20 4 mathematical 20 journal

156
20(4) 2020 KAZAKH MATHEMATICAL JOURNAL ISSN 2413-6468 Almaty, Kazakhstan

Upload: others

Post on 20-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20 4 MATHEMATICAL 20 JOURNAL

20(4)2020

KAZAKHMATHEMATICAL

JOURNAL

ISSN 2413-6468The Kazakh Mathematical Journal is Official Journal of Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

EDITOR IN CHIEF: Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling

HEAD OFFICE: 125 Pushkin Str., 050010, Almaty, Kazakhstan

AIMS & SCOPE:Kazakh Mathematical Journal is an international journal dedicated to the latest advancement in mathematics. The goal of this journal is to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of mathematics. Contributions are invited from researchers all over the world.All the manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copies.

The journal publishes original papers including following potential topics, but are not limited to:

We are also interested in short papers (letters) that clearly address a specific problem, and short survey or position papers that sketch the results or problems on a specific topic.Authors of selected short papers would be invited to write a regular paper on the same topic for future issues of this journal.Survey papers are also invited; however, authors considering submitting such a paper should consult with the editor regarding the proposed topic.

Almaty, Kazakhstan

PU

BLI

CAT

ION

TY

PE

:P

eer-

revi

ewed

ope

n ac

cess

jour

nal

Per

iodi

cal

Pub

lishe

d fo

ur is

sues

per

yea

r

The

Kaz

akh

Mat

hem

atic

al J

ourn

al is

reg

iste

red

by th

e Info

rmati

on C

ommi

ttee u

nder

Mi

nistry

of In

forma

tion a

nd C

ommu

nicati

ons o

f the R

epub

lic of

Kaz

akhs

tan

1759

0-Ж

ce

rtifica

te da

ted 13

.03. 2

019

The

jour

nal i

s ba

sed

on th

e K

azak

h jo

urna

l "M

athe

mat

ical

Jou

rnal

", w

hich

is p

ublis

hed

by

the

Inst

itute

of M

athe

mat

ics

and

Mat

hem

atic

al M

odel

ing

sinc

e 20

01 (I

SSN

1682

-052

5).

http://kmj.math.kz/

• Algebra and group theory• Approximation theory• Boundary value problems for differential equations• Calculus of variations and optimal control• Dynamical systems• Free boundary problems• Ill-posed problems• Integral equations and integral transforms• Inverse problems• Mathematical modeling of heat and wave processes• Model theory and theory of algorithms• Numerical analysis and applications• Operator theory• Ordinary differential equations• Partial differential equations• Spectral theory• Statistics and probability theory• Theory of functions and functional analysis• Wavelet analysis

Page 2: 20 4 MATHEMATICAL 20 JOURNAL

Vol. 20

No. 4

ISSN 2413-6468

http://kmj.math.kz/

Kazakh Mathematical Journal (founded in 2001 as "Mathematical Journal")

Official Journal of

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

EDITOR IN CHIEF Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling

Editor of this Issue Professor Anar Assanova

HEAD OFFICE Institute of Mathematics and Mathematical Modeling, 125 Pushkin Str., 050010, Almaty, Kazakhstan

CORRESPONDENCE ADDRESS

Institute of Mathematics and Mathematical Modeling, 125 Pushkin Str., 050010, Almaty, Kazakhstan Phone/Fax: +7 727 272-70-93

WEB ADDRESS http://kmj.math.kz/

PUBLICATION TYPE Peer-reviewed open access journal Periodical Published four issues per year ISSN: 2413-6468

Institute of Mathematics

and Mathematical

Modeling

Page 3: 20 4 MATHEMATICAL 20 JOURNAL

The Kazakh Mathematical Journal is registered by the Information Committee under Ministry of Information and Communications of the Republic of Kazakhstan 17590-Ж certificate dated 13.03.2019.

The journal is based on the Kazakh journal "Mathematical Journal", which is publishing by the Institute of Mathematics and Mathematical Modeling since 2001 (ISSN 1682-0525).

AIMS & SCOPE Kazakh Mathematical Journal is an international journal dedicated to the latest advancement in mathematics. The goal of this journal is to provide a forum for researchers and scientists to communicate their recent developments and to present their original results in various fields of mathematics. Contributions are invited from researchers all over the world. All the manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copies. The journal publishes original papers including following potential topics, but are not limited to:

· Algebra and group theory

· Approximation theory

· Boundary value problems for differential equations

· Calculus of variations and optimal control

· Dynamical systems

· Free boundary problems

· Ill-posed problems

· Integral equations and integral transforms

· Inverse problems

· Mathematical modeling of heat and wave processes

· Model theory and theory of algorithms

· Numerical analysis and applications

· Operator theory

· Ordinary differential equations

· Partial differential equations

· Spectral theory

· Statistics and probability theory

· Theory of functions and functional analysis

· Wavelet analysis

We are also interested in short papers (letters) that clearly address a specific problem, and short survey or position papers that sketch the results or problems on a specific topic. Authors of selected short papers would be invited to write a regular paper on the same topic for future issues of this journal. Survey papers are also invited; however, authors considering submitting such a paper should consult with the editor regarding the proposed topic. The journal «Kazakh Mathematical Journal» is published in four issues per volume, one volume per year.

Page 4: 20 4 MATHEMATICAL 20 JOURNAL

SUBSCRIPTIONS Full texts of all articles are accessible free of charge through the website http://kmj.math.kz/

Permission requests

Manuscripts, figures and tables published in the Kazakh Mathematical Journal cannot be reproduced, archived in a retrieval system, or used for advertising purposes, except personal use. Quotations may be used in scientific articles with proper referral.

Editor-in-Chief: Deputy Editor-in-Chief

Makhmud Sadybekov, Institute of Mathematics and Mathematical Modeling Anar Assanova, Institute of Mathematics and Mathematical Modeling

EDITORIAL BOARD:

Abdizhahan Sarsenbi Altynshash Naimanova Askar Dzhumadil'daev Baltabek Kanguzhin Batirkhan Turmetov Beibut Kulpeshov Bektur Baizhanov Berikbol Torebek Daurenbek Bazarkhanov Durvudkhan Suragan Galina Bizhanova Iskander Taimanov Kairat Mynbaev Marat Tleubergenov Mikhail Peretyat'kin Mukhtarbay Otelbaev Muvasharkhan Jenaliyev Nazarbai Bliev Niyaz Tokmagambetov Nurlan Dairbekov Stanislav Kharin Tynysbek Kalmenov Ualbai Umirbaev Vassiliy Voinov

Auezov South Kazakhstan State University (Shymkent) Institute of Mathematics and Mathematical Modeling Kazakh-British Technical University (Almaty) al-Farabi Kazakh National University (Almaty) A. Yasavi International Kazakh-Turkish University (Turkestan) Kazakh-British Technical University (Almaty) Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Nazarbayev University (Astana) Institute of Mathematics and Mathematical Modeling Sobolev Institute of Mathematics (Novosibirsk, Russia) Satbayev Kazakh National Technical University (Almaty) Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Institute of Mathematics and Mathematical Modeling Satbayev Kazakh National Technical University (Almaty) Kazakh-British Technical University (Almaty) Institute of Mathematics and Mathematical Modeling Wayne State University (Detroit, USA) KIMEP University (Almaty)

Editorial Assistant:

Irina Pankratova Institute of Mathematics and Mathematical Modeling [email protected]

Page 5: 20 4 MATHEMATICAL 20 JOURNAL

EMERITUS EDITORS:

Alexandr Soldatov Allaberen Ashyralyev Dmitriy Bilyk Erlan Nursultanov Heinrich Begehr John T. Baldwin Michael Ruzhansky Nedyu Popivanov Nusrat Radzhabov Ravshan Ashurov Ryskul Oinarov Sergei Kharibegashvili Sergey Kabanikhin Shavkat Alimov Vasilii Denisov Viktor Burenkov Viktor Korzyuk

Dorodnitsyn Computing Centre, Moscow (Russia) Near East University Lefkoşa(Nicosia), Mersin 10 (Turkey) University of Minnesota, Minneapolis (USA) Kaz. Branch of Lomonosov Moscow State University (Astana) Freie Universitet Berlin (Germany) University of Illinois at Chicago (USA) Ghent University, Ghent (Belgium) Sofia University “St. Kliment Ohridski”, Sofia (Bulgaria) Tajik National University, Dushanbe (Tajikistan) Romanovsky Institute of Mathematics, Tashkent (Uzbekistan) Gumilyov Eurasian National University (Astana) Razmadze Mathematical Institute, Tbilisi (Georgia) Inst. of Comp. Math. and Math. Geophys., Novosibirsk (Russia) National University of Uzbekistan, Tashkent (Uzbekistan) Lomonosov Moscow State University, Moscow (Russia) RUDN University, Moscow (Russia) Belarusian State University, Minsk (Belarus)

Publication Ethics and Publication Malpractice For information on Ethics in publishing and Ethical guidelines for journal publication see

http://www.elsevier.com/publishingethics and

http://www.elsevier.com/journal-authors/ethics. Submission of an article to the Kazakh Mathematical Journal implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The Kazakh Mathematical Journal follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (https://publicationethics.org/). To verify originality, your article may be checked by the originality detection service Cross Check

http://www.elsevier.com/editors/plagdetect. The authors are obliged to participate in peer review process and be ready to provide corrections,

clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the Kazakh Mathematical Journal.

The Editorial Board of the Kazakh Mathematical Journal will monitor and safeguard publishing ethics.

Page 6: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

CONTENTS

20:4 (2020)

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity

(devoted to his memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Sailaubay S. Zhumatov On the absolute stability of a program manifold of

non-autonomous control systems with non-stationary nonlinearities . . . . . . . . . . . . . 35

Zhazira M. Kadirbayeva, Sayakhat G. Karakenova Numerical solution of multi-point

boundary value problems for essentially loaded ordinary differential equations . . . . 47

Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva On conditions

of solvability of a nonlinear boundary value problem for a system of differential

equations with a delay argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Askarbek E. Imanchiyev, Ayazhan A. Yermek Parameterization method to solve

problem with non-separated multipoint-integral conditions for high-order

differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Anar T. Assanova New general solution of second order differential equation

with piecewise-constant argument of generalized type and its application for

solving boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Roza E. Uteshova, Dauren E. Mursaliyev A numerical algorithm for solving a

linear boundary value problem with a parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova An algorithm

for solving multipoint boundary value problem for loaded differential and

Fredholm integro-differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Nurgul T. Orumbayeva, Aliya B. Keldibekova On a solution of a nonlinear

semi-periodic boundary value problem for a third-order pseudoparabolic equation 119

Sandugash T. Mynbayeva An approximate solution to quasilinear boundary

value problems for Fredholm integro-differential equation . . . . . . . . . . . . . . . . . . . . . . 133

Kulzina Zh. Nazarova, Kairat I. Usmanov Boundary value problem for systems of

loaded differential equations with singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Page 7: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 6–34

Dulat Syzdykbekovich Dzhumabaev.Life and scientific activity (devoted to his memory)

Professor Dulat Syzdykbekovich Dzhumabaev,Doctor of Physical and Mathematical Sciences, wasa prominent scientist, a well-known specialist in thefield of the qualitative theory of differential andintegro-differential equations, the theory of nonlinearoperator equations, numerical and approximatemethods for solving boundary value problems.

Dzhumabaev D.S. was born in Kantagi,Turkistan district, South Kazakhstan region,on April 11, 1954. From 1961 to 1971, he attendedsecondary school in Turkistan. In 1971, he enteredFaculty of Mechanics and Mathematics of KazakhState University named after S.M. Kirov (nowAl-Farabi Kazakh National University). After

graduating with honors from the Department of Mathematics in 1976, he continued to pursuepostgraduate studies at the Institute of Mathematics and Mechanics of the Academy ofSciences of the Kazakh SSR. His scientific activity began under the guidance of AcademicianOrymbek Akhmetbekovich Zhautykov, an outstanding scientist and mathematician, whomade a huge contribution to the creation and development of the mathematical science inKazakhstan. After successful completion of postgraduate studies in 1979, Dzhumabaev D.S.joined the Laboratory of Ordinary Differential Equations headed by Academician ZhautykovO.A. He went from being a junior researcher to becoming the head of the Laboratory ofDifferential Equations, one of the leading divisions of the Institute of Mathematics. Hechaired the laboratory from 1996 to 2012.

Page 8: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 7

Dzhumabaev D.S. was a successful scientist and versatile specialist in the field ofmathematics and its applications. He devoted his talent and hard work to the study ofnonlinear operator equations, to the creation and development of qualitative methods in thetheory of boundary value problems for differential equations.

The main research areas and the results obtained by Professor Dzhumabaev can be dividedinto several groups. The most significant and important scientific results are presented belowin chronological order.

1. Boundary value problems for ordinary differential equations with aparameter in a Banach space

During postgraduate studies, his research was focused on nonlinear boundary valueproblems with parameter for ordinary differential equations of the following form:

dx

dt= f(t, x, λ), x(0) = x0, (1)

x(T ) = x1, (2)

where f : [0, T ]×B ×B → B is a continuous function satisfying the existence conditions forthe Cauchy problem (1) on [0, T ] for all values of a parameter λ from some set G ⊂ B; hereB is a Banach space.

The problem is to find a pair (λ∗, x∗(t)), where λ∗ ∈ G and x∗(t) is a solution to Cauchyproblem (1) with λ = λ∗, satisfying the boundary condition (2).

Let the right-hand part of the differential equation be defined on the set

D0 = (t, x, λ) : 0 ≤ t ≤ T, ||x− x(0)(t)|| ≤ R(t)ρ, ||λ− λ0|| ≤ ρ.

Here λ0 ∈ G, x(0)(t) is a solution to Cauchy problem (1) with λ = λ0,R(t) is a positive functioncontinuously differentiable on [0, T ], and ρ is a nonnegative number. LetM(f) denote a set oftriples (λ0 ∈ G,R(t) > 0, ρ ≥ 0) for which the Lipschitz condition ||f(t, x, λ) − f(t, x, λ)|| ≤α(t) · (||x− x||+ ||λ− λ||) is satisfied on the set D0, and the inequality

(a1) exp t∫

0

α(τ)dτ− 1 ≤ R(t)

holds (α(t) ∈ C([0, T ])).The set M(f) is non-empty if so is the set G.For a triple (λ0, R(t), ρ), a solution of problem (1), (2) is sought in the set α0 = α0

λ×α0x(t),

where α0λ = λ : ||λ− λ0|| ≤ ρ and α0

x(t) = x(t) : ||x(t)− x(0)(t)|| ≤ R(t)ρ.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 9: 20 4 MATHEMATICAL 20 JOURNAL

8 ,

Theorem 1. Problem (1), (2) is solvable if and only if, given some (λ0, R(t), ρ) ∈M(f),for any two pairs (λ, x(t)) and (λ, x(t)) from the set α0, there exist an invertible operatorA ∈ L(B,B) and a number θ > 0 satisfying the inequality

(a2)∣∣∣∣∣∣λ− λ−A[∫ T

0f(t, x(t), λ)− f(t, x(t), λ)dt

]∣∣∣∣∣∣ ≤ (1− θ)||λ− λ||,

and the following inequality is true

(a3)1

θ

∣∣∣∣∣∣A[∫ T

0f(t, x(0)(t), λ0)dt− (x1 − x0)

]∣∣∣∣∣∣ ≤ ρ(1− q),

where q = ||A||θ ·[exp T∫

0

α(t)dt−1−

T∫0

α(t)dt]< 1. Here L(B,B) is a space of linear bounded

operators mapping B into B.Under the conditions of Theorem 1, problem (1), (2) is uniquely solvable on the domain

α0.For the linear boundary value problem

dx

dt= Q1(t)x+Q2(t)λ+ f(t), x(0) = x0, x(T ) = x1,

the conditions of Theorem 1 are reduced to the bounded invertibility of the operator Q =T∫0

Q2(t)dt.

The inequality (a3) guarantees the existence and uniqueness of a solution to problem (1),(2) on the domain α0.

The proposed approach was applied to semi-explicit differential equations with nonlinearboundary conditions:

dx

dt= f

(t, x,

dx

dt, λ), x(0) = x0, (3)

Φ[x(T ), x(T ), λ] = 0. (4)

Here f : [0, T ] × B × B × B → B is a continuous function satisfying the conditions forthe existence of a solution to the Cauchy problem (3) on [0, T ] for all λ ∈ G; G ⊂ B,Φ : B ×B ×B → B.

Analogously, the right-hand side of the differential equation is considered on the set D0 =(t, x, y, λ) : 0 ≤ t ≤ T, ||x − x(0)(t)|| ≤ R(t)ρ, ||y − x(0)(t)|| ≤ R(t)ρ, ||λ − λ0|| ≤ ρ, whereλ0 ∈ G, x(0)(t) is a solution to the Cauchy problem (3) with λ = λ0, R(t) is a positive functioncontinuously differentiable on [0, T ], and ρ is a nonnegative number. Let M(f) denote the setof triples (λ0 ∈ G,R(t) > 0, ρ ≥ 0) for which the following inequalities are satisfied:

||f(t, x, y, λ)− f(t, x, y, λ)|| ≤ α1(t) · (||x− x||+ ||λ− λ||) + α2(t) · ||y − y||,

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 10: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 9

α2(t) < 1(αi(t) ∈ C([0, T ]), i = 1, 2

); c(t) exp

t∫0

c(τ)dτ≤ R(t)

(c(t) =

α1(t)

1− α2(t)

).

For a triple (λ0, R(t), ρ), the following sets are introduced:

α0x(t) = x(t) : ||x(t)− x(0)(t)|| ≤ R(t)ρ, ||x(t)− x(0)(t)|| ≤ R(t)ρ,

D0(T ) = (u, v, λ) : ||u− x(0)(T )|| ≤ R(T )ρ, ||v − x(0)(T )|| ≤ R(T )ρ, ||λ− λ0|| ≤ ρ.

Let the boundary function in (4) satisfy the Lipschitz condition ||Φ(u, v, λ)−Φ(u, v, λ)|| ≤Φu||u− u||+ Φv||v − v||+ Φλ||λ− λ|| on the set D0(T ).

Theorem 2. Problem (3), (4) is solvable if and only if, given some (λ0, R(t), ρ) ∈ M(f),for any two pairs (λ, x(t)) and (λ, x(t)) from the set α0 = α0

λ× α0x(t), there exist an invertible

operator A ∈ L(B,B) and a number θ > 0 satisfying the inequality ||λ− λ−AK1[λ, x(t)]−K1[λ, x(t)]|| ≤ (1− θ)||λ− λ||, and the following inequality is true:

1

θ||AK1[λ0, x(0)(t)]|| ≤ ρ(1− q),

where q = ||A||θ ·[Φu ·

exp T∫

0

c(t)dt−1−T∫0

α1(t)dt

+Φv ·c(T ) exp

T∫0

c(t)dt−α1(T )]

< 1,

K1[λ, x(t)] = Φ[x0 +

T∫0

f(t, x(t), x(t), λ), f(T, x(T ), x(T ), λ), λ].

Conditions for the continuous dependence of a solution on the initial data and a criterionfor the existence of an isolated solution to problem (3), (4) were established.

Dzhumabaev D.S. justified a new version of the shooting method for nonlinear two-pointboundary value problems of the following form

dz

dt= f(t, z), (5)

g[z(0), z(T )] = 0, (6)

where f : [0, T ]×B → B is continuous in t and z, g : B ×B → B.Let λ denote the value of z(t) at the point t = 0. By the substitution x(t) = z(t) − λ,

problem (5), (6) is reduced to the following boundary value problem with parameter

dx

dt= f(t, x+ λ), x(0) = 0, (7)

g[λ, λ+ x(T )] = 0. (8)

Assume that in the closed regionsD0 = (t, x, λ) : 0 ≤ t ≤ T, ||x−x(0)(t)|| ≤ R(t)ρ, ||λ−λ0|| ≤ρ and D0

1 = (λ, u) : ||λ − λ0|| ≤ ρ, ||u − λ0 − x(0)(T )|| ≤ [1 + R(T )]ρ (here x(0)(t) is a

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 11: 20 4 MATHEMATICAL 20 JOURNAL

10 ,

solution to Cauchy problem (7) for λ = λ0, R(t) > 0 for t ∈ [0, T ], and ρ > 0), the followinginequalities hold:

||f(t, x+ λ)− f(t, x+ λ)|| ≤ α(t)(||x− x||+ ||λ− λ||),

||g(λ, u)− g(λ, u)|| ≤ gλ||λ− λ||+ gu||u− u||,

and exp t∫

0

α(τ)dτ− 1 ≤ R(t).

Theorem 3. If for any two pairs (λ, x(t)) and (λ, x(t)) from the domain α0 = α0λ × α0

x(t)

and for some N ≥ 0, there exist an invertible operator A ∈ L(B,B) and a number θ > 0

satisfying the inequality ||λ − λ − AK(1)N [λ, x(t)] −K(1)

N [λ, x(t)]|| ≤ (1 − θ)||λ − λ||, andthe following inequality holds

1

θ||AK(1)

N [λ0, x(0)(t)]|| ≤ ρ(1− q(1)N ),

where q(1)N = gu · ||A||θ ·

[exp T∫

0

α(t)dt− 1 −

T∫0

α(t)dt − ... − 1N !

( T∫0

α(t)dt)N]

< 1, then the

boundary value problem (7), (8) has a unique solution in α0.

Here K(1)N [λ, x(t)] = g

[λ, λ+

T∫0

f(t, λ+ ...+τN−3∫

0

f(τN−2, λ+ x(τN−2))dτN−2)...)dt],

N = 0, 1, 2, ....For different values of N , various sufficient conditions for the unique solvability to problem

(7), (8) can be derived from Theorem 3. The problem of choosing an initial approximationand other replacement versions in problems with parameter were also considered.

Dzhumabaev D.S. also studied nonlinear infinite systems of equations

Qj(λ1, λ2, ..., λi, ...) = bj , j = 1, 2, ..., (9)

where λ = (λ1, λ2, ...) and b = (b1, b2, ...) are elements of lp (1 ≤ p ≤ ∞). It is supposed thatin the domain D′ = λ : ||λ−λ0|| < ρ ⊂ lp, for all i(i = 1, 2, ...), functions Qi(λ1, λ2, ...) have

continuous partial derivatives with respect to all arguments and 1)∞∑j=1

supλ∈D′

∣∣∣∂Qi(λ)∂λj

∣∣∣ ≤ k1 <∞;

2)∞∑k=1

supλ∈D′

∣∣∣∂Qk(λ)∂λi

∣∣∣ ≤ k2 <∞. Then there exist numbers θ1 and θ2 satisfying the inequalities

3)∣∣∣∂Qi(λ)

∂λi

∣∣∣ ≥ ∑j 6=i

∣∣∣∂Qi(λ)∂λj

∣∣∣+θ1; 4)∣∣∣∂Qi(λ)

∂λi

∣∣∣ ≥ ∑k 6=i

supλ∈D′

∣∣∣∂Qk(λ)∂λi

∣∣∣+θ2, for all λ ∈ D′ and i = 1, 2, ....

The following definition extends the concept of complete regularity to the case of nonlinearinfinite systems in lp.

Definition 1. An operator Q = (Q1, Q2, ...) is called completely regular in the domain D′,if it satisfies conditions 1)-4) wherein the numbers θ1 and θ2 are such that 5) p−1

p θ1 + 1pθ2 =

θ > 0.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 12: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 11

Lemma 1. If Q is a completely regular operator in the domain D′ and 1θ ||Q(λ0)− b|| < ρ,

then the infinite system of nonlinear equations (9) has a unique solution in D′.Using Lemma 1, the results obtained for problems (1)-(2), (3)-(4), and (5)-(6) were

concretized for infinite systems of differential equations. Effective conditions were establishedfor the unique solvability of nonlinear boundary value problems for infinite systems ofdifferential equations in the space lp.

The findings described in this Section were published in [1-5] and formed the basis ofhis candidate thesis. In 1980, Dzhumabaev D.S. defended his dissertation "Boundary valueproblems with a parameter for ordinary differential equations in a Banach space" and earneda degree of Candidate of Physical and Mathematical Sciences in the specialty 01.01.02 -Differential Equations.

The methods and results of [1-5] were applied to nonlinear differential equations of variousclasses [6-11, 14]. Dzhumabaev’s research was then focused on various problems for nonlinearoperator equations [12-13, 15-17].

2. A linearizer and iterative processes for unbounded non-smooth operators.

Consider the nonlinear operator equation

A(x) = 0, (10)

where x ∈ B1, A(x) ∈ B2, and each Bi is a Banach space with norm || · ||i, i = 1, 2. Let D(A)and R(A) denote the domain and range of A, respectively.

For a point x0 ∈ D(A), the following sets are constructed: S(x0, r) = x ∈ B1 : ||x−x0||1 ≤r, U0 = x ∈ D(A) : ||A(x)||2 ≤ ||A(x0)||2 = u0, and Ω = S(x0, r) ∩ U0. Assume thatthe operator A is closed on Ω. As is known, iterative methods, that allow one to find asolution under some sufficient conditions for its existence, rely on certain linearizations ofthe nonlinear operator. Linearization of an unbounded operator naturally leads to unboundedlinear operators.This motivated Dzhumabaev D.S. to introduce the concept of a linearizer ofan operator A at a point x ∈ D(A) that generalizes the Frechet derivative for unboundednon-smooth operators.

Definition 2. A linear operator C : B1 → B2 is called a linearizer of an operator A at apoint x ∈ D(A), if D(A) ⊆ D(C) and there exist numbers ε ≥ 0 and δ > 0 such that

||A(x)−A(x)− C(x− x)||2 ≤ ε||x− x||1

for all x ∈ D(A) satisfying ||x− x||1 < δ.If C ∈ L(B1, B2) is the Frechet derivative of A at a point x ∈ D(A), then it is also a

linearizer. However, the definition of a linearizer, unlike that of the Frechet derivative, doesnot require: a) the boundedness of the operator C and 2) the dependence of ε on δ (ε(δ)→ 0as δ → 0 for the Frechet derivative).

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 13: 20 4 MATHEMATICAL 20 JOURNAL

12 ,

While the Frechet derivative of an operator A is uniquely determined, there can beinfinitely many linearizers of this operator.

Distinctive advantages of linearizers make it possible to extend the domain of applicationof iterative methods to solving nonlinear operator equations. Dzhumabaev D.S. proposeda method for proving the convergence of iterative processes that takes into account thespecificities of unbounded operator equations.

Theorem 4. Suppose that at each point x ∈ Ω the operator A has a linearizer Cx withconstants εx and δx such that: 1) Cx is a one-to-one mapping of D(C) onto R(C), and||C−1

x || ≤ γx ≤ γ; 2) εx · δx ≤ Θ < 1; and 3) γxδx· ||A(x)||2 ≤ K. If γ

1−Θ · ||A(x)||2 < r, then(10) has a solution x∗ ∈ Ω, to which the iteration process

x(n+1) = x(n) − 1

αC−1x(n)A(x(n)) (11)

converges, here α = max1,K, n = 0, 1, 2, ....In the case when for a given δ > 0 there exists ε(δ) independent of x, the following assertion

is true.Theorem 5. Suppose that at each point x ∈ Ω and for each δ ∈ (0, h) the operator A

has a linearizer Cx with constants δ and ε(δ) ≥ 0 satisfying the following conditions: 1) C−1x

exists on R(C), and ||C−1x || ≤ γ, 2) lim

δ→0ε(δ) = 0.

Then (10) has a solution x∗ ∈ Ω, if the following inequality holds: 3) γ · ||A(x)||2 < r.Theorem 5 generalizes the local theorem of Hadamard to unbounded operator equations.

This made it possible to extend the well-known Newton-Kantorovich method to unboundednonsmooth operator equations and apply it to nonlinear boundary value problems fordifferential equations.

Consider the closed operator equation

A(x) ≡ Cx+ F (x) = 0, (12)

where C : X → Y is a closed linear operator, F : X → Y is a continuous operator, and Xand Y are Banach spaces with respective norms || · ||1 and || · ||2.

Assume that F has a Frechet derivative in some domain containing the ball S(x0, r) =x ∈ X : ||x − x0||1 ≤ r, x0 ∈ D(C), and R(C + F ′(x)) = Y for x ∈ S(x0, r). Then inD(A) = D(C) ∩ S(x0, r) the operator A has the linearizer C1(x) = C + F ′(x), and D(C1) =D(C) ∩X = D(C).

Theorem 6. Assume that the following conditions hold:(1) For all x ∈ D(A), the linearizer C1(x) has a bounded inverse, and ||C−1

1 (x)||L(Y,X) ≤ γ;(2) ||F ′(x)− F ′(y)||L(X,Y ) ≤ L · ||x− y||1, x, y ∈ S(x0, r);

(3) mLγ +γ bmb0 ||A(x0)||2

∞∑s=0

(bm)2s−1 < r, where b0 = L2 γ

2u0, u0 = ||A(x0)||2, βk = 1− 14bk−1

,

bk = βk·bk−1, k = 1, 2, ...,m, wherem is a nonnegative number such that bm < 1 and bm−1 ≥ 1.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 14: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 13

Then the damped Newton-Kantorovich method

x(k+1) = x(k) − 1

αk[C + F ′(xk)]−1[Cxk + F (xk)], k = 0, 1, 2, ..., (13)

where αk = 2bk for k = 0, ...,m− 1 and αk = 1 for k = m,m+ 1, ..., converges to a solutionof (12).

Theorem 7. Assume that the following conditions hold:(1) For all x ∈ D(A), the linearizer C1(x) has a bounded inverse, and ||C−1

1 (x)||L(Y,X) ≤ γ;(2) The Frechet derivative F ′(x) is uniformly continuous in S(x0, r);(3) γ · ||A(x0)||2 < r.Then there exist numbers αn ≥ 1, n = 0, 1, ..., such that the iteration process

x(m+s+1) = x(m+s) − [C + F ′(xm+s)]−1[Cxm+s + F (xm+s)], s = 0, 1, 2, ...,

converges to an isolated solution x∗ ∈ D(A) of (12). Furthermore, starting with some k0, wecan take αn (n ≥ k0) equal to 1, and the convergence rate becomes superlinear.

These results were published in "News of the Academy of Sciences of Kazakh SSR. SeriesPhysical and Mathematical" , 1984 [12,13], and, at the request of the American MathematicalSociety, were translated and published in "American Mathematical Society Translations" ,1989 [16-17], as well as in "Mathematical Notes" [15]. Various aspects of applications of theseresults were considered in [18, 20, 22].

3. The parameterization method for solving boundary value problems

Dzhumabaev D.S. developed the parametrization method for investigation and solvingboundary value problems. The method was originally offered in [21, 23] for solving two-pointboundary value problems for a linear differential equation of the following form

dx

dt= A(t)x+ f(t), x ∈ Rn, (14)

Bx(0) + Cx(T ) = d, (15)

where A(t) and f(t) are continuous in (0, T ], B and C are n× n matrices, d ∈ Rn.Consider a partition dividing the interval [0, T ) into N equal parts with step size h > 0:

[0, T ) =N⋃r=1

[(r − 1)h, rh). Let xr(t) denote the restriction of the function x(t) to the r-th

subinterval, i.e. xr(t), r = 1, N , is a vector function of dimension n defined on [(r − 1)h, rh)and coinciding there with x(t). Problem (14), (15) is thus transformed into an equivalentmultipoint boundary-value problem

dxrdt

= A(t)xr + f(t), t ∈ [(r − 1)h, rh), r = 1, 2, ..., N, (16)

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 15: 20 4 MATHEMATICAL 20 JOURNAL

14 ,

Bx1(0) + C limt→T−0

xN (t) = d, (17)

limt→sh−0

xs(t) = xs+1(sh), s = 1, 2, ..., N − 1. (18)

Here (18) are the matching conditions for the solution at the interior points of the partition.Obviously, if x(t) is a solution of problem (14), (15), then the set of restrictions (xr(t)),

r = 1, 2, ..., N, is a solution of the multipoint problem (16)-(18). Conversely, if a set of vectorfunctions (xr(t)), r = 1, 2, ....N , is a solution of problem (16)-(18), then the function x(t)obtained by piecing together xr(t) is a solution of the original boundary value problem.

On each subinterval [(r − 1)h, rh), the substitution ur(t) = xr(t)− λr is made, where λrdenotes the value of xr(t) at the point t = (r− 1)h. Problem (16)-(18) is then reduced to theboundary value problem with parameter

durdt

= A(t)ur +A(t)λr + f(t), t ∈ [(r− 1)h, rh), ur[(r− 1)h] = 0, r = 1, 2, ..., N, (19)

Bλ1 + CλN + C limt→T−0

uN (t) = d, (20)

λs + limt→sh−0

us(t) = λs+1, s = 1, 2, ..., N − 1. (21)

An advantage of problem (19)-(21) is that it involves the initial conditions ur[(r− l)h] = 0,so that one can determine ur(t) from the integral equations

ur(t) =

t∫(r−1)h

[A(τ)ur +A(τ)λr]dτ +

t∫(r−1)h

f(τ)dτ. (22)

In (22), replacing ur(τ) by the right-hand side of (22) and repeating the process ν (ν =1, 2, ...) times, one obtains a representation of ur(t) by a sum of iterated integrals. Lettingt → rh − 0 and substituting lim

t→rh−0ur(t), r = 1, 2, . . . , N, into (20) and (21) results in a

system of nN algebraic equations in the parameters λri, r = 1, 2, ..., N , i = 1, 2, ..., n:

Qν(h)λ = −Fν(h)−Gν(u, h), λ ∈ RNn. (23)

The basic idea behind the method is to reduce the problem in question to an equivalentproblem with a parameter (19)-(21) whose solution is determined as the limit of a sequence ofsystems of pairs consisting of the parameter λ and the function u. The parameter is found fromthe system of linear equations (23) determined by the matrices of the differential equation(14) and boundary conditions (15). The functions ur are solutions of Cauchy problems (19) onthe partition subintervals [(r− 1)h, rh), r = 1, 2, ..., N , for the found values of the parameter.The introduction of parameters made it possible to obtain conditions for the convergence ofproposed algorithms and, at the same time, for the existence of a solution, in terms of the

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 16: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 15

input data. This makes the parameterization method different from the shooting method andits modifications, where shooting parameters are found from some equations constructed viageneral solutions of differential equations, and convergence conditions are also given in termsof general solutions.

Theorem 8. Suppose that for some h > 0 (Nh = T ) and ν (ν = 1, 2, . . .) the matrixQν(h) : RNn → RNn is invertible and the following inequalities hold:

(a) ||[Qν(h)]−1|| ≤ γν(h);

(b) qν(h) = γν(h) max(1, h||C||)[eαh − 1− αh− ...− (αh)ν

ν! ] < 1, where α = maxt∈[0,T ]

||A(t)||.

Then the boundary-value problem (14), (15) has a unique solution x∗(t), and the estimate

||x∗(t)− x(k)(t)|| ≤ γν(h) max(1, h||C||)(αh)ν

ν!eαh

[qν(h)]ν

1− qν(h)M(h), t ∈ [0, T ], (24)

holds true, where

M(h) = γν(h)[eαh − 1] max

1 + h||C||ν−1∑j=0

(αh)j

j!,ν−1∑j=0

(αh)j

j!

max(||d||, max

t∈[0,T ]||f(t)||)h

+eαh maxt∈[0,T ]

||f(t)||h,

and x(k)(t) is a piecewise-continuously differentiable function on [0, T ], for which λ(k)r +u

(k)r (t)

is the restriction to [(r − l)h, rh), r = 1, 2, ..., N .It was shown that the conditions of Theorem 8 are also necessary and sufficient for the

unique solvability of problem (14),(15).The parametrization method was then applied to the study of singular problems for which

the problem of approximation by regular two-point boundary value problems was solved [19,24-27]. Necessary and sufficient conditions were obtained for the well-posed solvability of theproblem of finding a solution to the system of differential equations (14), that is boundedon the whole axis R. For systems whose matrices and right-hand sides are constant inthe limit, approximating regular two-point boundary value problems were constructed. Theconnection between the well-posed solvability of the original singular problem and that ofan approximating problem was established. In the general case, Lyapunov transformationspossessing certain properties were used to construct regular two-point boundary valueproblems as approximations to the problem of determining a solution bounded on the entirereal line. The concept of a solution "in the limit as t→∞" was introduced and the behaviourof solutions of linear ordinary differential equations as t → ∞ was investigated. Necessaryand sufficient conditions were derived under which a singular boundary value problem withconditions assigned at infinity is uniquely solvable, and an appropriate approximating problem

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 17: 20 4 MATHEMATICAL 20 JOURNAL

16 ,

was constructed. These results were developed to the system of differential equations on thereal axis:

dx

dt= f(t, x), x ∈ Rn. (24)

In [29, 34] the results of Section 2 were also extended to system (24) with the nonlinearboundary condition

g[x(0), x(T )] = 0. (25)

Results of Sections 2 and 3 were included in the doctoral dissertation.The doctoral dissertation by Dzhumabaev D.S. titled "Singular boundary value problems

for ordinary differential equations and their approximation" is a fundamental scientificwork that underwent comprehensive approbation in leading scientific centers, such as theComputing Center of the Russian Academy of Sciences (A.A. Abramov, N.B. Konyukhova),the Institute of Applied Mathematics of the Russian Academy of Sciences (K.I. Babenko),Lomonosov Moscow State University (V.M. Millionshchikov, V.A. Kondratiev, N.Kh. Rozov),Institute of Mathematics NAS of Ukraine (Y.A. Mitropol’skii, A.M. Samoilenko, V.L.Makarov, V.L. Kulik), Voronezh State University (V.I. Perov), I. Vekua Institute of AppliedMathematics of Tbilisi State University (I.T. Kiguradze), Kiev State University named afterT. Shevchenko (N.I. Perestyuk). Doctoral dissertation was defended at the Specialized Councilof the Institute of Mathematics of the NAS of Ukraine in 1994.

The parameterization method was extended to various linear and nonlinear boundaryvalue problems for ordinary differential equations on a finite interval and on the whole realline; necessary and sufficient solvability conditions for those problems were obtained in [28-32,34, 47, 50-51, 53, 55-56, 62, 65, 70, 74, 77, 83, 85, 92, 96].

4. Nonlocal problems for systems of second-order hyperbolic equations

The results obtained in Sections 2 and 3 provided a basis for solving nonlocal boundaryvalue problems for systems of second-order hyperbolic equations [33, 36-46, 48, 49, 52, 58, 63,67, 71, 73, 86].

In the domain Ω = [0, T ]× [0, ω], consider the following nonlocal boundary value problemfor the system of hyperbolic equations with two independent variables:

∂2u

∂t∂x= A(t, x)

∂u

∂x+B(t, x)

∂u

∂t+ C(t, x)u+ f(t, x), (26)

P2(x)∂u(t, x)

∂x

∣∣∣t=0

+P1(x)∂u(t, x)

∂t

∣∣∣t=0

+P0(x)u(t, x)|t=0

+S2(x)∂u(t, x)

∂x

∣∣∣t=T

+S1(x)∂u(t, x)

∂t

∣∣∣t=T

+S0(x)u(t, x)|t=T = ϕ(x), x ∈ [0, ω], (27)

u(t, 0) = ψ(t), t ∈ [0, T ], (28)

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 18: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 17

where u(t, x) = col(u1(t, x), ..., un(t, x)) is an unknown function, the n × n matrices A(t, x),B(t, x), C(t, x), Pi(x), Si(x), i = 0, 2, and the n-vector functions f(t, x), ϕ(x) are continuouson Ω and [0, ω], respectively; the n-vector function ψ(t) is continuously differentiable on [0, T ].

Sufficient coefficient conditions for the existence and uniqueness of a classical solution ofproblem (26)–(28) were established by a modification of the parametrization method [33, 38,40, 45, 46]. A relationship with the following family of boundary value problems for ordinarydifferential equations was established:

∂v

∂t= A(t, x)v + F (t, x), x ∈ [0, ω], (29)

P2(x)v(0, x) + S2(x)v(T, x) = Φ(x), (30)

here n-vector functions F (t, x) and Φ(x) are continuous on Ω and [0, ω], respectively.For fixed x ∈ [0, ω] problem (29), (30) is a linear boundary value problem for the system

of ordinary differential equations. Suppose the variable x is changed on [0, ω]; then we obtaina family of boundary value problems for ordinary differential equations.

