20 - idnog03 - franki lim (arista) - overlay networking with vxlan

32
Overlay Networking with VXLAN Frankie Lim @ Arista.com

Upload: indonesia-network-operators-group

Post on 16-Apr-2017

394 views

Category:

Internet


7 download

TRANSCRIPT

Page 1: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Overlay Networking with VXLAN

Frankie Lim @ Arista.com

Page 2: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Needs for an Overlay Networks Logical Network (aka “Overlay” Network) §  Network Virtualization (SDN)

§  Abstracts the virtualized environment form the physical topology

§  Constructs Layer 2 tunnels across the physical infrastructure

§  Tunnels provide connectivity between physical and virtual end-points

Physical Network (aka “Underlay” Network) §  Transparent to the overlay technology

§  Allows the building of L3 infrastructure – No L2

§  Physical provide the bandwidth and scale for the communication

§  Removes the scaling constraints of the physical from the virtual

Physical Infrastructure

Overlay Networks

Page 3: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Introducing VXLAN (RFC 7348) Virtual eXtensible LAN (VXLAN RFC 7348)

§  IETF framework proposal, co-authored by Arista, Broadcom, Cisco, Citrix Red Hat & VMware

Provides Layer 2 “Overlay Networks” on top of a Layer 3 network

§  “MAC in IP” Encapsulation

§  Layer 2 multi-point tunneling over IP UDP

Tunnel End-Points (VTEPs) perform encapsulation/decapsulation

§  In Software e.g. Hypervisor vSwitch

§  In Hardware e.g. Leaf Switches

Enables Layer 2 interconnection across Layer 3 boundaries

§  Transparent to the physical IP network

§  Provides Layer 2 scale across the Layer 3 IP fabric

§  Abstracts the Virtual connectivity from the physical IP infrastructure

§  e.g. Enables VMotion, L2 clusters etc. across standards based IP fabrics

VM-1 10.10.10.1/24

VM-2 20.20.20.1/24

VM-3 10.10.10.2/24

VM-4 20.20.20.2/24

ESX host ESX host

Subnet A

Layer 2 (e.g. for VM mobility, storage access, clustering etc.)

Across Layer 3 subnets

NAS 20.20.20.324

Load Balancer 10.10.10.3/24

Subnet B

Page 4: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Terminology Virtual Tunnel End-point (VTEP)

§  Performs for VXLAN encapsulation & decapsulation of the native frame

§  Adds the the appropriate VXLAN header.

§  Can be implemented on software virtual switch or a physical switch.

Virtual Tunnel Identifier (VTI)

§  An IP interface used as the Source IP address for the encapsulated VXLAN traffic

§  The destination IP address for VXLAN encapsulated traffic

Virtual Network Identifier (VNI)

§  A 24-bit field added within the VXLAN header.

§  Identifies the Layer 2 segment of the encapsulated Ethernet frame

VXLAN Header

§  The IP/UDP VXLAN header added by the VTEP

§  Uses a UDP source port based on a hash of the inner frame to create entropy for ECMP

Software VTEP

Hardware���VTEPs

VTEP

IP address: x.x.x.x

VTI-A

VTI-B

VTI-C

VTEP

VTEP

IP address: z.z.z.z

IP address: y.y.y.y

VXLAN + IP/UDP header SRC IP VTI-A; DST IP VTI-C

Logical Layer 2 Network

VNI n.n

Page 5: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Encapsulated Frame Format

§  Ethernet header uses local VTEP MAC and default router MAC (14 bytes plus 4 optional 802.1Q header)

§  The VXLAN encapsulation source/destination IP addresses are those of local/remote VTI (20 bytes) §  UDP header, with SRC port hash of the inner Ethernets header, destination port IANA defined (8

bytes) •  Allows for ECMP load-balancing across the network core which is VXLAN unaware.

§  24-bit VNI to scale up to 16 million for the Layer 2 domain or “Virtual Wires” (8 bytes)

Src. ���MAC addr.

Dest. ���MAC addr. 802.1Q. Dest. IP Src. IP UDP

VNI (24 bits) Payload FCS

Src. ���MAC addr.

Dest. ���MAC addr.

Optional ���802.1Q.

Original Ethernet Payload (including any IP headers etc.)

