2019 2004 Training Seminars Interpreting Data

    23/57

    "SC of #olymer $lend

    -here is theCp 1aselineI

    More on this sample in

    the MDSC) section

  • 7/23/2019 2004 Training Seminars Interpreting Data

    24/57

    s it a meltI

    J+SK

    nset shi%ts 1y only 0$=9C

  • 7/23/2019 2004 Training Seminars Interpreting Data

    25/57

    s it a MeltI

    LK

    nset shi%ts 1y almost =09C

  • 7/23/2019 2004 Training Seminars Interpreting Data

    26/57

    +%%ect o% Heating !ate on Melting

    />$=min

    4/>$=min

    //>$=min

    4/>$=min

    /

    ;

    5

    1

    /

    eat$apacity($)

    ,5/ / 5/ 1/ ;/ / ;// ;5/ ;1/Temperature (>$)

    Melt

  • 7/23/2019 2004 Training Seminars Interpreting Data

    27/57

    +%%ect o% Heating !ate on Polymorph

    "#$ at $=min

    "#$ at /$=min

    "#$ at 4/$=min

    "#$ at $=min

  • 7/23/2019 2004 Training Seminars Interpreting Data

    28/57

    +%%ect o% mpurities on Melting

    ffect of p,minobenAoic cid Impurity $oncentration

    on the Melting #hape=Temperature of @henacetin

    ppro. mg

    $rimped l @ans

    ;>$=min

    L+# 45

    Thermal nalysis@urity #et

    Melting of

    utectic Miture

    // @ure

    04./ @ure

    00.3 @ure

    0./ @ure

  • 7/23/2019 2004 Training Seminars Interpreting Data

    29/57

    ant Ho%% Purity Calculation

    33./

    33.4

    35./

    35.4

    34./

    Temperatur

    e(>$)

    ,; / ; 5 1 /

    Total rea = @artial rea

    ;4.;/>$32.24>$

    @urity? 00.43mol Melting @oint? 35.0;>$ (determined)"epression? /.;4>$"elta ? ;.44%$NM# "eviation? /./>$

    ,;.;

    ,;./

    ,.1

    ,.

    ,.5

    ,.;

    ,./

    ,/.1

    eat*low(:=g)

    ;; ;5 ; ;1 3/ 3; 35 3 31

    Temperature (>$)&Go Hp

    5

  • 7/23/2019 2004 Training Seminars Interpreting Data

    30/57

    2004 Training Seminars

    DSC

    5

    Interpreting DSC Data

    $rystalliAation! eat $apacity!

    and $rosslin%ing

  • 7/23/2019 2004 Training Seminars Interpreting Data

    31/57

    CrystallinityDe%initions

    " Crystalli/ation the process o% conerting eithersoli# amorphous structure (col# crystalli/ation on

    heating, or li'ui# amorphous structure (cooling, to a

    more organi/e# soli# crystalline structure

    " Crystal Per%ection the process o% small less per%ect

    crystals (metasta1le, melting at a temperature 1elow

    their thermo#ynamic melting point an# then (re,

    crystalli/ing into larger more per%ect crystals thatwill melt again at a higher temperature

    "

  • 7/23/2019 2004 Training Seminars Interpreting Data

    32/57

    Change in Crystallinity -hile Heating

    /4.//>$;24.//>$

    35.3>$

    ;2.1>$/.122$

    ;3/./>$

    2.0$)

    &Go Hp Hniversal -5./+ T Instruments

    Ouenched @T

    0.4mg

    />$=min

  • 7/23/2019 2004 Training Seminars Interpreting Data

    33/57

    Crystalli/ation

    " Crystalli/ation is a 3inetic process which can 1e

    stu#ie# either while cooling or isothermally

    " Di%%erences in crystalli/ation temperature or time(at a speci%ic temperature, 1etween samples can

    a%%ect en#?use properties as well as processing

    con#itions

    " sothermal crystalli/ation is the most sensitie wayto i#enti%y #i%%erences in crystalli/ation rates

  • 7/23/2019 2004 Training Seminars Interpreting Data

    34/57

    Crystalli%ation

    " Crystalli/ation is a two step processN

    LucleationGrowth

    " The onset temperature is the nucleation (Tn,

    " The pea3 ma.imum is the crystalli/ation

    temperature (Tc,

  • 7/23/2019 2004 Training Seminars Interpreting Data

    35/57

    /./

    /.4

    ./

    .4

    ;./

    eat*lo

    w(:=g)

    5/ 4/ / 2/ 1/ 0/ // / ;/ 3/ 5/ 4/ /

    Temperature (>$)&Go Hp

    P@JP!PJ@+L+-TH LC@+*TLG

    *G+LTS

    P@JP!PJ@+L+-THT

    LC@+*TLG *G+LTS

    ,.4

    ,./

    ,/.4

    /./

    eat*low(:=g)