Sufficient and necessary conditions for the well-posedness of nonlocal boundary valueproblem for the system of hyperbolic equations (28)-(30) were obtained in [44, 52, 63, 67].

Let C([0, ω], Rn) be a space of continuous on [0, ω] vector functions ϕ(x) with the norm||ϕ||0,1 = max

x∈[0,ω]||ϕ(x)||;

C1([0, T ], Rn) be a space of continuously differentiable on [0, T ] vector functions ψ(t) withthe norm ||ψ||1,0 = max

(maxt∈[0,T ]

||ψ(t)||, maxt∈[0,T ]

||ψ(t)||);

C1,1(Ω, Rn) be a space of functions u(t, x) ∈ C(Ω, Rn) with continuous on Ω partial derivatives∂u(t,x)∂x , ∂u(t,x)

∂t , ∂2u(t,x)∂t∂x with the norm ||u||1,1 = max

(||u||0,

∣∣∣∣∣∣∂u∂x ∣∣∣∣∣∣0, ∣∣∣∣∣∣∂u∂t ∣∣∣∣∣∣0, ∣∣∣∣∣∣ ∂2u∂t∂x

∣∣∣∣∣∣0

).

Lemma 2. If problem (29), (30) has a solution for arbitrary F (t, x) ∈ C(Ω, Rn) andΦ(x) ∈ C([0, ω], Rn), then this solution is unique.

Definition 3. Problem (29), (30) is called well-posed if for arbitrary F (t, x) ∈ C(Ω, Rn)and Φ(x) ∈ C([0, ω], Rn) it has a unique solution v(t, x) ∈ C(Ω, Rn) and for it the estimateholds

maxt∈[0,T ]

||v(t, x)|| ≤ K max(

maxt∈[0,T ]

||F (t, x)||, ||Φ(x)||), (31)

where the constant K is independent of F (t, x) and Φ(x), and x ∈ [0, ω].Lemma 3. If v(t, x) is a solution to problem (29), (30), and the estimate holds

||v||0 ≤ K max(||F ||0, ||Φ||0,1

), (32)

where K is a constant independent of the functions F (t, x) and Φ(x), then for every x ∈ [0, ω]the inequality (31) is valid.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 19: 20 4 MATHEMATICAL 20 JOURNAL

18 ,

Denote by Ωη = [0, T ]× [0, η] and ||u||0,η = max(t,x)∈Ωη

||u(t, x)||.

Definition 4. Boundary value problem (26)-(28) is called well-posed if for arbitraryf(t, x) ∈ C(Ω, Rn) and ψ(t) ∈ C1([0, T ], Rn) and ϕ(x) ∈ C([0, ω], Rn) it has a unique classicalsolution u(t, x) and this solution satisfies the following estimate

max(||u||0,η,

∣∣∣∣∣∣∂u∂x

∣∣∣∣∣∣0,η,∣∣∣∣∣∣∂u∂t

∣∣∣∣∣∣0,η

)≤ K max

(||f ||0,η, ||ψ||1,0, max

x∈[0,η]||ϕ(x)||

),

where constant K is independent of f(t, x) and ψ(t) and ϕ(x) and η ∈ [0, ω].Theorem 9. The boundary value problem (26)-(28) is well-posed if and only if so is

problem (29), (30).From Theorem 9 it follows that the well-posedness of problem (26)-(28) are equivalent to

the well-posedness of problem (29), (30).These results were extended to a nonlocal problem with an integral condition for system

(28) (see [76]).The problem of finding bounded solutions of system (26) and the families of systems (29)

was solved in [35, 39, 41-43, 46, 48, 49, 58].The parametrization method was further developed to nonlinear nonlocal problems for a

system of hyperbolic equations [71, 73, 86, 88].

5. Boundary value problems for loaded and integro-differential equations

On the basis of the parametrization method, constructive algorithms were developedfor finding solutions to various boundary value problems for integro-differential and loadedequations [35, 54, 57, 59-61, 68, 69, 91, 94].

In the interval [0, T ], consider the following linear two-point boundary value problem foran integro-differential equation:

dx

dt= A(t)x+

T∫0

K(t, s)x(s)ds+ f(t), x ∈ Rn, (33)

Bx(0) + Cx(T ) = d, d ∈ Rn, (34)

where A(t) and K(t, s) are continuous matrices on [0, T ] and [0, T ]× [0, T ], respectively; f(t)is continuous on [0, T ].

It is well known that the basic techniques for analysis and solving boundary value problemsfor integro-differential equations are the Nekrasov method and the Green’s function method.Nekrasov’s method applies to problem (33), (34), if we assume the unique solvability of thesecond-kind Fredholm integral equation

x(t) =

T∫0

M(t, s)x(s)ds+ F (t), t ∈ [0, T ], (35)

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 20: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 19

with the kernel M(t, s) =t∫

0

X(t)X−1(τ)K(τ, s)dτ , where X(t) is the fundamental matrix of

the differential part of equation (33) and F (t) ∈ C([0, T ],Rn). The Green’s function methodapplies to problem (33), (34) under assumption that the boundary value problem for thedifferential part of (33) is uniquely solvable; i.e., this method assumes the unique solvabilityof problem (33), (34) with K(t, s) = 0.

However, the assumptions of neither Nekrasov’s method nor Green’s function method arenecessary conditions for the solvability of problem (33), (34).

In [66], a coefficient criterion for the well-posedness of problem (33), (34) was establishedin terms of approximating boundary value problems for the loaded differential equation

dx

dt= A(t)x+

m∑i=1

Ki(t)x(θi) + f(t), x ∈ Rn, (35)

subject to condition (34), by the parameterization method.In [72], Dzhumabaev proposed a method for solving the problem (33), (34) that is based

on the parameterization method and properties of a fundamental matrix of the differentialpart of (33). The interval [0, T ] is divided into N equal parts with step size h > 0: [0, T ) =N⋃r=1

[(r − 1)h, rh). Let xr(t) be the restriction of x(t) to the rth subinterval [(r − 1)h, rh).

The values of the solution at the left-endpoints of the subintervals are assumed as additionalparameters λr = xr[(r− 1)h]. By the substitution ur(t) = xr(t)−λr at every rth subinterval,the problem (33), (34) is reduced to the multi-point boundary value problem for a system ofintegro-differential equations with parameters

durdt

= A(t)ur +A(t)λr +

N∑j=1

jh∫(j−1)h

K(t, s)[uj(s) + λj ]ds+ f(t), t ∈ [(r − 1)h, rh), (37)

ur[(r − 1)h] = 0, r = 1, 2, ..., N, (38)

Bλ1 + CλN + C limt→T−0

uN (t) = d, (39)

λp + limt→ph−0

up(t)− λp+1 = 0, p = 1, 2, ..., N − 1. (40)

The introduction of additional parameters resulted in the emergence of the initial data (38) forthe unknown functions ur(t), r = 1, 2, ..., N . For fixed parameter values λ ∈ RnN , the systemof functions u[t] = (u1(t), u2(t), ..., uN (t)) is determined from problem (37), (38), which is aspecial Cauchy problem for the system of integro-differential equations. Problem (37), (38) isequivalent to the system of integral equations

ur(t) = X(t)

t∫(r−1)h

X−1(τ)A(τ)dτλr +X(t)

t∫(r−1)h

X−1(τ)

N∑j=1

jh∫(j−1)h

K(τ, s)[uj(s) + λj ]dsdτ

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 21: 20 4 MATHEMATICAL 20 JOURNAL

20 ,

+X(t)

t∫(r−1)h

X−1(τ)f(τ)dτ, t ∈ [(r − 1)h, rh), r = 1, 2, ..., N. (41)

By solving (41), one can find the representations of ur(t) in terms of λ ∈ RnN and f(t).Substituting them into (39) and (40) yields a system of equations for finding the unknownparameters. Thus, when applying the parameterization method to problem (33), (34), one hasto solve an auxiliary problem, namely, the special Cauchy problem (37), (38), or the equivalentsystem of integral equations (41). However, unlike the auxiliary problem of Nekrasov’s method,the special Cauchy problem is uniquely solvable for any sufficiently small partition step sizeh > 0. Let a number h0 > 0 satisfy the inequality

σ(h0) = βTh0eαh0 < 1, (42)

where β = max(t,s)∈[0,T ]×[0,T ]

||K(t, s)|| and α = maxt∈[0,T ]

||A(t)||. It was shown that, for any h ∈

(0, h0] : Nh = T , system (41) is uniquely solvable. This property of the auxiliary problem ofthe parameterization method made it possible to establish solvability criteria for the boundaryvalue problem considered.

Necessary and sufficient conditions for the solvability, including the unique solvability, ofproblem (33), (34) were obtained in terms of a matrix Q∗,∗(h) constructed via the fundamentalmatrix of the differential part of system (33), the matrices of boundary conditions (34), andthe resolvent of an auxiliary Fredholm integral equation of the second kind.

In [78], a family of algorithms was proposed for solving problem (33), (34). The numericalparameters of the family are the partition step h > 0 : Nh = T , the number ν ∈ Rn of iteratedintegrals used in the algorithm, and a nonnegative integer m specifying how many terms ofthe resolvent of the corresponding Fredholm integral equation of the second kind are used inthe algorithm. The basic condition for the feasibility and convergence of the algorithm is thatthe matrix Qmν (h) is invertible for chosen numerical parameters. The unknown parametersare found at the first stage of each step in the algorithm by using the invertibility of thismatrix. The special Cauchy problem (37), (38) with the found parameter values is solved atthe second stage of the algorithm. Necessary and sufficient conditions for the well-posedness ofproblem (33), (34) were established in terms of the input data without using the fundamentalmatrix or the resolvent.

In [82], the method and results of [72] were generalized to the case of an arbitrary partition.Let ∆N denote a partition of [0, T ] into N parts: t0 = 0 < t1 < . . . < tN = T ; the case of nopartitioning is denoted by ∆1. Each partition ∆N is associated with a homogeneous Fredholmintegral equation of the second kind. The partition ∆N is called regular if the correspondingequation has only the trivial solution. The regularity of ∆N leads to a unique solvability ofthe special Cauchy problem mentioned above. The solvability criteria for linear two-pointboundary value problem for Eq. (33) obtained in [82] are applicable for arbitrary regular

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 22: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 21

partition ∆N . The algorithms of the parameterization method for solving linear boundaryvalue problems for Fredholm integro-differential equations were offered in [86].

These results were extended to boundary value problems for impulsive integro-differentialequations in [84].

6. New general solutions to linear Fredholm integro-differential equations andtheir applications in solving boundary value problems

It is known that Volterra integro-differential equations are solvable for any right-hand sideand have classical general solutions. However, there exist linear loaded differential equationsand Fredholm integro-differential equations that do not admit classical general solutions. Thequestion arises as to whether it is possible to construct such general solutions that existfor all differential and integro-differential equations and would allow solving boundary valueproblems for these equations.

Dzhumabaev D.S. proposed a novel approach to the concept of the general solution for alinear ordinary Fredholm integro-differential equation based on the parametrization methodin [97]. The domain interval is partitioned and the values of the solution at the left endpointsof the subintervals are considered as additional parameters. By introducing new unknownfunctions on the partition subintervals, a special Cauchy problem for a system of integro-differential equations with parameters is obtained. Using the solution of this problem, a newgeneral solution of the linear Fredholm integro-differential equation was constructed.

Suppose ∆N is a partition t0 = 0 < t1 < . . . < tN = T. Let x(t) be a function, piecewisecontinuous on [0, T ] with the possible points of discontinuity: t = tp, p = 1, 2, ..., N − 1. Letxr(t) be the restriction of x(t) to the rth subinterval [tr−1, tr), i.e. xr(t) = x(t), t ∈ [tr−1, tr),r = 1, 2, . . . , N. For definiteness, assume that xr(tr−1) = lim

t→tr−1+0xr(t), r = 1, 2, ..., N. If x(t)

is piecewise continuously differentiable on (0, T ) and satisfies the Fredholm integro-differentialequation (33) for each t ∈ (0, T )\tp, p = 1, 2, ..., N − 1, then the system of its restrictionsx[t] = (x1(t), ..., xN (t)) satisfies the following system of integro-differential equations:

dxrdt

= A(t)xr +N∑j=1

tj∫tj−1

K(t, τ)xj(τ)dτ + f(t), t ∈ [tr−1, tr), r = 1, 2, ..., N. (43)

Let C([0, T ],∆N ,RnN ) denote the space of function systems x[t] = (x1(t), x2(t), ..., xN (t)),where xr : [tr−1, tr)→ Rn is continuous and has the finite left-sided limit lim

t→tr−0xr(t) for any

r = 1, 2, ..., N, with the norm x[∆]2 = maxr=1,2,...,N

supt∈[tr−1,tr)

||xr(t)||.

A function system x[t] = (x1(t), x2(t), ..., xN (t)) ∈ C([0, T ],∆N ,RnN ) is called a solutionto the system of integro-differential equations (41) if the functions xr(t), r = 1, 2, ..., N , arecontinuously differentiable on (tr−1, tr) and satisfy equations (43).

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 23: 20 4 MATHEMATICAL 20 JOURNAL

22 ,

Suppose that the function system x∗[t] = (x∗1(t), x∗2(t), ..., x∗N (t)) is a solution to (43).Then the function x∗(t), defined as x∗(t) = x∗r(t) for t ∈ [tr−1, tr), r = 1, 2, ..., N , andx∗(T ) = lim

t→T−0x∗N (t), is piecewise continuously differentiable and consistent with Eq. (33)

for t ∈ (0, T )\tp, p = 1, 2, ..., N − 1. The introduction of the parameters λr = xr(tr−1),r = 1, 2, ..., N , and substituting new unknown functions ur(t) = xr(t)−λr on each subinterval[tr−1, tr), yields the system of integro-differential equations with parameters

durdt

= A(t)ur+A(t)λr+N∑j=1

tj∫tj−1

K(t, τ)[uj(τ)+λj ]dτ+f(t), t ∈ [tr−1, tr), r = 1, ..., N, (44)

subject to the initial conditions

ur(tr−1) = 0, r = 1, 2, ..., N. (45)

Problem (44), (45) is called a special Cauchy problem for the system of integro-differentialequations with parameters. Without the interval’s partition, problem (44), (45) is the Cauchyproblem with the initial condition at t = 0 for the Fredholm integro-differential equation withparameter.

A solution to the special Cauchy problem (44), (45) with fixed values of parametersλ∗r ∈ Rn, r = 1, ..., N , is a function system u[t, λ∗] = (u1(t, λ∗), u2(t, λ∗), ..., uN (t, λ∗)) ∈C([0, T ],∆N ,RnN ), which satisfies the system of integro-differential equations (44) withλ = λ∗ and initial conditions (45).

Let Xr(t) be a fundamental matrix of the differential equation dxdt = A(t)x on the interval

[tr−1, tr]. Then problem (44),(45) is equivalent to the system of integral equations

ur(t) = Xr(t)

t∫tr−1

X−1r (τ1)A(τ1)dτ1λr +Xr(t)

t∫tr−1

X−1r (τ1)

N∑j=1

tj∫tj−1

K(τ1, τ)[uj(τ) + λj ]dτdτ1

+Xr(t)

t∫tr−1

X−1r (τ1)f(τ1)dτ1, t ∈ [tr−1, tr), r = 1, 2, ..., N. (46)

Take an arbitrary partition ∆N and consider the corresponding homogeneous Fredholmintegral equation of the second kind

y(t) =

T∫0

M(∆N , t, τ)y(τ)dτ, t ∈ [0, T ], (47)

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 24: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 23

where M(∆N , t, τ) =t1∫τK(t, τ1)X1(τ1)dτ1X

−11 (τ), t ∈ [0, T ], τ ∈ [0, t1],

M(∆N , t, τ) =tj∫τK(t, τ1)Xj(τ1)dτ1X

−1j (τ), t ∈ [0, T ], τ ∈ (tj−1, tj ], j = 2, ..., N.

Definition 5. A partition ∆N is called regular for Eq. (33) if the integral equation (47)has only the trivial solution.

Let σ([0, T ]) denote the set of regular partitions of the interval [0, T ]. The set σ([0, T ]) isnot empty.

Definition 6. The special Cauchy problem (44), (45) is called uniquely solvable if it hasa unique solution for any pair (f(t), λ) with f(t) ∈ C([0, T ],Rn) and λ ∈ RnN .

Definition 7. Suppose that ∆N ∈ σ([0, T ]), λ = (λ1, λ2, ..., λN ) ∈ RnN , and the functionsystem u[t, λ] = (u1(t, λ), u2(t, λ), ..., uN (t, λ)) is a solution to the special Cauchy problemfor the system of integro-differential equations with parameters (44), (45). Then the functionx(∆N , t, λ) defined by the equalities x(∆N , t, λ) = λr + ur(t, λ), t ∈ [tr−1, tr), r = 1, 2, ..., N ,and x(∆N , T, λ) = λN + lim

t→T−0uN (t, λ) is called the ∆N general solution to the integro-

differential equation (33).Theorem 10. For any ∆N ∈ σ([0, T ]), there exists a unique ∆N general solution to the

linear Fredholm integro-differential equation (33).In contrast to the classical general solution, the ∆N general solution exists for all linear

nonhomogeneous Fredholm integro-differential equations and containsN arbitrary parametersλr ∈ Rn.

The concept of new general solution, introduced by Dzhumabaev, made it possible to derivethe solvability criteria for the linear Fredholm integro-differential equations and boundaryvalue problems for this equation. The method proposed consists the construction of ∆N

general solutions and solving linear algebraic equations with respect to parameters of thosesolutions. The Cauchy problems for ordinary differential equations and problems of evaluationof the definite integrals on the subintervals are used as auxiliary problems. Depending on thechoice of methods for solving auxiliary problems, either numerical or approximate methodswere obtained in order to solve the linear boundary value problems for Fredholm integro-differential equations [81, 93, 99].

The new general solution made it possible to propose new numerical and approximatemethods for solving boundary value problems with and without parameter for nonlinearordinary differential equations [101, 102, 104, 106, 108, 111]. These methods are based onthe construction and solving a system of algebraic equations for arbitrary vectors of the newgeneral solution. The coefficients and the right-hand sides of this system are determined usingsolutions of the Cauchy problems for ordinary differential equations on the subintervals. Usingthe new general solution, solvability criteria were established for boundary value problems fornonlinear ordinary differential equations.

The results and methods were extended to linear nonlocal boundary value problems for

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 25: 20 4 MATHEMATICAL 20 JOURNAL

24 ,

systems of loaded hyperbolic equations and Fredholm hyperbolic integro-differential equations[100].

The new approach to the general solution became the basis of methods for researchand solving nonlinear boundary value problems for loaded differential and integro-differentialequations [103, 105, 107, 109, 110, 112]. The methods are based on the construction and solvingsystems of nonlinear algebraic equations for arbitrary vectors of new general solutions. To solvenonlocal boundary value problems for nonlinear partial differential and integro-differentialequations, a modification of Euler’s broken lines method was developed.

These results were further extended to multipoint problems, periodic problems withimpulse effects, and control problems for various classes of differential, loaded differential,integro-differential, and partial differential equations [75, 80, 87].

Conclusion

Dzhumabaev D.S. was a highly qualified expert in the theory of differential, integral andnonlinear operator equations, computer and mathematical modeling of applied problems. Hehas published over 300 papers in scientific journals, including authoritative periodicals likeJournal of Mathematical Analysis and Applications, Journal of Computational and AppliedMathematics, Mathematical Methods in Applied Sciences, Mathematical Notes, ComputationalMathematics and Mathematical Physics, Differential Equations, Ukrainian MathematicalJournal, Journal of Integral Equations and Applications, Journal of Mathematical Sciences,Eurasian Mathematical Journal, etc. The list of his major publications is given below.

The research findings were presented and discussed at many international symposiaand conferences. His scientific results were widely recognized in Kazakhstan and at theinternational level by experts in the field of differential equations and computationalmathematics. The scientific direction formed by Dzhumabaev D.S. has been further developedby his students, who successfully work at the Institute of Mathematics and MathematicalModeling and leading universities in Kazakhstan.

In 1998, Dzhumabaev D.S. was awarded the title of professor (specialty 01.01.00 -Mathematics). Under his supervision, two doctoral, twenty candidate dissertations, and onePhD thesis were defended. He supervised five PhD students. In 2004-2005, DzhumabaevD.S. was the chair of the Expert Commission on Mathematics and Computer Science ofthe Committee on Supervision and Certification in Education and Science of the MinistryEducation and science of the Republic of Kazakhstan.

Professor Dzhumabaev made a great contribution to academic community. He leda scientific seminar on the qualitative theory of differential equations at the Instituteof Mathematics and Mathematical Modeling. He was a scientific expert of the StateExpertise of the Ministry of Education and Science of the Republic of Kazakhstan. Formany years, Dzhumabaev D.S. was a member of Dissertation Councils at the Institute ofMathematics, Al-Farabi Kazakh National University, Abai Kazakh National Pedagogical

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 26: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 25

University, K.Zhubanov Aktobe Regional State University.In 2014, at the invitation of the university authorities, Professor Dzhumabaev began to

deliver lectures at the International University of Information Technology. He taught suchcourses as "Mathematical Analysis" , "Methods of solving linear and nonlinear boundary valueproblems for ordinary differential equations" , "Problems for integro-differential equations ofprocesses with consequences" , "Boundary value problems, their applications and methods forsolving" . It should be noted that his scientific results of recent years were obtained underthe influence of teaching at the International University of Information Technology. Whilegiving lectures and conducting practical classes, he realized with great clarity the importanceof developing numerical methods for solving applied problems. Having set himself the goalof bringing to the final numerical implementation the theoretical results and algorithms ofthe parameterization method, he made a breakthrough in the field of mathematical andcomputer modeling. Under scientific supervision of Professor Dzhumabaev, master studentsand undergraduates of the International University of Information Technology carried outresearch in the area of numerical methods for solving boundary value problems for differentialand integro-differential equations.

Professor Dzhumabaev chaired the Mathematics Section of Academic Council of theInstitute of Mathematics and Mathematical Modeling. He was a member of the editorialboard of the scientific journals News of NAS RK. Series: Physics and Mathematics, KazakhMathematical Journal, Bulletin of Karaganda State University. Series: Mathematics.

Dzhumabaev D.S. was awarded the lapel badge "For Contribution to the Developmentof Science and Technology" and the Certificate of Merit of the Ministry of Education andScience of the Republic of Kazakhstan.

Since 2018, Dzhumabaev D.S. headed the Department of Mathematical Physics andMathematical Modeling at the Institute of Mathematics and Mathematical Modeling. In2019, his research team, together with mathematicians from Ukraine, Belarus, Uzbekistan,Azerbaijan, Germany, and the Czech Republic, received funding from the EuropeanUnion’s Horizon 2020 research and innovation programme under EC grant agreement873071-H2020-MSCA-PISE-2019 (Marie Sklodowska-Curie Research and Innovation StaffExchange), project titled "Spectral Optimization: From Mathematics to Physics andAdvanced Technology"(SOMPATY).

The first publication in the framework of this project is devoted to the application of theparameterization method to multipoint problems for Fredholm integro-differential equationsand was published in Kazakh Mathematical Journal (2020, Vol. 20, No. 1).

At the end of 2019, having applied for the competition from the International Universityof Information Technology, Professor Dzhumabaev became the owner of the grant "TheBest University Teacher 2019" of the Ministry of Education and Science of the Republicof Kazakhstan.

A prominent scientist, an outstanding teacher, and a talented organizer, Dulat

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 27: 20 4 MATHEMATICAL 20 JOURNAL

26 ,

Syzdykbekovich Dzhumabaev passed away on February 20, 2020. He will be lovinglyremembered by his wife Klara Kabdygalymovna, daughters Dana and Damira, son Anuar,and three grandchildren. His memory will live in the hearts of his friends, colleagues, as wellas generations of grateful and adoring students. His research, scientific ideas and plans willbe continued and implemented by his students.

The major publications by Dzhumabaev D.S.

1 Альмухамбетов К.К., Джумабаев Д.С. Обратная краевая задача для счетной си-стемы дифференциальных уравнений, не разрешенных относительно производной в про-странстве lp // Изв. АН КазССР. Сер. физ.-мат. – 1977. – No. 5. – С. 7-11.

2 Джумабаев Д.С. Многоитерационный метод решения двухточечных краевых задачдля полуявных дифференциальных уравнений в банаховых пространствах // Изв. АНКазССР. Сер. физ.-матем. – 1978. – No. 3. – С. 9-15.

3 Джумабаев Д.С. Сведение краевых задач к задачам с параметром и обоснованиеметода стрельбы // Изв. АН КазССР. Сер. физ.-матем. – 1978. – No. 5. – С. 34-40.

4 Джумабаев Д.С. Необходимые и достаточные условия существования решений кра-евых задач с параметром // Изв. АН КазССР. Сер. физ.-матем. – 1979. – No. 3. – С. 5-12.

5 Джумабаев Д.С. Краевые задачи для бесконечных систем дифференциальных урав-нений // Изв. АН КазССР. Сер. физ.-матем. – 1979. – No. 5. – С. 71-73.

6 Джумабаев Д.С. Об одном методе исследования обыкновенных дифференциальныхуравнений // Изв. АН КазССР. Сер. физ.-матем. – 1982. – No. 3. – С. 1-5.

7 Джумабаев Д.С. Об ограниченности решения и его производной на всей оси диффе-ренциального уравнения первого порядка // Изв. АН КазССР. Сер. физ.-матем. – 1982.– No. 5. – С. 4-7.

8 Джумабаев Д.С. Об ограниченности решения и его производной на полуоси неко-торых краевых задач для обыкновенных дифференциальных уравнений // Дифферен-циальные уравнения. – 1982. – Т. 18.– No. 11. – C. 2013-2014.

9 Джумабаев Д.С. Обоснование метода ломаных для одной краевой задачи линейногопараболического уравнения // Изв. АН КазССР. Сер. физ.-матем. – 1983. – No. 1. – С.8-11.

10 Жаутыков О.А., Джумабаев Д.С. Об одной задаче для уравнений в частных про-изводных первого порядка // Изв. АН КазССР. Сер. физ.-матем. – 1983. – No. 3. – С.31-34.

11 Джумабаев Д.С., Медетбекова Р.А. О разделимости линейного дифференциаль-ного уравнения // Изв. АН КазССР. Сер. физ.-матем. – 1983. – No. 5. – С. 21-26.

12 Джумабаев Д.С. О разрешимости нелинейных замкнутых операторных уравнений// Изв. АН КазССР. Сер. физ.-матем. – 1984. – No. 1. – С. 31-34.

13 Джумабаев Д.С. О сходимости модификации метода Ньютона-Канторовича длязамкнутых операторных уравнений // Изв. АН КазССР. Сер. физ.-матем. – 1984. – No.3. – С. 27-31.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 28: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 27

14 Джумабаев Д.С., Медетбеков М.М. Об ограниченности решения нелинейногообыкновенного дифференциального уравнения второго порядка // Изв. АН КазССР.Сер. физ.-матем. – 1987. – No. 3. – С. 20-23.

15 Dzhumabaev D.S. Convergence of iterative methods for unbounded operator equations// Mathematical Notes. 1987. Vol. 41. No 5. pp. 356-361. DOI: 10.1007/BF01159858

16 Dzhumabaev D.S. On the solvability of Nonlinear Closed Operator Equations //American Mathematical Society Translations (2). 1989. Vol.142. pp. 91-94.

17 Dzhumabaev D.S. On the Convergence of a modification of the Newton-KantorovichMethod for Closed Operator Equations // American Mathematical Society Translations (2).1989. Vol.142. pp. 95-99.

18 Жаутыков О.А., Джумабаев Д.С. Решение краевых задач на основе модификацииметода Ньютона-Канторовича // Изв. АН КазССР. Сер. физ.-матем. – 1987. – No. 5. –С. 19-29.

19 Джумабаев Д.С. Аппроксимация задачи нахождения ограниченного решениядвухточечными краевыми задачами // Дифференциальные уравнения. – 1987. – Т. 23.–No. 12. – C. 2188-2189.

20 Жаутыков О.А., Джумабаев Д.С. Об одном подходе к обоснованию метода стрель-бы и выбору начального приближения // Изв. АН КазССР. Сер. физ.-матем. – 1988. –No. 1. – С. 18-23.

21 Джумабаев Д.С. Метод параметризации решения краевых задач для обыкновен-ных дифференциальных уравнений // Вестник АН КазССР. – 1988. – No. 1. – С.48-52.

22 Джумабаев Д.С. Скорость сходимости итерационных процессов для неограничен-ных операторных уравнений // Изв. АН КазССР. Сер. физ.-матем. – 1988. – No. 5. – С.24-28.

23 Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-valueproblem for an ordinary differential equation // U.S.S.R. Computational Mathematics andMathematical Physics. 1989. Vol. 29. No 1, pp. 34-46. DOI: 10.1016/0041-5553(89)90038-4

24 Джумабаев Д.С. Аппроксимация ограниченного решения и экспоненциальная ди-хотомия на оси // Дифференциальные уравнения. – 1989. – Т. 25.– No. 12. – C. 2190-2191.

25 Dzhumabayev D.S. Approximation of a bounded solution of a linear ordinary differentialequation by solutions of two-point boundary value problems // U.S.S.R. ComputationalMathematics and Mathematical Physics. – 1990. – Vol.30. – No. 2. – P.34-45. DOI:10.1016/0041-5553(90)90074-3

26 Dzhumabayev D.S. Approximation of a bounded solution and exponential dichotomyon the line // U.S.S.R. Computational Mathematics and Mathematical Physics. – 1990. –Vol.30. – No. 6. – P.32-43. DOI: 10.1016/0041-5553(90)90106-3

27 Dzhumabaev D.S. Singular boundary value problems and their approximation fornonlinear ordinary differential equations // Computational Mathematics and MathematicalPhysics. – 1992. – Vol. 32. – No. 1. – P.10-24. EID: 2-s2.0-44049120854

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 29: 20 4 MATHEMATICAL 20 JOURNAL

28 ,

28 Джумабаев Д.С. Об одном признаке экспоненциальной дихотомии на всей оси //Известия МН - АН РК. Сер. физ.-матем. – 1996. – No. 5. – C. 43-48.

29 Джумабаев Д.С. Об одном подходе к решению нелинейных краевых задач // Из-вестия МН - АН РК. Сер. физ.-матем. – 1997. – No. 5. – C. 17-24.

30 Dzhumabaev D.S. Estimates for the approximation of singular boundary problems forordinary differential equations // Computational Mathematics and Mathematical Physics. –1998. – Vol. 38. – No. 11. – P. 1739-1746.

31 Джумабаев Д.С., Асанова А.Т. Об однозначной разрешимости линейных двухто-чечных краевых задач с параметром // Известия МН - АН РК. Сер. физ.-матем. – 1999.– No. 1. – C. 31-34.

32 Джумабаев Д.С., Асанова А.Т. Об оценках решений и их производных краевыхзадач для параболических уравнений // Известия МОН, НАН РК. Сер. физ.-матем. –2000. – No. 5. – C. 3-9.

33 Джумабаев Д.С., Асанова А.Т. Метод параметризации применительно к полупе-риодической краевой задаче для гиперболического уравнения // Известия МОН, НАНРК. Сер. физ.-матем. – 2001. – No. 1. – C. 23-29.

34 Джумабаев Д.С. Итерационные процессы с демпфирующими множителями и ихприменение // Математический журнал. – 2001. – Т. 1. – No. 1. – C. 20-30.

35 Джумабаев Д.С. Поведение решений систем интегро-дифференциальных уравне-ний // Математический журнал. – 2001. – Т. 1. – No. 2. – C. 118-120.

36 Асанова А.Т., Джумабаев Д.С. Критерий корректной разрешимости для системгиперболических уравнений // Известия МОН, НАН РК. Сер. физ.-матем. – 2002. – No.3. – C. 20-26.

37 Джумабаев Д.С. Корректно разрешимые на полуоси семейства дифференциаль-ных уравнений // Математический журнал. – 2002. – Т. 2. – No. 2. – C. 61-70.

38 Asanova A.T., Dzhumabaev D.S. Unique solvability of the boundary value problemfor systems of hyperbolic equations with data on the characteristics // ComputationalMathematics and Mathematical Physics. – 2002. – Vol. 42. – No. 11. - P. 1609-1621.

39 Джумабаев Д.С. Корректно разрешимая на полуполосе задача для систем гипер-болических уравнений // Дифференциальные уравнения. – 2002. – Т. 38.– No. 11. – C.1579-1580.

40 Асанова А.Т., Джумабаев Д.С. Применение метода введения дополнительного па-раметра к задаче Дарбу для систем гиперболических уравнений // Математическийжурнал. – 2003. – Т. 3. – No. 1. – C. 18-24.

41 Джумабаев Д.С. О существовании единственного ограниченного на всей оси реше-ния семейства систем дифференциальных уравнений // Известия НАН РК. Сер. физ.-матем. – 2003. No. 3. – C. 16-23.

42 Джумабаев Д.С. Ограниченные на полосе решения систем гиперболических урав-нений // // Известия НАН РК. Сер. физ.-матем. – 2003. No. 5. – C. 23-30.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 30: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 29

43 Asanova A.T., Dzhumabaev D.S. Bounded solutions to systems of hyperbolic equationsand their approximation // Computational Mathematics and Mathematical Physics. – 2003.– Vol. 42. – No. 8. – P. 1132-1148. EID: 2-s2.0-33746637670

44 Asanova A.T., Dzhumabaev D.S. Correct solvability of a nonlocal boundary valueproblem for systems of hyperbolic equations // Doklady Mathematics. – 2003. – Vol. 68. –No. 1. - P.46-49. EID: 2-s2.0-0141652889

45 Asanova A.T., Dzhumabaev D.S. Unique solvability of nonlocal boundary valueproblems for systems of hyperbolic equations // Differential Equations. – 2003. – Vol. 39.– No. 10. – P. 1414-1427. DOI: 10.1023/B:DIEQ.0000017915.18858.d4

46 Asanova A.T., Dzhumabaev D.S. Periodic solutions of systems of hyperbolic equationsbounded on a plane // Ukrainian Mathematical Journal. – 2004. – Vol. 56. – No. 4. – P.682-694. DOI: 10.1007/s11253-005-0103-0

47 Джумабаев Д.С., Минглибаева Б.Б. Корректная разрешимость линейной двухто-чечной краевой задачи с параметром // Математический журнал. – 2004. – T.4. – No. 1.– С. 41-51.

48 Dzhumabaev D.S. On the boundedness of a solution to a system of hyperbolic equationson a strip // Doklady Mathematics. – 2004. – Vol. 69. – No. 2. – P. 176-178. EID: 2-s2.0-2942591020

49 Джумабаев Д.С. Аппроксимация сингулярной задачи на полосе для систем гипер-болических уравнений (Хроника семинара) // Дифференциальные уравнения. – 2004. –T. 40. – No. 6. – C. 858.

50 Джумабаев Д.С., Темешева С.М. Об одном подходе к выбору начального при-ближения для нелинейной двухточечной краевой задачи // Математический журнал. –2004. – T.4. – No. 2. – С. 47-51.

51 Джумабаев Д.С., Иманчиев А.Е. Корректная разрешимость линейной многото-чечной краевой задачи // Математический журнал. – 2005. – T.5. – No. 1. – С. 24-33.

52 Asanova A.T., Dzhumabaev D.S. Well-posed solvability of nonlocal boundary valueproblems for systems of hyperbolic equations // Differential Equations. – 2005. – Vol. 41. –No. 3. – P. 352-363. DOI: 10.1007/s10625-005-0167-5

53 Джумабаев Д.С. Метод параметризации исследования и решения нелинейнойдвухточечной краевой задачи // Вестник КазНУ им. аль-Фараби. Сер. матем., мех.,информ. – 2006. – No. 1. – С. 51-55.

54 Джумабаев Д.С., Бакирова Э.А. Корректная разрешимость линейной двухточеч-ной краевой задачи для интегро-дифференциального уравнения (Хроника семинара) //Дифференциальные уравнения. – 2006. – T. 42. – No. 11. – C. 1571.

55 Джумабаев Д.С., Назарова К.Ж. Метод параметризации исследования линейнойкраевой задачи и алгоритмы нахождения ее решения // Математический журнал. – 2006.– T.6. – No. 4. – С. 40-47.

56 Dzhumabaev D.S., Temesheva S.M. A Parametrization method for solving nonlinear

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 31: 20 4 MATHEMATICAL 20 JOURNAL

30 ,

two-point boundary value problems // Computational Mathematics and MathematicalPhysics. – 2007. – Vol. 47. – No. 1. – P. 37-61. DOI: 10.1134/S096554250701006X

57 Джумабаев Д.С., Бакирова Э.А. Критерий корректной разрешимости двухточеч-ной краевой задачи для систем интегро-дифференциальных уравнений // Известия НАНРК. Сер. физ.-матем. – 2007. – No. 3. – С. 47-51.

58 Dzhumabaev D.S. Bounded solutions of families of systems of differential equationsand their approximations // Journal of Mathematical Sciences. 2008. Vol. 150. No 6. pp.2473-2487. DOI: 10.1007/s10958-008-0146-5

59 Джумабаев Д.С. Критерий однозначной разрешимости линейной краевой задачидля систем интегро-дифференциальных уравнений // Математический журнал. – 2008.– T. 8. – No. 2. – С. 44-48.

60 Джумабаев Д.С. К теории краевых задач для интегро-дифференциальных урав-нений // Математический журнал. – 2009. – Т.9. – Noю 1. – С. 42-46.

61 Джумабаев Д.С., Бакирова Э.А. Об однозначной разрешимости двухточечной кра-евой задачи для систем интегро-дифференциальных уравнений // Известия НАН РК.Сер. физ.-матем. – 2009. – No. 5. – С.30-37.

62 Джумабаев Д.С., Темешева С.М. Об одном алгоритме нахождения изолированныхрешений нелинейной двухточечной краевой задачи // Вестник КазНУ им.аль-Фараби,сер. матем., мех., информ. – 2009. – No 4(63). – С. 30-37.

63 Асанова А.Т., Джумабаев Д.С. О корректной разрешимости полупериодическойкраевой задачи с импульсным воздействием для систем гиперболических уравнений //Математический журнал. – 2009. – Т.9. – No. 4. – С. 14-19.

64 Джумабаев Д.С., Кадирбаева Ж.М. Об одном приближенном методе нахождениярешения полупериодической краевой задачи для систем нагруженных гиперболическихуравнений // Вестник КазНУ им.аль-Фараби. Серия матем., мех., инф. – 2010. – No. 1(64). – С. 105-112.

65 Джумабаев Д.С., Абильдаева А.Д. Изолированные ограниченные на всей оси ре-шения систем нелинейных обыкновенных дифференциальных уравнений // Математи-ческий журнал. – 2010. – Т.10. – No. 1 (35). – С. 18-24.

66 Dzhumabaev D.S., Bakirova E.A. Criteria for the well-posedness of a linear two-pointboundary value problem for systems of integro-differential equations // Differential Equations.– 2010. – Vol.46. – No. 4. - P. 553-567. DOI: 10.1134/S0012266110040117

67 Джумабаев Д.С., Асанова А.Т. Признаки корректной разрешимости линейнойнелокальной краевой задачи для систем гиперболических уравнений // Доповiдi НАНУкраiни. – 2010. – No. 4. – С. 7-11. 68 Джумабаев Д.С., Усманов К.И. О разрешимостилинейных двухточечных краевых задач для систем интегро-дифференциальных урав-нений с близкими ядрами // Математический журнал. – 2010. – Т.10. – No. 2(36). – С.39-47.

69 Джумабаев Д.С., Усманов К.И. Об одном подходе к исследованию линейной

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 32: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 31

краевой задачи для систем интегро-дифференциальных уравнений // Вестник КазНУим.аль-Фараби. Серия матем., мех., инф. – 2010. – No. 2(65). – С. 42-47.

70 Джумабаев Д.С., Иманчиев А.Е. Критерий существования изолированного ре-шения многоточечной краевой задачи для системы обыкновенных дифференциальныхуравнений // Известия НАН РК. Серия физ.-матем. – 2010. – No. 3. – С. 117-121.