VXLAN (IP-MAC) Encapsulation

Ethernet Frame

Page 6: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Overlay Networks Fixed Configuration,

Active-Active Layer 3 design for scale, using well known

management tools/protocols

Flexible VTEP Edge, Mobile, agile, for flexible provisioning via Cloud

Management Platforms (CMP)

VXLAN Overlay Architecture configuration/flexibility at the edge, and transparency and fix configuration in the IP fabric

VXLAN VNI 10

VTEP VTEP

VXLAN VNI 20

VTEP

Page 7: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VLXAN VTEP within the Hypervisor vSwitch

§  VXLAN encapsulation & de-capsulation performed by the vSwitch •  Encapsulation performed prior to packet hitting the “physical interface”

•  Physical network is unaware of the encapsulated content

-  Sees only IP headers

§  External routing via decapsulation ���on the software switch -  Based on VNI to VLAN mapping

128.218.11.x 128.218.10.x

10.10.1.4 10.10.1.5 10.10.1.6

Locally Switched Traffic is done without

encap/decap

vSwitch is responsible for encapsulation &

decapsulation of VXLAN traffic between hosts

Software Router Responsible for external routing

Physical Infrastructure

Virtual Switch (VTEP)

SW VTEP: VNI to VLAN ���

translation Virtual Switch

(VTEP)

Page 8: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Switch based VXLAN Gateway Architecture

UDP 4729 VTI 1 10.10.1.1 VTEP

VNI 200 VNI 2000 VNI 20000

VLAN 100 VLAN 200 VLAN 300 VLAN 400 VLAN 500

Ethernet Ports���Port Channels

Ethernet Ports���Port Channels

Ethernet Ports���Port Channels

Ethernet Ports���Port Channels

Ethernet Ports���Port Channels

Local Devices Local Devices Local Devices Local Devices Local Devices

Ethernet Ports Port Channels Spine/Leaf Switch

Page 9: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Ports Ports

Point & Multi-Point Tunnel Service

UDP 4729

1 2.2.2.3

VTEP

VTEP Devices Ports

VLAN 100

Devices Ports VLAN 500

VTI 2.2.2..1

Devices Ports VLAN 200

Devices Ports VLAN 300

Devices Ports VLAN 400

VTEP Ports

Ports

VTI 1 2.2.2.2

Ports

Ports

Ports

UDP 4729

Devices

Devices

Devices

Devices

Devices

VNI 2000

VNI 200

VNI 2000

VNI 20000

VNI 200

VNI 2000

Ports

VNI 2000

UDP 4729

VLAN to VNI mappings are local to switch – inbuilt support for VLAN translation

VLAN 100

VLAN 500

VLAN 200

VLAN 300

VLAN 400

VLAN 400

Ports

Devices Devices Devices

VLAN 500

Ports

VLAN 300

Devices

Ports

VLAN 200

Devices

Ports

VLAN 100

Ports

Devices

Switch Switch

Switch

Page 10: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN – Control Plane

Page 11: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Control Plane Options

§  SDN Controller or Controller-less §  The VXLAN control plane is used for MAC learning and packet flooding

•  Mechanism to discover hosts residing behind remote VTEPs

•  How to discover VTEPs and their VNI membership

•  The mechanism used to forward Broadcast and multicast traffic within the Layer 2 segment (VNI)

IP Multicast Control Plane

• VTEP join an associated IP multicast group (s) for the VNI(s)

• Unknown unicasts forwarded to VTEPs in the VNIs via IP multicast

• Support for Third-party VTEP(s)

• Flood and learn and requires IP multicast support – limited deployments

HeadEnd Replication (HER)

• BUM traffic replicated to each remote VTEPs in the VNIs

• Replication carried out on the ingress VTEP.