    / 1/ // ;/ 5/ / 1/ ;//

    Temperature (>$)&o Hp

    crystalli%ation

    melting

    +%%ect o% Lucleating *gents

    -h i h l C lli i I

  • 7/23/2019 2004 Training Seminars Interpreting Data

    36/57

    -hat is sothermal Crystalli/ationI

    " * Time?To?+ent +.periment

    *nnealing Temperature

    Melt Temperature

    sothermal Crystalli/ation

    Temperature

    Tem

    perature

    Time

    Oero Time

    h l C lli i

  • 7/23/2019 2004 Training Seminars Interpreting Data

    37/57

    sothermal Crystalli/ation

    117.4 oC

    117.8 oC

    118.3 oC

    118.8 oC

    119.3 oC

    119.8 oC120.3 oC

    0

    1

    2

    3

    4

    5

    HeatFlow

    (mW

    !1 1 3 5 7 9

    "ime (min

    @olypropylene

  • 7/23/2019 2004 Training Seminars Interpreting Data

    38/57

    Speci%ic Heat Capacity (Cp,

    " Heat capacity is the amount o% heat re'uire# to

    raise the temperature o% a material 1y 89C %rom T8

    to T2

    " True Heat Capacity (no transition, is completely

    reersi1leB the material releases the same amount

    o% heat as temperature is lowere# %rom T2to T8

    "Speci%ic Heat Capacity re%ers to a speci%ic massan# temperature change %or a material (g9C,

    -h i H C i I

  • 7/23/2019 2004 Training Seminars Interpreting Data

    39/57

    -hy is Heat Capacity mportantI

    " *1solute thermo#ynamic property (s$ heat

    %low, use# 1y engineers in the #esign o%

    processing e'uipment

    " Measure o% molecular mo1ility Cp increases as molecular mo1ility increases$

    *morphous structure is more mo1ile than crystalline

    structure

    " Proi#es use%ul in%ormation a1out the

    physical properties o% a material as a %unction

    o% temperature

  • 7/23/2019 2004 Training Seminars Interpreting Data

    40/57

    Does DSC Measure Heat CapacityI

    " DSC or MDSC) #o not measure heat

    capacity #irectly$ They measure heat %low ratewhich can 1e use# to calculate heat capacity

    which is more appropriately calle# apparent

    heat capacity DSC calculate# Cp signals inclu#e all transitions 1ecause

    the heat %low signal is simply #ii#e# 1y heating rate (an

    e.perimental constant, to conert it to heat capacity units

    * true alue o% Cp can only 1e o1taine# in temperatureregions where there are no transitions

    C l l i H C i (C ,

  • 7/23/2019 2004 Training Seminars Interpreting Data

    41/57

    Calculating Heat Capacity (Cp,

    " Depen#ing on the DSC that you hae there

    are three #i%%erent ways to calculate Cp8, Three !un Metho# *STM +8265

    *pplica1le to all DSCQs

    2, Direct Cp Single !un Metho# *pplica1le to 8000 only

    =, MDSC) ? Single !un Metho#

    *ny T* nstruments DSC w MDSC option

    Most accurate #etermination

  • 7/23/2019 2004 Training Seminars Interpreting Data

    42/57

    Cp 1y Stan#ar# DSC

    " Generally three e.periments are run in aDSC oer a speci%ic temperature range

    +mpty pan run

    Sapphire run

    Sample run

    C l l ti C 1 St # # DSC

  • 7/23/2019 2004 Training Seminars Interpreting Data

    43/57

    Calculating Cp 1y Stan#ar# DSC

    " Three e.periments are run oer a speci%ic

    temperature range *llow < minute isothermal at start se 209Cmin heating rate

    8$ +mpty pan run Match panli# weights to R 0$0< mg

    se# to esta1lish a re%erence 1aseline

    Calculating Cp 1y Stan#ar# DSC

  • 7/23/2019 2004 Training Seminars Interpreting Data

    44/57

    Calculating Cp 1y Stan#ar# DSC

    2$ Sapphire run

    se# to #etermine cali1ration constant se same weight o% panli# as %or 1aseline R

    0$0< mg

    Typical weight is 20 2< mg

    =$ Sample run Typical weight is 80 8< mg

    se same weight o% panli# as 1e%ore R 0$0< mg

    C 1 T #iti l DSC = !