71 Джумабаев Д.С., Темешева С.М. Об одном алгоритме нахождения решения нели-нейной нелокальной краевой задачи для систем гиперболических уравнений // ВестникКазНУ им.аль-Фараби. Серия матем., мех., инф. – 2010. – No. 3(66). – С. 196-200.

72 Dzhumabaev D.S. A method for solving the linear boundary value problem for anintegro-differential equation // Computational Mathematics and Mathematical Physics. –2010. – Vol. 50. – No 7. – P. 1150-1161. DOI: 10.1134/S0965542510070043

73 Джумабаев Д.С., Темешева С.М. Сходимость одного алгоритма нахождения ре-шения нелинейной нелокальной краевой задачи для систем гиперболических уравнений// Вестник КазНПУ им. Абая. Сер. физ.-матем. науки. – 2010. – No. 3 (31). – С. 52-56.

74 Джумабаев Д.С., Темешева С.М. Об осуществимости и сходимости одного алго-ритма метода параметризации // Вестник КарГУ им.Е.А.Букетова. Сер. матем., физ.,инф. – 2010. – No. 4 (60). – С. 30-38.

75 Джумабаев Д.С., Болганисов Е. Однозначная разрешимость краевой задачи длясистем дифференциальных уравнений с параметрами при импульсных воздействиях //Известия НАН РК. Сер. физ.-матем. – 2012. – No. 1. – С. 44-47.

76 Asanova A.T., Dzhumabaev D.S. Well-posedness of nonlocal boundary valueproblems with integral condition for the system of hyperbolic equations // Journal ofMathematical Analysis and Applications. – 2013. – Vol. 402. – No. 1. – P. 167-178. DOI:10.1016/j.jmaa.2013.01.012

77 Dzhumabaev D.S., Temesheva S.M. Necessary and sufficient conditions of the existence"izolated"solution of nonlinear two-point boundary-value problem // Journal of MathematicalSciences. – 2013. – Vol. 194. – No. 4. – P. 341-353. DOI: 10.1007/s10958-013-1533-0

78 Dzhumabaev D.S. An algorithm for solving a linear two-point boundary value problemfor an integro-differential equation // Computational Mathematics and Mathematical Physics.– 2013. – Vol. 53. – No. 6. – P. 736-738. DOI: 10.1134/S0965542513060067

79 Dzhumabaev D.S., Bakirova E.A. Criteria for the unique solvability of a linear two-pointboundary value problem for systems of integro-differential equations // Differential Equations.– 2013. – Vol. 49. – No. 9. – P. 1087-1102. DOI: 10.1134/S0012266113090048

80 Джумабаев Д.С., Болганисов Е. Разрешимость линейной краевой задачи с пара-метром для интегро-дифференциального уравнения Фредгольма с импульсным воздей-ствием // Известия НАН РК. Сер. физ.-матем. – 2013. – No. 5 (291). – C. 166-170.

81 Джумабаев Д.С., Илиясова Г.Б. Об одной численной реализации метода пара-метризации решения линейной краевой задачи для нагруженного дифференциальногоуравнения // Известия НАН РК. Сер. физ.-матем. – 2014. – No. 2 (291). – C. 275-280.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 33: 20 4 MATHEMATICAL 20 JOURNAL

32 ,

82 Dzhumabaev D.S. Necessary and sufficient conditions for the solvability of linearboundary-value problems for the Fredholm integrodifferential equations // UkranianMathematical Journal. – 2015. – Vol. 66. – No. 8. – P. 1200-1219. DOI: 10.1007/s11253-015-1003-6

83 Джумабаев Д.С., Утешова Р.Е. Ограниченные решения линейных нагруженныхобыкновенных дифференциальных уравнений с существенными особенностями // Мате-матический журнал. – 2015. – Т. 15. – No. 4. – С. 54-65.

84 Dzhumabaev D.S. Solvability of a linear boundary value problem for a Fredholm integro-differential equation with impulsive inputs // Differential Equations. – 2015. – Vol. 51. – No.9. – P. 1180-1196. DOI: 10.1134/S0012266115090086

85 Джумабаев Д.С., Темешева С.М., Утешова Р.Е. Об аппроксимации задачи нахож-дения ограниченного решения системы нелинейных обыкновенных дифференциальныхуравнений с существенными особенностями на концах конечного интервала // Матема-тический журнал. – 2016. – Т.16. – No. 4 (62). – С. 77-85.

86 Dzhumabaev D.S. On one approach to solve the linear boundary value problemsfor Fredholm integro-differential equations // Journal of Computational and AppliedMathematics. – 2016. – Vol. 294. – No. 2. – P. 342-357. DOI: 10.1016/j.cam.2015.08.023

87 Джумабаев Д.С., Бакирова Э.А. Разрешимость линейной краевой задачи для си-стем интегро-дифференциальных уравнений Фредгольма с импульсными воздействиями// Известия НАН РК. Серия физ.-матем. – 2016. – No. 2 (306). – C.61-71.

88 Dzhumabaev D.S., Temesheva S.M. Bounder solution on a strip to a system of nonlinearhyperbolic equations with mixed derivatives // Bulletin of the Karaganda university-Mathematics. – 2016. – No. 4(84). – P.35-45. DOI: 10.31489/2016M4/35-45

89 Dzhumabaev D.S., Temesheva S.M. Approximation of problem for finding the boundedsolution to system of nonlinear loaded differential equations // News of the NAS RK. Physico-Mathematical series. – 2017. – Vol. 1. – No. 311. – P.13–19.

90 Джумабаев Д.С., Темешева С.М. Об аппроксимации задачи нахождения ограни-ченных на всей оси решений систем нелинейных обыкновенных нагруженных диффе-ренциальных уравнений // Известия НАН РК. Серия физ.-матем. – 2017. – No. 1. –С.113-119.

91 Dzhumabaev D.S., Bakirova E.A. On the unique solvability of the boundary valueproblems for Fredholm integrodifferential equations with degenerate kernel // Journal ofMathematical Sciences. – 2017. – Vol. 220. – No. 4. – P. 489-506. DOI: 10.1007/s10958-016-3194-2

92 Dzhumabaev D.S., Abil’daeva A.D. Properties of the isolated solutions bounded on theentire axis for a system of nonlinear ordinary differential equations // Ukrainian MathematicalJournal. – 2017. – Vol. 68. – No. 8. – P. 1297-1304. DOI: 10.1007/s11253-017-1294-x

93 Dzhumabaev D.S., Zharmagambetov A.S. Numerical method for solving a linearboundary value problem for Fredholm integro-differential equations with degenerated kernel

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 34: 20 4 MATHEMATICAL 20 JOURNAL

Dulat Syzdykbekovich Dzhumabaev. Life and scientific activity (devoted to his memory) 33

// News of the NAS RK. Physico-Mathematical series. – 2017. – Vol. 2. – No. 312. – P. 5-11.94 Dauylbayev M.K., Dzhumabaev D.S., Atakhan N. Asymptotical representation of

singularly perturbed boundary value problems for integro-differential equations // News ofthe NAS RK. Physico-Mathematical series. – 2017. – Vol. 2. – No. 312. – P. 18-26.

95 Dzhumabaev D.S., Uteshova R.E. A limit with weight solution in the singular point of anonlinear ordinary differential equation and its property // Ukrainian Mathematical Journal.– 2018. – Vol. 69. – No. 12. – P. 1717-1722. DOI: 10.1007/s11253-018-1483-2

96 Dzhumabaev D.S., Temesheva S.M. Criteria for the existence of an isolated solution ofa nonlinear boundary-value problem // Ukrainian Mathematical Journal. – 2018. – Vol. 70.– No. 3. – P. 410-421. DOI: 10.1007/s11253-018-1507-y

97 Dzhumabaev D.S. New general solutions to linear Fredholm integro-differentialequations and their applications on solving the boundary value problems // Journal ofComputational and Applied Mathematics. – 2018. – Vol. 327. – No. 1. – P. 79-108. DOI:10.1016/j.cam.2017.06.010

98 Джумабаев Д.С., Сисекенов Н.Д. Об одном алгоритме решения краевой задачидля квазилинейного интегро-дифференциального уравнения Фредгольма // Математи-ческий журнал. – 2018. – Т.18. – No. 1 (67). – С. 66-77.

99 Dzhumabaev D.S. Computational methods of solving the boundary value problems forthe loaded differential and Fredholm integro-differential equations // Mathematical Methodsin the Applied Sciences. – 2018. – Vol. 41. – No. 4. – P. 1439-1462. DOI: 10.1002/mma.4674

100 Dzhumabaev D.S. Well-posedness of nonlocal boundary value problem for a systemof loaded hyperbolic equations and an algorithm for finding its solution // Journal ofMathematical Analysis and Applications. – 2018. – Vol. 461. – No. 1. – P. 817-836. DOI:10.1016/j.jmaa.2017.12.005

101 Dzhumabaev D.S. A method for solving nonlinear boundary value problems forordinary differential equations // Математический журнал. – 2018. – Т.18. – No. 3. – C.43-51.

102 Dzhumabaev D.S., Bakirova E.A., Kadirbayeva Zh.M. An algorithm for solving acontrol problem for differential equation with a parameter // News of the NAS RK. Physico-Mathematical series. – 2018. – Vol. 5. – No. 321. – P. 25-32. DOI: 10.32014/2018.2518-1726.4

103 Dzhumabaev D.S., Smadiyeva A.G. An algorithm of solving a linear boundary valueproblem for a loaded Fredholm integro-differential equation // Мaтемaтический журнaл. –2018. – Том 18. – No. 4. - С. 48-60.

104 Dzhumabaev D.S. Mursaliyev D.E., Sergazina A.S., Kenjeyeva A.A. An algorithm ofsolving nonlinear boundary value problem for the Van der Pol differential equation // KazakhMathematical Journal. – 2019. – Vol. 19. – No. 1. – P.20-30.

105 Dzhumabaev D.S, Karakenova S.G. Iterative method for solving special Cauchyproblem for the system of integro-differential equations with nonlinear integral part // KazakhMathematical Journal. – 2019. – Vol.19. – No. 2. – P. 49-58.

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 35: 20 4 MATHEMATICAL 20 JOURNAL

34 ,

106 Dzhumabaev D.S. New general solutions of ordinary differential equations and themethods for the solution of boundary-value problems // Ukrainian Mathematical Journal. –2019. – Vol. 71. – No. 7. – P. 1006-1031. DOI: 10.1007/s11253-019-01694-9

107 Dzhumabaev D.S., Mynbayeva S.T. New general solution to a nonlinear Fredholmintegro-differential equation // Eurasian Mathematical Journal. – 2019. – Vol. 10. – No. 4. –P. 24-33. DOI: 10.32523/2077-9879-2019-10-4-24-33

108 Dzhumabaev D.S., Abilassanov B.A., Zhubatkan A.A., Asetbekov A.B. A numericalalgorithm of solving a quasilinear boundary value problem with parameter for the Duffingequation // Kazakh Mathematical Journal. – 2019. – Vol.19. – No. 4. – P. 46-54.

109 Dzhumabaev D.S., Bakirova E.A., Mynbayeva S.T. A method of solving a nonlinearboundary value problem with a parameter for a loaded differential equation // MathematicalMethods in the Applied Sciences. – 2020. – Vol. 43. – No. 2. – P. 1788-1802. DOI:10.1002/mma.6003

110 Dzhumabaev D.S., Mynbayeva S.T. One approach to solve a nonlinear boundaryvalue problem for the Fredholm integro-differential equation // Bulletin of the Karagandauniversity-Mathematics. - 2020. – No. 1 (97). - P. 27-36. DOI: 10.31489/2020M1/27-36

111 Dzhumabaev D.S., La Ye.S., Pussurmanova A.A., Kisash Zh.Zh. An algorithm forsolving a nonlinear boundary value problem with parameter for the Mathieu equation //Kazakh Mathematical Journal. – 2020. – Vol. 20. – No. 1. – P. 95-102.

112 Dzhumabaev D.S., Nazarova K.Zh., and Uteshova R.E. A modification of theparameterization method for a linear boundary value problem for a Fredholm integro-differential equation // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41. – No. 9.– P. 1791–1800. DOI: 10.1134/S1995080220090103

113 Dzhumabaev D.S., Mynbayeva S.T. A method of solving a nonlinear boundaryvalue problem for the Fredholm integro-differential equation // Journal of IntegralEquations and Applications. First available in Project Euclid: 26 May 2020. To appear.https://projecteuclid.org/euclid.jiea/1590532904.

Anar T. AssanovaInstitute of Mathematics and Mathematical Modeling050010, Almaty, Pushkin str., 125E-mail: [email protected]; [email protected] E. UteshovaInstitute of Mathematics and Mathematical Modeling050010, Almaty, Pushkin str., 125International University of Information Technology050008, Almaty, Jandossov str., 34AE-mail: [email protected] 16.08.2020

Kazakh Mathematical Journal, 20:4 (2020) 6–34

Page 36: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 35–46

On the absolute stability of a program manifold ofnon-autonomous control systems with non-stationary

nonlinearities

Sailaubay S. Zhumatov1,a

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstana e-mail: [email protected]

Communicated by: Anar Assanova

Received: 15.08.2020 ? Accepted/Published Online: 06.11.2020 ? Final Version: 20.11.2020

Abstract. The absolute stability of a program manifold of non-autonomous control systems with

nonstationary nonlinearities is considered. Conditions of the stability of the control systems with variable

coefficients are investigated in the neighborhood of a given program manifold. Nonlinearities satisfy to

the conditions of local quadratic connections and they are differentiable in all variables. Sufficient

conditions of the absolute stability of the program manifold with respect to the given vector functions

are obtained by constructing the Lyapunov function, in the type of ”quadratic form plus an integral from

nonlinearity” . Estimates for the integral part of the Lyapunov function are obtained by representing

nonlinearities in a linear form.

Keywords. Program manifold, absolute stability, non-stationary nonlinearity, non-autonomous control

systems, Lyapunov functions, local quadratic connection.

Dedicated to the memory of

Professor Dulat Dzhumabaev

1 Introduction

The construction problem was formulated and solved for systems of ordinary differentialequations on a given integral curve by Yerugin in [1]. Later, this problem was developed byGaliullin, Mukhametzyanov, Mukharlyamov and others (see [2-24]) to constructing of systemsof differential equations by a given integral manifold, to solving various inverse problems ofthe dynamics, and to constructing systems of the program motion. The integral manifold is

2010 Mathematics Subject Classification: 34K20; 93C15; 34K29.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08855726).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 37: 20 4 MATHEMATICAL 20 JOURNAL

36 Sailaubay S. Zhumatov

defined as an intersection of hypersurfaces. It should be noted that, the construction of stablesystems developed into an independent theory. The problem of the construction of automaticcontrol systems for a vector nonlinear function with locally quadratic relations was solvedin [6, 7]. Analysis of works in this direction shows that an essential part of the literature isdevoted to the study of the program manifold of control systems with constant coefficients(see [3-20]).

At the same time, in mathematical modelling of various physical, chemical, biological andenvironmental and other phenomena in most cases it leads to the need of the research ofcontrol systems with variable coefficients. This is the movement of a point of variable mass,moving objects in which there is a change in mass and momentum over time, in particular,jet thrust aircraft with variable mass (see [21 - 27]). Linearization of nonlinear equationsof motion of automatic control systems with respect to non-stationary behaviour leads tothe need to study linear systems with variable coefficients. Depending on the functionalfeatures of the control system and the technical means that implement the selected controlscheme, the linearized equations have different specific features. In modern theory, whenconstructing stable dynamical systems with feedback for a given program manifold, it isextremely important to be able to determine the stability of the manifold itself with respectto some function.

We introduce into consideration the class of continuously-differentiable on time t andbounded in the norm matrices Ξ and define a program manifold as follows Ω (t) ≡ ω(t, x) = 0,which is integral for the system

x = f (t, x)−B(t)ξ, ξ = ϕ (t, σ) , σ = P T (t)ω, t ∈ I = [0, ∞) , (1)

where x ∈ Rn is a state vector of the object, f ∈ Rn is a vector-function satisfying conditionsof the existence of the solution x(t) = 0; B(t) ∈ Ξn×r, P (t) ∈ Ξs×r are continuous matrices,ω ∈ Rs(s ≤ n) is a vector, ϕ(t, σ) ∈ Rr is a vector-function of control on deviation from givenprogram manifold satisfying conditions of local quadratic connection

ϕ(t, 0) = 0 ∧ ϕT (t, σ)θ(t)(σ −K−1(t)ϕ(t, σ)) > 0, (2)

K1(t) ≤dϕ(t, σ)

dt≤ K2(t), (3)[

θ(t) = diag‖θ1, . . . , θr‖]∈ Ξr×r,

[K(t) = KT (t)

]∈ Ξr×r,[

Ki(t) = KTi (t) > 0, i = 1, 2

]∈ Ξr×r.

Note, that the following estimate

‖ω‖2β1ν2≤ ‖ϕ‖2β1

ν2≤ ‖ω‖2, (4)

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 38: 20 4 MATHEMATICAL 20 JOURNAL

On the absolute stability of a program manifold ... 37

can be obtained from the condition (2), where β1, ν1;β2, ν2 are the smallest and the largesteigenvalues of matrices PθP T , θK−1.

In the space Rn we select the domain G (R):

G (R) = (t, x) : t ∈ I ∧ ‖ω (t, x)‖ ≤ ρ <∞ . (5)

Due to the fact that Ω(t) is the integral manifold for the system (1)-(2), we have

ω =∂ω

∂ t+Hf (t, x) = F (t, x, ω),

where H =∂ω

∂xis the Jacobi matrix and F (t, x, ω) is a certain s-dimensional Erugin vector

function, satisfying conditions F (t, x, 0) ≡ 0 [1].Taking into account that Ω(t) is the integral manifold for the system (1), and by choosing

the Erugin function as the following

F (t, x, ω) = −A(t)ω, (6)

where −A(t) ∈ Ξs×s is Hurwitz matrix and differentiating the manifold Ω(t) with respect totime t along the solutions of system (1), we get [2]:

ω = −A(t)ω −H(t)B(t)ξ, ξ = ϕ (t, σ) , σ = P T (t)ω, (7)

ϕ(t, 0) = 0 ∧ ϕT (t, σ)θ(t)(σ −K−1(t)ϕ(t, σ)) > 0, (8)

K1(t) ≤dϕ(t, σ)

dt≤ K2(t). (9)

Definition 1. A program manifold Ω(t) of the non-autonomous basic control system iscalled absolutely stable with respect to a vector-function ω, if it is asymptotically stable on thewhole at all functions ω(t0, x0) and ϕ(t, σ) satisfying the conditions (8), (9).

Statement of the problem. To get a condition of absolute stability of a programmanifold Ω(t) of the non-autonomous basic control systems with non-stationary nonlinearitywith respect to the given vector-function ω.

First, we consider the following system with variable coefficients as a linear approximationof the system (7)-(8) with respect to the vector function ω :

ω = −A(t)ω, t ∈ I = [0,∞). (10)

The following theorem is valid [21]:Theorem 1. Let the Erugin function F (t, x, ω) have the form (6). Then, for asymptotic

stability in the whole of the program manifold Ω(t) of the linear system (10) with variablecoefficients with respect to the vector function ω it is sufficient fulfillment of relations

L(t) = M(t)A−1(t) >> 0 ∧G(t) >> 0 t ∈ I = [0,∞),

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 39: 20 4 MATHEMATICAL 20 JOURNAL

38 Sailaubay S. Zhumatov

where G(t) is determined by the formula

G(t) = M(t) +MT (t)− dL(t)

dtA−1(t)−M(t)

dA−1(t))

dt.

Based on the generalized theorem of A.M. Lyapunov (see [6, p.226]), the following theoremis true:

The Basic Theorem 1. Let the Erugin function F (t, x, ω) have the form (6) and thereexist a real, continuously differentiable function V (t, ω) in the domain (5) and positive-definiteand allowing the highest limit in whole such that its derivative

−dVdt

∣∣∣(7)

= W (t, ω)

would be definitely positive for any function ϕ(t, σ) satisfying conditions (8), (9), then theprogram manifold Ω(t) of basic control system is absolutely stable with respect to vectorfunctions ω(t, x).

2 Absolute stability of program manifold of the basic control system

Theorem 2. Let the Erugin function F (t, x, ω) have the form (6) and suppose that thereexist matrices

L(t) = LT (t) > 0, β(t) = diag (β1(t), . . . , βr(t)) > 0

and non-linear function ϕ(t, σ) satisfies the conditions (8), (9). Then, for the absolute sta-bility of the program manifold Ω (t) of the non-autonomous basic control system with non-stationary nonlinearity with respect to the vector function ω it is sufficient performing of thefollowing conditions

l1‖ω‖2 ≤ V ≤ l2‖ω‖2, (11)

η1‖ω‖2 ≤W ≤ η2(‖ω‖2, (12)

where l1, l2, η1, η2 are positive constants.Proof. Let there exist matrices

L(t) = LT (t) >> 0, β(t) = diag (β1(t), . . . , βr(t)) >> 0,

then for the system (7) we can construct Lyapunov function of the form

V (ω, ξ) = ωTL(t)ω +

σ∫0

ϕT (t, σ)β(t)dσ >> 0. (13)

Taking into account the properties (4),(8), (9) and making the substitution

ϕ(t, σ) = h(t)σ (0 ≤ h(t) ≤ K(t)),

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 40: 20 4 MATHEMATICAL 20 JOURNAL

On the absolute stability of a program manifold ... 39

we obtain the estimate

l1(t)‖ω‖2 ≤ V (ω, σ) ≤ l2(t)‖ω‖2, (14)

wherel1(t) = l(1)(t) + λ1(t), l2(t) = l(2)(t) + λ2(t);

λ1(t)‖ω‖2 ≤σ∫

0

ϕT (t, σ)β(t)dσ ≤ λ2(t)‖ω‖2.

Here l(1)(t), λ1(t); l(2)(t), λ2(t) are the smallest and the largest eigenvalues of the matrices

L,Λ : Λ = ΛP (t)β(t)P T (t). The diagonal elements of the matrix Λ are divided by 2. On thebasis of properties (4),(8), (9) the derivative of the function (13) takes the form

−V = ωTG(t)ω + 2ωTG1(t)ξ + ξTG2(t)ξ >> 0, (15)

where

G(t) = −L(t) +AT (t)L(t) + L(t)A(t) + P (t)[N1(t) +N2(t)−N3(t)

]P T (t);

G1(t) =1

2AT (t)P (t)β(t) + L(t)H(t)B(t) +

1

2β(t)P T (t);

G2(t) = β(t)P T (t)H(t)β(t);

σ∫0

∂ϕT (t, σ)

∂tβ(t)dσ ≤

σ∫0

σTK2(t)β(t)dσ =

σ∫0

σTM1(t)dσ

+

σ∫0

σTM2(t)dσ = σT[N1(t) +N2(t)

]σ;

σ∫0

σTM3(t)dσ = σTN3(t)σ; M1(t) = P T (t)(P (t)P T (t)

)−1(AT (t)P T (t)− β(t)K2(t)

)β;

M2(t) = h(t)β(t)LP TK2(t)β(t); M3(t) = h(t)∂β(t)

∂t.

Due to the fact that −V >> 0 the following estimates hold

q1(t)(‖ω‖2 + ‖ξ‖2

)≤ zTQ(t)z ≤ q2(t)

(‖ω‖2 + ‖ξ‖2

), (16)

where

Q(t) =

∥∥∥∥ G(t) G1(t)GT1 (t) G2(t)

∥∥∥∥ , z =

∥∥∥∥ ωξ

∥∥∥∥ ,Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 41: 20 4 MATHEMATICAL 20 JOURNAL

40 Sailaubay S. Zhumatov

q1(t), q2(t) are the smallest and the largest eigenvalues of matrix Q(t). Taking into accountthe estimates (4) from (16), we get

η1(t)‖ω‖2 ≤ −V (ω, σ) ≤ η2(t)‖ω‖2, (17)

where

η1(t) = q1(t)(

1 +β1(t)

ν2(t)

); η2(t) = q2(t)

(1 +

β2(t)

ν1(t)

).

If we assume thatη1 = inf

tη1(t) ∧ η2 = sup

tη2(t), (18)

l1 = inftl1(t) ∧ l2 = sup

tl2(t), (19)

we receive estimates (11), (12).Based on Theorem 1 and the Basic Theorem 1, we conclude: when the nonlinearity ϕ(t, σ)

satisfies the conditions (4), (8), (9), from estimates (14) and (17) it follows that conditionsof Theorem 2 hold, in case (18) and (19), then the program manifold Ω(t) of the basiccontrol system with non-stationary nonlinearities is absolutely stable with respect to thevector function ω. Therefore, the proof is complete.

3 Absolute stability of program manifold of the indirect control system

In the class of continuously-differentiable on time t and bounded in the norm matrices Ξwe consider the program manifold Ω (t) ≡ ω(t, x) = 0, which is integral for the system

x = f (t, x)−B1(t)ξ, ξ = ϕ (t, σ) , σ = P T (t)ω −Q(t)ξ, t ∈ I = [0, ∞) , (20)

provided Q(t) >> 0, where x ∈ Rn is a state vector of the object, f ∈ Rn is a vector-functionsatisfying conditions of the existence of the solution x(t) = 0, B1(t) ∈ Ξn×r, P (t) ∈ Ξs×r arecontinuous matrices, ω ∈ Rs(s ≤ n) is a vector, ϕ(t, σ) ∈ Rr is a vector-function of controlon deviation from given program manifold satisfying conditions of local quadratic connection

ϕ(t, 0) = 0 ∧ 0 < σTϕ(t, σ) ≤ σTK(t)σ, (21)

K1(t) ≤dϕ(t, σ)

dt≤ K2(t), (22)

[Ki(t) = KT

i (t) > 0, i = 1, 2]∈ Ξr×r,

K(t) = diag ‖k1(t), . . . , kr(t)‖ , K(t) >> 0.

Taking into account that Ω(t) is the integral manifold for the system (20), and by choosingthe Erugin function in the form (6) and differentiating the manifold Ω(t) with respect to timet along the solutions of system (20), we get [2]:

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 42: 20 4 MATHEMATICAL 20 JOURNAL

On the absolute stability of a program manifold ... 41

ω = −A(t)ω −B(t)ξ, B((t) = H(t)B1(t),

ξ = ϕ (t, σ) , σ = P T (t)ω −Q(t)ξ, (23)

ϕ(t, 0) = 0 ∧ 0 < σTϕ(t, σ) ≤ σTK(t)σ (24)

K1(t) ≤dϕ(t, σ)

dt≤ K2(t). (25)

Definition 2. A program manifold Ω(t) of the indirect control system is called absolutelystable with respect to a vector-function ω, if it is asymptotically stable on the whole at allfunctions ω(t0, x0) and ϕ(t, σ) satisfying the conditions (24), (25).

Statement of the problem. To get the condition of absolute stability of a program man-ifold Ω(t) of the non-autonomous indirect control systems with non-stationary nonlinearity(24), (25) with respect to the given vector-function ω.

Based on the generalized theorem of A.M. Lyapunov (see [6, p.226]), the following theoremis true:

The Basic Theorem 2. Let the Erugin function F (t, x, ω) have the form (6) and therebe a real, continuous differentiable function of V (t, ω) in the domain (5) and positive-definiteand allowing the highest limit in whole such that its derivative

−dVdt

∣∣∣(23)

= W (t, ω)

would be definitely positive for any function ϕ(t, σ) satisfying conditions (24), (25), then theprogram manifold Ω(t) of non-autonomous indirect control system is absolutely stable withrespect to vector functions ω(t, x).

Theorem 3. Let the Erugin function F (t, x, ω) have the form (6), Q(t) >> 0 and supposethat there exist matrices

L(t) = LT (t) > 0, β(t) = diag (β1(t), . . . , βr(t)) > 0

and non-linear function ϕ(t, σ) satisfies the conditions (24), (25). Then, for the absolutestability of the program manifold Ω (t) with respect to the vector function ω it is sufficientfulfillment of the following conditions

l1(‖ω‖2 + ‖ξ‖2) ≤ V ≤ l2(‖ω‖2 + ‖ξ‖2), (26)

g1(‖ω‖2 + ‖ξ‖2) ≤W ≤ g2(‖ω‖2 + ‖ξ‖2), (27)

where l1, l2, g1, g2 are positive constants.Proof. Let there exist matrices

L(t) = LT (t) > 0, β(t) = diag (β1(t), . . . , βr(t)) > 0,

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 43: 20 4 MATHEMATICAL 20 JOURNAL

42 Sailaubay S. Zhumatov

then for the system (23) we can construct a Lyapunov function of the form

V (ω, ξ) = ωTL(t)ω +

σ∫0

ϕT (t, σ)β(t)dσ > 0. (28)

The second term in (28) is equal to J =σThβ(t)σ

2in the case ϕ(t, σ) = h(t)σ, h(t) ≤

K(t).For this case we have estimates:

l1(t)‖z‖2 ≤ V (ω, ξ) ≤ l2(t)‖z‖2, (29)

here l1(t), l2(t) are real, positive, continuous, smallest and largest roots of the characteristicequation det ‖Λ(t)− l(t)E‖ = 0 :

Λ(t) =

∥∥∥∥ L1(t) L2(t)LT2 (t) L3(t)

∥∥∥∥ , z =

∥∥∥∥ ωξ

∥∥∥∥ ;

L1(t) = L(t) + P (t)K0(t)PT (t); L2(t) = P (t)K0(t)Q(t);

L3(t) = QT (t)K0(t)Q(t);

σTK0(t)σ =

σ∫0

σTh(t)β(t)dσ; h(t) ≤ K(t);

K0(t) =

∥∥∥∥∥∥∥(K

(0)11

)/2 . . . K

(0)1r

. . .

K(0)r1 . . .

(K

(0)rr

)/2

∥∥∥∥∥∥∥ .The derivative on time t of this function in view of the system (23) will take the followingform

−V (ω, ξ) = ωTG(t)ω + 2ωTG1(t)ξ + ξTG2ξ >> 0, (30)

where

G(t) = AT (t)L(t) + L(t)A(t) + F (t); G1(t) = L(t)B(t) + 1/2F1(t); G2(t) = F2(t);

F (t) = −D(t)−H0(t)−P (t)N1(t)PT (t)−L; F1(t) = −D1(t)−H1(t)+P (t)

(N1(t)+N

T1

)Q(t);

F2(t) = −D2(t)−H2(t)−QT (t)N1(t)Q(t);

D(t) = P (t)K2(t)β(t)P T (t)−AT (t)P (t)K2(t)PT (t);

D1(t) = −P (t)K2(t)β(t)Q(t)− P (t)β(t)K2(t)Q(t)− P (t)β(t)K2(t)PT (t)B(t)

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 44: 20 4 MATHEMATICAL 20 JOURNAL

On the absolute stability of a program manifold ... 43

+AT (t)P (t)K2(t)β(t)Q(t)− P (t)(N2(t) +NT

2

)Q(t);

D2(t) = Q(t)K2(t)β(t)Q(t) +BT (t)P (t)K2(t)β(t)Q(t)−QT (t)N2(t)Q(t);

σ∫0

∂ϕT (t, σ)

∂tβ(t)dσ ≤

σ∫0

σTK2(t)β(t)dσ = ωD(t)ωT + ωTD1(t)ξ + ξTD2(t)ξ;

σ∫0

σTM (2)(t)dσ = σTN2(t)σ;

σ∫0

σTM (1)(t)dσ = σTN1(t)σ;

M (2)(t) = h(t)QT (t)K2(t)β(t); M (1)(t) = h(t)∂β(t)

∂t;

Ni(t) =

∥∥∥∥∥∥∥(m

(i)11

)/2 . . . m

(i)1r

. . .

m(i)r1 . . .

(m

(i)rr

)/2

∥∥∥∥∥∥∥ , i = 1, 2;

ϕT (t, σ)β(t)σ = ωTH0(t)ω + ωTH1(t)ξ + ξTH2ξ;

H0(t) = P (t)h(t)β(t)− (P T (t)− P T (t)A(t))− P (t)h(t)β(t)Q(t)h(t)P T (t);

H1(t) = P (t)h(t)β(t)P T (t)B(t)− P (t)h(t)β(t)Q(t) + P (t)h(t)β(t)Q(t)h(t)Q(t)

−(P T (t)− P T (t)A(t))β(t)h(t)Q(t) + P (t)h(t)QT (t)β(t)h(t)Q(t);

H2(t) = Q(t)h(t)β(t)P T (t)B(t) +QT (t)h(t)β(t)Q(t)−QT (t)h(t)β(t)Q(t)h(t)Q(t).

Based on inequality (30), the following estimates are valid

g1(t)‖z‖2 ≤ −V ≤ g2(t)‖z‖2, (31)

here g1(t), g2(t) are real, positive, continuous, smallest and largest roots of the characteristicequation

det ‖G(t)− g(t)E‖ = 0, G(t) =

∥∥∥∥ G(t) G1(t)GT1 (t) G2(t)

∥∥∥∥ .If we assume that

g1 = inftg1(t) ∧ g2 = sup

tg2(t), (32)

l1 = inftl1(t) ∧ l2 = sup

tl2(t), (33)

we receive estimates (26), (27).Based on Theorem 1 and the Basic Theorem 2, we conclude: when the nonlinearity ϕ(σ)

satisfies the conditions (24), (25), from estimates (29) and (31) it follows that conditions of

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 45: 20 4 MATHEMATICAL 20 JOURNAL

44 Sailaubay S. Zhumatov

Theorem 2 hold, in case (32) and (33), then the program manifold Ω(t) of the non-autonomousindirect control system with non-stationary nonlinearities is absolutely stable with respect tothe vector function ω. Therefore, the proof is complete.

References

[1] Erugin N.P. Construction all the set of systems of differential equations, possessing by givenintegral curve, Prikladnaya Matematika i Mechanika, 6 (1952), 659-670 (In Russian).

[2] Galiullin A.S., Mukhametzyanov I.A., Mukharlyamov R.G. A survey of investigating on analyticconstruction of program motion’s systems, Vestnik RUDN. 1 (1994), 5-21 (In Russian).

[3] Mukametzyanov I.A. On stability of a program manifold. I, Differential Equations, 9:5 (1973),846-856 (In Russian).

[4] Mukametzyanov I.A. On stability of a program manifold. II, Differential Equations, 9:6 (1973),1057-1048 (In Russian).

[5] Mukametzyanov I.A., Saakyan A.O. On some sufficient conditions for the absolute stability ofnonlinear integral manifold, Problems of Mechanics of Controlled Motion. Perm. (1979), 137-144 (InRussian).

[6] Maygarin B.G. Stability and quality of process of nonlinear automatic control system, Alma-Ata:Nauka, 1981 (In Russian).

[7] Zhumatov S.S., Krementulo B.B., Maygarin B.G. Lyapunov’s second method in the problems ofstability and control by motion, Almaty: Gylym, 1999 (In Russian).

[8] Zhumatov S.S. Stability of a program manifold of control systems with locally quadratic relations,Ukrainian Mathematical Journal, 61:3 (2009), 500-509. DOI: 10.1007/s 11253-008-0224-y.

[9] Zhumatov S.S. Exponential stability of a program manifold of indirect control systems, UkrainianMathematical Journal, 62:6 (2010), 907-915. DOI: 10.1007/s 11253-010-0399-2.

[10] Tleubergenov M.I. On the inverse stochastic reconstruction problem, Differential Equations,50:2 (2014), 274-278. DOI: 10.1134/s 0012266 11402 0165.

[11] Mukharlyamov R.G. Simulation of Control Processes, Stability and Stabilization of Systems withProgram Constraints, Journal of Computer and Systems Sciences International, 54:1 (2015), 13-26.

[12] Tleubergenov M.I., Ibraeva G.T. On the restoration problem with degenerated diffusion, TWMSJournal of Pure and Applied Mathematics, 6:1 (2015), 93-99.

[13] Vassilina G.K., Tleubergenov M.I. Solution of the problem of stochastic stability of an integralmanifold by the second Lyapunov method, Ukrainian Mathematical Journal, 68:1 (2016), 14-28. DOI:10.1007/s 11253-016-1205-6.

[14] Llibre J., Ramirez R. Inverse Problems in Ordinary Differential Equations and Applications,Springer International Publishing Switzerland, 2016.

[15] Zhumatov S.S. On an instability of the indirect control systems in the neighborhood of programmanifold, Mathematical Journal, 17:1 (2017), 91-97.

[16] Zhumatov S.S. Frequently conditions of convergence of control systems in the neighborhoods ofprogram manifold, Journal of Mathematical Sciences, 226:3 (2017), 260-269. DOI: 10.1007/s10958-017-3532-z.

[17] Zhumatov S.S. On a program manifrold’s stability of one contour automatic control systems,Open Engineering, 7:1 (2017), 479-484. DOI: 10.1515/eng-2017-0051.

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 46: 20 4 MATHEMATICAL 20 JOURNAL

On the absolute stability of a program manifold ... 45

[18] Zhumatov S.S. Instability of the control systems with non-stationary nonlinearities, Functionalanalysis in interdisciplinary applications (FAIA2017), AIP Conf. Proc. 1880 (2017), 060007-1–060007-5. DOI: 10.1063/1.5000661 Published by AIP Publishing. 978-0-7354-1560-7/30.00

[19] Zhumatov S.S. On instability of a program manifold of basic control systems, Springer Pro-ceedings in Mathematics and Statistics, Eds.: Kalmenov T.S., Nursultanov E.D., Ruzhansky M.V.,Sadybekov M.A., Springer, 216 (2017), 467-474.

[20] Samoilenko A.M., Stanzhytskji O.M. The reduction principle in stability theory of invariantsets for stochastic Ito type systems, Differential Equations, 53:2 (2001), 282-285.

[21] Zhumatov S.S. Absolute stability of a program manifold of non-autonomous basic con-trol systems, News of the NAS RK. Physico-Mathematical Series, 6:322 (2018), 37-43. DOI:10.32014/2018.2518-1726.15

[22] Zhumatov S.S. Stability of a program manifold of indirect control systems with variable coeffi-cients, Mathematical Journal, 19:2 (2019), 121-130.

[23] Zhumatov S.S. On the stability of a program manifold of control systems with variable coeffi-cients, Ukrainian Mathematical Journal, 71:8 (2020), 1202-1213. DOI: 10.1007/s11253-019-01707-7

[24] Harris C.J., Valenca J.M.E. The stability of input-output dynamical systems, London: AcademicPress Inc. Ltd., 1983.

[25] Letov A.M. Mathematical theory of control processes, M.: Nauka, 1981 (In Russian).

[26] Barabanov A.T. Methods of teory of absolute stability, In: Methods for Investigation of Nonlin-ear Automatic Control Systems, M.: Nauka, 1975, 74-180 (In Russian).

[27] Zubov V.I. Lectures on control theory, M.: Nauka, 1975 (In Russian).

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 47: 20 4 MATHEMATICAL 20 JOURNAL

46 Sailaubay S. Zhumatov

Жұматов С.С. СТАЦИОНАР ЕМЕС СЫЗЫҚСЫЗДЫҚТАРЫ БАР АВТОНОМДЫЕМЕС БАСҚАРУ ЖҮЙЕЛЕРIНIҢ БАҒДАРЛАМАЛЫҚ КӨПБЕЙНЕСIНIҢ ОРНЫ-ҚТЫЛЫҒЫ

Стационар емес сызықсыздықтары бар автономды емес басқару жүйелерiнiң бағ-дарламалық көпбейнесiнiң абсолют орнықтылығы қарастырылады. Айнымалы коэф-фициенттi басқару жүйелерiнiң орнықтылық шарттары берiлген бағдарламалық көп-бейне маңайында зерттелдi. Сызықсыздықтар локалды квадраттық байланыс шартта-рын қанағаттандырады және олар барлық айнымалылары бойынша дифференциалда-нады. Берiлген вектор-функцияға қатысты бағдарламалық көпбейненiң абсолют орны-қтылығының жеткiлiктi шарттары "квадраттық форма қосу сызықсыздықтан алынғанинтеграл" түрiндегi Ляпунов функциясын тұрғызу арқылы алынды. Ляпунов функци-ясының интегралдық бөлiгiнiң бағалаулары сызықсыздықты сызықты форма түрiндекейiптеу арқылы алынды.