• Support for Third-party VTEP(s)

• MAC learning still via flood and learn but no requirement for IP multicast

HER with Controller • Local learnt MACs and VNI binding published to Controller

• Controller dynamically distributes state to remote VTEPs

• Support for Third-party VTEP(s)

• Dynamic MAC distribution, automated flood-list provisioning

• HA Cluster support for resiliency

eVPN Model • BGP used to distribute local MAC to IP bindings between VTEPs

• Broadcast traffic handled via IP multicast or HER models

• Dynamic MAC distribution and VNI learning, configuration can be BGP intensive

• Support for Third-party VTEP(s)

Page 12: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN BUM Forwarding and Learning…

§  The RFC Model •  Remote VM MAC ßàVTEP association learnt via IP multicast

•  VTEP with a given VNI joins associated (*,G) group

•  Broadcast, Unknown & Multicast traffic for a VNI sent to the IP multicast group

•  Local VTEP “learns” MAC to remote VTEP IP bonding

•  Once bonded traffic is unicast via standard Layer 3 protocol

VM4@VNI10@VTEP-B VM5@VNI20@VTEP-B VM6@VNI30@VTEP-B VM7@VNI10@VTEP-C���VM8@VNI20@VTEP-C VM9@VNI30@VTEP-C

Multicast (*,G) tree for VNI 10 Multicast (*,G) tree for VNI 20 Multicast (*,G) tree for VNI 20

VM1 VNI10

VM2 VNI20

VM3 VNI300

VM4 VNI10

VM5 VNI20

VM6 VNI30

VM7 VNI10

VM8 VNI20

VM9 VNI30

VTEP-A

VTEP-B

VTEP-C

Requires an IP Multicast ���Enabled Physical Network!

Note: Arista supports single (*,G) group + HER. All other platforms use HER

Page 13: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Unicast to VTEP-4

VTEP  flood  list  on  VTEP-­‐1    VNI  2000  à  VTEP-­‐3    VNI  2000  à  VTEP-­‐4  

VTEP  flood  list  on  VTEP-­‐3    VNI  2000  à  VTEP-­‐1    VNI  2000  à  VTEP-­‐4  

VTEP  flood  list  on  VTEP-­‐4    VNI  2000  à  VTEP-­‐1    VNI  2000  à  VTEP-­‐3  

VTEP creates a unicast frame for each VTEP in

the flood-list of the specific VNI

BUM traffic

VTEP flood list manually configured on each VTEP for each VNI

BUM traffic received ���locally on VTEP

VTEP learns inner MAC and maps to the outer SRC IP (remote VTEP)

Separate unicast on the wire for each VTEP in the VNI

1

2

3

4

VTEP2

VTEP3

VTEP4

VNI 2000

VXLAN Head End Replication

VTEP1

Unicast to VTEP-3

Eliminates the need for an IP Multicast Enabled Physical Network!

Page 14: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VLAN  200    Eth  2  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  VTEP  Config  Source-­‐IP  1.1.1.2/32  VLAN  500  à  VNI  2000  

Overlay Network

§  VLAN to VNI mapping of a VTI is only locally significant •  Local 802.1Q VLAN Tag is stripped prior to VXLAN encapsulation

•  Allows for a single VLAN tag to be mapped to different VNIs on different switches •  Providing VLAN translation across a VNI and scale beyond the traditional 4k+ VNIs

VLAN  20    Eth  2,  Eth3  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  VTEP  config  VLAN  20  à  VNI  2000  

VLAN 20 VLAN 500

VNI 2000

VLANs (1-3K) POD significant)

VLANs (1-3K) POD significant)

VLANs (1-3K) POD significant)

VNIs Mapping 5k-8K

VNIs Mapping 9k-12K

VNIs Mapping 12k-15K

Scaling beyond 4K VLANs

Across POD DC wide VNIs VLAN 3k +

VLAN Translation between VTEPs

VTEP VTEP

Eth 2 Eth 2 Eth 3

Page 15: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

SDN Controllers for VXLAN

CVX + NSX •  Centralized database of

physical infrastructure collected on CVX

•  CVX state (MAC, VNIs, HW VTEPs) shared with NSX

•  Centralized provisioning and controller via the NSX controller

•  Solution for scalable dynamic DCs with HW to SW VTEP automation

•  Advantages within an ESXi estate

CloudVision

eXchange  

CVX + Nuage •  Centralized database of

physical infrastructure collected on CVX

•  CVX state (MAC, VNIs, HW VTEPs) shared with the VSC

•  Centralized provisioning and controller via the VSC controller

•  Solution for scalable dynamic DCs with HW to SW VTEP automation

•  Targeted for a Zen, KVM estate

CVX + OpenStack •  Centralized database of

physical infrastructure collected on CVX

•  ML2 plugin for communication between CVX and OpenStack

•  Provisioning of the physical infrastructure from OpenStack

•  Solution for small to medium DCs with VTEP automation

•  Targeted for a Zen, KVM estate

CloudVision

eXchange  CloudVision

eXchange  

OVSDB OVSDB ML2 plugin

Page 16: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN – Layer 2 Services