  • 7/23/2019 2004 Training Seminars Interpreting Data

    45/57

    Cp 1y Tra#itional DSC = !uns

    ,//

    /

    //

    ;//

    3//

    5//

    Temperature

    (>$)

    ,3/

    ,;4

    ,;/

    ,4

    ,/

    ,4

    /

    4

    eat*low(m:)

    / / ;/ 3/ 5/

    Time (min)

    eat *low

    +aseline Nun

    #ample Nun

    $alibration Nun

    1 #i i l

  • 7/23/2019 2004 Training Seminars Interpreting Data

    46/57

    Cp 1y Tra#itional DSC = !uns

    /

    //

    ;//

    3//

    5//

    4//

    Totaleat($)

    4/.// >$. $

    4/.// >$./0 $

    ;1/.// >$.0;5 $

    ;1/.// >$

    545. $25. $35.05

  • 7/23/2019 2004 Training Seminars Interpreting Data

    47/57

    Speci%ic Heat Capacity

    " MDSC) & T/ero DSC hae the a1ility

    to calculate a heat capacity signal #irectly

    %rom a single run$

    " Eene%its o% using a heat capacity (instea# o%heat %low, signal inclu#eNThe a1ility to oerlay signals %rom samples run

    at #i%%erent heating ratesThe a1ility to oerlay signals %rom heating an#

    cooling e.periments

    Direct Cp %rom a 8000

  • 7/23/2019 2004 Training Seminars Interpreting Data

    48/57

    Direct Cp %rom a 8000

    ;24.//>$43/.1$

    /.23$)

    / 4/ // 4/ ;// ;4/ 3//

    Temperature (>$)

    Hniversal -3.1 T Instruments

    Fatent eat of

    Melting is Lot eat

    $apacity

    Fatent eat of

    $rystalliAation is Lot

    eat $apacity

    bsolute integral

    calculates total heat

  • 7/23/2019 2004 Training Seminars Interpreting Data

    49/57

    Heat Flow w Di%%erent Heating !ates

    Heat Flow Signal# In$rea#e in Si%e

    wit& In$rea#ing Heating 'ate

    E %it % Pl tti H t C it

  • 7/23/2019 2004 Training Seminars Interpreting Data

    50/57

    Eene%it o% Plotting Heat Capacity

    Nemember! "#$ and M"#$

    $p signals are really

    Apparent Cp signals;

    crystalliAation and melting

    are latent heats! not $p

    eat $apacity #ignals reLormaliAed for eating Nate and

    @ermit $omparison of periments

    "one at "ifferent eating Nates

    H t Fl & C Si l

  • 7/23/2019 2004 Training Seminars Interpreting Data

    51/57

    Heat Flow & Cp Signals

    PolypropyleneSi/eN 5$28 mg

    DSC Cycle 80#egCmin

    Heat Capacity on Heating

    Heat Capacity on Cooling

    Heat Flow on Heating

    Heat Flow on Cooling

    -ea3 Tg isi1le in Cp Signal

  • 7/23/2019 2004 Training Seminars Interpreting Data

    52/57

    -ea3 Tg isi1le in Cp Signal

    SampleN Polypropylene

    Si/eN 5$28 mg

    DSC Cycle 80Cmin

    Heat Capacity on Heating

    Heat Capacity on Cooling

  • 7/23/2019 2004 Training Seminars Interpreting Data

    53/57

    Thermoset Curing & !esi#ual

    Cure" * UthermosetV is a cross?lin3e# polymer

    %orme# 1y an irreersi1le e.othermic

    chemical reaction* common e.ample woul# 1e a 2 part epo.y

    a#hesie

    " -ith a DSC we can loo3 at the curing o%these materials an# the Tg o% %ull or

    partially cure# samples

    Curing o% a Thermoset

  • 7/23/2019 2004 Training Seminars Interpreting Data

    54/57

    Curing o% a Thermoset

    34.;>$

    01.34>$;41.3$=min to 0/ >$

    5

    1

    /

    ;

    eat*low

    (m:)

    5/ / 1/ // ;/ 5/ / 1/ ;//

    Temperature (>$)

    # ti ll C d S t

  • 7/23/2019 2004 Training Seminars Interpreting Data

    55/57

    #artially Cured System

    ;ndheat shows increased

    Tg! due to additional

    curing during st heat

    Lote? #mall eotherm due to residual cure

    Ph l C 1 PC*

  • 7/23/2019 2004 Training Seminars Interpreting Data

    56/57

    Photopolymer Cure 1y PC*

    ./1min

    ./min;/0.$;? Isothermal for .// min3? Fight? on B ;/m:=cm;5? Isothermal for 4.// min4? Fight? off? Isothermal for ;.// min2? &nd of method

    $ure of a @hotopolymer by @$

    /

    4/

    //

    4/

    ;//

    ;4/

    eat*low

    (m:)

    / ; 5 1

    Time (min)

  • 7/23/2019 2004 Training Seminars Interpreting Data

    57/57