Кiлттiк сөздер. Бағдарламалық көпбейне, абсолют орнықтылық, стационар емессызықсыздық, автономды емес басқару жүйелерi, Ляпунов функциялары, локалды квад-раттық байланыс.

Жуматов С.С. УСТОЙЧИВОСТЬ ПРОГРАММНОГО МНОГООБРАЗИЯ НЕАВ-ТОНОМНЫХ СИСТЕМ УПРАВЛЕНИЙ С НЕСТАЦИОНАРНЫМИ НЕЛИНЕЙНО-СТЯМИ

Рассматривается абсолютная устойчивость программного многообразия неавтоном-ных систем управлений с нестационарными нелинейностями. Условия устойчивости си-стем управлений с переменными коэффициентами исследованы в окрестности заданногопрограммного многообразия. Нелинейности удовлетворяют условиям локальной квад-ратичной связи и они дифференцируемы по всем переменным. Достаточные условияабсолютной устойчивости программного многообразия, относительно заданной вектор-функции получены с помощью построения функции Ляпунова типа "квадратичная фор-ма плюс интеграл от нелинейности". Оценки интегральной части функции Ляпуноваполучены с помощью представления нелинейности в линейной форме.

Ключевые слова. Программное многообразие, абсолютная устойчивость, нестацио-нарная нелинейность, неавтономные системы управлений, функции Ляпунова, локаль-ная квадратичная связь.

Kazakh Mathematical Journal, 20:4 (2020) 35–46

Page 48: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 47–57

Numerical solution of multi-point boundary valueproblems for essentially loaded ordinary differential

equations

Zhazira M. Kadirbayeva1,2,a, Sayakhat G. Karakenova1,3,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2International Information Technology University, Almaty, Kazakhstan

ae-mail: [email protected]

3al-Farabi Kazakh National University, Almaty, [email protected]

Communicated by: Anar Assanova

Received: 05.10.2020 ? Accepted/Published Online: 06.11.2020 ? Final Version: 20.11.2020

Abstract. A linear multi-point boundary value problem for essentially loaded ordinary differential equa-

tions is investigated. Using the properties of essentially loaded ordinary differential equation and assum-

ing the invertibility of the matrix compiled through the coefficients at the values of the derivative of

the desired function at load points, we reduce the considering problem to a multi-point boundary value

problem for ordinary loaded differential equations. The method of parameterization is used for solving

this problem. Numerical method for finding solution of the considering problem is suggested.

Keywords. Essentially loaded differential equation, multi-point condition, parameterization method,

algorithm.

Dedicated to the bright memory of an outstanding scientist,Doctor of Physical and Mathematical Sciences, Professor,

our scientific supervisor Dzhumabaev Dulat Syzdykbekovich

1 Introduction

Loaded differential equations are used in solving the problems of long-term forecasting andregulation of the level of groundwater and soil moisture [1]-[3]. Many phenomena in complexevolutionary systems with memory substantially depend on the background of this system.These phenomena are usually described by loaded differential equations. Note that loaded

2010 Mathematics Subject Classification: 34B10; 45J05; 65L06.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08955489).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 49: 20 4 MATHEMATICAL 20 JOURNAL

48 Zhazira M. Kadirbayeva, Sayakhat G. Karakenova

differential equations in the literature are also called boundary differential equations [4]. Also,a loaded differential equation was called a differential equation that includes the values ofthe desired function and its derivatives at fixed points in the domain [5]. In [6], [7], loadeddifferential equations are interpreted as perturbations of differential equations. It is worthpaying attention to the works [8]-[11], where a numerical method for solving the problem ofoptimal control of a system of linear, phase-variable, loaded ordinary differential equationsof the first order with the Cauchy condition and with undivided multipoint conditions isproposed. In [12], [13], a class of loaded ordinary differential equations with non-local integralboundary conditions is studied in terms of an abstract operator equation. In [14] numericalsolution of systems of loaded ordinary differential equations with multipoint conditions isinvestigated.

When studying a moving observation point in feedback devices, essentially loaded differ-ential equations often appear, where the order of the derivative in the loaded term is equalto or higher than the order of the differential part of the equation. In contrast to the pre-viously studied loaded differential equations, the loaded term in the equation will not bea certain perturbation of its differential part [4]. Various types of problems for essentiallyloaded parabolic equations and loaded equations of hyperbolic type of the first order were in-vestigated in [4], [15]-[17]. In these works, new properties are obtained for loaded differentialequations, containing as loaded terms the values of derivatives, the order of which is equal tothe order of the differential part.

In the present paper, a linear multi-point boundary value problem for essentially loadedordinary differential equations is investigated. The significance is that the loading members ofthe equation appear in the form of derivatives of solutions at loaded points of the interval i.e.,the order of the loaded term is equal to the order of the differential part of the equation. Thepresence of derivatives of solutions in loaded points has a strong influence on the propertiesof equations.

We consider a linear multi-point boundary value problem for essentially loaded ordinarydifferential equations

dx

dt= A0(t)x+

N∑j=1

Aj(t)x(θj) + f(t), t ∈ (0, T ), (1)

N+1∑i=0

Cix(θi) = d, d ∈ Rn, x ∈ Rn, (2)

where (n× n)-matries Ai(t), (i = 0, N), and n-vector-function f(t) are continuous on [0, T ],Ci (i = 0, N + 1) are constant (n× n)-matrices, and 0 = θ0 < θ1 < θ2 < . . . < θN−1 < θN <θN+1 = T ; ‖x‖ = max

i=1,n|xi|.

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 50: 20 4 MATHEMATICAL 20 JOURNAL

Numerical solution of multi-point boundary value problems for essentially ... 49

Let C([0, T ], Rn) denote the space of continuous on [0, T ] functions x(t) with norm ||x||1 =maxt∈[0,T ]

||x(t)||.

A solution to problem (1), (2) is a continuously differentiable on (0, T ) function x(t) ∈C([0, T ], Rn) satisfying the essentially loaded differential equations (1) and multi-point con-dition (2).

We can find the values of derivatives at the loading points t = θj , j = 1, N, from thesystem of differential equations (1). Using the system (1), we consequentially define x(θj),j = 1, N :

x(θk)−N∑j=1

Aj(θk)x(θj) = A0(θk)x(θk) + f(θk), k = 1, N. (3)

We can rewrite (3) in the following form

G(θ)µ = R(θ). (4)

Here G(θ) =(Gp,k(θ)

), p, k = 1, N, i.e.

Gp,k(θ) = −Ak(θp), p 6= k, p, k = 1, N, Gp,p(θ) = I −Ap(θp),

where I is the identity matrix of dimension n,

µ =(x(θ1), x(θ2), . . . , x(θN )

)′, R(θ) =

(R1(θ), R2(θ), . . . , RN (θ)

)′,

Rk(θ) = A0(θk)x(θk) + f(θk), k = 1, N.

We assume that the matrix G(θ) is invertible. Denote by S(θ) the inverse matrix G(θ),i.e. S(θ) = [G(θ)]−1, where S(θ) = sp,k(θ), p, k = 1, N . Then from (4) we can uniquelydetermine µ: µ = [G(θ)]−1R(θ) = S(θ)R(θ).

Thus, the components of the vector µ allow us to find the values of the derivative x(t) atthe points t = θj , j = 1, N.

We consider a linear multi-point boundary value problem for loaded differential equations

dx

dt= A0(t)x+

N∑j=1

Bj(t)x(θj) + F (t), t ∈ (0, T ), (5)

N+1∑i=0

Cix(θi) = d, d ∈ Rn, x ∈ Rn, (6)

where Bj(t) =N∑p=1

Ap(t)sp,j(θ)A0(θj), j = 1, N,

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 51: 20 4 MATHEMATICAL 20 JOURNAL

50 Zhazira M. Kadirbayeva, Sayakhat G. Karakenova

F (t) =N∑p=1

N∑k=1

Ap(t)sp,k(θ)f(θk) + f(t).

We use the approach offered in [18]-[24] to solve the boundary value problem (5), (6).This approach is based on the algorithms of the parameterization method [25] and numericalmethods for solving Cauchy problems.

2 Scheme of parametrization method

The interval [0, T ] is divided into subintervals load points:

[0, T ) =N+1⋃r=1

[θr−1, θr).

Define the space C([0, T ], θN , Rn(N+1)) of system functions x[t] =

(x1(t), x2(t), . . . , xN+1(t)), where xr: [θr−1, θr) → Rn are continuous on [θr−1, θr)and have finite left-sided limits lim

t→θr−0xr(t) for all r = 1, N + 1, with the norm

||x[·]||2 = maxr=1,N+1

supt∈[θr−1,θr)

||xr(t)||.

The restriction of the function x(t) to the r-th interval [θr−1, θr) is denoted by xr(t),i.e. xr(t) = x(t) for t ∈ [θr−1, θr), r = 1, N + 1. Then we reduce problem (5), (6) to theequivalent multi-point boundary value problem

dxrdt

= A0(t)xr +N∑j=1

Bj(t)xj+1(θj) + F (t), t ∈ [θr−1, θr), r = 1, N + 1, (7)

N∑i=0

Cixi+1(θi) + CN+1 limt→T−0

xN+1(t) = d, (8)

limt→θp−0

xp(t) = xp+1(θp), p = 1, N, (9)

where (9) are conditions for matching the solution at the interior points of partition.

The solution of problem (7)–(9) is a system of functions x∗[t] =(x∗1(t), x

∗2(t), . . . , x

∗N+1(t)) ∈ C([0, T ], θN , R

n(N+1)), where functions x∗r(t), r = 1, N + 1, arecontinuously differentiable on [θr−1, θr), satisfy system (7) and conditions (8), (9).

Problems (5), (6) and (7)–(9) are equivalent. If a system of functions x[t] =(x1(t), x2(t), . . . , xN+1(t)) ∈ C([0, T ], θN , R

n(N+1)), is a solution of problem (7)–(9), thenthe function x(t) defined by the equalities x(t) = xr(t), t ∈ [θr−1, θr), r = 1, N + 1,x(T ) = lim

t→T−0xN+1(t), is a solution of the original problem (5), (6). Conversely, if x(t) is a

solution of problem (5), (6), then the system of functions x[t] = (x1(t), x2(t), . . . , xN+1(t)),where xr(t) = x(t), t ∈ [θr−1, θr), r = 1, N + 1, and lim

t→T−0xN+1(t) = x(T ), is a solution of

problem (7)–(9).

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 52: 20 4 MATHEMATICAL 20 JOURNAL

Numerical solution of multi-point boundary value problems for essentially ... 51

We introduce additional parameters λr = xr(θr−1), r = 1, N + 1. Making the substitutionxr(t) = ur(t) + λr on every r-th interval [θr−1, θr), r = 1, N + 1, we obtain multi-pointboundary value problem with parameters

durdt

= A0(t)(ur + λr) +N∑j=1

Bj(t)λj+1 + F (t), t ∈ [θr−1, θr), (10)

ur(θr−1) = 0, r = 1, N + 1, (11)

N∑i=0

Ciλi+1 + CN+1λN+1 + CN+1 limt→T−0

uN+1(t) = d, (12)

λp + limt→θp−0

up(t) = λp+1, p = 1, N. (13)

A pair (u∗[t], λ∗), with elements u∗[t] =(u∗1(t), u

∗2(t), . . . , u

∗N+1(t)

)∈

C([0, T ], θN , Rn(N+1)), λ∗ = (λ∗1, λ

∗2, . . . , λ

∗N+1) ∈ Rn(N+1), is said to be a solution to

problem (10)–(13) if the functions u∗r(t), r = 1, N + 1, are continuously differentiable on[θr−1, θr) and satisfy (10) and additional conditions (12), (13) with λj = λ∗j , j = 1, N + 1,and initial conditions (11).

Problems (5), (6) and (10)–(13) are equivalent. If the x∗(t) is a solution of problem (5), (6),

then the pair (u∗[t], λ∗), where u∗[t] =(x∗(t) − x∗(θ0), x∗(t) − x∗(θ1), . . . , x∗(t) − x∗(θN )

),

and λ∗ =(x∗(θ0), x

∗(θ1), . . . , x∗(θN )

), is a solution to problem (10)–(13). Conversely, if

the pair (u[t], λ) with elements u[t] =(u1(t), u2(t), . . . , uN+1(t)

)∈ C([0, T ], θN , R

n(N+1)),

λ = (λ1, λ2, . . . , λN+1) ∈ Rn(N+1), is a solution to problem (10)–(13), then the function x(t)defined by the equalities x(t) = ur(t) + λr, t ∈ [θr−1, θr), r = 1, N + 1, will be the solution ofthe original problem (5), (6).

Let Xr(t) be a fundamental matrix to the differential equationdx

dt= A(t)x on [θr−1, θr],

r = 1, N + 1.Then the unique solution to the Cauchy problem for the system of ordinary differential

equations (10), (11) at the fixed values λ = (λ1, λ2, . . . , λN+1), has the following form

ur(t) = Xr(t)

t∫θr−1

X−1r (τ)A0(τ)dτλr +Xr(t)

t∫θr−1

X−1r (τ)

N∑j=1

Bj(τ)dτλj+1

+Xr(t)

t∫θr−1

X−1r (τ)F (τ)dτ, t ∈ [θr−1, θr), r = 1, N + 1. (14)

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 53: 20 4 MATHEMATICAL 20 JOURNAL

52 Zhazira M. Kadirbayeva, Sayakhat G. Karakenova

Substituting the corresponding right-hand sides of (14) into the conditions (12), (13), we ob-tain a system of linear algebraic equations with respect to the parameters λr, r = 1, N + 1:

N∑i=0

Ciλi+1 + CN+1λN+1 + CN+1XN+1(T )

T∫θN

X−1N+1(τ)A0(τ)dτλN+1

+CN+1XN+1(T )

T∫θN

X−1N+1(τ)

N∑j=1

Bj(τ)dτλj+1

= d− CN+1XN+1(T )

T∫θN

X−1N+1(τ)F (τ)dτ, (15)

λp +Xp(θp)

θp∫θp−1

X−1p (τ)A0(τ)dτλp +Xp(θp)

θp∫θp−1

X−1p (τ)

N∑j=1

Bj(τ)dτλj+1

−λp+1 = −Xp(θp)

θp∫θp−1

X−1p (τ)F (τ)dτ, p = 1, N. (16)

We denote the matrix corresponding to the left-hand side of the system of equations (15),(16) by Q∗(θ) and write the system in the form

Q∗(θ)λ = F∗(θ), λ ∈ Rn(N+1), (17)

where F∗(θ) =(d−XN+1(T )

T∫θN

X−1N+1(τ)F (τ)dτ,−X1(θ1)θ1∫0

X−11 (τ)F (τ)dτ,

. . . ,−XN (θN )θN∫

θN−1

X−1N (τ)F (τ)dτ)′.

The solution of the system (17) is a vector λ∗ = (λ∗1, λ∗2, ..., λ

∗N+1) ∈ Rn(N+1), consists of

the values of the solutions of the original problem (5), (6) in the initial points of subintervals,i.e. λ∗r = x∗(θr−1), r = 1, N + 1.

Further we consider the Cauchy problems for ordinary differential equations on subinter-vals

dz

dt= A(t)z + P (t), z(θr−1) = 0, t ∈ [θr−1, θr], r = 1, N + 1, (18)

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 54: 20 4 MATHEMATICAL 20 JOURNAL

Numerical solution of multi-point boundary value problems for essentially ... 53

where P (t) is either (n× n)-matrix, or n-vector, both continuous on [θr−1, θr], r = 1, N + 1.Consequently, solution to problem (18) is a square matrix or a vector of dimension n. Denoteby a(P, t) the solution to the Cauchy problem (18). Obviously,

a(P, t) = Xr(t)

t∫θr−1

X−1r (τ)P (τ)dτ, t ∈ [θr−1, θr], r = 1, N + 1,

where Xr(t) is a fundamental matrix of differential equation (18) on the rth interval.

3 Numerical implementation

We offer the following numerical implementation of algorithm based on the Runge-Kuttamethod of the 4-th order.

1. Suppose we have a partition: 0 = θ0 < θ1 < ... < θN < θN+1 = T . Divide eachr-th interval [θr−1, θr], r = 1, N + 1, into Nr parts with step hr = (θr − θr−1)/Nr. Assumeon each interval [θr−1, θr], r = 1, N + 1, the variable θ takes its discrete values: θ = θr−1,θ = θr−1 + hr, ..., θ = θr−1 + (Nr − 1)hr, θ = θr, and denote by θr−1, θr, r = 1, N + 1, theset of such points.

2. Solving the following Cauchy problems for ordinary differential equations

dz

dt= A0(t)z +A0(t), z(θr−1) = 0, t ∈ [θr−1, θr], r = 1, N + 1,

dz

dt= A0(t)z +Bj(t), z(θr−1) = 0, t ∈ [θr−1, θr], j = 1, N,

dz

dt= A0(t)z + F (t), z(θr−1) = 0, t ∈ [θr−1, θr], r = 1, N + 1,

by using the Runge-Kutta method of the 4-th order, we find the values of (n × n)-matricesar(A0, θ), ar(Bj , θ), j = 1, N, and n-vector ar(F, θ) on θr−1, θr, r = 1, N + 1.

3. Construct the system of linear algebraic equations with respect to parameters

Qh∗(θ)λ = F h∗ (θ), λ ∈ Rn(N+1). (19)

Solving the system (19), we find λh. As noted above, the elements of λh = (λh1 , λh2 , ..., λ

hN+1)

are the values of approximate solution to problem (5), (6) in the starting points of subintervals:

xhr(θr−1) = λhr , r = 1, N + 1.4. To define the values of approximate solution at the remaining points of the set

θr−1, θr, r = 1, N + 1, we solve the Cauchy problems

dx

dt= A0(t)x+

N∑j=1

Bj(t)λhj+1 + F (t),

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 55: 20 4 MATHEMATICAL 20 JOURNAL

54 Zhazira M. Kadirbayeva, Sayakhat G. Karakenova

x(θr−1) = λhr , t ∈ [θr−1, θr], r = 1, N + 1.

And the solutions to Cauchy problems are found by the Runge-Kutta method of the 4-thorder. Thus, the algorithm allows us to find the numerical solution to the problem (5), (6).We can see that the solution of boundary value problem (5), (6) is also a solution of boundaryvalue problem (1), (2), when the matrix G(θ) is invertible.

To illustrate the proposed approach for the numerical solving linear multi-point boundaryvalue problem for essentially loaded differential equations (1), (2) on the basis of parameter-ization method, let us consider the following example.

4 Example

We consider a linear multi-point boundary value problem for essentially loaded differentialequations

dx

dt= A0(t)x+

3∑j=1

Aj(t)x(θj) + f(t), t ∈ (0, 1), (20)

4∑i=0

Cix(θi) = d, d ∈ R2, x ∈ R2. (21)

Here θ0 = 0, θ1 = 14 , θ2 = 1

2 , θ3 = 34 , θ4 = T = 1,

A0(t) =

(t3 3t8 t− 4

), A1(t) =

(1 t+ 12 t− 3

), A2(t) =

(t t2 + 13t 0

),

A3(t) =

(0 t+ 1t3 5t

), C0 =

(2 −46 −1

), C1 =

(3 10 −3

), C2 =

(4 −69 3

),

C3 =

(2 15 −3

), C4 =

(−6 28 3

), d =

(3e+ 4e2 + 2e3 − 6e4 − 45

89e2 + 5e3 + 8e4 + 701

8

),

f(t) =

(4e4t − 5t− 4e− 4te2 + 3t2 − 3t3 − 5t4 − t3e4t

5t2 − 8e4t − 8e− 12te2 − 59t− 6t3 − 4t3e3 − 252

).

We use the proposed numerical implementation of algorithm for solving (20), (21). Accuracyof solution depends on the accuracy of solving the Cauchy problem on subintervals. We pro-vide the results of the numerical implementation of algorithm by partitioning the subintervals[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1] with step h = 0.025.

The results of calculations of numerical solutions at the partition points are presented inTable 1.

The exact solution of the problem (20), (21) is x∗(t) =

(e4t + 5tt2 − t

).

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 56: 20 4 MATHEMATICAL 20 JOURNAL

Numerical solution of multi-point boundary value problems for essentially ... 55

For the difference of the corresponding values of the exact and constructed solutions ofthe problem the following estimate is true:

maxj=0,40

‖x∗(tj)− x(tj)‖ < 0.0002.

Table 1. Results received by using MathCad15.

t x1(t) x2(t) t x1(t) x2(t)

0 1.000053121 0.000016266 0.5 9.889091935 -0.2499853810.025 1.230222697 -0.024353848 0.525 10.791205222 -0.2493640930.05 1.471453221 -0.047474822 0.55 11.775048257 -0.2474931630.075 1.724907995 -0.069346569 0.575 12.849216621 -0.2443726210.1 1.99187266 -0.089969009 0.6 14.023209899 -0.240002504

0.125 2.273768066 -0.109342072 0.625 15.307526754 -0.2343828540.15 2.572164491 -0.127465695 0.65 16.713770002 -0.2275137250.175 2.888797358 -0.144339823 0.675 18.254762737 -0.2193951730.2 3.225584605 -0.159964406 0.7 19.944676666 -0.210027267

0.225 3.584645878 -0.174339402 0.725 21.799173942 -0.1994100880.25 3.968323749 -0.187464777 0.75 23.835563921 -0.1875437250.275 4.379207157 -0.199340499 0.775 26.072976392 -0.1744282840.3 4.820157324 -0.209966545 0.8 28.532553035 -0.160063889

0.325 5.294336387 -0.219342897 0.825 31.237659013 -0.1444506790.35 5.80523905 -0.22746954 0.85 34.214116814 -0.1275888210.375 6.356727557 -0.234346466 0.875 37.49046469 -0.1094785060.4 6.953070347 -0.239973672 0.9 41.098242268 -0.090119958

0.425 7.598984775 -0.244351158 0.925 45.072306212 -0.0695134390.45 8.299684327 -0.247478931 0.95 49.451179069 -0.0476592570.475 9.060930792 -0.249357 0.975 54.277434806 -0.0245577770.5 9.889091935 -0.249985381 1 59.598124901 -0.000209426

References

[1] Nakhushev A.M. Equations of mathematical biology, M.: Vyshaiya shkola, 1995 (In Russian).[2] Nakhushev A.M. An approximation method for solving boundary value problems for differential

equations with applications to the dynamics of soil moisture and groundwater, Differential Equations,18:1 (1982), 72-81 (In Russian).

[3] Nakhushev A.M. Displacement problems for partial differential equations, .: Nauka, 2006 (InRussian).

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 57: 20 4 MATHEMATICAL 20 JOURNAL

56 Zhazira M. Kadirbayeva, Sayakhat G. Karakenova

[4] Krall A.M. The development of general differential and general differential-boundary systems,Rocky Mountain Journal of Mathematics, 5 (1975), 493-542. DOI: 10.1216/RMJ-1975-5-4-493.

[5] Iskenderov A.D. On the mixed problem for loaded quasilinear equations of hyperbolic type, Dok-lady N SSSR, 199:6 (1971), 1237-1239 (In Russian).

[6] Dzhenaliev M.T., Ramazanov M.I. Loaded equations as perturbations of differential equations,Almaty: Gylym, 2010 (In Russian).

[7] Dzhenaliev M.T. Loaded equations with periodic boundary conditions, Differential Equations,37:1 (2001), 51-57. DOI: 10.1023/A:1019268231282.

[8] Abdullaev V.M., Aida-zade K.R. Numerical method of solution to loaded nonlocal boundaryvalue problems for ordinary differential equations, Computational Mathematics and MathematicalPhysics, 54:7 (2014), 1096-1109. DOI: 10.1134/S0965542514070021.

[9] Aida-zade K.R., Abdullaev V.M. On the numerical solution to loaded systems of ordinary dif-ferential equations with non-separated multipoint and integral conditions, Numerical Analysis andApplications, 7:1 (2014), 1-14. DOI: 10.1134/S1995423914010017.

[10] Aida-zade K.R., Abdullaev V.M. On a numerical solution of loaded differential equations, Com-putational Mathematics and Mathematical Physics, 44:9 (2004), 1585-1595.

[11] Aida-zade K.R., Abdullayev V.M. Solution to a class of inverse problems for a system of loadedordinary differential equations with integral conditions, Journal of Inverse and Ill-Posed Problems, 24:5(2016), 543-558. DOI: 10.1515/jiip-2015-0011.

[12] Parasidis I.N. Extension method for a class of loaded differential equations with nonlocal integralboundary conditions, Bulletin of the Karaganda University-Mathematics, 96:4 (2019), 58-68. DOI:10.31489/2019M4/58-68.

[13] Parasidis I.N., Providas E., Dafopoulos V. Loaded differential and Fredholm integro-differentialequations with nonlocal integral boundary conditions, Applied Mathematics and Control Sciences, 3(2018), 50-68. DOI: 10.15593/2499-9873/2018.3.04.

[14] Assanova A.T., Imanchiyev A.E., Kadirbayeva Zh.M. Numerical solution of systems of loadedordinary differential equations with multipoint conditions, Computational Mathematics and Mathe-matical Physics, 58:4 (2018), 508-516. DOI: 10.1134/S096554251804005X.

[15] Dzhenaliev M.T. Boundary value problems for loaded parabolic and hyperbolic equations withtime derivatives in boundary conditions, Differential Equations, 28:4 (1992), 537-540.

[16] Dzhenaliev M.T., Ramazanov M.I. On solvability of boundary value problems for loaded equa-tions, Mathematical Journal, 1:1 (2001), 21-29 (In Russian).

[17] Sabitov K.B. Initial-boundary problem for parabolic-hyperbolic equation with loaded summands,Russian Mathematics, 59:6 (2015), 23-33. DOI: 10.3103/S1066369X15060055.

[18] Dzhumabaev D.S. Computational methods of solving the boundary value problems for the loadeddifferential and Fredholm integro-differential equations, Mathematical Methods in the Applied Sci-ences, 41:4 (2018), 1439-1462. DOI: 10.1002/mma.4674.

[19] Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equations andtheir applications on solving the boundary value problems, Journal of Computational and AppliedMathematics, 327:1 (2018), 79-108. DOI: 10.1016/j.cam.2017.06.010.

[20] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fredholmintegro-differential equations, Journal of Computational and Applied Mathematics, 294:2 (2016), 342-357. DOI: 10.1016/j.cam.2015.08.023.

[21] Bakirova E.A., Tleulesova A.B., Kadirbayeva Zh.M. On one algorithm for finding a solution toa two-point boundary value problem for loaded differential equations with impulse effect, Bulletin ofthe Karaganda University-Mathematics, 87:3 (2017), 43-50.

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 58: 20 4 MATHEMATICAL 20 JOURNAL

Numerical solution of multi-point boundary value problems for essentially ... 57

[22] Kadirbayeva Zh.M. On the method for solving linear boundary-value problem for the systemof loaded differential equations with multipoint integral condition, Mathematical Journal, 17:4 (2017),50-61.

[23] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. Numerical implementation of solving aboundary value problem for a system of loaded differential equations with parameter, News of theNAS RK. Phys.-Math. series, 3:325 (2019), 77-84. DOI: 10.32014/2019.2518-1726.27.

[24] Assanova A.T., Kadirbayeva Zh.M. On the numerical algorithms of parametrization methodfor solving a two-point boundary-value problem for impulsive systems of loaded differential equations,Computational and Applied Mathematics, 37:4 (2018), 4966-4976. DOI: 10.1007/s40314-018-0611-9.

[25] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for anordinary differential equation, U.S.S.R. Computational Mathematics and Mathematical Physics, 29:1(1989), 34-46. DOI: 10.1016/0041-5553(89)90038-4.

Қадырбаева Ж.М., Қаракенова С.Г. ЕЛЕУЛI ТҮРДЕ ЖҮКТЕЛГЕН ЖӘЙ ДИФФЕ-РЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ҮШIН КӨП НҮКТЕЛI ШЕТТIК ЕСЕПТIҢ САНДЫҚШЕШIМI

Елеулi түрде жүктелген жәй дифференциалдық теңдеулер үшiн сызықтық көп нүк-телi шеттiк есеп зерттеледi. Жүктелген жәй дифференциалдық теңдеудiң қасиеттерiнпайдалана отырып және жүктеу нүктелерiндегi iзделiндi функцияның туындысыныңмәндерiнiң коэффициенттерi бойынша құрастырылған матрицаның қайтымдылығын ес-кере отырып, қарастырып отырған есептi жүктелген жәй дифференциалдық теңдеулерүшiн көп нүктелi шеттiк есептке келтiремiз. Бұл есептi шешу үшiн параметрлеу әдiсi қол-данылады. Қарастырылып отырған есептiң шешiмiн табудың сандық әдiсi ұсынылған.

Кiлттiк сөздер. Елеулi түрде жүктелген дифференциалдық теңдеу, көп нүктелi шарт,параметрлеу әдiсi, алгоритм.

Кадирбаева Ж.М., Каракенова С.Г. ЧИСЛЕННОЕ РЕШЕНИЕ МНОГОТОЧЕЧНОЙКРАЕВОЙ ЗАДАЧИ ДЛЯ СУЩЕСТВЕННО НАГРУЖЕННЫХ ОБЫКНОВЕННЫХДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Исследуется линейная многоточечная краевая задача для существенно нагруженныхобыкновенных дифференциальных уравнений. Используя свойства существенно нагру-женного обыкновенного дифференциального уравнения и допуская обратимость матри-цы, составленной по коэффициентам при значениях производной искомой функции вточках нагрузки, мы сводим рассматриваемую задачу к многоточечной краевой зада-че для нагруженного обыкновенного дифференциального уравнения. Для решения этойпроблемы используется метод параметризации. Предложен численный метод нахожде-ния решения рассматриваемой задачи.

Ключевые слова. Существенно нагруженное дифференциальное уравнение, многото-чечное условие, метод параметризации, алгоритм.

Kazakh Mathematical Journal, 20:4 (2020) 47–57

Page 59: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 58–73

On conditions of solvability of a nonlinear boundaryvalue problem for a system of differential equations

with a delay argument

Narkesh B. Iskakova1,2,a, Svetlana M. Temesheva1,3,b, Aziza D. Abildayeva1,c

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Abai Kazakh National Pedagogical University, Almaty, Kazakhstan

3Al-Farabi Kazakh National University, Almaty, Kazakhstanae-mail: [email protected], [email protected], [email protected]

Communicated by: Anar Assanova

Received: 07.10.2020 ? Accepted/Published Online: 10.11.2020 ? Final Version: 20.11.2020

Abstract. In this paper, we consider a boundary value problem with essentially nonlinear two-point

boundary conditions for a system of linear differential equations with a delay argument. To study

this problem, we use the parametrization method of D.S. Dzhumabaev with a modified algorithm.

The application of the parametrization method leads to a nonlinear operator equation, which is solved

using the amplification of the sharper version of the local Hadamard theorem. A theorem on sufficient

conditions for the existence of an isolated solution of the problem is proved.

Keywords. Boundary value problems, equation with delay argument, isolated solution.

Dedicated to the bright memory of an outstanding scientist,Doctor of Physical and Mathematical Sciences, Professor,

our scientific supervisor Dzhumabaev Dulat Syzdykbekovich

1. Introduction

Due to applications in physics, biology, epidemiology, and so on, much of the literature onlagged differential equations has focused on the existence of a periodic solution, oscillation,and so on. In [1], using the parametrization method [2], necessary and sufficient conditionsfor the existence of an isolated solution of a periodic boundary value problem for a system ofnonlinear differential equations with a delay argument are established in terms of the initial

2010 Mathematics Subject Classification: 34B15; 34K06; 34K10.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08956612).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 60: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 59

data. In recent years, there has been a growing interest in boundary value problems fordifferential equations with delay, see, for example, [3–11].

The importance and variety of applications served to increase interest in the theory ofboundary value problems for differential equations with a delay argument, and the develop-ment of computer technology and its comprehensive application in applied problems presentednew requirements for the developed methods, paying special attention to their constructabil-ity and feasibility.

One of the constructive methods widely used for the study of boundary value problemsfor differential equations is the parametrization method. In this paper, on the basis of onemodification of the parametrization method algorithms, sufficient conditions are obtainedfor the existence of an isolated solution of a boundary value problem for a system of lineardifferential equations with a delay argument that satisfies essentially nonlinear boundaryconditions.

2. Material and methods

We consider a nonlinear boundary value problem for a system of differential equationswith delay argument

dx

dt= A(t)x(t) +B(t)x(t− τ) + f(t), x ∈ Rn, t ∈ (0, Nτ), τ > 0, (1)

x(t) = diag[x(0)] · ϕ(t), t ∈ [−τ, 0], (2)

g(x(0), x(Nτ)) = 0, (3)

where (n × n)-matrices A(t), B(t) and the function f(t) are continuous on [0, Nτ ], ϕ :[−τ, 0] → Rn is a continuously differentiable function such that ϕi(0) = 1, i = 1 : n, τis a constant delay, ‖A(t)‖ ≤ α, ‖B(t)‖ ≤ β, where α, β are constant.

The solution of the boundary value problem (1)-(3) is a continuous on [−τ,Nτ ], con-tinuously differentiable on [−τ, 0)

⋃(0, Nτ ] vector function x(t) that satisfies the differential

equation (1) and has values x(0), x(Nτ), for which equalities (2), (3) are valid.Introduce notation:

∆τ is a partition of interval [−τ,Nτ) =N⋃r=0

[tr−1, tr) by points ts = sτ , s = −1, N ;

C([−τ,Nτ ], Rn) is a space of continuous on [−τ,Nτ ] functions x : [−τ,Nτ ] → Rn withthe norm ‖x‖1 = max

t∈[−τ,Nτ ]‖x(t)‖;

C([0, Nτ ], τ, RnN ) is a space of function systems x[t] = (x1(t), x2(t), . . . , xN (t)), wherethe functions xr(t) ∈ C[tr−1, tr) have a finite limit lim

t→tr−0xr(t) for all r = 1 : (N − 1) with

the norm ‖x[·]‖2 = maxr=1:N

supt∈[tr−1,tr)

‖xr(t)‖;

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 61: 20 4 MATHEMATICAL 20 JOURNAL

60 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

C([−τ,Nτ ], τ, Rn(N+1)) is a space of function systems x[t] =(x0(t), x1(t), x2(t), . . . , xN (t)), where the functions xr(t) ∈ C[tr−1, tr) have a finitelimit lim

t→tr−0xr(t) for all r = 0 : N with the norm ‖x[·]‖3 = max

r=0:Nsup

t∈[tr−1,tr)‖xr(t)‖;

C([−τ, (N − 1)τ ], τ, RnN)) is a space of function systems x[t] = (x0(t − τ), x1(t −τ), . . . , xN−1(t − τ)), where the functions xr(t) ∈ C[tr−1, tr) have a finite limit lim

t→tr−0xr(t)

for all r = 0 : (N − 1) with the norm ‖x[·]‖4 = maxr=1:N

supt∈[tr−1,tr)

‖x−1+r(t− τ)‖.

We denote the restriction of function x(t) to [tr−1, tr) by xr(t), r = 0 : N , and reduceproblem (1) - (3) to the equivalent multipoint boundary value problem

dxr(t)

dt= A(t)xr(t) +B(t)x−1+r(t− τ) + f(t), t ∈ [tr−1, tr), r = 1 : N, (4)

x0(t) = diag[x1(0)] · ϕ(t), t ∈ [t−1, t0], (5)

g

(x1(0), lim

t→tN−0xN (t)

)= 0, (6)

limt→ts−0

xs(t) = xs+1(ts), s = 1 : (N − 1), (7)

where (7) are the conditions for matching the solution at the interior points of partition ofinterval [−τ,Nτ ].

Solution to problem (4)-(7) is a function system

x∗[t] = (x∗0(t), x∗1(t), x∗2(t), . . . , x∗N (t)) ∈ C([−τ,Nτ ], τ, Rn(N+1)),

with continuously differentiable on [tr−1, tr) functions x∗r(t), r = 0 : N , that satisfy the systemof differential equations with delay argument (4) and conditions (5)-(7).

Boundary value problem (4)-(7) is equivalent to the multipoint boundary value problemwith parameters

dur(t)

dt= A(t)(λr+ur(t))+B(t)(λ−1+r+u−1+r(t−τ))+f(t), t ∈ [tr−1, tr), r = 1 : N, (8)

ur(tr−1) = 0, r = 1 : N, (9)

λ0 + u0(t) = Φ(t) · λ1, t ∈ [t−1, t0], u0(t−1) = 0, (10)

g (λ1, λN+1) = 0, (11)

λr + limt→tr−0

ur(t) = λr+1, r = 1 : N, (12)

where λr = xr(tr−1), r = 0 : N , λN+1 = limt→tN−0

xN (t), ur(t) = xr(t) − λr at t ∈ [tr−1, tr),

r = 0 : N , Φ(t) = diag[ϕ(t)], t ∈ [t−1, t0].

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 62: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 61

Let us introduce into consideration the linear operator [12, p. 145]

Xr(t) = I +

∫ t

tr−1

A(τ1)dτ1 +

∞∑j=2

∫ t

tr−1

A(τ1)

∫ τ1

tr−1

A(τ2) . . .

∫ τj−1

tr−1

A(τj)dτj . . . dτ2dτ1,

t ∈ [tr−1, tr), r = 1 : N,

where I is the identity matrix of dimension (n× n). Operator Xr(t) satisfies the problem

dXr

dt= A(t)Xr, Xr(tr−1) = I, t ∈ [tr−1, tr), r = 1 : N.

It is easy to check that X−1r (t) exists and

dX−1r (t)

dt= −X−1

r (t)A(t), X−1r (tr−1) = I, t ∈ [tr−1, tr), r = 1 : N.

For fixed values of parameter λr, using the notation

ar(P, t) = Xr(t)

∫ t

tr−1

X−1r (ξ)P (ξ)dξ,

br(u−1+r(·), τ, t) = Xr(t)

∫ t

tr−1

X−1r (ξ)B(ξ)u−1+r(ξ − τ)dξ,

we write down the unique solution to the Cauchy problem (8), (9) as

ur(t) = ar(A, t)λr+ar(B, t)λ−1+r+br(u−1+r(·), τ, t)+ar(f, t), t ∈ [tr−1, tr), r = 1 : N, (13)

and compose a system of functions v[t] = (u0(t), u1(t), u2(t), . . . , uN (t)).

From (13) we define limt→tr−0

ur(t), r = 1 : N . Based on (10)-(12), we write down the

system of nonlinear equations with respect to unknown parameters

Q∗,∆τ (µ, v) = 0, µ = (λ0, λ1, λ2, . . . , λN , λN+1) ∈ Rn(N+2), λ = (λ1, λ2, . . . , λN ) ∈ RnN ,

where the operator Q∗,∆τ (µ, v) has the form:

Q∗,∆τ (µ, v) =

τ · (−λ0 + Φ(t−1) · λ1)

τ · g (λ1, λN+1)a1(B, t1)λ0 + (I + a1(A, t1))λ1 − λ2 + b1(u0(·), τ, t1) + a1(f, t1)a2(B, t2)λ1 + (I + a2(A, t2))λ2 − λ3 + b2(u1(·), τ, t2) + a2(f, t2)

. . .aN (B, tN )λN−1 + (I + aN (A, tN ))λN − λN+1 + bN (uN−1(·), τ, tN ) + aN (f, tN )

.

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 63: 20 4 MATHEMATICAL 20 JOURNAL

62 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

Condition Aτ . Suppose that(i) system of nonlinear equations Q∗,∆τ (µ, 0) = 0 has solution

µ(0) =(λ

(0)0 , λ

(0)1 , . . . , λ

(0)N+1

)∈ Rn(N+2);

(ii) u(0)0 (t) = −λ(0)

0 + Φ(t) · λ(0)1 , t ∈ [t−1, t0];

(iii) the Cauchy problem

dur(t)

dt= A(t)(λ(0)

r + ur(t)) +B(t)λ(0)−1+r + f(t), t ∈ [tr−1, tr), r = 1 : N,

ur(tr−1) = 0, r = 1 : N,

has solution u(0)r (t) = ar(A, t)λ

(0)r + ar(B, t)λ

(0)−1+r + ar(f, t), t ∈ [tr−1, tr), r = 1 : N ;

(iv) v(0)[t] =(u

(0)0 (t), u

(0)1 (t), u

(0)2 (t), . . . , u

(0)N (t)

)∈ C([−τ,Nτ ], τ, Rn(N+1)).