Page 17: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging

§  Provides layer 2 connectivity (P2P, P2M) over the layer 3 spine/leaf network §  Allowing any-to-any Layer 2 connectivity between DCs, racks, servers, devices, VMs §  Layer 2 connectivity provided by VXLAN encapsulation at the leaf nodes – VXLAN

VTEP(s)

Subnet/VLAN A

Subnet/VLAN B

Spine

Subnet/VLAN A

Subnet/VLAN B

VXLAN VNI – Layer 2

VXLAN VNI – Layer 2

Leaf

VTEP

VTEP VTEP VTEP

Page 18: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging Operation

§  Standard local switching via the VLAN configuration on the VTEP §  Extend the Layer 2 domain by mapping the VLAN ID to the VXLAN VNI §  VLAN to VNI mapping is only locally significant, VLAN tag is not carried in the

VXLAN frame

§  Host learnt on the remote VTEP, VXLAN encapsulated by the VTEP and routed to the remote VTEP

VLAN 10

MAC-1

MAC 2

Leaf-1

Serv-1 MAC-1

VLAN 10 à VNI 1010

802.1Q VLAN 10

L3 Backbone

VNI 1010

VNI 1010 -> VLAN 20

Serv-2 MAC-2

Leaf-2

Inner Eth Frame

VNI 1010

2.2.2.2

2.2.2.1

VLAN 20

MAC-1

MAC 2

802.1Q VLAN 20

Layer 2 Domain (eg, 193.10.10.0/24)

VTEP 2.2.2.2

Eth-49 Eth-1 VTEP

2.2.2.1

Eth-1 Eth-49

Page 19: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Active/Active Dual-

homing Rack-1

VXLAN Bridging – Resiliency with dual-homing

§  For host resiliency single Logical VTEP can be created across the Active/Active Dual-homing domain

§  Providing active-active VXLAN encap and decap across the two physical switches

VTI

VTI Eth-1

Eth-1 VTI

VTI Eth-1

Eth-1

L3 Backbone

VNI 1010

Inner Eth Frame

VNI 1010

2.2.2.2

2.2.2.1

Rack-2

VLAN 10

MAC-1

MAC 2

VLAN 20

MAC-1

MAC 2

VLAN 10 à VNI 1010 VNI 1010 -> VLAN 20

Serv-1 MAC-1

Serv-2 MAC-2

Layer 2 Domain

VTEP

2.

2.2.

2 VTEP 2.2.2.1

Eth-49

Eth-49

Eth-49

Eth-49

Leaf-11

Leaf-12

Leaf-21

Leaf-22 Active/Active Dual-

homing

Page 20: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

S-VLAN to VNI mapping •  Mapping of outer S-Tag to single

VNI •  Inner C-Tag are transported within a

single VNI •  The inner VLAN ID are carried on

VXLAN encap frame •  Ability to transport all customer

VLANs across a single VXLAN point to point link

Switchport mode dot1q-tunnel

VXLAN Bridging - VLAN to VNI Service Mapping

VLAN to VNI mapping •  One to One mapping between VLAN ID

and the VNI

•  Mapping is only locally significant,

•  VLAN ID not carried on VXLAN encap frame

•  Allows VLAN translation between remote VTEPs

Port + VLAN to VNI mapping •  Mapping traffic to a VNI based on a

combination of the ingress port and it VLAN-ID

•  The VLAN ID is not carried on VXLAN encap frame

•  Provides support for overlapping VLANs within a single VTEP to be mapped to different VNIs