By µ(0) =(λ

(0)0 , λ

(0)1 , . . . , λ

(0)N+1

)∈ Rn(N+2) and

v(0)[t] =(u

(0)0 (t), u

(0)1 (t), . . . , u

(0)N (t)

)∈ C([−τ,Nτ ], τ, Rn(N+1)) we define the piecewise con-

tionuous on [−τ,Nτ ] function

x(0)(t) =

λ

(0)r + u

(0)r (t) at t ∈ [tr−1, tr), r = 0 : N,

λ(0)N+1 at t = tN .

Choosing the numbers ρλ > 0, ρu > 0, ρx > 0, we compose the sets:

S(µ(0), ρλ) = µ = (λ0, λ1, . . . , λN+1) ∈ Rn(N+2) : ‖µ− µ(0)‖ = maxr=0:(N+1)

‖λr − λ(0)r ‖ < ρλ,

S(v(0)[t], ρu) = v(t) ∈ C([−τ,Nτ ], τ, Rn(N+1)) : ‖(v − v(0))[·]‖3 < ρu,

S(x(0)(t), ρx) = x(t) ∈ C([−τ,Nτ ], Rn) : ‖x− x(0)‖0 < ρx,

G0(ρλ, ρx) = (w1, w2) ∈ R2n : ‖w1 − x(0)(0)‖ < ρλ, ‖w2 − x(0)(Nτ)‖ < ρx.

Condition B. Suppose that function g(w1, w2) is continuous in G0(ρλ, ρx) , and hasuniformly continuous partial derivatives g′w1

(w1, w2), g′w2(w1, w2) and inequalities

sup(w1,w2)∈G0(ρλ,ρx)

‖g′w1(w1, w2)‖ ≤ L1, sup

(w1,w2)∈G0(ρλ,ρx)‖g′w2

(w1, w2)‖ ≤ L2,

where L1, L2 are constant, hold.

Let us assume that condition Aτ is satisfied. By µ(0) =(λ

(0)0 , λ

(0)1 , . . . , λ

(0)N+1

)∈ Rn(N+2)

and v(0)[t] =(u

(0)0 (t), u

(0)1 (t), . . . , u

(0)N (t)

)∈ C([−τ,Nτ ], τ, Rn(N+1)), we define the sequence

(µ(k), v(k)[t]), k = 1, 2, . . ., according to the following algorithm:

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 64: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 63

Step 1.a) From equation Q∗,∆τ (µ, v(0)) = 0 we find

µ(1) = (λ(1)0 , λ

(1)1 , . . . , λ

(1)N+1) ∈ Rn(N+2);

b1) evaluate u(1)0 (t) = −λ(1)

0 + Φ(t) · λ(1)1 , t ∈ [t−1, t0];

b2) from the Cauchy problem

dur(t)

dt= A(t)(λ(1)

r +ur(t))+B(t)(λ(1)−1+r+u

(0)−1+r(t−τ))+f(t), t ∈ [tr−1, tr), ur(tr−1) = 0,

we find function u(1)r (t), r = 1 : N ;

b3) compose the function systems

v(1)[t] =(u

(1)0 (t), u

(1)1 (t), . . . , u

(1)N (t)

)∈ C([−τ,Nτ ], τ, Rn(N+1)),

u(1)[t] =(u

(1)0 (t− τ), u

(1)1 (t− τ), . . . , u

(1)N−1(t− τ)

)∈ C([−τ, (N − 1)τ ], τ, RnN)).

Step 2.(a) From equation Q∗,∆τ (µ, v(1)) = 0 we find

µ(2) = (λ(2)0 , λ

(2)1 , . . . , λ

(2)N+1) ∈ Rn(N+2);

b1) evaluate u(2)0 (t) = −λ(2)

0 + Φ(t) · λ(2)1 , t ∈ [t−1, t0];

b2) from the Cauchy problem

dur(t)

dt= A(t)(λ(2)

r +ur(t))+B(t)(λ(2)−1+r+u

(1)−1+r(t−τ))+f(t), t ∈ [tr−1, tr), ur(tr−1) = 0,

we find the function u(2)r (t), r = 1 : N ;

b3) compose the function systems

v(2)[t] =(u

(2)0 (t), u

(2)1 (t), . . . , u

(2)N (t)

)∈ C([−τ,Nτ ], τ, Rn(N+1)),

u(2)[t] =(u

(2)0 (t− τ), u

(2)1 (t− τ), . . . , u

(2)N−1(t− τ)

)∈ C([−τ, (N − 1)τ ], τ, RnN)).

And so on.

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 65: 20 4 MATHEMATICAL 20 JOURNAL

64 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

3. Main results

The sufficient conditions for the feasibility and convergence of the proposed algorithm,which simultaneously ensure the existence of an isolated solution to the multipoint boundaryvalue problem with parameters for the system of differential equations with delay argument(8)-(12), are established by

Theorem 1. Suppose that under partition ∆τ and some numbers ρλ > 0, ρu > 0, ρx > 0, the

conditions Aτ , B are satisfied, Jacobi matrix∂Q∗,∆τ (µ, v)

∂µ: Rn(N+2) → Rn(N+2) is invertible

for all (µ, v[t]) ( µ ∈ S(µ(0), ρλ), v[t] ∈ S(v(0)[t], ρu) and the following inequalities are valid:

1)∥∥∥(∂Q∗,∆τ (µ, v)

∂µ

)−1∥∥∥ ≤ γ∗(∆τ ),

2) q∗(∆τ ) = γ∗(∆τ )βτeατ max

1, maxt∈[t−1,t0]

‖Φ(t)‖, 1/γ∗(∆τ ), eατ − 1, βτeατ< 1,

3)γ∗(∆τ )βτeατ

1− q∗(∆τ )‖u(0)[·]‖4 < ρλ,

4)q∗(∆τ )

1− q∗(∆τ )‖u(0)[·]‖4 < ρu,

5) ρλ + ρu < ρx.Then the sequence (µ(k), v(k)[t]), k ∈ N, with µ(k) ∈ S(µ(0), ρλ) and v(k) ∈ S(v(0)[t], ρu),

determined by the algorithm, converges to (µ∗, v∗[t]), the isolated solution to problem (8)-(12),where µ∗ ∈ S(µ(0), ρλ), v∗[t] ∈ S(v(0)[t], ρu) and the following estimates are valid:

‖(v∗ − v(k))[·]‖3 6q∗(∆τ )

1− q∗(∆τ )‖(u(k) − u(k−1))[·]‖4, (14)

‖µ∗ − µ(k)‖ ≤ γ∗(∆τ )βτeατ

1− γ∗(∆τ )βτeατ‖(u(k) − u(k−1))[·]‖4. (15)

Proof. By the partition ∆τ , we pass from problem (1)-(3) to the equivalent mul-tipoint boundary value problem with parameters (8)-(12). We take any (µ, v[t]), whereµ ∈ S(µ(0), ρλ) and v[t] ∈ S(v(0)[t], ρu), then

‖λr − λ(0)r + ur(t)− u(0)

r (t)‖ ≤ ‖λr − λ(0)r ‖+ ‖ur(t)− u(0)

r (t)‖ < ρλ + ρu < ρx,

t ∈ [tr−1, tr), r = 0 : N.The solution to problem (8)-(12) will be sought according to the proposed algorithm.Suppose the condition Aτ holds. Let us set (µ(0), v(0)[t]) as the initial approximation to

the solution of problem (8)-(12). The next approximation by parameter is found from theequation

Q∗,∆τ (µ, v(0)) = 0, µ ∈ Rn(N+2).

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 66: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 65

By the conditions of the theorem, the operator Q∗,∆τ (µ, v(0)) in S(µ(0), ρλ) satisfies all theassumptions of Theorem 1 [13]. Choosing the number ε0 > 0 satisfying the inequalities

ε0γ∗(∆τ ) ≤ 1

2,

γ∗(∆τ )

1− ε0γ∗(∆τ )‖Q∗,∆τ (µ(0), v(0))‖ < ρλ

and using the uniform continuity of the Jacobi matrix∂Q∗,∆τ (µ, v(0))

∂λin S(µ(0), ρλ), we find

δ0 ∈ (0, 0.5ρλ] such that ∥∥∥∂Q∗,∆τ (µ, v(0))

∂µ−∂Q∗,∆τ (µ, v(0))

∂µ

∥∥∥ < ε0

for any µ, µ ∈ S(µ(0), ρλ) at ‖µ− µ‖ < δ0.

Choosing α1 > α0 = max1, γ∗(∆τ )‖Q∗,∆τ (µ(0), v(0))‖/δ0, we construct an iterativeprocess:

µ(1,0) = µ(0),

µ(1,m+1) = µ(1,m) − 1α1

(∂Q∗,∆τ (µ(1,m),v(0))

∂µ

)−1Q∗,∆τ (µ(1,m), v(0)), m = 0, 1, 2, . . . .

(16)

According to Theorem 1 [13], the iterative process (16) converges to µ(1) ∈ S(µ(0), ρλ), theisolated solution to equation Q∗,∆τ (µ, v(0)) = 0 and

‖µ(1) − µ(0)‖ 6 γ∗(∆τ )‖Q∗,∆τ (µ(0), v(0))‖ ≤ γ∗(∆τ ) maxr=1:N

‖br(u(0)−1+r(·), τ, tr)‖

≤ γ∗(∆τ )βτeατ maxr=1:N

supt∈[tr−1,tr)

‖u(0)−1+r(t− τ)‖ = γ∗(∆τ )βτeατ‖u(0)[·]‖4 < ρλ.

(17)

Note that the components of the function system v(0)[t] = (u(0)0 (t), u

(0)1 (t), . . . , u

(0)N (t)) satisfy

the inequalities

‖u(0)0 (t)‖ ≤ ‖λ(0)

0 ‖+ ‖Φ(t)‖ · ‖λ(0)1 ‖, t ∈ [t−1, t0],

‖u(0)r (t)‖ ≤ max eατ − 1, βτeατ ‖µ(0)‖+ τeατ sup

t∈[tr−1,tr)‖f(t)‖, t ∈ [tr−1, tr), r = 1 : N.

Under our assumptions, the Cauchy problem

dur(t)

dt= A(t)(λ(1)

r + ur(t)) +B(t)(λ(1)−1+r + u

(0)−1+r(t− τ)) + f(t), t ∈ [tr−1, tr), r = 1 : N,

ur(tr−1) = 0, r = 1 : N,

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 67: 20 4 MATHEMATICAL 20 JOURNAL

66 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

has the unique solution u(1)r (t) = ar(A, t)λ

(1)r + ar(B, t)λ

(1)−1+r + br(u

(0)−1+r(·), τ, t) + ar(f, t),

t ∈ [tr−1, tr), r = 1 : N , and u(1)0 (t) = −λ(1)

0 + Φ(t) · λ(1)1 at t ∈ [t−1, t0]. Taking into account

(17), we establish that

‖u(1)0 (t)− u(0)

0 (t)‖ ≤ ‖λ(1)0 − λ

(0)0 ‖+ ‖Φ(t)‖ · ‖λ(1)

1 − λ(0)1 ‖

≤ max

1, maxt∈[t−1,t0]

‖Φ(t)‖‖µ(1) − µ(0)‖

≤ max

1, maxt∈[t−1,t0]

‖Φ(t)‖γ∗(∆τ )βτeατ‖u(0)[·]‖4, t ∈ [t−1, t0],

‖u(1)r (t)− u(0)

r (t)‖ ≤ ‖ar(A, t)‖ · ‖λ(1)r − λ(0)

r ‖+ ‖ar(B, t)‖ · ‖λ(1)−1+r − λ

(0)−1+r‖

+‖br(u(0)−1+r(·), τ, t)‖ ≤ max eατ − 1, βτeατ · ‖µ(1) − µ(0)‖

+βτeατ maxr=1:N

supt∈[tr−1,tr)

‖u(0)−1+r(t− τ)‖

≤ βτeατ max 1, γ∗(∆τ ) max eατ − 1, βτeατ ‖u(0)[·]‖4

≤ γ∗(∆τ )βτeατ max 1/γ∗(∆τ ), eατ − 1, βτeατ ‖u(0)[·]‖4, t ∈ [tr−1, tr), r = 1 : N. (18)

Thus, for the difference between function systems v(1)[t] =(u

(1)0 (t), u

(1)1 (t), . . . , u

(1)N (t)

)and

v(0)[t] =(u

(0)0 (t), u

(0)1 (t), . . . , u

(0)N (t)

), we have the estimate:

‖(v(1) − v(0))[·]‖3 ≤ max

maxt∈[t−1,t0]

‖u(1)0 (t)− u(0)

0 (t)‖, maxr=1:N

supt∈[tr−1,tr)

‖u(1)r (t)− u(0)

r (t)‖

≤ q∗(∆τ )‖u(0)[·]‖4 < ρu,

i.e. v(1)[t] ∈ S(v(0)[t], ρu).

It follows from the structure of the operator Q∗,∆τ (µ, v) and the equalityQ∗,∆τ (µ(1), v(0)) = 0 that

γ∗(∆τ )‖Q∗,∆τ (µ(1), v(1))‖ = γ∗(∆τ )‖Q∗,∆τ (µ(1), v(1))−Q∗,∆τ (µ(1), v(0))‖

≤ γ∗(∆τ ) maxr=1:N

‖br((u(1)−1+r − u

(0)−1+r)(·), τ, tr)‖

≤ γ∗(∆τ )βτeατ maxr=1:N

supt∈[tr−1,tr)

‖u(1)−1+r(t− τ)− u(0)

−1+r(t− τ)‖

≤ γ∗(∆τ )βτeατ‖(u(1) − u(0))[·]‖4,

(19)

where u(1)[t] ∈ C([−τ, (N − 1)τ ], τ, RnN)).

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 68: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 67

If µ ∈ S(µ(1), ρ1), where ρ1 = γ∗(∆τ )‖Q∗,∆τ (µ(1), v(1))‖, then by virtue of inequalities 2),3) of the theorem and (17), (18), we get the estimate

‖µ− µ(0)‖ 6 ‖µ− µ(1)‖+ ‖µ(1) − µ(0)‖ < γ∗(∆τ )‖Q∗,∆τ (µ(1), u(1))‖+ ‖µ(1) − µ(0)‖

6 γ∗(∆τ )βτeατ (q∗(∆τ ) + 1)‖u(0)[·]‖4 <γ∗(∆τ )βτeατ

1− q∗(∆τ )‖u(0)[·]‖4 < ρλ,

i.e. S(µ(1), ρ1) ⊂ S(µ(0), ρλ).The operator Q∗,∆τ (µ, v(1)) in S(λ(1), ρ1) satisfies all the conditions of Theorem 1 [13].

Therefore, the iterative process

µ(2,0) = µ(1),

µ(2,m+1) = µ(2,m) − 1α

(∂Q∗,∆τ (µ(2,m),v(1))

∂µ

)−1Q∗,∆τ (µ(2,m), v(1)), m = 0, 1, 2, . . . ,

converges to µ(2) = (λ(2)0 , λ

(2)1 , λ

(2)2 , . . . , λ

(2)N , λ

(2)N+1) ∈ S(µ(1), ρ1), the isolated solution of the

equation Q∗,∆τ (µ, v(1)) = 0, and

‖µ(2) − µ(1)‖ ≤ γ∗(∆τ )‖Q∗,∆τ (µ(1), v(1))‖.

This and (19) imply the inequalities

‖µ(2) − µ(1)‖ 6 γ∗(∆τ )βτeατ‖(u(1) − u(0))[·]‖4,

‖v(2) − v(1)‖3 6 q∗(∆τ )‖(u(1) − u(0))[·]‖4 ≤ q∗(∆τ )‖(v(1) − v(0))[·]‖3 ≤ q2∗(∆τ )‖u(0)[·]‖4,

‖v(2) − v(0)‖3 6 ‖v(2) − v(1)‖3 + ‖v(1) − v(0)‖3

≤ (q2∗(∆τ ) + q∗(∆τ ))‖u(0)[·]‖4 <

q∗(∆τ )

1− q∗(∆τ )‖u(0)[·]‖4 < ρu,

i.e. v(2)[t] ∈ S(v(0)[t], ρu).Assuming that (µ(k−1), v(k−1)[t]) is determined here µ(k−1) ∈ S(µ(0), ρλ), v(k−1)[t] ∈

C([−τ, (N − 1)τ ], τ, RnN)), and the following estimates are set:

‖µ(k−1) − µ(k−2)‖ ≤ γ∗(∆τ )βτeατ‖(u(k−2) − u(k−3))[·]‖4, (20)

‖v(k−1) − v(k−2)‖3 6 q∗(∆τ )‖(u(k−2) − u(k−3))[·]‖4. (21)

The k-th approximation in the parameter λ(k) is found from the equationQ∗,∆τ (µ, v(k−1)) = 0.Using (20), (21) and equality Q∗,∆τ (µ(k−1), v(k−2)) = 0, similarly to (18), we establish theinequalities

γ∗(∆τ )‖Q∗,∆τ (µ(k−1), v(k−1))‖ 6 γ∗(∆τ )βτeατ‖(u(k−1) − u(k−2))[·]‖4. (22)

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 69: 20 4 MATHEMATICAL 20 JOURNAL

68 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

Let us take ρk−1 = γ∗(∆τ )‖Q∗,∆τ (µ(k−1), v(k−1))‖ and show that S(µ(k−1), ρk−1) ⊂S(µ(0), ρλ). Indeed, in view of (20)-(22) and condition 3) of the theorem, we have:

‖µ− µ(0)‖ 6 ‖µ− µ(k−1)‖+ ‖µ(k−1) − µ(k−2)‖+ ‖µ(k−2) − µ(k−3)‖+ . . .+ ‖µ(1) − µ(0)‖

< ρk−1 + (γ∗(∆τ )βτeατ )k−2‖µ(1)−µ(0)‖+ (γ∗(∆τ )βτeατ )k−3‖µ(1)−µ(0)‖+ . . .+‖µ(1)−µ(0)‖

6 ((γ∗(∆τ )βτeατ )k−1 + (γ∗(∆τ )βτeατ )k−2 + (γ∗(∆τ )βτeατ )k−3 + . . .+ 1)‖µ(1) − µ(0)‖

<γ∗(∆τ )βτeατ

1− γ∗(∆τ )βτeατ‖u(0)[·]‖4 ≤

γ∗(∆τ )βτeατ

1− q∗(∆τ )‖u(0)[·]‖4 < ρλ.

Since Q∗,∆τ (µ, v(k−1)) in S(µ(k−1), ρk−1) satisfies all the conditions of Theorem 1 [13], thenthere exists µ(k) ∈ S(µ(k−1), ρk−1), the solution of the equation Q∗,∆τ (µ, v(k−1)) = 0, and theestimate

‖µ(k) − µ(k−1)‖ 6 γ∗(∆τ )‖Q∗,∆τ (µ(k−1), v(k−1))‖ (23)

holds.The Cauchy problem

dur(t)

dt= A(t)(λ(k)

r + ur(t)) +B(t)(λ(k)−1+r + u

(k−1)−1+r (t− τ)) + f(t), t ∈ [tr−1, tr), r = 1 : N,

ur(tr−1) = 0, r = 1 : N,

has a unique solution u(k)r (t) = ar(A, t)λ

(k)r + ar(B, t)λ

(k)−1+r + br(u

(k−1)−1+r (·), τ, t) + ar(f, t),

t ∈ [tr−1, tr), r = 1 : N , and u(k)0 (t) = −λ(k)

0 + Φ(t) · λ(k)1 at t ∈ [t−1, t0]. If ρk =

γ∗(∆τ )‖Q∗,∆τ (µ(k), v(k))‖ = 0, then Q∗,∆τ (µ(k), v(k)) = 0. From this we obtain the equal-ities:

λ(k)0 + u

(k)0 (t) = Φ(t) · λ(k)

1 , t ∈ [t−1, t0],

g(λ

(k)1 , λ

(k)N+1

)= 0,

λ(k)r + lim

t→tt−0u(k)r (t) = λ

(k)r+1, r = 1 : N,

i.e. (µ(k), v(k)[t]) is the solution to problem (8)-(12).Using (22) and (23), we establish the estimates:

‖µ(k) − µ(k−1)‖ ≤ γ∗(∆τ )βτeατ‖(u(k−1) − u(k−2))[·]‖4, (24)

‖v(k) − v(k−1)‖3 6 q∗(∆τ )‖(u(k−1) − u(k−2))[·]‖4 6 q∗(∆τ )‖(v(k−1) − v(k−2))[·]‖3, (25)

‖v(k) − v(0)‖3 6 ‖v(k) − v(k−1)‖3 + . . .+ ‖v(1) − v(0)‖3≤ (qk∗ (∆τ ) + . . .+ q∗(∆τ ))‖u(0)[·]‖4 <

q∗(∆τ )

1− q∗(∆τ )‖u(0)[·]‖4 < ρu, v(k)[t] ∈ S(v(0)[t], ρu).

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 70: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 69

It follows from inequalities (24), (25) and q∗(∆τ ) < 1 that the sequence of pairs(µ(k), v(k)[t]) converges to (µ∗, v∗[t]), the solution of problem (8)-(12), as k → ∞. More-over, by virtue of inequalities 3), 4) of the theorem, µ(k), µ∗ ∈ S(µ(0), ρλ), k ∈ N, andv(k)[t], v∗[t] ∈ S(v(0)[t], ρu). In inequalities

‖µ(k+p) − µ(k)‖ < γ∗(∆τ )βτeατ

1− γ∗(∆τ )βτeατ(1− (γ∗(∆τ )βτeατ )p) ‖(u(k) − u(k−1))[·]‖4,

‖(v(k+p) − v(k))[·]‖3 6q∗(∆τ )

1− q∗(∆τ )(1− qp∗(∆τ ))‖(u(k) − u(k−1))[·]‖4,

passing to the limit as p→∞, we obtain estimates (14), (15).Let us show that the solution is isolated. Let (µ, v[t]) be a solution to problem (8)-(12),

where µ ∈ S(µ(0), ρλ), v[t] ∈ S(v(0)[t], ρu). Then there are numbers δ1 > 0, δ2 > 0 such that‖µ − µ(0)‖ + δ1 < ρλ, ‖(v − v(0))[·]‖3 + δ2 < ρu. If µ ∈ S(µ, δ1), v[t] ∈ S(v[t], δ2), then byvirtue of the inequalities

‖µ− µ(0)‖ 6 ‖µ− µ‖+ ‖µ− µ(0)‖ 6 δ1 + ‖µ− µ(0)‖ < ρµ,

‖(v − v(0))[·]‖3 6 ‖(v − v)[·]‖3 + ‖(v − v(0))[·]‖3 6 δ2 + ‖(v − v(0))[·]‖3 < ρu,

µ ∈ S(µ(0), ρλ), v[t] ∈ S(v(0)[t], ρu), i.e. S(µ, δ1) ⊂ S(µ(0), ρλ), S(v[t], δ2) ⊂ S(v(0)[t], ρu).Take a number ε > 0 such that

εγ∗(∆τ ) < 1,γ∗(∆τ )βτeατ

1− εγ∗(∆τ )max

1, maxt∈[t−1,t0]

‖Φ(t)‖, 1− εγ∗(∆τ )

γ∗(∆τ ), eατ − 1, eατβτ

< 1.

The condition B and structure of the Jacobi matrix∂Q∗,∆τ (µ, v)

∂µimply its uniform continuity

for all µ ∈ S(µ, δ1), v[t] ∈ S(v[t], δ2). Therefore, there exists δ ∈ (0,minδ1, δ2], for which∥∥∥∂Q∗,∆τ (µ, v)

∂µ−∂Q∗,∆τ (µ, v)

∂µ

∥∥∥ < ε, µ ∈ S(µ, δ), v[t] ∈ S(v[t], δ).

Note that if (µ, v[t]) is a solution to problem (8)-(12), then the equality Q∗,∆τ (µ, v) = 0 holds.Let (µ, v[t]) be another solution to problem (8)-(12), where µ ∈ S(µ, δ), v[t] ∈ S(v[t], δ).

Since Q∗,∆τ (µ, v) = 0 and Q∗,∆τ (µ, v) = 0, then from the equalities

µ = µ−(∂Q∗,∆τ (µ, v)

∂µ

)−1Q∗,∆τ (µ, v), µ = µ−

(∂Q∗,∆τ (µ, v)

∂µ

)−1Q∗,∆τ (µ, v)

it follows that

µ− µ = −(∂Q∗,∆τ (µ, v)

∂µ

)−11∫

0

(∂Q∗,∆τ (µ+ θ(µ− µ), v)

∂µ−∂Q∗,∆τ (µ, v)

∂µ

)dθ · (µ− µ)

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 71: 20 4 MATHEMATICAL 20 JOURNAL

70 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

−(∂Q∗,∆τ (µ, v)

∂µ

)−1(Q∗,∆τ (µ, v)−Q∗,∆τ (µ, v)),

from where

‖µ− µ‖ ≤ γ∗(∆τ )

1− εγ∗(∆τ )‖Q∗,∆τ (µ, v)−Q∗,∆τ (µ, v)‖

≤ γ∗(∆τ )

1− εγ∗(∆τ )maxr=1:N

‖br(u−1+r − u−1+r, τ, tr)‖

≤ γ∗(∆τ )βτeατ

1− εγ∗(∆τ )‖(u− u)[·]‖4 ≤

γ∗(∆τ )βτeατ

1− εγ∗(∆τ )‖(v − v)[·]‖3. (26)

Since the components of function systems v[t] = (u0(t), u1(t), . . . , uN (t)) and v[t] =(u0(t), u1(t), . . . , uN (t)) satisfy the equalities

u0(t) = −λ0 + Φ(t) · λ1, t ∈ [t−1, t0], u0(t−1) = 0,

dur(t)

dt= A(t)(λr + ur(t)) +B(t)(λ−1+r + u−1+r(t− τ)) + f(t), t ∈ [tr−1, tr), r = 1 : N,

ur(tr−1) = 0, r = 1 : N,(27)

and

u0(t) = −λ0 + Φ(t) · λ1, t ∈ [t−1, t0], u0(t−1) = 0,

dur(t)

dt= A(t)(λr + ur(t)) +B(t)(λ−1+r + u−1+r(t− τ)) + f(t), t ∈ [tr−1, tr), r = 1 : N,

ur(tr−1) = 0, r = 1 : N,(28)

we get:

‖u0(t)− u0(t)‖ ≤ ‖λ0 − λ0‖+ maxt∈[t−1,t0]

‖Φ(t)‖ · ‖λ1 − λ1‖ ≤ max

1, maxt∈[t−1,t0]

‖Φ(t)‖‖µ− µ‖

≤ γ∗(∆τ )βτeατ

1− εγ∗(∆τ )max

1, maxt∈[t−1,t0]

‖Φ(t)‖‖(v − v)[·]‖3, t ∈ [t−1, t0]. (29)

It follows from the Cauchy problems (27) and (28) that

‖ur(t)− ur(t)‖ ≤∫ t

tr−1

α(‖λr − λr‖+ ‖ur(ξ)− ur(ξ)‖

)dξ

+

∫ t

tr−1

β(‖λ−1+r − λ−1+r‖+ ‖u−1+r(ξ − τ)− u−1+r(ξ − τ)‖

)dξ, t ∈ [tr−1, tr), r = 1 : N,

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 72: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 71

whence, by the Gronwall-Bellman lemma, we have the inequality

‖ur(t)− ur(t)‖+ ‖λr − λr‖ ≤(‖λr − λr‖

+

∫ t

tr−1

β(‖λ−1+r − λ−1+r‖ +‖u−1+r(ξ − τ)− u−1+r(ξ − τ)‖

)dξ)eατ ,

t ∈ [tr−1, tr), r = 1 : N, i.e.

‖ur(t)− ur(t)‖ ≤ (eατ − 1) ‖λr − λr‖+ eατβτ‖λ−1+r − λ−1+r‖

+eατβτ supt∈[tr−1,tr)

‖u−1+r(t− τ)− u−1+r(t− τ)‖

≤ maxeατ − 1, eατβτ‖µ− µ‖+ eατβ‖(u− u)[·]‖4

≤ maxeατ − 1, eατβτγ∗(∆τ )βτeατ

1− εγ∗(∆τ )‖(v − v)[·]‖3 + eατβ‖(v − v)[·]‖3

≤ γ∗(∆τ )βτeατ

1− εγ∗(∆τ )max

1− εγ∗(∆τ )

γ∗(∆τ ), eατ − 1, eατβτ

‖(v − v)[·]‖3, (30)

t ∈ [tr−1, tr), r = 1 : N.

From the fact that ‖(v− v)[·]‖3 = maxr=0:N

supt∈[tr−1,tr)

‖ur(t)− ur(t)‖, and inequalities (29) and

(30) hold, the next estimate

‖(v − v)[·]‖3

≤ γ∗(∆τ )βτeατ

1− εγ∗(∆τ )max

1, maxt∈[t−1,t0]

‖Φ(t)‖, 1− εγ∗(∆τ )

γ∗(∆τ ), eατ − 1, eατβτ

‖(v − v)[·]‖3

follows. From the last relation, by virtue of the choice of ε > 0, it follows that v[t] = v[t].Then (26) implies µ = µ. Theorem 1 is proved.

By using µ(k) =(λ

(k)0 , λ

(k)1 , . . . , λ

(k)N+1

)∈ Rn(N+2) and

v(k)[t] =(u

(k)0 (t), u

(k)1 (t), . . . , u

(k)N (t)

)∈ S(v(0)[t], ρu) (k = 1, 2, . . .) we define a piecewise

continuous on [−τ,Nτ ] function

x(k)(t) =

λ

(k)r + u

(k)r (t) at t ∈ [tr−1, tr), r = 0 : N,

λ(k)N+1 at t = tN .

In view of the equivalence of problems (1)-(3) and (8)-(12) Theorem 1 implies

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 73: 20 4 MATHEMATICAL 20 JOURNAL

72 Narkesh B. Iskakova, Svetlana M. Temesheva, Aziza D. Abildayeva

Theorem 2. Suppose that under partition ∆τ and some numbers ρλ > 0, ρu > 0, ρx > 0, the

conditions Aτ , B are satisfied, Jacobi matrix∂Q∗,∆τ (µ, v)

∂µ: Rn(N+2) → Rn(N+2) is invertible

for all (µ, v[t]) ( µ ∈ S(µ(0), ρλ), v[t] ∈ S(v(0)[t], ρu) and inequalities 1)-5) of Theorem 1take place. Then the sequence of functions (x(k)(t)), k ∈ N, is contained in S(x(0)(t), ρx),converges to x∗(t) ∈ S(x(0)(t), ρx), the isolated solution of problem (1)-(3), and the nextinequality holds:

maxt∈[0,T ]

‖x∗(t)− x(k)(t)‖ 6 2q∗(∆τ )

1− q∗(∆τ )‖(v(k) − v(k−1))[·]‖3.

References

[1] Iskakova N.B. Korrektnaya razreshimost’ periodicheskoj kraevoj zadachi dlya sistemy differen-cial’nyh uravnenij s zapazdyvayushchim argumentom [Correct solvability of a periodic boundary valueproblem for a system of differential equations with a delay argument], Vestnik KazNU im. al’-Farabi.Seriya matematika, mekhanika i informatika (J. of Math., Mech. and Comp. Sci.), 45:2 (2005), 35-46(in Russian).

[2] Dzhumabaev D.S. Conditions the unique solvability of a linear boundary value problem for anordinary differential equations, U.S.S.R. Computational Mathematics and Mathematical Physics, 29:1(1989), 34-46. DOI: 10.1016/0041-5553(89)90038-4.

[3] Shu X.-B., Li-Hong H., and Li Y.-J. Triple positive solutions for a class of boundary value prob-lems for second-order neutral functional differential equations, Nonlinear Analysis: Theory, Methodsand Applications, 65:4 (2006), 825-840. DOI: 10.1016/j.na.2005.10.015.

[4] Bai D. and Xu Y. Existence of positive solutions for boundary-value problems of second-order delay differential equations, Applied Mathematics Letters, 18:6 (2005), 621-630. DOI:10.1016/j.aml.2004.07.022.

[5] Shu X.-B. and Xu Y.-T. Triple positive solutions for a class of boundary value problem of second-order functional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 61:8(2005), 1401-1411. DOI: 10.1016/j.na.2005.02.031.

[6] Lalli B.S. and Zhang B.G. Boundary value problems for second-order functional-differentialequations, Annals of Differential Equations, 8:3 (1992), 261-268.

[7] Weng P.X. Boundary value problems for second order mixed-type functional-differential equa-tions, Applied Mathematics, 12:2 (1997), 155-164. DOI: 10.1007/s11766-997-0017-8.

[8] Ntouyas S.K., Sficas Y.G., and Tsamatos P.Ch. An existence principle for boundary valueproblems for second order functional-differential equations, Nonlinear Analysis: Theory, Methods andApplications, 20:3 (1993), 215-222. DOI: 10.1016/0362-546X(93)90159-P.

[9] Liu Y. Periodic boundary value problems for first order functional differential equationswith impulse, Journal of Computational and Applied Mathematics, 223:1 (2009), 27-39. DOI:10.1016/j.cam.2007.12.015.

[10] Feng M.Q. Periodic solutions for prescribed mean curvature Lienard equation with a de-viating argument, Nonlinear Analysis: Real World Applications, 13:3 (2012), 1216-1223. DOI:10.1016/j.nonrwa.2011.09.015.

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 74: 20 4 MATHEMATICAL 20 JOURNAL

On conditions of solvability of a nonlinear boundary value problem... 73

[11] Wang H. Positive Solution for a Class of Boundary Value Problems with Finite Delay, Journalof Applied Mathematics: Hindawi Publishing Corporation, Vol. 2012, Article ID 382392, 7 pages,DOI: 10.1155/2012/382392.

[12] Daleckij YU.L., Krejn M.G. Ustojchivost’ reshenij differencial’nyh uravnenij v banahovom pros-transtve [Stability of solutions of differential equations in Banach space]. - Moscow: Nauka, 1970. -534 p. (in Russian).

[13] Dzhumabaev D.S., Temesheva S.M. A parametrization method for solving nonlinear two-point boundary value problems, Comput. Math. Math. Phys., 47:1 (2007), 37–61. DOI:10.1134/S096554250701006X.

Искакова Н.Б., Темешева С.М., Абильдаева А.Д. КЕШIГУЛI АРГУМЕНТI БАРДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ЖҮЙЕСI ҮШIН СЫЗЫҚТЫ ЕМЕС ШЕТТIКЕСЕПТIҢ ШЕШIЛIМДIЛIК ШАРТТАРЫ ТУРАЛЫ

Бұл жұмыста кешiгулi аргументi бар сызықтық дифференциалдық теңдеулер жүйесiүшiн елеулi сызықтық емес екi нүктелi шеттiк шарттары бар шеттiк есеп қарастырыла-ды. Бұл есептi зерттеу үшiн модификацияланған алгоритмi бар Д.С. Джумабаевтыңпараметрлеу әдiсi қолданылады. Параметрлеу әдiсiн қолдану сызықтық емес оператор-лық теңдеуге әкеледi, ол Адамар теоремасының локалды нұсқасының күшейтiлуi арқы-лы шешiледi. Есептiң оқшауланған шешiмi бар болуының жеткiлiктi шарттары туралытеорема дәлелдендi.

Кiлттiк сөздер. Шеттiк есептер, кешiгулi аргументi бар теңдеу, оқшауланған шешiм.

Искакова Н.Б., Темешева С.М., Абильдаева А.Д. ОБ УСЛОВИЯХ РАЗРЕШИМОС-ТИ НЕЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХУРАВНЕНИЙ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ

В данной работе рассматривается краевая задача с существенно нелинейными двух-точечными граничными условиями для системы линейных дифференциальных уравне-ний с запаздывающим аргументом. Для исследования этой задачи используется методпараметризации Д.С. Джумабаева с модифицированным алгоритмом. Применение мето-да параметризации приводит к нелинейному операторному уравнению, которое решаетсяс помощью усиления более резкого варианта локальной теоремы Адамара. Доказана тео-рема о достаточных условиях существования изолированного решения задачи.

Ключевые слова. Краевые задачи, уравнение с запаздывающим аргументом, изоли-рованное решение.

Kazakh Mathematical Journal, 20:4 (2020) 58–73

Page 75: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 74–86

Parameterization method to solve problem withnon-separated multipoint-integral conditions for

high-order differential equations

Askarbek E. Imanchiyev1,2,a, Ayazhan A. Yermek1,3,b

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Zhubanov Aktobe Regional University, Aktobe, Kazakhstan3Al-Farabi Kazakh National University, Almaty, Kazakhstanae-mail: [email protected], be-mail: nis [email protected]

Communicated by: Anar Assanova

Received: 20.11.2020 ? Accepted/Published Online: 30.11.2020 ? Final Version: 15.12.2020

Abstract. Problem with non-separated multipoint-integral conditions for high-order differential equa-

tions is considered. Algorithms of the parametrization method are constructed and their convergence is

proved. Sufficient conditions for the unique solvability of considered problem are set.

Keywords. Non-separated multipoint-integral conditions, high-order differential equations, parameteri-

zation method, algorithm, solvability.

Dedicated to the bright memory of an outstanding scientist,Doctor of Physical and Mathematical Sciences, Professor,

our scientific supervisor Dzhumabaev Dulat Syzdykbekovich

1 Introduction

On [0, T ] consider boundary value problem with non-separated multipoint and integralconditions for higher order ordinary differential equations

dnu

dtn= a1(t)

dn−1u

dtn−1+ a2(t)

dn−2u

dtn−2+ a3(t)

dn−3u

dtn−3+ ...+ an−1(t)

du

dt+ an(t)u+ f(t), (1)

n−1∑j=0

m∑s=0

bkj,sdju(t)

dtj

∣∣∣t=ts

+

T∫0

n−1∑j=0

ckj (τ)dju(τ)

dτ jdτ = dk, k = 1, 2, ..., n, (2)

2010 Mathematics Subject Classification: 34A12; 34A30; 34A99; 34B10; 45D05.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08955461).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 76: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 75

where u(t) is unknown function, the functions ai(t), i = 1, n, and f(t) are continuous on[0, T ]; bkj,s are constants, the functions ckj (t) are continuous on [0, T ], dk are constants, where

k = 1, n, j = 0, n− 1, s = 0,m; 0 = t0 < t1 < ... < tm−1 < tm = T .

Let C([0, T ],R) be the space of continuous functions u : [0, T ]→ R with norm

||u||0 = maxt∈[0,T ]

|u(t)|.

A solution to problem (1), (2) is a function u(t) ∈ C([0, T ],R) with derivatives dlu(t)dtl∈

C([0, T ],R), l = 1, n, it satisfies the differential equation (1) for all t ∈ [0, T ] and multipoint-integral conditions (2).

Mathematical modeling of many processes of the theory of oscillations, the theory ofimpulse systems, and the theory of multi-support beams lead to problems with multipoint-integral conditions for differential equations of various orders [1-19]. Until recently, problemswith multipoint-integral conditions for systems of differential equations still remained lessexplored, since intermediate points of boundary conditions pose a number of serious difficul-ties, such as violation of the smoothness of the Green’s function, the absence of a conjugateproblem, etc. [1-19]. Therefore, the development of effective methods for solving the problemwith multipoint and integral conditions for systems of differential equations without usingthe fundamental matrix and Green’s function is of particular importance.

In [20], Professor D. S. Dzhumabaev proposed a parameterization method for solvingthe two-point boundary value problems for systems of ordinary differential equations. Thismethod, in addition to proving the unique solvability of the problem under study, also offersan algorithm for constructing an approximate solution that converges to its exact solution.Moreover, the solvability criteria for boundary value problems for systems of differentialequations are formulated in terms of the initial data, without using a fundamental matrix. In[21, 22], the parameterization method was developed for multipoint boundary value problemsfor systems of ordinary differential equations. The coefficient criteria for the well-posednessof a linear multipoint problem for a system of ordinary differential equations are obtained.These results were extended to nonlinear multipoint boundary value problems [23], and werealso applied to the Cauchy-Nicoletti problem [24], to multipoint problems for second-orderdifferential equations [25], to the Valle-Poussin [26] and the multipoint-integral problem forthird-order differential equations [27]. Based on the equivalence of the well-posedness of themultipoint problem for systems of hyperbolic equations with mixed derivatives and familiesof multipoint problems for systems of ordinary differential equations, criteria for the well-posedness of the original problem are established [28]. The results are extended to quasilinearsystems [29].

The goal of the present paper is to develop the parameterization method for investigatingand solving the problem with non-separated multipoint and integral conditions for higherorder ordinary differential equations (1), (2). Algorithms of the parameterization method areconstructed for finding solutions to this problem and their convergence is proved. Conditions

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 77: 20 4 MATHEMATICAL 20 JOURNAL

76 Askarbek E. Imanchiyev, Ayazhan A. Yermek

for the unique solvability of problems with non-separated multipoint-integral conditions forhigher order ordinary differential equations are established in terms of initial data.

Let’s give a scheme of method without partitioning of interval [0, T ].

2 Scheme of the parameterization method

Introduce the following notations:

u(0) = λ1,du(t)

dt

∣∣∣t=0

= λ2,d2u(t)

dt2

∣∣∣t=0

= λ3, ...,dn−1u(t)

dtn−1

∣∣∣t=0

= λn,

where λr are unknown parameters, r = 1, 2, ..., n.

And make the substitution

u(t) = u(t) + λ1,du(t)

dt=du(t)

dt+ λ2,

d2u(t)

dt2=d2u(t)

dt2+ λ3, ...,

dn−1u(t)

dtn−1=dn−1u(t)

dtn−1+ λn,

where u(t) is new unknown function.

Then, problem (1), (2) is reduced to the following problem with parameters:

dnu

dtn=

n∑i=1

ai(t)dn−iu

dtn−i+

n∑i=1

ai(t)λn+1−i + f(t), (3)

u(0) = λ1,du(t)

dt

∣∣∣t=0

= λ2,d2u(t)

dt2

∣∣∣t=0

= λ3, ...,dn−1u(t)

dtn−1

∣∣∣t=0

= λn, (4)

n−1∑j=0

m∑s=1

bkj,sdj u(t)

dtj

∣∣∣t=ts

+n−1∑j=0

m∑s=0

bkj,sλj+1 +

T∫0

n−1∑j=0

ckj (τ)dj u(τ)

dτ jdτ

+

n−1∑j=0

T∫0

ckj (τ)dτλj+1 = dk, k = 1, 2, ..., n. (5)

So, we obtain boundary value problem with parameters for higher order differential equation(3)-(5).

A solution to problem (3)-(5) is a pair (u(t), λ), where the function u(t) ∈ C([0, T ],R)

with derivatives dlu(t)dtl∈ C([0, T ],R), l = 1, n, parameter λ = (λ1, λ2, ..., λn)′, that satisfies

the higher order differential equation with parameters (3) for all t ∈ [0, T ], initial conditions(4) and multipoint-integral conditions (5).

At fixed values of parameters λr, r = 1, 2, ..., n, the problem (3), (4) is a Cauchy problemfor higher order ordinary differential equation. For determining unknown parameters λr,r = 1, 2, ..., n, we have equalities (5) consisting of multipoint-integral conditions.

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 78: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 77

The problems (1), (2) and (3)-(5) are equivalent in the following sense. If the functionu(t) is the solution of the problem (1), (2), then the pair (u(t), λ), where

u(t) = u(t)− u(0),du(t)

dt=du(t)

dt− du(t)

dt

∣∣∣t=0

,d2u(t)

dt2=d2u(t)

dt2− d2u(t)

dt2

∣∣∣t=0

, ...,

dn−1u(t)

dtn−1=dn−1u(t)

dtn−1− dn−1u(t)

dtn−1

∣∣∣t=0

, t ∈ [0, T ],

λ1 = u(0), λ2 =du(t)

dt

∣∣∣t=0

, λ3 =d2u(t)

dt2

∣∣∣t=0

, ..., λn =dn−1u(t)

dtn−1

∣∣∣t=0

,

will be a solution to problem (3)-(5).Conversely, if the pair (u(t), λ), where λ = (λ1, λ2, ..., λn)′ is the solution to problem

(3)-(5), then the function u(t) defined by the equalities:

u(t) = u(t) + λ1,du(t)

dt=du(t)

dt+ λ2,

d2u(t)

dt2=d2u(t)

dt2+ λ3, ...,

dn−1u(t)

dtn−1=dn−1u(t)

dtn−1+ λn,

will be a solution of original problem (1), (2).Let’s consider the Cauchy problem (3), (4).

Assumednu

dtnas unknown function and put

dnu

dtn= ϕ(t), t ∈ [0, T ]. (6)

Taking into account initial conditions (4), we get

u(t) =1

(n− 1)!

t∫0

(t− s)n−1ϕ(s)ds+tn−1

(n− 1)!λn +

tn−2

(n− 2)!λn−1 + ...+

t

1!λ2 + λ1. (7)

Differentiating it l times by t, we obtain

dlu(t)

dtl=

1

(n− l − 1)!

t∫0

(t−s)n−l−1ϕ(s)ds+tn−l−1

(n− l − 1)!λn+

tn−l−2

(n− l − 2)!λn−1+...+λl+1, (8)

l = 1, 2, ..., n− 1.Substituting obtained expressions in (3), we get Volterra integral equation of second kind

for ϕ(t):

ϕ(t) =

t∫0

K(t, s)ϕ(s)ds+ f(t) + F (t, λ), t ∈ [0, T ], (9)

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 79: 20 4 MATHEMATICAL 20 JOURNAL

78 Askarbek E. Imanchiyev, Ayazhan A. Yermek

where the kernel K(t, s) and function F (t, λ) are defined by expressions

K(t, s) = a1(t) + a2(t)(t− s)

1!+ a3(t)

(t− s)2

2!+ ...+ an(t)

(t− s)n−1

(n− 1)!, t, s ∈ [0, T ], (10)

F (t, λ) =n−1∑l=0

an−l(t)[ tn−l−1

(n− l − 1)!λn +

tn−l−2

(n− l − 2)!λn−1 + ...+ λl+1

]+

n∑i=1

ai(t)λn+1−i, (11)

t ∈ [0, T ], respectively.

The function F (t, λ) is continuous on [0, T ], also depends on the coefficients of equation(3) and given unknown parameters λr, r = 1, 2, ..., n.

Substituting the corresponding values of the function u(t) and its derivatives from theexpressions (7), (8) when t = ts, s = 1,m, t = τ , into (5), we get the following system of nequations with respect to unknown parameters λr:

n−1∑j=0

m∑s=1

bkj,s

tn−j−1s

(n− j − 1)!λn +

tn−j−2s

(n− j − 2)!λn−1 + ...+ λj+1

+

n−1∑j=0

m∑s=0

bkj,sλj+1

+

T∫0

n−1∑j=0

ckj (τ) τn−j−1

(n− j − 1)!λn +

τn−j−2

(n− j − 2)!λn−1 + ...+ λj+1

dτ +

n−1∑j=0

T∫0

ckj (τ)dτλj+1

= dk −n−1∑j=0

m∑s=1

bkj,s1

(n− j − 1)!

ts∫0

(ts − ss)n−j−1ϕ(s1)ds1

−T∫0

n−1∑j=0

ckj (τ)1

(n− j − 1)!

τ∫0

(τ − s)n−l−1ϕ(s)dsdτ, k = 1, 2, ..., n. (12)

Grouping the coefficients corresponding to the same parameters λr, r = 1, 2, ..., n, in theleft-hand sides of the algebraic equations (12), we shall compile (n × n) matrix Q(T ) andwrite down the system of algebraic equations (12) in the following form

Q(T )λ = d− Φ(ϕ, T ), (13)

where λ = (λ1, λ2, ..., λn)′, Φ(ϕ, T ) = (Φ1(ϕ, T ),Φ2(ϕ, T ), ...,Φn(ϕ, T ))′,

Φk(ϕ, T ) =n−1∑j=0

m∑s=1

bkj,s1

(n− j − 1)!

ts∫0

(ts − ss)n−j−1ϕ(s1)ds1

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 80: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 79

+

T∫0

n−1∑j=0

ckj (τ)1

(n− j − 1)!

τ∫0

(τ − s)n−l−1ϕ(s)dsdτ, k = 1, 2, ..., n.

The system of equations (13) allows us to define an unknown vector whose components arethe parameters λr, r = 1, 2, ..., n, through the integrals of the function ϕ. At fixed ϕ necessaryand sufficient condition for existing unique solution to system of algebraic equations (13) isthe invertibility of the matrix Q(T ).

Let’s suppose that the matrix Q(T ) is invertible. Then the vector λ is determined fromthe system of algebraic equations (13) as follows:

λ = [Q(T )]−1d− Φ(ϕ, T ).

An existence of the invertible matrix [Q(T )]−1 ensures compatibility of conditions (4) and(5).

This allows us to consider the problem (3), (4), (5) as a problem with initial and non-separated multipoint-integral conditions for the high-order ordinary differential equation,containing additional parameters.

3 Algorithm and conditions for its convergence

If the parameters are known λr, r = 1, 2, ..., n, from Volterra integral equation (9) we getthe function ϕ(t) for all t ∈ [0, T ]. Then, substituting of the parameters λr, r = 1, 2, ..., n,and found function ϕ(t) in the representations (7) and (8), we define the function u(t) andits derivatives for all t ∈ [0, T ]. Further, taking into account the following equalities

u(t) = u(t) + λ1,du(t)

dt=du(t)

dt+ λ2,

d2u(t)

dt2=d2u(t)

dt2+ λ3, ...,

dn−1u(t)

dtn−1=dn−1u(t)

dtn−1+ λn,

we find the solution of original problem (1), (2).

If a function ϕ(t) is known, from the system of algebraic equations (13) we define theparameters λr, r = 1, 2, ..., n. Then, substituting the function ϕ(t) and founded parametersλr, r = 1, 2, ..., n, into (7), (8), we determine the function u(t) and its derivatives for allt ∈ [0, T ]. So, summing up

u(t) = u(t) + λ1,du(t)

dt=du(t)

dt+ λ2,

d2u(t)

dt2=d2u(t)

dt2+ λ3, ...,

dn−1u(t)

dtn−1=dn−1u(t)

dtn−1+ λn,

we get the solution of original problem (1), (2).

Since, functions ϕ(t), u(t) and parameters λr are unknown, we use an iterative process forfinding solution of problem (3)-(5). The sequential approximations of the pairs (u(p)(t), λ(p))and ϕ(p)(t) are defined from the following algorithm.Step 0. 1) Solving the system of algebraic equations (13) for ϕ(t) = f(t), we get an initial

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 81: 20 4 MATHEMATICAL 20 JOURNAL

80 Askarbek E. Imanchiyev, Ayazhan A. Yermek

approximation λ(0) = (λ(0)1 , λ

(0)2 , ..., λ

(0)n )′. 2) Solving the integral equation (9) for λr = λ

(0)r ,

r = 1, 2, ..., n, we find ϕ(0)(t) for all t ∈ [0, T ]. 3) In (7) and (8) substituting ϕ(0)(t) and λ(0)r

instead of ϕ(t) and λr, r = 1, 2, ..., n, respectively, we determine the initial approximation

u(0)(t) and its derivatives dlu(0)(t)dtl

, l = 1, 2, ..., n− 1, for all t ∈ [0, T ].

Step 1. 1) Solving the system of algebraic equations (13) for ϕ(t) = ϕ(0)(t), we get a first

approximation λ(1) = (λ(1)1 , λ

(1)2 , ..., λ

(1)n )′. 2) Solving the integral equation (9) for λr = λ

(1)r ,

r = 1, 2, ..., n, we find ϕ(1)(t) for all t ∈ [0, T ]. 3) In (7) and (8) substituting ϕ(1)(t) and

λ(1)r instead of ϕ(t) and λr, r = 1, 2, ..., n, respectively, we determine the first approximation

u(1)(t) and its derivatives dlu(1)(t)dtl

, l = 1, 2, ..., n− 1, for all t ∈ [0, T ].

And so on.

Step p. 1) Solving the system of algebraic equations (13) for ϕ(t) = ϕ(p−1)(t), we get pth

approximation λ(p) = (λ(p)1 , λ

(p)2 , ..., λ

(p)n )′. 2) Solving the integral equation (9) for λr = λ

(p)r ,

r = 1, 2, ..., n, we find ϕ(p)(t) for all t ∈ [0, T ]. 3) In (7) and (8) substituting ϕ(p)(t) and

λ(p)r instead of ϕ(t) and λr, r = 1, 2, ..., n, respectively, we determine the pth approximation

u(p)(t) and its derivatives dlu(p)(t)dtl

, l = 1, 2, ..., n− 1 for all t ∈ [0, T ].

The condition for realizability of the algorithm is invertibility of matrix Q(T ). Now, it isimportant to find out the conditions of convergence of the proposed algorithm, which ensureuniform convergence sequence of pairs (u(p)(t), λ(p)) (and functions ϕ(p)(t)) to pair (u∗(t), λ∗)is a solution of problem (3)-(5) (and ϕ∗(t) is a solution of integral equation (9) for λr = λ∗r)as p→∞ for all t ∈ [0, T ]. Here p = 1, 2, ....

Consider problems (1), (2) and (3)-(5).

Let α = max(t,s)∈[0,T ]×[0,T ]

|K(t, s)|, βkj = maxt∈[0,T ]

|ckj (t)|, j = 0, n− 1, k = 1, n.

The following statement gives the conditions for convergence of algorithm proposed above,which at the same time guarantee the existence of a unique solution to problem (3)-(5).

Theorem 1. Let

1) the functions ai(t), f(t) and ckj (t) be continuous on [0, T ], where i, k = 1, n,

j = 0, n− 1, s = 0,m;

2) the (n× n) matrix Q(T ) be invertible and the following equalities are valid:a) ||[Q(T )]−1|| ≤ γ(T ), where γ(T ) is a positive constant;

b) q(T ) = γ(T ) ·(

maxk=1,n

n−1∑j=0

m∑s=1|bkj,s| 1

(n−j−1)!

[eαts − 1− αts − ...− (αts)n−j−1

(n−j−1)!

]+ maxk=1,n

Tn−1∑j=0

βkj

[eαT − 1− αT − ...− (αT )n−j−1

(n−j−1)!

])< 1.

Then, the sequential approximations u(p)(t), λ(p) and ϕ(p)(t), determined by the algorithm,converge uniformly to u∗(t), λ∗ and ϕ∗(t), respectively, as p→∞ for all t ∈ [0, T ]. Moreover,the pair (u∗(t), λ∗) is a unique solution to problem (3)-(5).

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 82: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 81

Proof of Theorem 1 is carried out according to the above algorithm.From the equivalence of problems (3)-(5) and (1), (2) it follows that the function

u∗(t) = u∗(t) + λ∗1, t ∈ [0, T ]

will be a solution of problem (1), (2).

Theorem 2. Let1) the functions ai(t), f(t) and ckj (t) are continuous on [0, T ], where i, k = 1, n,

j = 0, n− 1, s = 0,m;2) the (n× n) matrix Q(T ) be invertible and the inequalities a), b) of Theorem 1. hold.

Then the function u∗(t), defined as the sum of functions u∗(t) + λ∗1 for all t ∈ [0, T ] is aunique solution to problem (1), (2).

4 Main results

Consider problem (3)-(5) again. Let’s put

K1(t, s) = K(t, s), Kp(t, s) =

t∫s

K(t, η)Kp−1(η, s)dη, p = 2, 3, ....

The function Kp(t, s) is called mth iteration of the kernel K(t, s). If we denote by M thenorm of function |K(t, s)| on [0, T ]× [0, T ], then the following estimate is true:

|Kp(t, s)| ≤M|t− s|p−1

(p− 1)!, (t, s) ∈ [0, T ]× [0, T ].

Then the series Γ(t, s) =∞∑p=1

Kp(t, s) converges uniformly on [0, T ]× [0, T ] and integral equa-

tion (9) has a unique solution in the following form

ϕ(t) =

t∫0

Γ(t, s)f(s) + F (s, λ)ds+ f(t) + F (t, λ), t ∈ [0, T ]. (14)

Here Γ(t, s) is a resolvent of integral equation (9).Substituting the expression (14) instead of ϕ(t) into (7), we get a representation of desired

function u(t) in the following form

u(t) =1

(n− 1)!

t∫0

(t− s)n−1s∫

0

Γ(s, s1)f(s1)ds1ds+1

(n− 1)!

t∫0

(t− s)n−1f(s)ds

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 83: 20 4 MATHEMATICAL 20 JOURNAL

82 Askarbek E. Imanchiyev, Ayazhan A. Yermek

+1

(n− 1)!

t∫0

(t−s)n−1s∫

0

Γ(s, s1)

n−1∑l=0

an−l(s1)[ sn−l−11

(n− l − 1)!λn+

sn−l−21

(n− l − 2)!λn−1+ ...+λl+1

]

+

n∑i=1

ai(s1)λn+1−i

ds1ds+

1

(n− 1)!

t∫0

(t− s)n−1n−1∑l=0

an−l(s)[ sn−l−1

(n− l − 1)!λn

+sn−l−2

(n− l − 2)!λn−1 + ...+ λl+1

]+

n∑i=1

ai(s)λn+1−i

ds

+tn−1

(n− 1)!λn +

tn−2

(n− 2)!λn−1 + ...+

t

1!λ2 + λ1. (15)

Similarly, let’s define its derivatives by t:

dlu(t)

dtl=

1

(n− 1)!

t∫0

(t− s)n−l−1s∫

0

Γ(s, s1)f(s1)ds1ds+1

(n− 1)!

t∫0

(t− s)n−l−1f(s)ds

+1

(n− 1)!

t∫0

(t−s)n−l−1s∫

0

Γ(s, s1)

n−1∑l=0

an−l(s1)[ sn−l−11

(n− l − 1)!λn+

sn−l−21

(n− l − 2)!λn−1+...+λl+1

]

+

n∑i=1

ai(s1)λn+1−i

ds1ds+

1

(n− 1)!

t∫0

(t− s)n−l−1n−1∑l=0

an−l(s)[ sn−l−1

(n− l − 1)!λn

+sn−l−2

(n− l − 2)!λn−1 + ...+ λl+1

]+

n∑i=1

ai(s)λn+1−i

ds

+tn−l−1

(n− l − 1)!λn +

tn−l−2

(n− l − 2)!λn−1 + ...+ λl+1, l = 1, n− 1. (16)

Thus, the desired function u(t) and its derivatives are clearly expressed through the enteredunknown parameters λr, r = 1, 2, ..., n. Substituting the corresponding values of the functionu(t) and its derivatives from the expressions (15), (16), when t = ts, s = 1,m, t = τ , into(5), we obtain the following system of n equations with respect to unknown parameters λr:

Q∗(T )λ = F∗(f, T ). (17)

Lemma 1. Let the functions ai(t), f(t) and ckj (t) be continuous on [0, T ], where i, k = 1, n,

j = 0, n− 1, s = 0,m.Then the following assertions hold:

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 84: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 83

(i) the vector λ∗ = (λ∗1, λ∗2, ..., λ

∗n)′, consisting of the values of the solution u∗(t) and its

derivatives dlu∗(t)dtl

, l = 1, n− 1, to problem (1), (2) at the point t = 0:

λ∗1 = u∗(0), λ∗2 =du∗(t)

dt

∣∣∣t=0

, λ∗3 =d2u∗(t)

dt2

∣∣∣t=0

, ..., λ∗n−1 =dn−2u∗(t)

dtn−2

∣∣∣t=0

, λ∗n =dn−1u∗(t)

dtn−1

∣∣∣t=0

,

satisfies system (17);

(ii) the function u∗∗(t) and its derivatives dlu∗∗(t)dtl

, l = 1, n− 1, defined by the equalities:

u∗∗(t) = λ∗∗1 + u∗∗(t),du∗∗(t)

dt= λ∗∗2 +

du∗∗(t)

dt,

d2u∗∗(t)

dt2= λ∗∗3 +

d2u∗∗(t)

dt2,

...,dn−2u∗∗(t)

dtn−1= λ∗∗n−1 +

dn−2u∗∗(t)

dtn−2,

dn−1u∗∗(t)

dtn−1= λ∗∗n +

dn−1u∗∗(t)

dtn−1, t ∈ [0, T ],

where λ∗∗ = (λ∗∗1 , λ∗∗2 , ..., λ

∗∗n )′ solves system (17) and the function u∗∗(t) solves the Cauchy

problem (3), (4) for λr = λ∗∗r , and r = 1, n, is a solution to problem (1), (2).

The existence of invertible matrix [Q∗(T )]−1 ensures compatibility of conditions (4) and(5). It allows us to consider problem (3)-(5) as problem with non-separated multipoint-integral conditions for high-order ordinary differential equation, containing additional pa-rameters. By substituting the components λr, r = 1, 2, ..., n, of obtained vector λ into theexpression (2), we get representation of the desired solution of the problem (1), (2). From theabove statement, it follows the next statement, which is setting sufficient conditions for theexistence of a unique solution of problem with non-separated multipoint-integral conditionsfor high-order ordinary differential equation (1), (2).

Theorem 3. Let

1) the functions ai(t), f(t) and ckj (t) be continuous on [0, T ], where i, k = 1, n,

j = 0, n− 1, s = 0,m;

2) the (n× n) matrix Q∗(T ) be invertible.Then the problem with non-separated multipoint-integral conditions for high-order ordinarydifferential equation (1), (2) has a unique solution.

Thus, the conditions for the unique solvability of problem (1), (2) are given in the termsof the matrix Q∗(T ), which is constructed by using of a resolvent Γ(t, s) of Volterra integralequation of second kind (9). The kernel and right-hand side of the integral equation (9) aredefined by the coefficients of the differential equation (1) and the non-separated multipoint-integral condition (2). It allows us to state that conditions for the solvability of the problem(1), (2) are set in the terms of the initial data. The solution of the integral equation (9) is animportant issue and the construction of its approximate solutions relies on the calculation ofiterative kernel Kp(t, s).

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 85: 20 4 MATHEMATICAL 20 JOURNAL

84 Askarbek E. Imanchiyev, Ayazhan A. Yermek

References

[1] Samoilenko A.M., Laptinsky V.N., and Kenzhebaev K. Constructive methods in the investiga-tion of periodic and multipoint boundary-value problems, Proceeding of Institute of Mathematics ofNAS of Ukraine. Mathematics and Its Applications, Vol. 29. Kiev, 1999 (in Russian).

[2] Ronto M. and Samoilenko A.M. Numerical-analytic methods in the theory of boundary-valueproblems, Singapore: World Scientific, 2000.

[3] Pokornyi Yu.V. Zeros of the Green’s function for the de la Vall?e-Poussin problem, Sbornik:Mathematics, 199:6 (2008), 891-921.

[4] Feng H., Ge W. Existence of three positive solutions for m-point boundary-value problems withone-dimensional p-Laplacian, Nonlinear Analysis, 68 (2008), 2017-2026.

[5] Boucherif A., Bouguima S.M., Al-Malki N., Benbouziane Z. Third order differential equationswith integral boundary conditions, Nonlinear Analysis, 71 (2009), 1736-1743.

[6] Zhao J., Wang L., Ge W. Necessary and sufficient conditions for the existence of positivesolutions of fourth order multi-point boundary value problems, Nonlinear Analysis, 72 (2010), 822-835.

[7] Zhao J., Wang P., Ge W. Existence and nonexistence of positive solutions for a class of thirdorder BVP with integral boundary conditions in Banach spaces, Commun. Nonlinear Sci. Numer.Simulat., 16 (2011), 402-413.

[8] Henderson J. Existence and uniqueness of solutions of (k+2)-point nonlocal boundary valueproblems for ordinary differential equations, Nonlinear Analysis, 74 (2011), 2576-2584.

[9] Ahmad B., Nieto J.J., Alsaedi A. Existence and uniqueness of solutions for nonlinear frac-tional differential equations with non-separated type integral boundary conditions, Acta MathematicaScientia, 31:6 (2011), 2122-2130.

[10] Henderson J., Luca R. On a system of second-order multi-point boundary value problems, Ap-plied Mathematics Letters, 25:12 (2012), 2089-2094.

[11] Doha E.H., Bhrawy A.H., Hafez R.M. On shifted Jacobi spectral method for high-order multi-point boundary value problems, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 3802-3810.

[12] Dominguez-Perez M.A., Rodriguez-Lopez R. Multipoint boundary value problems of Neumanntype for functional differential equations, Nonlinear Analysis: Real World Applications, 13 (2012),1662-1675.

[13] Nieto J.J., Rodriguez-Lopez R. Green’s function for first-order multipoint boundary value prob-lems and applications to the existence of solutions with constant sign, J. Math. Anal. Appl., 388(2012), 952-963.

[14] Aida-zade K.R., Abdullaev V.M. On the solution of boundary value problems with nonseparatedmultipoint and integral conditions, Differential Equations, 49:9 (2013), 1114-1125.

[15] Jankowski T. Nonnegative solutions to nonlocal boundary value problems for systems of second-order differential equations dependent on the first-order derivatives, Nonlinear Analysis: Theory, Meth-ods & Applications, 87 (2013), 83-101.

[16] Abdullaev V.M. and Aida-Zade K.R. Numerical method of solution to loaded nonlocal boundaryvalue problems for ordinary differential equations, Computational Mathematics and MathematicalPhysics, 54:7 (2014), 1096-1109.

[17] Kiguradze I.T. Nonlinear nonlocal problems for second-order differential equations singular withrespect to the phase variable, Differential Equations, 50:8 (2014), 1018-1034.

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 86: 20 4 MATHEMATICAL 20 JOURNAL

Parameterization method to solve problem with non-separated multipoint-integral ... 85

[18] Zhong X.-Ci, Huang Q.-Ao Approximate solution of three-point boundary value problems forsecond-order ordinary differential equations with variable coefficients, Applied Mathematics and Com-putation, 247 (2014), 18-29.

[19] Abramov A.A. and Yukhno L.F. Solving a system of linear ordinary differential equations withredundant conditions, Computational Mathematics and Mathematical Physics, 54:4 (2014), 598-603.

[20] Abramov A.A. and Yukhno L.F. A solution method for a nonlocal problem for a system oflinear differential equations, Computational Mathematics and Mathematical Physics, 54:11 (2014),1686-1689.

[21] Reutskiy S.Yu. A method of particular solutions for multi-point boundary value problems, Ap-plied Mathematics and Computation, 243 (2014), 559-569.

[22] Xu M.Q., Lin Y.Z., Wang Y.H. A new algorithm for nonlinear fourth order multi-point boundaryvalue problems, Applied Mathematics and Computation, 274 (2016), 163-168.

[23] Abramov A.A. and Yukhno L.F. Associated functions of a nonlinear spectral problem for asystem of ordinary differential equations, Differential Equations, 52:7 (2016), 836-844.

[24] Bica A.M., Curila M., Curila S. Two-point boundary value problems associated to functionaldifferential equations of even order solved by iterated splines, Applied Numerical Mathematics, 110(2016), 128-147.

[25] Aida-zade K.R., Abdullayev V.M. Solution to a class of inverse problems for a system of loadedordinary differential equations with integral conditions, J. Inverse Ill-Posed Probl., 24:5 (2016), 543-558.

[26] Ahmad B., Ntouyas S.K., Alsaedi A. Sequential fractional differential equations and inclusionswith semi-periodic and nonlocal integro-multipoint boundary conditions, J. King Saud University -Science, 31 (2019), 184-193.

[27] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for anordinary differential equation, U.S.S.R. Comput. Maths. Math. Phys., 29 (1989), 34-46.

[28] Imanchiev A.E. Necessary and sufficient conditions of unique solvability to linear multipointboundary value problem, News of the MES RK, NAS RK. Series Physico-Mathematical, 3 (2002),79-84 (in Russian).

[29] Dzhumabaev D.S., Imanchiev A.E. Well-posed solvability to linear multipoint boundary valueproblem, Mathematical Journal, 5:1 (2005), 30-38 (in Russian).

[30] Dzhumabaev D.S., Imanchiev A.E. Criteria of an existence izolated solution to multipointboundary value problem for system of ordinary differential equations, News of the NAS RK. SeriesPhysico-Mathematical, 3 (2010), 117-121 (in Russian).

[31] Imanchiev A.E. A solvability Cauchy-Nikoletti problem for ordinary differential equation, Math-ematical Journal, 10:3 (2010), 41-50 (in Russian).

[32] Asanova A.T., Imanchiev A.E. On the solvability of three-point boundary value problem forsecond order differential equation, News of the NAS RK. Series Physico-Mathematical, 2:300 (2015),50-55 (in Russian).

[33] Asanova A.T., Imanchiev A.E. About solvability to Vallee-Poussin family boundary value prob-lems for ordinary differential equations, Mathematical Journal, 15:3 (2015), 17-28 (in Russian).

[34] Assanova A.T., Imanchiev A.E. Solvability of multipoint-integral boundary value problem fora third-order differential equation and parametrization method, Springer Proceedings in Mathematics& Statistics, Eds.: Kalmenov T.S., Nursultanov E.D., Ruzhansky M.V., Sadybekov M.A., Springer,2016 (2017), 113-122.

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 87: 20 4 MATHEMATICAL 20 JOURNAL

86 Askarbek E. Imanchiyev, Ayazhan A. Yermek

[35] Asanova A.T. Multipoint problem for a system of hyperbolic equations with mixed derivative, J.Math. Sciences (United States), 212:3 (2016), 213-233.

[36] Assanova A.T., Imanchiev A.E. On conditions of the solvability of nonlocal multi-point boundary

value problems for quasilinear systems of hyperbolic equations, Eurasian Math. J., 6:4 (2015), 19-28.

Иманчиев А.Е., Ермек А.А. ЖОҒАРЫ РЕТТI ДИФФЕРЕНЦИАЛДЫҚ ТЕҢ-ДЕУЛЕР ҮШIН БӨЛIНБЕГЕН КӨПНҮКТЕЛI-ИНТЕГРАЛДЫҚ ШАРТТАРЫ БАРЕСЕПТЕРДI ШЕШУДIҢ ПАРАМЕТРЛЕУ ӘДIСI

Жоғары реттi дифференциалдық теңдеулер үшiн бөлiнбеген көпнүктелi-интегралдықшарттары бар есеп қарастырылды. Параметрлеу әдiсiнiң алгоритмдерi құрылды жәнеолардың жинақтылығы дәлелдендi. Зерттелiп отырған есептiң бiрмәндi шешiлiмдiлiгiнiңжеткiлiктi шарттары орнатылды.

Кiлттiк сөздер. Бөлiнбеген көпнүктелi-интегралдық шарттар, жоғары реттi диффе-ренциалдық теңдеулер, параметрлеу әдiсi, алгоритм, шешiлiмдiлiк.

Иманчиев А.Е., Ермек А.А. МЕТОД ПАРАМЕТРИЗАЦИИ РЕШЕНИЯ ЗАДАЧ СНЕРАЗДЕЛЕННЫМИ МНОГОТОЧЕЧНО-ИНТЕГРАЛЬНЫМИ УСЛОВИЯМИ ДЛЯДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВЫСОКОГО ПОРЯДКА

Рассмотрена задача с неразделенными многоточечно-интегральными условиями длядифференциальных уравнений высокого порядка. Построены алгоритмы метода пара-метризации и доказана их сходимость. Установлены достаточные условия однозначнойразрешимости исследуемой задачи.

Ключевые слова. Неразделенные многоточечно-интегральные условия, дифференци-альные уравнения высокого порядка, метод параметризации, алгоритм, разрешимость.

Kazakh Mathematical Journal, 20:4 (2020) 74–86

Page 88: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 87–97

New general solution of second order differentialequation with piecewise-constant argument ofgeneralized type and its application for solving

boundary value problems

Anar T. Assanova1,a

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstana e-mail: [email protected]

Communicated by: Marat Tleubergenov

Received: 02.12.2020 ? Accepted/Published Online: 10.12.2020 ? Final Version: 19.12.2020

Abstract. We consider second order differential equation with piecewise-constant argument of gener-

alized type. An interval is divided into N parts, the values of a solution at the interior points of the

subintervals are considered as additional parameters, and an ordinary differential equation with piecewise-

constant argument of generalized type is reduced to the Cauchy problems on the subintervals for second

order linear differential equations with parameters. Using the solutions to these problems, new general

solutions to second order differential equations with piecewise-constant argument of generalized type are

introduced and their properties are established. Based on the general solution, boundary condition, and

continuity conditions of a solution at the interior points of the partition, the system of linear algebraic

equations with respect to parameters is composed. Its coefficients and right hand sides are found by

solving the Cauchy problems for linear ordinary differential equations on the subintervals. It is shown

that the solvability of boundary value problems is equivalent to the solvability of systems composed.

Methods for solving boundary value problems are proposed, which are based on the construction and

solving of these systems.

Keywords. Differential equations with piecewise-constant argument of generalized type, ∆N general

solution, two-point boundary value problem, solvability criteria, algorithms of parameterization method.

Dedicated to the memory of Professor Dulat Dzhumabaev

1 Introduction

2010 Mathematics Subject Classification: 45J05; 45J99; 34K28; 34K05; 34K10.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08855726).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 89: 20 4 MATHEMATICAL 20 JOURNAL

88 Anar T. Assanova

On [0, T ] consider two-point boundary value problem for second order differential equationwith piecewise-constant argument of generalized type

x = a1(t)x(t) + a2(t)x(t) + a3(t)x(γ(t)) + a4(t)x(γ(t)) + f(t), (1)

b11x(0) + b21x(0) + c11x(T ) + c21x(T ) = d1, (2)

b12x(0) + b22x(0) + c12x(T ) + c22x(T ) = d2, (3)

where x(t) is unknown function, the functions ai(t), i = 1, 4, and f(t) are continuous on[0, T ]; γ(t) = ζj if t ∈ [θj , θj+1), j = 0, N − 1; θj ≤ ζj ≤ θj+1 for all j = 0, 1, ..., N − 1;0 = θ0 < θ1 < ... < θN−1 < θN = T , bsp, csp and ds are constants, where s, p = 1, 2;‖x‖ = max

i=1,n|xi|.

A function x(t) is a solution to problem (1)-(3) if:(i) x(t) is continuously differentiable on [0, T ];(ii) the second derivative x(t) exists at each point t ∈ [0, T ] with the possible exception of

the points θj , j = 0, N − 1, where the one-sided derivatives exist; (iii) equation (1) is satisfiedfor x(t) on each interval (θj , θj+1), j = 0, N − 1, and it holds for the right second derivativeof x(t) at the points θj , j = 0, N − 1;

(iv) boundary conditions (2), (3) are satisfied for x(t) and x(t) at the points t = 0, t = T .Differential equations with piecewise-constant argument of generalized type (DEPCAG)

are introduced in the works [1-3].Examples of the applications of these equations to the various problems have been under

intensive investigation for the last decades.Along with the study of various properties of differential equations with piecewise-constant

argument, a number of authors investigated the questions of solvability and construction ofsolutions to boundary value problems for these equations on a finite interval. Particularattention was paid to periodic and multipoint boundary value problems for second order dif-ferential equations with piecewise-constant argument due to their wide application in naturalsciences and engineering [4-15].

The aim of the present paper is to develop a constructive method for investigating andsolving the boundary value problem, including an algorithm for finding a solution to problem(1), (2), (3) as well.

To this end, we use a new concept of general solution and parametrization’s method[16]. This concept of general solution has been introduced for the linear Fredholm integro-differential equation in [17] and for the linear loaded differential equation and a family ofsuch equations in [18, 19]. New general solutions are also introduced to ordinary differentialequations and their properties are established in [20]. Results are developed to nonlinearFredholm integro-differential equations [21]. Based on the general solution methods for solv-ing boundary value problems are proposed.

The paper is organized as follows.

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 90: 20 4 MATHEMATICAL 20 JOURNAL

New general solution of second order differential equation with piecewise-constant argument ...89

The interval [0, T ] is divided into N parts according to the partition ∆N : θ0 = 0 <θ1 < θ2 < ... < θN = T , and the ∆N general solution to a linear second order differentialequation with piecewise-constant argument of generalized type is introduced. The ∆N generalsolution, denoted by x(∆N , t, λ), contains an arbitrary vectors λ = (λ1, λ2, ..., λN ) ∈ R2N .Using x(∆N , t, λ), we establish solvability criteria of considered problem and propose analgorithm for finding its solution.

At first, we reduce the problem for second order ordinary differential equation withpiecewise-constant argument of generalized type (1)-(3) to a problem for system of two dif-ferential equations with piecewise-constant argument of generalized type.

For this we introduce a new functions u(1)(t) = x(t), u(2)(t) = x(t), t ∈ [0, T ], andrewrite problem (1)-(3) in the following form

du

dt= A(t)u(t) +A0(t)u(γ(t)) + g(t), t ∈ [0, T ], (4)

Bu(0) + Cu(T ) = d, (5)

where u(t) = col(u(1)(t), u(2)(t)) is unknown 2 dimensional vector function,

A(t) =

(0 1

a2(t) a1(t)

), A0(t) =

(0 0

a4(t) a3(t)

), g(t) =

(0f(t)

),

B =

(b21 b11b22 b12

), C =

(c21 c11c22 c12

), d =

(d1d2

).

A vector function u(t) = col(u(1)(t), u(2)(t)) is a solution to problem (4), (5) if:(i) u(t) is continuous on [0, T ];(ii) the derivative x(t) exists at each point t ∈ [0, T ] with the possible exception of the

points θj , j = 0, N − 1, where the one-sided derivatives exist;(iii) equation (4) is satisfied for u(t) on each interval (θj , θj+1), j = 0, N − 1, and it holds

for the right derivative of u(t) at the points θj , j = 0, N − 1;(iv) boundary condition (5) is satisfied for u(t) at the points t = 0, t = T .

2 Scheme of the method and properties of new general solution

Denote by ∆N a partition of the interval [0, T ):

[0, T ) =N⋃r=1

[θr−1, θr) by lines t = θj , j = 1, N − 1.

LetC([0, T ],R2) be the space of continuous functions z : [0, T ]→ R2 with norm‖z‖1 = max

t∈[0,T ]||z(t)|| = max

t∈[0,T ]maxi=1,2

|zi(t)|;

C([0, T ],∆N ,R2N ) be the space of functions systems z[t] = (z1(t), z2(t), . . . , zN (t))′, where

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 91: 20 4 MATHEMATICAL 20 JOURNAL

90 Anar T. Assanova

zr : [θr−1, θr) → R2 are continuous and have finite left-hand side limits limt→θr−0

zr(t) for all

r = 1, N with norm ‖z[·]‖2 = maxr=1,N

supt∈[θr−1,θr)

|zr(t)|.

Denote by ur(t) a restriction of function u(t) on r-th interval [θr−1, θr), i.e.

ur(t) = u(t) for t ∈ [θr−1, θr), r = 1, N.

Then the function system u[t] = (u1(t), u2(t), . . . , uN (t)) belongs to C([0, T ],∆N ,R2N ),and its elements ur(t), r = 1, N, satisfy the following system of two ordinary differentialequations with piecewise-constant argument of generalized type

durdt

= A(t)ur(t) +A0(t)ur(ζr−1) + g(t), t ∈ [θr−1, θr), r = 1, N. (6)

In (6) we take into account that γ(t) = ζj if t ∈ [θj , θj+1), j = 0, N − 1.Introduce an additional parameters λr = ur(ζr−1) for all r = 1, N. Making the

substitution zr(t) = ur(t)− λr on every r-th interval [θr−1, θr), we obtain the system of twoordinary differential equations with parameters

dzrdt

= A(t)(zr(t) + λr) +A0(t)λr + g(t), t ∈ [θr−1, θr), r = 1, N, (7)

and initial conditionszr(ζr−1) = 0, r = 1, N. (8)

Problems (7), (8) are Cauchy problems for system of two ordinary differential equationswith parameters on the intervals [θr−1, θr), r = 1, N . For any fixed λr ∈ R2 and r, theCauchy problem (7), (8) has a unique solution zr(t, λr), and the function system z[t, λ] =(z1(t, λ1), z2(t, λ2), . . . , zN (t, λN )) belongs to C([0, T ],∆N ,R2N ).