Leaf-1 VNI 1020

VNI 1010

VLAN 10

VLAN 20

VLAN 10 -> VNI 1010

VLAN 20 à VNI 1020

Leaf-1 VTEP

VNI 1030 C-tag 10,20

VLAN 10,20

S-VLAN 30 -> VNI 1030

Leaf-1 VTEP

VLAN 10

Eth-1 VLAN 10 -> VNI 1010 Eth-2 VLAN 10 à VNI 1020

Eth-1

VLAN 10

Eth-2

VNI 1020

VNI 1010

VTEP Eth-1

VLAN 30

Page 21: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging – STP Behavior

§  STP BPDU’s are not transported across the VXLAN tunnel §  Creating Separate STP domains within the local ports of each VTEP

Leaf-1

Serv-1

802.1Q VLAN 10

L3 Backbone

VNI 1010

Serv-2

Leaf-2

802.1Q VLAN 10

Layer 2 Domain

Spanning Tree Domain 1

STP BPDU

Root Bridge leaf 1

Cost 0 VLAN 10 à VNI

1010

VNI 1010 à VLAN 10

STP BPDU

Root Bridge leaf 2

Cost 0

Spanning Tree Domain 2

VTEP 2.2.2.2

VTEP 2.2.2.1

Eth-1 Eth-49 Eth-49 Eth-1

Page 22: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging – Quality of Service

§  Standard ingress policy used to define DSCP of outer frame §  Trusted or Untrusted configuration of ingress interface used to derive outer CoS/DSCP

value §  Any re-write action applied to only the inner frame NOT the outer frame

§  Outer CoS value derived from the Traffic Class map

Leaf-1

Eth-1 Eth-49

DSCP Trusted Interface

CS1 (8)

DSCP to TC mapping : CS1 à TC 0

CS1 (8)

Outer

CS1 (8)

inner

Leaf-1

Eth-1 Eth-49

DSCP Untrusted Interface (with Re-write)

CS4 (32)

DSCP to TC mapping: CS3 à TC 3 TC to DSCP Rewrite : TC 3 à AF21 (18)

CS3 (24)

Outer

AF21 (18)

inner

Default interface CoS = CS3 (24)

VTEP VTEP

Page 23: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging – Use Case 1

Interconnect Islands within the DC or across geographically disperse sites •  Providing VM workload mobility within DC and inter DCs

•  Workload migration, VM bursting (eg hybrid cloud), business continuity across DCs

DCI to provide Layer 2 connectivity between geographically disperse sites

Server migration POD interconnect for connectivity between DC’s PODs

Layer 2 Domain Layer 2 Domain

VNI

VNI 802.1Q

VTEP

802.1Q

VTEP

Page 24: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Bridging - Use case 2

VXLAN as a Layer 2 Service within a Leaf Spine •  Interconnect disperse subnets with Layer 3 to 7 services – NFV service chaining

•  Providing a logical multi-tiered network regardless of physical location

Server Leaf Server Leaf Tenant L3 Node NFV Services Leaf

Firewall

Load-balancer Firewall

VNI 1010 VNI 1020

VNI 1030

Tenants logical C

onnectivity

VNI

Layer 2 VNI Layer 2

VNI

Spine

VTEP VTEP VTEP

VTEP

Page 25: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN – Layer 3 Services

Page 26: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Routing VXLAN Bridging Model

§  Routing achieved via a centralized node

§  Requiring a dedicated routing node within the leaf-spine fabric

§  Sub-optimal traffic forwarding to traffic tromboning

VXLAN Routing model §  Routing achieved at the leaf Layer VTEP nodes

§  No additional external routing nodes required

§  Optimized routing with the reducing of traffic tromboning

§  Not supported by MPLS VLL/VPLS

Server Leaf Dedicated L3 Node

VNI 1010 VNI 1030

Server Leaf Server Leaf

Spine

Server Leaf

VNI 1010

VNI 1020 Route directly at the leaf

Server Leaf Server Leaf

Dedicated Router, sub-optimal forwarding Routing at the leaf, providing optimal forwarding

VTEP VTEP VTEP VTEP VTEP

Spine

VTEP VTEP VTEP VTEP

Page 27: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

What is VXLAN Routing?