The function system z[t, λ] is referred to as a solution to the Cauchy problems withparameters (7), (8). If a function system u[t] = (u1(t), u2(t), ..., uN (t)) belongs toC([0, T ],∆N ,R2N ), and the functions ur(t), r = 1, N, satisfy equations (6), then the func-tion system z[t, λ] = (z1(t, λ1), z2(t, λ2), ..., zN (t, λN )) with the elements zr(t, λr) = ur(t) −λr, λr = ur(ζr−1), r = 1, N, is a solution to the Cauchy problems with parameters(7), (8) for λr = λr, r = 1, N. Conversely, if a function system z[t, λ∗] = (z1(t, λ

∗1), z2(t, λ

∗2),

. . . , zN (t, λ∗N )) is a solution to problems (7), (8) for λr = λ∗r , r = 1, N, then the functionsystem u∗[t] = (u∗1(t), u

∗2(t), . . . , u

∗N (t)) with u∗r(t) = λ∗r + zr(t, λ

∗r), r = 1, N, belongs to

C([0, T ],∆N ,R2N ), and the functions u∗r(t), r = 1, N, satisfy equations (6).Let us now introduce a new general solution to the system of two ordinary differential

equations with piecewise-constant argument of generalized type (4).

Definition 1. Let z[t, λ] = (z1(t, λ1), z2(t, λ2), . . . , zN (t, λN )) be the solution to theCauchy problems (7), (8) for the parameters λ = (λ1, λ2, ..., λN ) ∈ R2N . Then the functionu(∆N , t, λ), given by the equalities

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 92: 20 4 MATHEMATICAL 20 JOURNAL

New general solution of second order differential equation with piecewise-constant argument ...91

u(∆N , t, λ) = λr + zr(t, λr), for t ∈ [θr−1, θr), r = 1, N, and

u(∆N , T, λ) = λN + limt→T−0

zN (t, λN ),

is called the ∆N general solution to equation (4).

As follows from Definition 1, the ∆N general solution depends on N arbitrary vectorsλr ∈ R2 and satisfies equation (4) for all t ∈ (0, T )\θp, p = 1, N − 1.

Note that the first component of function u(∆N , t, λ): function u(1)(∆N , t, λ) equals tox(∆N , t, λ). And function x(∆N , t, λ) is a ∆N general solution to equation (1) and dependson 2N arbitrary constants λ(1),r, λ(2),r ∈ R, where λr = (λ(1),r, λ(2),r) ∈ R2, r = 1, N .

Take Xr(t), a fundamental matrix of the ordinary differential equation

dzrdt

= A(t)zr(t), t ∈ [θr−1, θr], r = 1, N,

and write down the solutions to the Cauchy problems with parameters (7), (8) in the form:

zr(t) = Xr(t)

t∫ζr−1

X−1r (τ)[A(τ) +A0(τ)]dτλr +Xr(t)

t∫ζr−1

X−1r (τ)g(τ)dτ,

t ∈ [θr−1, θr), r = 1, N.

Consider the Cauchy problems on the subintervals

du

dt= A(t)u+ P (t), u(ζr−1) = 0, t ∈ [θr−1, θr], r = 1, N, (9)

where P (t) is a square matrix or a vector of dimension 2, continuous on [0, T ], θr−1 ≤ ζr−1≤ θr for all r = 1, 2, ..., N . Denote by Ar(P, t) a unique solution to the Cauchy problem(9) on each r-th interval. The uniqueness of the solution to the Cauchy problem for linearordinary differential equations yields

Ar(P, t) = Xr(t)

t∫ζr−1

X−1r (τ)P (τ)dτ, t ∈ [θr−1, θr], r = 1, N.

Therefore, we can represent the ∆N general solution to equation (4) in the form:

u(∆N , t, λ) = λp +Ap(A+A0, t)λp +Ap(g, t), t ∈ [θp−1, θp), p = 1, N − 1, (10)

u(∆N , t, λ) = λN +AN (A+A0, t)λN +AN (g, t), t ∈ [θN−1, θN ]. (11)

The following statement justifies the function u(∆N , t, λ) as a ”general solution”.

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 93: 20 4 MATHEMATICAL 20 JOURNAL

92 Anar T. Assanova

Theorem 1. Let a piecewise continuous on [0, T ] function u(t) with the possible discon-tinuity points t = θp, p = 1, N − 1, be given, and u(∆N , t, λ) be the ∆N general solution toequation (4). Suppose that the function u(t) has a continuous derivative and satisfies equation(4) for all t ∈ (0, T )\θp, p = 1, N − 1. Then there exists a unique λ = (λ1, λ2, ..., λN ) ∈ R2N

such that the equality u(∆N , t, λ) = u(t) holds for all t ∈ [0, T ].

We omit the proof of this theorem which is quite straightforward.

Corollary 1. Let u∗(t) be a solution to equation (4) and u(∆N , t, λ) be the ∆N generalsolution to equation (4). Then there exists a unique λ∗ = (λ∗1, λ

∗2, . . . , λ

∗N ) ∈ R2N such that

the equality u(∆N , t, λ∗) = u∗(t) holds for all t ∈ [0, T ].

If u(t) is a solution to equation (4), and u[t] = (u1(t), u2(t), ..., uN (t)) is a function systemcomposed of its restrictions to the subintervals [θr−1, θr), r = 1, N, then the equations

limt→θp−0

up(t) = up+1(θp), p = 1, N − 1, (12)

hold. These equations are the continuity conditions for the solution and its first derivativeto equation (4) at the interior points of the partition ∆N .

Theorem 2. Let a function system u[t] = (u1(t), u2(t), ..., uN (t)) belong toC([0, T ],∆N ,R2N ). Assume that the functions ur(t), r = 1, N, satisfy equations (6) andcontinuity conditions (12). Then the function u∗(t), given by the equalitiesu∗(t) = ur(t) for t ∈ [θr−1, θr), r = 1, N, and u∗(T ) = lim

t→T−0uN (t), is continuous on

[0, T ], continuously differentiable on (0, T ) and satisfies equation (4).

Proof. Equations (12), the equality u∗(T ) = limt→T−0

uN (t), and belonging of u[t] =

(u1(t), u2(t), ..., uN (t)) to C([0, T ],∆N ,R2N ) provide continuity of the function u∗(t) on theinterval [0, T ]. Since the functions ur(t), r = 1, N , satisfy equations (6), the function u∗(t) hascontinuous derivative and satisfies equation (4) for all t ∈ [0, T ]\θp, p = 1, N − 1. The exis-tence and continuity of the derivative of the function u∗(t) at the points t = θp, p = 1, N − 1,follow from the relations:

limt→θp−0

u∗(t) = A(θp)u∗(θp) +A0(θp)u

∗(ζp−1) + g(θp) = limt→θp+0

u∗(t), p = 1, N − 1.

Hence the function u∗(t) satisfies equation (4) at the interior points of the partition ∆N aswell. Theorem 2 is proved.

3 Main results

The ∆N general solution allows us to reduce the solvability of a boundary value problemto the solvability of a system of linear algebraic equations with respect to arbitrary vectorsλr ∈ R2, r = 1, N .

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 94: 20 4 MATHEMATICAL 20 JOURNAL

New general solution of second order differential equation with piecewise-constant argument ...93

Substituting the suitable expressions of ∆N general solution (10), (11) into the bound-ary condition (5) and continuity conditions (12), we obtain the system of linear algebraicequations

Bλ1 +BA1(A+A0, θ0)λ1 +CλN +CAN (A+A0, T )λN = d−BA1(g, θ0)−CAN (g, T ), (13)

λp +Ap(A, θp)λp − λp+1 −Ap+1(A+A0, θp)λp+1 = −Ap(g, θp) +Ap+1(g, θp), p = 1, N − 1.(14)

Denote by Q∗(∆N ) 2N × 2N matrix corresponding to the left-hand side of system (12), (13)and write the system as

Q∗(∆N )λ = −F∗(∆N ), λ ∈ R2N , (15)

where F∗(∆N ) =(−d + BA1(g, θ0) + CAN (g, T ), A1(g, θ1) − A2(g, θ1), A2(g, θ2) +

A3(g, θ2), ..., AN−1(g, θN−1) +AN (g, θN−1))∈ R2N .

For any partition ∆N , Theorems 1 and 2 provide the validity of the following statement.Lemma 1. If u∗(t) is a solution to problem (4), (5) and λ∗r = u∗(ζr−1), r =

1, N , then the vector λ∗ = (λ∗1, λ∗2, . . . , λ

∗N ) ∈ R2N is a solution to system (15). Con-

versely, if λ = (λ1, λ2, . . . , λN ) ∈ R2N is a solution to system (15) and z[t, λ] =(z1(t, λ1), z2(t, λ2), . . . , zN (t, λN )) is the solution to Cauchy problems (7), (8) for the parame-ter λ ∈ R2N , then the function u(t) given by the equalities u(t) = λr + zr(t, λr), t ∈ [θr−1, θr),r = 1, N, and u(T ) = λN + lim

t→T−0zN (t, λN ), is a solution to problem (4), (5).

Definition 2. The boundary value problem (4), (5) is called uniquely solvable if for anypair (g(t), d), with g(t) ∈ C([0, T ],R2) and d ∈ R2, it has a unique solution.

Lemma 1 and well known theorems of linear algebra imply the following two assertions.

Theorem 3. The boundary value problem (4), (5) is solvable if and only if the vectorF∗(∆N ) is orthogonal to the kernel of the transposed matrix (Q∗(∆N ))

′, i.e. iff the equality

(F∗(∆N ), η) = 0

is valid for all η ∈ Ker(Q∗(∆N ))′, where (·, ·) is the inner product in R2N .

Theorem 4. The boundary value problem (4), (5) is uniquely solvable if and only if2N × 2N matrix Q∗(∆N ) is invertible.

Based on the results of Section 2, we propose the following algorithm for finding a solutionto the linear boundary value problem (4), (5).

Step 1. Solve the Cauchy problems on the subintervals

dz

dt= A(t)z +A(t) +A0(t), z(ζr−1) = 0, t ∈ [θr−1, θr],

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 95: 20 4 MATHEMATICAL 20 JOURNAL

94 Anar T. Assanova

dz

dt= A(t)z + g(t), z(ζr−1) = 0, t ∈ [θr−1, θr],

and find Ar(A + A0, θr) and Ar(g, θr), r = 1, N . Here θr−1 ≤ ζr−1 ≤ θr for all r =1, 2, ..., N .

Step 2. Using found matrices and vectors compose the system of linear algebraic equa-tions (15).

Step 3. Solve the composed system and find λ∗ = (λ∗1, λ∗2, . . . , λ

∗N ) ∈ R2N . Note that the

elements of λ∗ are the values of the solution to problem (4), (5) at the interior points of thesubintervals: λ∗r = u∗(ζr−1), r = 1, N .

Step 4. Solve the Cauchy problems

dz

dt= A(t)z + g(t), z(ζr−1) = λ∗r , t ∈ [θr−1, θr),

and define the values of the solution u∗(t) at the remaining points of the subintervals.

First component of the function u∗(t): function u∗(1)(t) equals to x∗(t) and is a solution

to original problem (1)-(3).

As it follows from Lemma 1, any solution to system (15) determines the values of thesolution to problem (4), (5) at the beginning points of the subintervals.

The accuracy of the algorithm proposed depends on the accuracy of computing the coef-ficients and right-hand sides of system (15).

The Cauchy problem for ordinary differential equation is the main auxiliary problem inthe algorithm proposed. By choosing an approximate method for solving that problem, weget an approximate method for solving the boundary value problem (4), (5). Solving theCauchy problems by numerical methods leads to the numerical methods for solving problem(4), (5).

References

[1] Akhmet M.U. On the reduction principle for differential equations with piecewise-constantargument of generalized type, J. Math. Anal. Appl., 336:1 (2007), 646-663. DOI:10.1016/j.jmaa.2007.03.010.

[2] Akhmet M.U. Integral manifolds of differential equations with piecewise-constant argument ofgeneralized type, Nonlinear Analysis-Theory Methods & Applications, 66:2 (2007), 367-383. DOI:10.1016/j.na.2005.11.032.

[3] Akhmet M.U. Almost periodic solution of differential equations with piecewise-constant ar-gument of generalized type, Nonlinear Analysis-Hybrid Systems, 2:2 (2008), 456-467. DOI:10.1016/j.nahs.2006.09.002.

[4] Zhang F.Q. BVPs for second order differential equations with piecewise constant arguments,Annals of Differential Equations, 9 (1993), 369-374.

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 96: 20 4 MATHEMATICAL 20 JOURNAL

New general solution of second order differential equation with piecewise-constant argument ...95

[5] Nieto J.J., Rodriguez-Lopez R. Existence and approximation of solutions for nonlinear func-tional differential equations with periodic boundary value conditions, Computers & Mathematics withApplications, 40:4 (2000), 433-442. DOI: 10.1016/S0898-1221(00)00171-1.

[6] Seifert G. Second order scalar functional differential equations with piecewise constant ar-

guments, Journal of Difference Equations and Applications, 8:5 (2002), 427-445. DOI:10.1080/10236190290017469.

[7] Seifert G. Second-order neutral delay-differential equations with piecewise constant timedependence, J. Math. Anal. Appl., 281:1 (2003), 1-9. DOI: 10.1016/S0022-247X(02)00303-7.

[8] Nieto J.J., Rodriguez-Lopez R. Remarks on periodic boundary value problems forfunctional differential equations, J. Comp. Appl. Math., 158:2 (2003), 339-353. DOI:10.1016/S0377-0427(03)00452-7.

[9] Yuan R. On the spectrum of almost periodic solution of second-order differential equa-tions with piecewise constant argument, Nonlinear Analysis-Theory Methods & Applications,59:8 (2004), 1189-1205. DOI: 10.1016/j.na.2004.07.031.

[10] Cabada A., Ferreiro J.B., Nieto J.J. Green’s function and comparison principles forfirst order periodic differential equations with piecewise constant arguments, J. Math. Anal.Appl., 291:2 (2004), 690-697. DOI: 10.1016/j.jmaa.2003.11.022.

[11] Nieto J.J., Rodriguez-Lopez R. Green’s function for second order periodic boundaryvalue problems with piecewise constant argument, J. Math. Anal. Appl., 304:1 (2005), 33-57.DOI: 10.1016/j.jmaa.2004.09.023.

[12] Yang P., Liu Y., Ge W. Green’s function for second order differential equationswith piecewise constant argument, Nonlinear Analysis, 64:8 (2006), 1812-1830. DOI:10.1016/j.na.2005.07.019.

[13] Nieto J.J., Rodriguez-Lopez R. Monotone method for first-order functional differen-tial equations, Computers & Mathematics with Applications, 52:3-4 (2006), 471-484. DOI:10.1016/j.camwa.2006.01.012.

[14] Nieto J.J., Rodriguez-Lopez R. Some considerations on functional differential equa-tions of advanced type, Mathematische Nachrichten, 283:10 (2010), 1439-1455. DOI:10.1002/mana.200710093.

[15] Dominguez-Perez M.A., Rodriguez-Lopez R. Multipoint boundary value problems ofNeumann type for functional differential equations, Nonlinear Analysis: Real World Applica-tions, 13:4 (2012), 1662-1675. DOI: 10.1016/j.nonrwa.2011.11.023.

[16] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value prob-lem for an ordinary differential equation, U.S.S.R. Comput. Maths. Math. Phys., 29:1(1989), 34-46. DOI: 10.1016/0041-5553(89)90038-4.

[17] Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equa-tions and their applications on solving the boundary value problems, J. Comput. Appl. Math.,327 (2018), 79-108. DOI: 10.1016/j.cam.2017.06.010.

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 97: 20 4 MATHEMATICAL 20 JOURNAL

96 Anar T. Assanova

[18] Dzhumabaev D.S. Computational methods of solving the boundary value problems forthe loaded differential and Fredholm integro-differential equations, Math. Methods Appl. Sci.,41:4 (2018), 1439-1462. DOI: 10.1002/mma.4674.

[19] Dzhumabaev, D.S. Well-posedness of nonlocal boundary-value problem for a system ofloaded hyperbolic equations and an algorithm for finding its solution, J. Math. Anal. Appl.,461:1 (2018), 817-836. DOI: 10.1016/j.jmaa.2017.12.005.

[20] Dzhumabaev D.S. New general solutions of ordinary differential equations and themethods for the solution of boundary-value problems, Ukr. Math. J., 71:7 (2019), 1006–1031.DOI: 10.1007/s11253-019-01694-9.

[21] Dzhumabaev, D.S., Mynbayeva, S.T. New general solution to a nonlinear Fredholmintegro-differential equation, Eurasian Mathematical Journal, 10:4 (2019), 24–33. DOI:10.32523/2077-9879-2019-10-4-24-33.

Асанова А.Т.ЖАЛПЫЛАНҒАН ТҮРДЕГI БӨЛIКТI-ТҰРАҚТЫАРГУМЕНТI БАРЕКIНШI РКТТI ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕУДIҢ ЖАҢА ЖАЛПЫ ШЕШIМIЖӘНЕ ОНЫҢ ШЕТТIК ЕСЕПТЕРДI ШЕШУГЕ ҚОЛДАНЫСЫ

Жалпыланған түрдегi бөлiктi-тұрақты аргументi бар екiншi реттi дифференциал-дық теңдеу қарастырылады. Аралық N бөлiкке бөлiнедi, шешiмнiң iшкiаралықтардыңiшкi нүктелерiндегi мәндерi қосымша параметрлер ретiнде қарастырылады, ал жалпы-ланған түрдегi бөлiктi-тұрақты аргументi бар жәй дифференциалдық теңдеу iшкiара-лықтардағы параметрлерi бар екiншi реттi сызықты дифференциалдық теңдеулер үшiнКоши есептерине келтiрiледi. Осы есептердiң шешiмдерiн пайдалана отырып жалпы-ланған түрдегi бөлiктi-тұрақты аргументi бар екiншi реттi дифференциалдық теңде-улердiң жаңа жалпы шешiмдерi енгiзiледi және олардың қасиеттери орнатылады. Жал-пы шешiмнiң, шекаралық шарттың және шешiмнiң iшкi бөлу нүктелерiндегi үзiлiссiздiкшарттарының негiзiнде параметрлерге қатысты сызықты алгебралық теңдеулер жүйесiқұрастырылады. Жүйенiң коэффициенттерi мен оң жақтары iшкiаралықтарда сызы-қты жәй дифференциалдық теңдеулер үшiн Коши есептерiн шешу арқылы табылады.Шеттiк есептердiң шешiлiмдiлiгi құрастырылған жүйенiң шешiлiмдiлiгiне пара-пар екенiкөрсетiлдi. Осы жүйелердi құруға және шешуге негiзделген шеттiк есептердi шешудiңәдiстерi ұсынылады.

Кiлттiк сөздер. Жалпыланған түрдегi бөлiктi-тұрақты аргументi бар дифференциал-дық теңдеулер, ∆N жалпы шешiм, қоснүктелi шеттiк есеп, шешiлiмдiлiк критерийлерi,параметрлеу әдiсiнiң алгоритмдерi.

Асанова А.Т. НОВОЕ ОБЩЕЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕ-НИЯ ВТОРОГО ПОРЯДКА С КУСОЧНО-ПОСТОЯННЫМ АРГУМЕНТОМ ОБОБ-ЩЕННОГО ТИПА И ЕГО ПРИЛОЖЕНИЕ К РЕШЕНИЮ КРАЕВЫХ ЗАДАЧ

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 98: 20 4 MATHEMATICAL 20 JOURNAL

New general solution of second order differential equation with piecewise-constant argument ...97

Рассматривается дифференциальное уравнение второго порядка с кусочно-постоянным аргументом обобщенного типа. Интервал разбивается на N частей, значениярешения во внутренних точках подынтервалов рассматриваются как дополнительныепараметры, а обыкновенное дифференциальное уравнение с кусочно-постоянным аргу-ментом обобщенного типа сводится к задачам Коши на подынтервалах для линейныхдифференциальных уравнений второго порядка с параметрами. Используя решения этихзадач, вводятся новые общие решения дифференциальных уравнений второго порядкас кусочно-постоянным аргументом обобщенного типа и устанавливаются их свойства.На основе общего решения, граничного условия и условия непрерывности решения вовнутренних точках разбиения составляется система линейных алгебраических уравне-ния относительно параметров. Коэффициенты и правые части системы находятся путемрешения задач Коши для линейных обыкновенных дифференциальных уравнений наподынтервалах. Показано, что разрешимость краевых задач равносильна разрешимо-сти составленных систем. Предлагаются методы решения краевых задач, основанные напостроении и решении этих систем.

Ключевые слова. Дифференциальные уравнения с кусочно-постоянным аргументомобобщенного типа, ∆N общее решение, двухточечная краевая задача, критерии разре-шимости, алгоритмы метода параметризации.

Kazakh Mathematical Journal, 20:4 (2020) 87–97

Page 99: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 98–106

A numerical algorithm for solving a linear boundaryvalue problem with a parameter

Roza E. Uteshova1,2,a, Dauren E. Mursaliyev1,2,b

1International Information Technology University, Almaty, Kazakhstan2Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

ae-mail: [email protected], [email protected],

Communicated by: Anar Assanova

Received: 02.12.2020 ? Accepted/Published Online: 15.12.2020 ? Final Version: 19.12.2020

Abstract. We consider a linear boundary value problem for an ordinary differential equation with a

parameter. Based on the Dzhumabaev parametrization method, a numerical algorithm for solving the

problem under consideration is proposed.

Keywords. Boundary value problem with parameter, numerical algorithm, general solution, parametriza-

tion method

In memory of ProfessorDulat Syzdykbekovich Dzhumabaev

with great gratefulness

1 Introduction

The paper deals with a linear boundary value problem with a parameter

dx

dt= A(t)x+B(t)µ+ f(t), t ∈ (0, T ), x ∈ Rn, µ ∈ Rm, (1)

C0µ+ C1x(0) + C2x(T ) = d, d ∈ Rm+n, (2)

where n×n matrix A(t), n×m matrix B(t) and n−dimensional vector f(t) are continuous on[0, T ]; (n+m)×m matrix C0 and (n+m)×n matrices C1 and C2 are constant; ‖x‖ = max

i=1,n|xi|.

By a solution of problem (1), (2) we mean a pair (µ∗, x∗(t)), where µ∗ ∈ Rm and x∗(t) isa function that is continuous on [0, T ] and continuously differentiable on (0, T ) and satisfies(1) and (2) with µ = µ∗.

2010 Mathematics Subject Classification: 34B08; 65L10.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08855726).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 100: 20 4 MATHEMATICAL 20 JOURNAL

A numerical algorithm for solving a linear BVP with a parameter 99

Boundary value problems with parameters for various classes of differential equations havebeen extensively studied by many authors (see [1-11] and references cited therein).

When a fundamental matrix Φ(t) of the differential equation dxdt = A(t)x is known, the

general solution to Eq.(1) can be written as

x(t, µ) = Φ(t)c+ Φ(t)

t∫0

Φ−1(τ)[B(τ)µ+ f(τ)]dτ, (3)

where c is a n-dimensional constant vector. Substituting (3) into the boundary condition (2),we obtain the following equation for determining unknown parameters c ∈ Rn and µ ∈ Rm:

[C0 + C2Φ(T )

T∫0

Φ−1(τ)B(τ)dτ ]µ+ [C1Φ(0) + C2Φ(T )]c = d− C2Φ(T )

T∫0

Φ−1(τ)f(τ)dτ.

Hence, the existence of a unique solution to the boundary value problem (1),(2) is equivalentto the invertibility of the (n+m)× (n+m) matrix

D = (C0 + C2Φ(T )

T∫0

Φ−1(τ)B(τ)dτ, C1Φ(0) + C2Φ(T )).

In fact, it is usually impossible to explicitly find Φ(t), and hence the general solution,for a linear differential equation with variable coefficients. In this paper, we use a differentapproach to the concept of the general solution proposed by D.S.Dzhumabaev on the basisof the parametrization method [12]. He originally introduced new general solutions for linearFredholm integro-differential equations [13] and later extended this concept to linear loadeddifferential equations and families of such equations [14], [15], nonlinear ordinary differentialequations [16], and nonlinear Fredholm integro-differential equations [17]. The introductionof the new general solution provides a basis for new numerical and approximate methods forsolving various classes of boundary value problems.

The aim of this paper is to apply the concept of the new general solution to Eq.(1) anddevelop a numerical algorithm for solving the boundary value problem with a parameter(1),(2).

2 The ∆N -general solution to a linear ordinary differential equation with aparameter

Let ∆N be a partition of [0, T ] into N subintervals by points t0 = 0 < t1 < . . . <tN−1 < tN = T . We will denote by C([0, T ],∆N , R

nN ) the space of function systems x[t] =

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 101: 20 4 MATHEMATICAL 20 JOURNAL

100 Roza E. Uteshova, Dauren E. Mursaliyev

(x1(t), x2(t), . . . , xN (t)), where functions xr(t) : [tr−1, tr) → Rn are continuous and haveleft-hand limits lim

t→tr−0xr(t) for all r = 1, N , with the norm ‖x[·]‖ = max

r=1,Nsup

t∈[tr−1,tr)‖xr(t)‖.

Suppose that a pair (µ, x(t)) is a solution to Eq.(1) and xr(t) is the restriction of x(t) tothe rth subinterval of ∆N ; that is, xr(t) = x(t), t ∈ [tr−1, tr), r = 1, N . Then the functionsxr(t) satisfy the following system of equations:

dxrdt

= A(t)xr +B(t)µ+ f(t), t ∈ [tr−1, tr), r = 1, N. (4)

A solution to Eqs.(4) is a pair (µ, x[t]) with µ ∈ Rm and x[t] = (x1(t), x2(t), . . . , xN (t)) ∈C([0, T ],∆N , R

nN ) satisfying Eqs. (4)If (µ, x(t)) is a solution to Eq.(1) and x[t] = (x1(t), x2(t), . . . , xN (t)) is the system of the

restrictions of x(t) to the partition subintervals, then the components of this system mustsatisfy the continuity conditions at the interior points of ∆N :

limt→tp−0

xp(t) = xp+1(tp), p = 1, N − 1. (5)

By introducing additional parameters λr = xr(tr−1), r = 1, N , and by substituting ur(t) =xr(t)−λr on every subinterval [tr−1, tr), from (4) we obtain the system of differential equationswith parameters µ and λr

durdt

= A(t)(ur + λr) +B(t)µ+ f(t), t ∈ [tr−1, tr), r = 1, N, (6)

subject to the initial conditions

ur(tr−1) = 0, r = 1, N. (7)

For fixed r, λr, and µ, each of Cauchy problems (6),(7) has a unique solution ur(t, µ, λr).Let λ denote the vector of additional parameters λr: λ = (λ1, λ2, . . . , λN ) ∈ RnN . It is easilyseen that the function system u[t, µ, λ] = (u1(t, µ, λ1), u2(t, µ, λ2), . . . , uN (t, µ, λN )) belongsto C([0, T ],∆N , R

nN ). We will refer to u[t, µ, λ] as a solution to the Cauchy problem withparameters (6),(7).

If a pair (µ, x[t]) is a solution to Eq.(4), then the function system u[t, µ, λ] with elementsur(t, µ, λr) = xr(t) − λr, t ∈ [tr−1, tr), λr = xr(tr−1), r = 1, N , is a solution to the Cauchyproblem with parameters (6),(7). Conversely, if a function system u[t, µ∗, λ∗] is a solutionto the Cauchy problem (6),(7), then the pair (µ∗, x∗[t]) with x∗[t] composed of x∗r(t) =λ∗r + ur(t, µ

∗, λ∗r), t ∈ [tr−1, tr), r = 1, N , is a solution to Eq.(4).

Definition 1. Let a function system u[t, µ, λ] be a solution to the Cauchy problem (6),(7)for some µ ∈ Rm and λ ∈ RnN . Then the function x(∆N , t, µ, λ) defined as

x(∆N , t, µ, λ) = λr + ur(t, µ, λr), t ∈ [tr−1, tr), r = 1, N,

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 102: 20 4 MATHEMATICAL 20 JOURNAL

A numerical algorithm for solving a linear BVP with a parameter 101

x(∆N , T, µ, λ) = λN + limt→T−0

uN (t, µ, λN ),

is called the ∆N -general solution to Eq.(1).

It follows from the definition that the ∆N -general solution depends on m+ nN arbitraryconstants and satisfies Eq.(1) for all t ∈ (0, T ) \ tp, p = 1, N − 1.

The following statement justifies the fact that the function x(∆N , t, µ, λ) can be consideredas a general solution to Eq.(1).

Theorem 1. Suppose a function x(t) satisfies the following conditions:(a) x(t) is piecewise continuous on [0, T ] with possible discontinuities at the interior pointst = tp, p = 1, N − 1, of the partition ∆N ;(b) for all t ∈ (0, T ) \ tp, p = 1, N − 1, the function x(t) is continuously differentiable andsatisfies Eq.(1) with some µ = µ ∈ Rm.Then there exists a unique λ = (λ1, λ2, . . . , λN ) ∈ RnN such that equality x(t) = x(∆N , t, µ, ξ)holds for all t ∈ [0, T ].

Proof. Let x(t) satisfy the conditions of theorem and its restrictions to the subintervals of∆N constitute the function system x[t] = (x1, x2, . . . , xN ). Then the pair (µ, x[t]) is a solutionto Eq.(4). Setting λr = xr(tr−1), r = 1, N , and solving the Cauchy problems (6),(7) withµ = µ and λr = λr, we get the functions ur(t, µ, λr). Taking into account the relationshipbetween the solutions to Eqs.(4) and those to the Cauchy problems (6),(7), we obtain

x(t) = xr(t) = λr + ur(t, µ, λr) = x(∆N , t, µ, λ), t ∈ [tr−1, tr), r = 1, N,

x(T ) = λN + limt→T−0

uN (t, µ, λN ) = x(∆N , T, µ, λ).

In order to prove the uniqueness of λ, assume that there is another parameter λ∗ =(λ∗1, λ

∗2, . . . , λ

∗N ) ∈ RnN such that x(t) = x(∆N , t, µ

∗, λ∗) for all t ∈ [0, T ]. Hence, byDefinition 1, x(t) = xr(t) = λ∗r + ur(t, µ

∗, λ∗r) for t ∈ [tr−1, tr), r = 1, N , and x(T ) =λ∗N + lim

t→T−0uN (t, µ∗, λ∗N ), where ur(t, µ

∗, λ∗r) are the solutions to the Cauchy problems (6),(7)

with µ = µ∗ and λ = λ∗. Then, taking into account the initial conditions (7), we concludethat

λr = xr(tr−1) = λ∗r + ur(t, µ∗, λ∗r) = λ∗r , r = 1, N.

Theorem 1 is proved.

Corollary 1. Let a pair (µ∗, x∗(t)) be a solution to Eq.(1) and x(∆N , t, µ, λ) be the ∆N -general solution to Eq.(1). Then there exists a unique λ∗ ∈ RnN such that the equalityx∗(t) = x(∆N , t, µ

∗, λ∗) holds for all t ∈ [0, T ].

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 103: 20 4 MATHEMATICAL 20 JOURNAL

102 Roza E. Uteshova, Dauren E. Mursaliyev

Let Φr(t) be a fundamental matrix of the differential equation

dx

dt= A(t)x, t ∈ [tr−1, tr), r = 1, N.

Then we can represent the solutions to the Cauchy problems (6),(7) in the form

ur(t, µ, λr) = Φr(t)

t∫tr

Φ−1r (τ)A(τ)λr +B(τ)µ+ f(τ)dτ, t ∈ [tr−1, tr), r = 1, N. (8)

Let us introduce the auxiliary Cauchy problems

dz

dt= A(t)z + P (t), z(tr−1) = 0, t ∈ [tr−1, tr], r = 1, N, (9)

where P (t) is a square matrix or a vector continuous on [0, T ]. Each of these problems has aunique solution ar(P, t) which can be written using Φr(t) as follows:

ar(P, t) = Φr(t)

t∫tr

Φ−1r (τ)P (τ)dτ, t ∈ [tr−1, tr], r = 1, N. (10)

Thus the ∆N -general solution to Eq.(1) can be represented in terms of solutions to aux-iliary Cauchy problems in the following way:

x(∆N , t, µ, λ) = λr + ar(A, t)λr + ar(B, t)µ+ ar(f, t), t ∈ [tr−1, tr), r = 1, N, (11)

x(∆N , T, µ, λ) = λN + aN (A, T )λN + aN (B, T )µ+ aN (f, T ). (12)

Let us now turn to the boundary value problem with a parameter (1),(2) and make useof the ∆N -general solution to Eq.(1) in solving this problem. As mentioned above, the ∆N -general solution depends on m+nN arbitrary constants that are components of vector-valuedparameters µ ∈ Rm and λ ∈ RnN . Substituting x(∆, t, µ, λ) into the boundary conditions (2)and the continuity conditions (5), we obtain the following system of linear algebraic equationsin unknown parameters µ and λ:

[C0 + C2aN (B, T )]µ+ C1λ1 + [C2 + C2aN (A, T )]λN = d− C2aN (f, T ), (13)

ap(B, tp)µ+ λp + ap(A, tp)λp − λp+1 = −ap(f, tp), p = 1, N − 1. (14)

Let Q∗(∆N ) denote the square matrix of order m + nN corresponding to the left-handside of system (13),(14). Setting ξ = (µ, λ), we rewrite system (13),(14) in the matrix form

Q∗(∆N )ξ = −F ∗(∆N ), ξ ∈ Rm+nN , (15)

where F ∗(∆N ) = (−d+ C2aN (f, T ), a1(f, t1), a2(f, t2), . . . , aN−1(f, tN−1)) ∈ Rm+nN .

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 104: 20 4 MATHEMATICAL 20 JOURNAL

A numerical algorithm for solving a linear BVP with a parameter 103

Theorem 2. The boundary value problem (1),(2) is uniquely solvable if and only if the matrixQ∗(∆N ) is invertible.

3 An algorithm for solving problem (1),(2) and its numerical implementation

Using the results obtained in the previous section, we propose the following algorithm forfinding a solution to the linear boundary value problem with a parameter (1),(2).

1. Choose a partition ∆N of the interval [0, T ] and construct the ∆N -general solution(11),(12).

2. Construct the system of linear algebraic equations (15) by substituting the ∆N -generalsolution into the boundary conditions (2) and continuity conditions (5). Find the solutionξ∗ ∈ Rm+nN of system (15).

3. Substitute the components µ∗ ∈ Rm and λ∗ ∈ RnN of ξ∗ into the ∆N -general solutionto get the solution (µ∗, x∗(t)) to problem (1),(2).

The algorithm proposed relies on the ∆N -general solution whose components, being so-lutions to Cauchy problems, are determined via fundamental matrices Φr(t). As we havementioned above, for linear systems with variable coefficients there is no general way of get-ting a fundamental matrix. We therefore present a numerical version of the algorithm thatinvolves numerical solution of Cauchy problems.

Step 1. Choose a partition ∆N of the interval [0, T ]. Solve the auxiliary Cauchy problemson the partition subintervals:

dz

dt= A(t)z +A(t), z(tr−1) = 0, t ∈ [tr−1, tr),

dz

dt= A(t)z +B(t), z(tr−1) = 0, t ∈ [tr−1, tr),

dz

dt= A(t)z + f(t), z(tr−1) = 0, t ∈ [tr−1, tr),

and find ar(A, tr), ar(B, tr), and ar(f, tr), r = 1, N .Step 2. Construct the system of linear algebraic equations (15) and find its solution

ξ∗ ∈ Rm+nN . Note that the first component of ξ∗ = (µ∗, λ∗1, . . . , λ∗N ) is the value of the

parameter µ of problem (1),(2). The rest components are the values of the solution toproblem (1),(2) at the left endpoints of the partition subintervals: λ∗r = x∗r(tr−1), r = 1, N .

Step 3. Solve the Cauchy problems

dx

dt= A(t)x+ f(t), x(tr−1) = λ∗r , t ∈ [tr−1, tr), r = 1, N,

and determine the values of the solution x∗(t) to problem (1),(2) at the remaining points ofthe partition ∆N .

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 105: 20 4 MATHEMATICAL 20 JOURNAL

104 Roza E. Uteshova, Dauren E. Mursaliyev

4 A numerical example

On the interval [0, 4], we consider the following boundary value problem with a parameter

dx

dt= A(t)x+B(t)µ+ f(t), x ∈ R3, µ ∈ R2, (16)

x(0) = col(1,−3, 2), x1(T ) = 1, x2(T ) = 13, (17)

where

A(t) =

1 t sin 0.5πtt2 1− t 00 t3 cos 0.5πt

, B(t) =

2t 3− t1 t2

t− 1 t2 + 1

,

f(t) =

0.25π cos 0.25πt− sin 0.25πt− 2 sin 0.5πt cos 0.25πt− t3 − 15t− 13−t2 sin 0.25πt+ t3 − 6t2 − t− 8

−0.5π sin 0.25πt− 2 cos 0.5πt cos 0.25πt− t5 + 3t3 − 4t2 − 11t+ 7

.

To solve problem (16),(17), we used the proposed numerical algorithm with the ∆5 par-tition of the interval [0, 4] into 5 subintervals.

By solving the system of linear equations (15), we obtained the following values of theparameters µ and λr, r = 1, 5.

λ1 =

0.9999−2.99992.0000

, λ2 =

1.5878−2.36001.6180

, λ3 =

1.9511−0.43990.6180

,

λ4 =

1.95112.7600−0.6180

, λ5 =

1.58787.2400−1.6180

, µ =

(10.99994.0000

).

The exact solution to problem (16),(17) is the pair (µ∗, x∗(t)) with

µ∗ =

(114

)and x∗(t) =

1 + sin 0.25πtt2 − 3

2 cos 0.25πt

, t ∈ [0, 4].

The maximum approximation error for obtained µ and λr, r = 1, 5, is 5 · 10−9.The differences between the exact and approximate solutions to problem (16), (17) are

provided in the following table:

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 106: 20 4 MATHEMATICAL 20 JOURNAL

A numerical algorithm for solving a linear BVP with a parameter 105

Table 1. Absolute errors of the numerical solution

t |x∗(1)(t)− x(1)(t)| |x∗(2)(t)− x(2)(t)| |x

∗(3)(t)− x(3)(t)|

0 0.1221245·10−14 0.1332267·10−14 0

0.4 0.0221004·10−8 0.1224830·10−8 0.1617531·10−8

0.8 0.1587150·10−9 0.0750204·10−9 0.1350530·10−9

1.2 0.0548728·10−7 0.0563190·10−7 0.1163317·10−7

1.6 0.1903193·10−9 0.2443955·10−9 0.3542951·10−9

2.0 0.0611203·10−6 0.0950316·10−6 0.3560913·10−6

2.4 0.0993818·10−8 0.1380603·10−8 0.3227025·10−8

2.8 0.0440663·10−5 0.0964392·10−5 0.1947860·10−5

3.2 0.4853852·10−8 0.2599317·10−8 0.1151605·10−8

3.6 0.0885035·10−5 0.1912879·10−5 0.5995351·10−5

4 0.0143556·10−4 0.0456637·10−4 0.1030083·10−4

References

[1] Ronto. M, Samoilenko A.M. Numerical-Analytic Methods in the Theory of Boundary-ValueProblems, World Scientific, 2000.

[2] Kurpel N.S., Marusyak A.G. On a multipoint boundary-value problem for a differential equationwith parameters, Ukrainian Math. J., 2 (1980), 223-226.

[3] He T., Yang F., Chen C., Peng S. Existence and multiplicity of positive solutions for nonlinearboundary value problems with a parameter, Comput. Math. Appl., 61 (2011), 3355-3363. DOI:10.1016/j.camwa.2011.04.039.

[4] Feng X., Niu P., Guo Q. Multiple solutions of some boundary value problems with parameters,Nonlinear Anal: Theo., Meth. Appl., 74:4 (2011), 1119-1131. DOI: 10.1016/j.na.2010.09.043.

[5] Stanek S. On a class of functional boundary value problems for second order functional differ-ential equations with parameter, Czechoslovak Math. J., 43 (1993), 339-348.

[6] Jankowski T. Application of the numerical-analytic method to systems of differential equationswith parameter, Ukrainian Math. J., 54 (2002), 237-247.