§  SVI configured on the VLAN which is VXLAN enabled §  SVI can be placed in a non-default VRF to support overlapping IPs and multi-

tenancy §  Note VXLAN routing support is required on the platform even when next-hop

host(s) are local

Serv-1 10.10.10.100

GW 10.10.10.1

SVI VLAN 10 10.10.10.1

802.1Q VLAN 10

SVI VLAN 20 10.10.20.1 Serv-2

10.10.20.100 GW 10.10.20.1

VNI 1020

VXLAN Bridging

Routing + VXLAN Encap

802.1Q VLAN 20 VTEP

2.2.2.2 VTEP

2.2.2.1

Leaf-1 Leaf-2

Page 28: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Routing - Operation

10.10.10.100

10.10.20.100

VLAN 10

MAC-1

MAC -3

VNI 1020

10.10.10.100

10.10.20.100

VLAN 10

MAC-4

MAC-2

VNI 1020

2.2.2.2

2.2.2.1  

10.10.10.100

10.10.20.100

VLAN 20

MAC-4

MAC -2

1. SVI 10 Gateway for Serv-1. Routes packet into subnet 10.10.20.0, resulting in a Src MAC of MAC-4 and Dest MAC of MAC-2

10.10.10.100

10.10.20.100

VLAN 20

MAC-4

MAC-2

2. VTEP-1 learns Dest MAC (MAC-2) via remote VTEP=2 (2.2.2.2). VXLAN encaps the frame with a Dest-IP of 2.2.2.2

3. VTEP-2 maps VNI 1020 to VLAN 20. MAC lookup of MAC-2 points to Eth-6. VXLAN header removed and forwarded to Serv-2

4. Packet forward to Serv-2 tagged based on the Local VLAN to VNI mapping

Serv-1 10.10.10.100

GW 10.10.10.1 MAC-1

Serv-2 10.10.20.100

GW 10.10.20.1 MAC-2

802.1Q VLAN 20

802.1Q VLAN 10

SVI VLAN 10 10.10.10.1

MAC-3

SVI VLAN 20 10.10.20.1

MAC-4

VNI 1020

VNI 1020 à VLAN 20

VXLAN Bridging

VTEP-1 2.2.2.1

VTEP-2 2.2.2.2

Page 29: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Routing - Forwarding models for Trident2 platform

§  Single re-circulation required. •  1st pass of ASIC to route frame

•  2nd pass of ASIC for VXLAN encapsulation

VXLAN Routing – Route and VXLAN encapsulation Local host to a remote host

VLAN 10 à VLAN 20 à VNI 1020

VLAN 10

VXLAN Routing – VXLAN de-encapsulate and route Remote host routed to a local host and switch is the DFG for the remote host

VXLAN Routing – VXLAN de-encapsulate, route and VXLAN encapsulate Switch is the DFG for two remote hosts on different subnets

§  Two re-circulations required. •  1st pass of ASIC for VXLAN de-capsulation •  2nd pass of ASIC to route of inner frame

•  3rd pass of ASIC for VXLAN encapsulation

§  Single re-circulation required. •  1st pass of ASIC for VXLAN de-

capsulation •  2nd pass of ASIC to route of inner frame

VLAN 10 ß VLAN 20ß VNI 1020

VLAN 10

VNI 1010 à VLAN 10 à VLAN 20 à VNI 1020

VNI 1010

VNI 1020

VNI 1020

VNI 1020

Page 30: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

VXLAN Routing – Forwarding Models

Intel Fulcrum Alta platforms •  All VXLAN routing functionality is achieved in a single pass •  No need for recirculation ports

Broadcom Trident2, Tomahawk •  All VXLAN routing functionality is achieved in mixed single and double passes •  Need for recirculation ports

Broadcom Trident2+, ARAD, Jericho platforms •  All VXLAN routing functionality is achieved in a single pass •  No need for recirculation ports

Page 31: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Summary VXLAN

§  Open standard RFC 7348 – multivendor support on software or hardware §  L2 extension over L3 network

•  More reliable & scalable than L2 only QinQ, TRILL and PBB

§  L2 over L3 services using switching TCO vs router MPLS TCO §  VXLAN VTEP at host, VM, spine/leaf switches, load balancer – flexibility for

users and service providers §  Preference on hardware based VXLAN - performance §  Use cases

•  L2 extension over L3 routing network. MPLS not needed.

•  Data Center Interconnect (DCI) for active-active DC •  Multi tender services chaining in hosted DC

Page 32: 20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN

Thank-you

Frankie Lim @ Arista.com