[7] Dzhumabaev D.S., Minglibaeva B.B. Correct solvability of a linear two-point boundary valueproblem with a parameter, Math. Journal, 4(2004), 41-51 (in Russian).

[8] Minglibayeva B.B. Coefficient criteria of the unique solvability of linear two-point boundaryvalue problems with a parameter, Math.Journal, 3(2003), 55-62 (in Russian).

[9] Dzhumabaev D.S, Bakirova E.A., Mynbayeva S.T. A method of solving a nonlinear boundaryvalue problem with a parameter for a loaded differential equation, Math. Meth. Appl. Sci., 43(2019),1–15. DOI: 10.1002/mma.6003.

[10] Assanova A.T., Bakirova E.A., Kadirbayeva Z.M. Numerical solution to a control prob-lem for integro-differential equations, Comp. Math. Math. Phys., 60(2020), 203–221. DOI:10.1134/S0965542520020049.

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 107: 20 4 MATHEMATICAL 20 JOURNAL

106 Roza E. Uteshova, Dauren E. Mursaliyev

[11] Assanova A.T., Bakirova E.A., Kadirbayeva Z.M., Uteshova R.E. A computational method forsolving a problem with parameter for linear systems of integro-differential equations, Comp. and Appl.Math., 39(2020), art. no. 248. DOI: 10.1007/s40314-020-01298-1.

[12] Dzhumabaev D.S. Criteria for the unique solvability of a linear boundary-value problem foran ordinary differential equation, USSR Comput. Math. Math. Phys., 29 (1989), 34-46. DOI:10.1016/0041-5553(89)90038-4.

[13] Dzhumabaev D. S. New general solutions to linear Fredholm integro-differential equations andtheir applications on solving boundary value problems, J. Comput. Appl. Math., 327(2018), 79–108.DOI: 10.1016/j.cam.2017.06.010.

[14] Dzhumabaev D. S. Computational methods of solving the boundary value problems for the loadeddifferential and Fredholm integro-differential equations, Math. Meth. Appl. Sci., 41 (2018), 1439-1462.DOI: 10.1002/mma.4674.

[15] Dzhumabaev D. S. Well-posedness of nonlocal boundary-value problem for a system of loadedhyperbolic equations and an algorithm for finding its solution, J. Math. Anal. Appl., 461 (2018),817-836. DOI: 10.1016/j.jmaa.2017.12.005.

[16] Dzhumabaev D. S. New general solutions of ordinary differential equations and the meth-ods for the solution of boundary-value problems, Ukrainian Math. J., 71 (2019), 1006–1031. DOI:10.1007/s11253-019-01694-9.

[17] Dzhumabaev, D.S., Mynbayeva, S.T. New general solution to a nonlinear Fredholm integro-

differential equation, Eurasian Math. J., 10:4 (2019), 24–33. DOI: 10.32523/2077-9879-2019-10-4-24-

33.

Утешова Р.Е., Мурсалиев Д.Е. ПАРАМЕТРI БАР СЫЗЫҚТЫ ШЕТТIК ЕСЕПТIШЕШУДIҢ САНДЫҚ АЛГОРИТМI

Жай дифференциалдық теңдеу үшiн параметрi бар сызықты шеттiк есеп қарасты-рылады. Жұмабаев параметрлеу әдiсi негiзiнде есептi шешудiң сандық алгоритмi ұсы-нылады.

Кiлттiк сөздер. Параметрi бар шеттiк есеп, сандық алгоритм, жалпы шешiм, пара-метрлеу әдiсi.

Утешова Р.Е., Мурсалиев Д.Е. ЧИСЛЕННЫЙ АЛГОРИТМ РЕШЕНИЯ ЛИНЕЙ-НОЙ КРАЕВОЙ ЗАДАЧИ С ПАРАМЕТРОМ

Рассматривается линейная краевая задача с параметром для обыкновенного диффе-ренциального уравнения. Предлагается численный алгоритм решения рассматриваемойзадачи на основе метода параметризации Джумабаева.

Ключевые слова. Краевая задача с параметром, численный алгоритм, общее решение,метод параметризации.

Kazakh Mathematical Journal, 20:4 (2020) 98–106

Page 108: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 107–118

An algorithm for solving multipoint boundary valueproblem for loaded differential and Fredholm

integro-differential equations

Elmira A. Bakirova1,2,a, Bayan B. Minglibayeva1,2,b, Asemgul B. Kasymova2,c

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2Kazakh National Women’s Teacher Training University, Almaty, Kazakhstanae-mail: [email protected], bbayan [email protected], [email protected]

Communicated by: Anar Assanova

Received: 15.12.2020 ? Accepted/Published Online: 15.12.2020 ? Final Version: 20.12.2020

Abstract. A multipoint boundary value problem for the loaded differential and Fredholm integro-

differential equations is considered. This problem is investigated by parameterization method. The

interval is divided into parts, values of desired function at the initial points of subintervals are consid-

ered as additional parameters and the original equation is reduced to a system of integro-differential

equations with parameters, where unknown functions satisfy the initial conditions on the subintervals.

At the fixed values of parameters we get the special Cauchy problem for the system of linear integro-

differential equations. The solution of the special Cauchy problem is constructed using the fundamental

matrix of the differential equation. The system of linear algebraic equations with respect to the param-

eters are composed by substituting the values of the corresponding points in the boundary condition

and the continuity conditions. Numerical method for solving the problem is suggested, based on the

solution of the constructed system and the Bulirsch-Stoer method for solving the Cauchy problem on

the subintervals.

Keywords. Loaded differential equation, integro-differential equation, multipoint problem, algorithm,

parametrization method.

Dedicated to the memory of Professor Dulat Dzhumabaev

1 Introduction

Loaded differential equations are often used in applied mathematics. In particular, in [1,2] these equations are used in solving the problems of long-term forecasting and regulating

2010 Mathematics Subject Classification: 34B10; 45J05; 65L06.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08955489).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 109: 20 4 MATHEMATICAL 20 JOURNAL

108 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

the level of groundwater and soil moisture. Note that the loaded differential equations inthe literature are also called boundary differential equations [3]. Various problems for loadeddifferential equations and methods for finding their solutions are considered in [4-7]. Replac-ing the integral term of integro-differential equation by the quadrature formula, we obtainthe loaded differential equation. Therefore, numerical and approximate methods for solvingthe boundary value problems for loaded differential equations are also used in solving theboundary value problems for integro-differential equations.

Integro-differential equations are often encountered in applications as mathematical mod-els of various processes in natural sciences. Their role in the study of processes with aftereffects was noted in the monograph [8], and the overview of early works devoted to the initialand boundary value problems for integro-differential equations was provided as well. Thesolvability of various problems for the Fredholm integro-differential equations and approxi-mate methods for finding their solutions are studied by many authors [9–21].

Statement of problem. Consider multipoint boundary value problems for the loadeddifferential and Fredholm integro-differential equations

dx

dt= A0 (t)x+

m∑k=1

∫ T

0ϕk (t)ψk(s)x(s)ds+

N∑i=1

Ai(t)x (θi) + f (t) , t ∈ (0, T ) , (1)

N∑p=0

Bpx (θp) = d, d ∈ Rn, x ∈ Rn, (2)

where the matrises Aj (t) , j = 0, N, ϕk (t) and ψk (τ) , k = 1,m, and the vector f (t) arecontinuous on [0, T ]; Bp, p = 0, N , are constant matrices.

Let C([0, T ], Rn) denote the space of continuous on [0, T ] functions x(t) with the norm‖x‖1 = maxt∈[0,T ] ‖x(t)‖.

Solution to problem (1), (2) is a continuously differentiable on (0, T ) function x (t) ∈C([0, T ], Rn) satisfying the system of the loaded differential and Fredholm integro-differentialequations (1) and multipoint boundary condition (2).

2 Scheme of parametrization method

The interval [0, T ) is divided into N + 1 parts by the points θ0 = 0 < θ1 < · · · < θN <θN+1 = T and partition [0, T ) =

⋃N+1r=1 [θr−1, θr) is denoted by 4N .

C([0, T ], 4N , Rn(N+1)) is the space of function systems x [t] = (x1 (t) , x2 (t) , . . . ,

xN+1(t)), where xr : [θr−1, θr) → Rn are continuous on [θr−1, θr) and have finite left-sidedlimits lim

t→θr−0xr(t) for all r = 1, N + 1 with the norm ‖x[·]‖2 = max

r=1,N+1sup

t∈[θr−1, θr)‖xr(t)‖.

The restriction of the function x(t) to the r-th interval [θr−1, θr) is denoted by xr(t),i.e. xr (t) = x(t) for t ∈ [θr−1, θr), r = 1, N + 1. Then we introduce additional parametersλr = xr (θr−1) , r = 1, N + 1, and make the substitution xr (t) = ur (t) + λr on each r-th

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 110: 20 4 MATHEMATICAL 20 JOURNAL

An algorithm for solving multipoint boundary value problem for loaded differential... 109

interval [θr−1, θr) , r = 1, N + 1, we obtain the multipoint boundary value problem withparameters

durdt

= A0(t) [ur + λr] +

N+1∑j=1

m∑k=1

∫ θj

θj−1

ϕk(t)ψk(s) [uj + λj ] ds+

N∑i=1

Ai (t)λi+1 + f(t), (3)

t ∈ [θr−1, θr), r = 1, N + 1,

ur(θr−1) = 0, r = 1, N + 1, (4)

N−1∑p=0

Bpλp+1 +BNλN+1 +BN limt→T−0

uN+1(t) = d, (5)

λs + limt→θs−0

us(t) = λs+1, s = 1, N, (6)

where (6) are conditions for matching the solution at the interior points of the partition 4N .Problems (1), (2) and (3)-(6) are equivalent. If x∗(t) is a solution to multipoint problem

(1), (2), then the pair (u∗ [t] , λ∗), where u∗[t] = (x∗(t) − x∗(θ0), x∗(t) − x∗(θ1), . . . , x∗(t) −x∗(θN )), and λ∗ = (x∗(θ0), x

∗(θ1), . . . , x∗(θN )), is a solution to the problem (3)-(6).

Conversely, if a pair(u [t] , λ

)with elements u [t] = (u1 (t) , u2 (t) , . . . , uN+1(t)) ∈

C([0, T ], 4N , Rn(N+1)), λ = (λ1, λ2, . . . , λN+1) ∈ Rn(N+1), is a solution to problem (3)-

(6), then the function x (t) defined by the equalities x (t) = ur (t) + λr, t ∈ [θr−1, θr) ,r = 1, N + 1, x (T ) = lim

t→T−0uN+1 (t) + λN+1, is a solution to the original problem (1), (2).

For fixed λj problem (3), (4) is a special Cauchy problem for the system of Fredholmintegro-differential equations. We have N + 1 Cauchy problems on the intervals [θr−1, θr),r =1, N + 1, and the system of integro-differential equations includes the sum of integrals ofall N + 1 functions ur (t) with degenerate kernels on the segments [θr−1, θr].

If Xr(t) is a fundamental matrix of the differential equation dxrdt = A(t)xr on [θr−1, θr],

then the special Cauchy problem for the system of integro-differential equations with param-eters (3), (4) is reduced to the equivalent system of integral equations

ur(t) = Xr(t)

∫ t

θr−1

X−1r (τ)A0(τ)dτλr +Xr(t)

∫ t

θr−1

X−1r (τ)N∑i=1

Ai(t)λi+1dτ

+Xr(t)

∫ t

θr−1

X−1r (τ)N+1∑j=1

m∑k=1

∫ θj

θj−1

ϕk(τ)ψk(s)[uj(s) + λj ]dsdτ

+Xr(t)

∫ t

θr−1

X−1r (τ)f(τ)dτ, t ∈ [θr−1, θr), r = 1, N + 1. (7)

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 111: 20 4 MATHEMATICAL 20 JOURNAL

110 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

Let µk =∑N+1

j=1

∫ θjθj−1

ψk(s)uj(s)ds, k = 1,m, and rewrite (7) in the following form

ur (t) =m∑k=1

Xr(t)

∫ t

θr−1

X−1r (τ)ϕk (τ) dτµk

+Xr(t)

∫ t

θr−1

X−1r (τ)A0(τ)dτλr +Xr(t)

∫ t

θr−1

X−1r (τ)

N∑i=1

Ai(t)λi+1dτ

+Xr (t)

∫ t

θr−1

X−1r (τ)

m∑k=1

ϕk(τ)

N+1∑j=1

∫ θj

θj−1

ψk(s)λjdsdτ

+Xr (t)

∫ t

θr−1

X−1r (τ) f (τ) dτ, t ∈ [θr−1, θr), r = 1, N + 1. (8)

Multiplying both sides of (8) by ψp(t), integrating on the interval [θr−1, θr] and sum-ming up with respect to r, we get the following system of linear algebraic equations inµ = (µ1, µ2, . . . , µm) ∈ Rnm:

µp =m∑k=1

Gp,k(4N )µk +N+1∑r=1

Vp,r (4N )λr +N∑j=1

Wp,j (4N )λj+1 + gp (f,4N ) , p = 1,m, (9)

with the (n× n) matrices

Gp,k (4N ) =N+1∑r=1

∫ θr

θr−1

ψp (τ)Xr (τ)

∫ τ

θr−1

X−1r (s)ϕk (s) dsdτ , k = 1,m,

Vp,r (4N ) =

∫ θr

θr−1

ψp (τ)Xr (τ)

∫ τ

θr−1

X−1r (s)A0 (s) dsdτ +

N+1∑j=1

m∑k=1

∫ θj

θj−1

ψp (τ)

×Xj (τ)

∫ τ

θj−1

X−1j (τ1)ϕk (τ1) dτ1dτ

∫ θr

θr−1

ψk (s) ds, r = 1, N + 1,

Wp,j (4N ) =

N+1∑r=1

∫ θr

θr−1

ψp (τ)Xr (τ)

∫ τ

θr−1

X−1r (s)Aj (s) dsdτ , j = 1, N,

and vectors of dimension n

gp (f,4N ) =

N+1∑r=1

∫ θr

θr−1

ψp (τ)Xr (τ)

∫ τ

θr−1

X−1r (s) f (s) dsdτ , p = 1,m,

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 112: 20 4 MATHEMATICAL 20 JOURNAL

An algorithm for solving multipoint boundary value problem for loaded differential... 111

Using the matrices Gp,k (4N ) , Vp,r (4N ) , Wp,j (4N ) , we construct matricesG (4N ) = (Gp,k (4N )) , p, k = 1,m, and V (4N ) = (Vp,r (4N )) , p = 1,m, r = 1, N + 1, andW (4N ) = (Wp,j (4N )) , p = 1,m, j = 1, N . Then, system (9) can be rewritten in the form

[I −G (4N )]µ = V (4N )λ+W (4N ) ξ + g (f,4N ) , (10)

where I is the identity matrix of dimension nm, and

g (f,4N ) = (g1 (f,4N ) , g2 (f,4N ) , . . . , gm (f,4N )) ∈ Rnm.

Definition 1. Partition 4N is called regular if the matrix I −G (4N ) is invertible.

Let σ (m, [0, T ]) denote the set of regular partitions 4N of [0, T ] for the equation (1).

Definition 2. The special Cauchy problem (3), (4) is called uniquely solvable, if for anyλ ∈ Rn(N+1), f(t) ∈ C([0, T ] , Rn) it has a unique solution.

The special Cauchy problem (3), (4) is equivalent to the system of integral equations(7). This system by virtue of the kernel degeneracy is equivalent to the system of algebraicequations (9) with respect to µ = (µ1, µ2, . . . , µm) ∈ Rnm. Therefore, the special Cauchyproblem is uniquely solvable if and only if the partition 4N , generating this problem, isregular.

Since the special Cauchy problem is uniquely solvable for sufficiently small partition steph > 0, the set σ (m, [0, T ]) is not empty.

Take 4N ∈ σ (m, [0, T ]) and present [I −G (4N )]−1 in the form

[I −G (4N )]−1 = (Mk,p (4N )) , k, p = 1,m,

where Mk,p (4N ) are the square matrices of dimension n.Then taking into account (10), we can determine elements of the vector µ ∈ Rnm from

the equalities

µk =N+1∑j=1

( m∑p=1

Mk,p(4N )Vp,j(4N

)λj +

N∑j=1

( m∑p=1

Mk,p(4N )Wp,j(4N ))λj+1

+

m∑p=1

Mk,p(4N )gp(f,4N ), k = 1,m, (11)

In (8), substituting the right-hand side of (11) instead of µk, we get the representation offunctions ur(t) through λj , j = 1, N + 1 :

ur (t) =

N+1∑j=1

m∑k=1

Xr (t)

∫ t

θr−1

X−1r (τ)ϕk (τ) dτm∑p=1

Mk,p (4N )Vp,j (4N )

λj

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 113: 20 4 MATHEMATICAL 20 JOURNAL

112 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

+N+1∑j=1

m∑k=1

Xr (t)

∫ t

θr−1

X−1r (τ)ϕk (τ) dτ

∫ θj

θj−1

ψk(s)ds

λj

+N∑j=1

m∑k=1

Xr (t)

∫ t

θr−1

X−1r (τ)ϕk (τ) dτm∑p=1

Mk,p (4N )Wp,j (4N )

λj+1

+Xr (t)

∫ t

θr−1

X−1r (τ)A0 (τ) dτλr+Xr (t)

∫ t

θr−1

X−1r (τ)N∑i=1

Ai (t)λi+1dτ

+Xr (t)

∫ t

θr−1

X−1r (τ)

m∑k=1

ϕk (τ)

m∑p=1

Mk,p (4N ) gp (f,4N ) + f (τ)

dτ, r = 1, N + 1. (12)

Introduce the notations:

Dr,j (4N ) =m∑k=1

Xr (θr)

∫ θr

θr−1

X−1r (τ)ϕk (τ) dτ

m∑p=1

Mk,p (4N )Vp,j (4N )

+

∫ θj

θj−1

ψk(s)ds

], j 6= r, r, j=1, N + 1,

Dr,r (4N ) =m∑k=1

Xr (θr)

∫ θr

θr−1

X−1r (τ)ϕk (τ) dτ

m∑p=1

Mk,p (4N )Vp,r (4N )

+

∫ θr

θr−1

ψk(s)ds

]+Xr (θr)

∫ θr

θr−1

X−1r (τ)A0 (τ) dτ, r = 1, N + 1,

Er,j (4N ) =

m∑k=1

Xr (θr)

∫ θr

θr−1

X−1r (τ)ϕk (τ) dτ

m∑p=1

Mk,p (4N )Wp,j (4N )

+Xr (θr)

∫ θr

θr−1

X−1r (τ)Aj (t) dτ, j = 1, N,

Fr(4N ) =m∑k=1

Xr (θr)

∫ θr

θr−1

X−1r (τ)

ϕk (τ)m∑p=1

Mk,p (4N ) gp (f,4N ) + f (τ)

dτ,Then from (12) we get

limt→θr−0

ur (t) =

N+1∑j=1

Dr,j (4N )λj+

N∑j=1

Er,j (4N )λj+1+Fr (4N ) . (13)

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 114: 20 4 MATHEMATICAL 20 JOURNAL

An algorithm for solving multipoint boundary value problem for loaded differential... 113

Substituting the right-hand side of (13) into condition (5) and conditions of matching solution(6), we have the following system of linear algebraic equations with respect to parameters λr,r = 1, N + 1 :

[B0 +BNDN+1,1 (4N )]λ1 +N−1∑p=1

Bpλp+1+N∑j=2

BNDN+1,j (4N )λj

+BN [I +DN+1,N+1 (4N )]λN+1 +N∑j=1

BNEN+1,j (4N )λj+1 = d−BNFN+1 (4N ) , (14)

[I +Ds,s (4N )]λs − [I −Ds,s+1 (4N )]λs+1

+N∑j=1

Ds,j (4N )λj+1 = −Fs (4N ) , s = 1, N. (15)

Denoting by Q∗ (4N ) the matrix corresponding to the left-hand side of the system of equa-tions (14), (15), we get

Q∗ (4N )λ = −F ∗ (4N ) , λ ∈ Rn(N+1) , (16)

where F∗ (4N ) = (−d+BNFN+1 (4N ) , F1 (4N ) , . . . , FN (4N )) .It is not difficult to establish that the solvability of the boundary value problem (6), (7)

is equivalent to the solvability of the system (16). The solution of the system (16) is a vectorλ∗ = (λ∗1, λ

∗2, . . . , λ

∗N+1) ∈ Rn(N+1) consisting of the values of the solutions of the original

problem (6), (7) in the initial points of subintervals, i.e. λ∗r = x∗ (θr−1) , r =1, N + 1.Further we consider the Cauchy problems for ordinary differential equations on subinter-

valsdz

dt= A (t) z + P (t) , z (θr−1) = 0, t ∈ [θr−1, θr] , r =1, N + 1, (17)

where P (t) is (n × n) matrix or n vector that is continuous on [θr−1, θr], r =1, N + 1.Consequently, the solution to problem (17) is a square matrix or a vector of dimension n.Let a (P, t) denote a solution to the Cauchy problem (17). Clearly,

a (P, t) = Xr (t)

∫ t

θr−1

X−1r (τ) P (τ) dτ, t ∈ [θr−1, θr],

where Xr (t) is a fundamental matrix of differential equation (17) on the r-th interval.

3 Numerical implementation of the parametrization method

We offer the following numerical implementation of the parametrization method. Thealgorithm is based on the Bulirsch-Stoer method to solve the Cauchy problems for ordinary

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 115: 20 4 MATHEMATICAL 20 JOURNAL

114 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

differential equations and it is based on Simpson’s method for the estimation of definiteintegrals.

1. We divide [0, T ] into N + 1 parts by the points 0 = θ0 < θ1 < · · · < θN < θN+1 = T ,involved in the multipoint condition. Divide each r-th interval [θr−1, θr] , r =1, N + 1, intoNr parts with step hr = (θr − θr−1)/Nr. Assume that on each interval [θr−1, θr] the variableθ takes its discrete values: θ = θr−1, θ = θr−1 + hr, . . . , θ = θr−1 + (Nr − 1)hr, θ = θr,and denote by θr−1, θr the set of such points.

2. Using the Bulirsch-Stoer method, we find numerical solutions to Cauchy problems (17)

and define values of (n× n) matrices ahrr

(ϕk, θ

)on the set θr−1, θr, r = 1, N + 1, k =

1,m.

3. Using the values of (n×n) matrices ψk (s) and ahrr

(ϕk, θ

)on θr−1, θr and Simpson’s

method, we calculate the (n× n) matrices

ψhrp,r (ϕk) =

∫ θr

θr−1

ψp (τ) ahrr (ϕk, τ) dτ, p, k = 1,m, r = 1, N + 1.

Summing up the matrices ψhrp,r (ϕk) over r, we find (n × n) matrices Ghp,k (4N ) =∑N+1r=1 ψhrp,r (ϕk), where h = (h1, h2, . . . , hN+1) ∈ Rn. Using them, we compose the

nm × nm matrix Gh (4N ) =(Ghp,k (4N )

), p, k = 1,m. Check the invertibility of matrix[

I −Gh (4N )]

: Rnm → Rnm.

If this matrix is invertible, we find[I −Gh (4N )

]−1=(M hp,k (4N )

), p, k = 1,m. If

it has no the inverse, then we take a new partition. In particular, each subinterval can bedivided into two.

4. Solving the Cauchy problems for ordinary differential equations

dz

dt= A0 (t) z +Ai (t) , z (θr−1) = 0, t ∈ [θr−1, θr] , i =0, N,

dz

dt= A0 (t) z + f (t) , z (θr−1) = 0, t ∈ [θr−1, θr] , r =1, N + 1,

by using again the Bulirsch-Stoer method, we find the values of (n× n) matrices ar

(A0, θ

),

ar

(Ai, θ

), i =1, N, and n vector ar

(f, θ)

on θr−1, θr, r =1, N + 1.

5. Applying Simpson’s method on the set θr−1, θr, we evaluate the definite integrals

ψhrp,r =

∫ θr

θr−1

ψp (s) ds, ψhrp,r (Ai) =

∫ θr

θr−1

ψp (τ) ahrr (Ai, τ) dτ, i =0, N,

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 116: 20 4 MATHEMATICAL 20 JOURNAL

An algorithm for solving multipoint boundary value problem for loaded differential... 115

ψhrp,r (f) =

∫ θr

θr−1

ψp (τ) ahrr (f, τ) dτ, p = 1,m, r = 1, N + 1.

By the equalities

V hp,r (4N ) = ψhrp,r (A0) +

N+1∑j=1

m∑k=1

ψhjp,j (ϕk) · ψhrp,r, r = 1, N + 1,

W hp (Ai,4N ) =

N+1∑r=1

ψhrp,r (Ai), i =1, N, ghp (f,4N ) =

N+1∑r=1

ψhrp,r (f), p = 1,m,

we define the (n×n) matrices V hp,r (4N ) , r = 1, N + 1, W h

p (Ai,4N ), i =1, N, and n vectors

ghp (f,4N ) , respectively, p = 1,m.6. Construct the system of linear algebraic equations with respect to parameters

Qh∗ (4N )λ= −F h∗ (4N ) , λ ∈ Rn(N+1). (18)

The elements of the matrix Qh∗ (4N ) and the vector F h∗ (4N ) =(−d+ CF hN+1 (4N ) , F h1 (4N ) , . . . , F hN (4N )

)are defined by the equalities

Dr,j (4N ) =m∑k=1

ahrr (ϕk, θr)

m∑p=1

M hk,p (4N )V h

p,j (4N ) + ψhjp,j

,j 6= r, r, j=1, N + 1,

Dhr,r (4N ) =

m∑k=1

ahrr (ϕk, θr)

m∑p=1

M hk,p (4N )V h

p,r (4N ) + ψhrp,r

+ahrr (A0, θr) ,

Ehr,j (4N ) =m∑k=1

ahrr (ϕk, θr)m∑p=1

M hk,p (4N )W h

p,j (4N ) + ahrr (Aj , θr) , j = 1, N,

F hr (4N ) =

m∑k=1

ahrr (ϕk, θr)

m∑p=1

M hk,p (4N ) ghp (4N ) + ahrr (f, θr) , r = 1, N + 1.

Solving the system (18), we find λh. As noted above, the elements of

λh=(λh1 , λh2 , . . . , λ

hN+1) are the values of the approximate solution to problem (1), (2) in

the initial points of subintervals: xhr (θr−1) =λhr , r =1,N+1.

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 117: 20 4 MATHEMATICAL 20 JOURNAL

116 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

7. To define the values of approximate solution at the remaining points of set θr−1, θr,we first find

µhk =N+1∑j=1

m∑p=1

M hk,p (4N )V h

p,j (4N )

λhj +N∑j=1

m∑p=1

M hk,p (4N )W h

p,j (4N )

λhj+1

+m∑p=1

M hk,p (4N ) ghp (f,4N ), k = 1,m,

and then solve the Cauchy problems

dx

dt= A (t)x+ F h (t) , x (θr−1) = λhr , t ∈ [θr−1, θr] , r =1, N + 1,

where F h (t) =∑m

k=1 ϕk(t)[µhk +

∑N+1j=1 ψ

hjp,jλ

hj

]+∑N

i=1Ai (t)λhi+1 + f (t) .

And the solutions to Cauchy problems are found by the Bulirsch-Stoer method. Thus,the algorithm allows us to find the numerical solution to the problem (1), (2).

References

[1] Nakhushev A.M. Boundary value problems for loaded integro-differential equations of hyperbolictype and their applications to the prognoses of soil moisture, Differential Equations, 15 (1979) 96–105.

[2] Nakhushev A.M. On an approximate method of solving boundary value problems for differentialequations and its applications to the dynamics of soil moisture and groundwater, Differential Equations,18 (1982), 72–81.

[3] Krall A.M. The development of general differential and general differential-boundary systems,Rocky Mountain Journal of Mathematics, 5 (1975), 493–542.

[4] Abdullaev V.M., Aida-zade K.R. Numerical method of solution to loaded nonlocal boundaryvalue problems for ordinary differential equations, Comput. Math. Math. Phys., 54 (2014), 1096–1109.

[5] Aida-zade K.R., Abdullaev V.M. On the numerical solution of loaded systems of ordinary differ-ential equations with nonseparated multipoint and integral conditions, Numer. Anal. Appl., 7 (2014),1–14.

[6] Alikhanov A.A., Berezkov A.M., Shkhanukhov-Lafishev M.Kh. Boundary value problems forcertain classes of loaded differential equations and solving them by finite difference methods, Comput.Maths. Math. Phys., 48 (2005), 1581-1590.

[7] Dzhenaliev M.T., Ramazanov M.I. Loaded equations as perturbations of differential equations,Almaty: Gylym, 2010. 336 p.

[8] Bykov Ya. V. Some Problems of the Theory of Integrodifferential Equations, Frunze: KirgizskiiGosudarstvennyi Universitet, 1957. 327 p.

[9] Vigranenko T. I. One a boundary-value problem for linear integrodifferential equations, ZapiskiLeningrad. Gornogo. Inst., 33 (1956), 177–187.

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 118: 20 4 MATHEMATICAL 20 JOURNAL

An algorithm for solving multipoint boundary value problem for loaded differential... 117

[10] Krivoshein L. E. Approximate Methods for the Solution of Ordinary Linear IntegrodifferentialEquations, Akad. Nauk Kirgiz. SSR, Frunze, 1962. 272 p.

[11] Artykov A. Zh. Conditions of solvability for a boundary-value problem for integrodifferentialequations, Investigation in Integro-differential Equations, 25 (1994), 110–113.

[12] Liz E. , Nieto J. J. Boundary value problems for second-order integrodifferential equations ofFredholm type, J. Comput. Appl. Math., 72. (1992), 215–225. DOI: 10.1016/0377-0427(95)00273-1.

[13] Yulan W., Chaolu T., Jing P. New algorithm for second order boundary value prob-lems of integro-differential equation, J. Comput. Appl. Math., 229 (2009), 1–6. DOI:10.1016/j.cam.2008.10.007.

[14] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-ValueProblems, WSP, Utrecht, 2004. 333 p.

[15] Dzhumabaev D.S. Computational methods of solving the boundary value problems for the loadeddifferential and Fredholm integro-differential equations, Math. Methods in the Applied Sciences, 41(2018), 1439–1462. DOI: 10.1002/mma.4674.

[16] Dzhumabaev D.S., Bakirova E.A. Criteria for the unique solvability of a linear two-point bound-ary value problem for systems of integro-differential equations, Differential Equations, 49 (2013), 1087–1102. DOI: 10.1134/S0012266113090048.

[17] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fred-holm integro-differential equations, J. Comput. Appl. Math., 294 (2016), 342–357. DOI:10.1016/j.cam.2015.08.023.

[18] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. Numerical solution to a control problemfor integro-differential equations, Comput. Math. And Math. Phys., 60. (2020), 203–221. DOI:10.1134/S0965542520020049.

[19] Assanova A.T., Imanchiyev A.E., Kadirbayeva Zh.M. Numerical solution of systems of loadedordinary differential equations with multipoint conditions, Comput. Math. And Math. Phys., 58(2018), 508–516. DOI: 10.1134/S096554251804005.

[20] Bakirova E.A., Kadirbayeva Zh.M. Numerical solution of the boundary value problems for theloaded differential and Fredholm integro-differential equations, International Journal of Informationand Communication Technologies, 1 (2020), 77–86.

[21] Assanova A.T., Bakirova E.A., Uteshova R.E. Novel approach for solving multipoint boundaryvalue problem for integro-differe, ntial equation, Kazakh Mathematical Journal 20:1 (2020), 103—124.

Бакирова Э.А., Минглибаева Б.Б., Қасымова А.Б. ЖҮКТЕЛГЕН ДИФФЕРЕНЦИ-АЛДЫҚ ЖӘНЕ ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕ-УЛЕРI ҮШIН КӨП НҮКТЕЛI ШЕТТIК ЕСЕПТI ШЕШУДIҢ АЛГОРИТМI

Жүктелген дифференциалдық және Фредгольм интегралдық-дифференциалдықтеңдеулерi үшiн көп нүктелi шеттiк есеп қарастырылады. Бұл есеп параметрлеу әдiсiмензерттеледi. Аралық бөлiктерге бөлiнiп, iшкi аралықтың бастапқы нүктелерiндегi берiл-ген функцияның мәндерi қосымша параметрлер ретiнде қарастырылады, ал бастапқытеңдеу белгiсiз функциялар iшкi аралықтағы бастапқы шарттарды қанағаттандыратынпараметрлерi бар интегралдық-дифференциалдық теңдеулер жүйесiне келтiрiледi. Па-раметрлердiң бекiтiлген мәндерi үшiн сызықтық интегралдық-дифференциалдық теңде-улер жүйесi үшiн арнайы Коши есебiн аламыз. Кошидiң арнайы есебiнiң шешiмi диф-

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 119: 20 4 MATHEMATICAL 20 JOURNAL

118 Elmira A. Bakirova, Bayan B. Minglibayeva, Asemgul B. Kasymova

ференциалдық теңдеудiң iргелi матрицасының көмегiмен қүрылады. Параметрлерге қа-тысты сызықтық алгебралық теңдеулер жүйесi сәйкес мәндерiн шеттiк шартқа жәнеүзiлiссiздiк шартына қою арқылы құрылады. Құрылған жүйенi шешуге және iшкi ара-лықтардағы Коши есебiн шешудiң Булирш-Штоер әдiсiне негiзделген сандық әдiсi ұсы-нылған.

Кiлттiк сөздер. Жүктелген дифференциалдық теңдеу, интегралдық-дифференциалдық теңдеу, көп нүктелi есеп, алгоритм, параметрлеу әдiсi

Бакирова Э.А., Минглибаева Б.Б., Касымова А.Б. АЛГОРИТМ НАХОЖДЕНИЯРЕШЕНИЯ МНОГОТОЧЕЧНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ НАГРУЖЕННЫХ ДИФ-ФЕРЕНЦИАЛЬНЫХ И ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФРЕД-ГОЛЬМА

Рассматривается многоточечная краевая задача для нагруженных дифференциаль-ных и интегро-дифференциальных уравнений Фредгольма. Эта задача исследуется ме-тодом параметризации. Интервал разбивается на части, значения искомой функции вначальных точках подинтервалов рассматриваются как дополнительные параметры, аисходное уравнение сводится к системе интегро-дифференциальных уравнений с пара-метрами, где неизвестные функции удовлетворяют начальным условиям на подинтер-валах. При фиксированных значениях параметров получаем специальную задачу Кошидля системы линейных интегро-дифференциальных уравнений. Решение специальной за-дачи Коши строится с использованием фундаментальной матрицы дифференциальногоуравнения. Система линейных алгебраических уравнений относительно параметров со-ставляется путем подстановки соответствующих значений в краевое условие и условиянепрерывности. Предлагается численный метод решения задачи, основанный на решениипостроенной системы и методе Булирша-Штоера решения задачи Коши на подинтерва-лах

Ключевые слова. Нагруженное дифференциальное уравнение, интегро-дифференциальное уравнение, многоточечная задача, алгоритм, метод параметризации

Kazakh Mathematical Journal, 20:4 (2020) 107–118

Page 120: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

19:1 (2019) 119–132

On a solution of a nonlinear semi-periodic boundaryvalue problem for a third-order pseudoparabolic

equation

Nurgul T. Orumbayeva1,a, Aliya B. Keldibekova1,b

1Buketov Karaganda University, Karagandy, Kazakhstanae-mail: [email protected], be-mail: Keldibekova a [email protected]

Communicated by: Anar Assanova

Received: 11.11.2020 ? Accepted/Published Online: 10.12.2020 ? Final Version: 20.12.2020

Abstract. A nonlinear semi-periodic boundary value problem for an evolutionary equation of the pseu-

doparabolic type is studied. Introducing new variables, this third-order semi-periodic problem is reduced

to a periodic boundary-value problem for a family of systems of first-order ordinary differential equations

and functional relations. An algorithm for finding an approximate solution to the problem under study

is proposed.

Keywords. differential equations, nonlinear problem, third-order equation, boundary value problem,

algorithm.

In memory of ProfessorDulat Syzdykbekovich Dzhumabaev

with great gratefulness

1 Introduction

On Ω = [0, ω]× [0, T ] the boundary value problem is considered

∂3u

∂x2∂t= f

(x, t, u,

∂2u

∂x2,∂u

∂x,∂u

∂t

), (x, t) ∈ Ω, u ∈ Rn, (1)

u(x, 0) = u(x, T ), x ∈ [0, ω], (2)

u(0, t) = ϕ(t), t ∈ [0, T ], (3)

2010 Mathematics Subject Classification: 35K35.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08955795).c© 2019 Kazakh Mathematical Journal. All right reserved.

Page 121: 20 4 MATHEMATICAL 20 JOURNAL

120 Nurgul T. Orumbayeva

∂u(0, t)

∂x= ψ(t), t ∈ [0, T ], (4)

where f : Ω × Rn × Rn → Rn is continuous, n-vector function ϕ(t), ψ(t) is continuouslydifferentiable by [0, T ] and satisfies the condition ψ(0) = ψ(T ).

Nonlocal problems for third-order partial differential equations have been studied bymany authors [1-4]. A certain interest in the study of these problems is caused in con-nection with their applied values. Such problems include highly porous media with complextopologies, and first of all, soil and ground. Also, such equations can describe long waves indispersed systems. To solve this problem, we introduce new functions and apply the methodof parametrization [5]. Then the nonlinear semi-periodic boundary value problem for a third-order pseudoparabolic equation is reduced to a periodic boundary value problem for a familyof systems of ordinary differential equations [6-19].

Function u(x, t) ∈ C(Ω, Rn), having partial derivatives

∂u(x, t)

∂x∈ C(Ω, Rn),

∂u(x, t)

∂t∈ C(Ω, Rn),

∂2u(x, t)

∂x2∈ C(Ω, Rn),

∂3u(x, t)

∂x2∂t∈ C(Ω, Rn),

is called a classical solution to problem (1)-(4) if it satisfies system (1) for all (x, t) ∈ Ω, andboundary conditions (2)-(4).

To find a solution, we introduce the functions z(x, t) = ∂u(x,t)∂x , w(x, t) = ∂u(x,t)

∂t andproblem (1)-(4) can be written as

∂2z

∂x∂t= f

(x, t, u,

∂z(x, t)

∂x, z(x, t), w(x, t)

), (x, t) ∈ Ω, u ∈ Rn, (5)

z(x, 0) = z(x, T ), x ∈ [0, ω], (6)

z(0, t) = ψ(t), t ∈ [0, T ], (7)

w(x, t) = ϕ(t) +

x∫0

∂z(ξ, t)

∂tdξ, (8)

u(x, t) = ϕ(t) +

x∫0

z(ξ, t)dξ. (9)

For fixed u(x, t) and w(x, t) problem (5)-(7) is a semi-periodic boundary value problem for a

system of second-order hyperbolic equations. Reintroduce the notation v(x, t) = ∂z(x,t)∂x , and

problem (5)-(9) is reduced to a family of periodic boundary value problems for a system ofordinary differential equations of the form

∂v

∂t= f

(x, t, u, v(x, t), z(x, t), w(x, t)

), (x, t) ∈ Ω,

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 122: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 121

v(x, 0) = v(x, T ), x ∈ [0, ω],

functional relationships

z(x, t) = ψ(t) +

x∫0

v(ξ, t)dξ, (x, t) ∈ Ω,

and (8), (9).Thus we have reduced a semiperiodic boundary value problem for a system of hyperbolic

equations to a family of periodic boundary value problems for ordinary differential equationsand functional relations.

At the step h > 0 : Nh = T we perform the partition

[0, T ) =

N⋃r=1

[(r − 1)h, rh), N = 1, 2, . . . .

Then the domain Ω is divided into N parts. By vr(x, t), ur(x, t), wr(x, t) denote, respectively,the restriction of the functions v(x, t), u(x, t), w(x, t) to Ωr = [0, ω] × [(r − 1)h, rh),r = 1, N . We introduce the notation λr(x) = vr(x, (r − 1)h) and make a replacementvr(x, t) = vr(x, t) − λr(x), r = 1, N . We obtain an equivalent boundary value problem withunknown functions λr(x):

∂vr∂t

= f(x, t, ur(x, t), vr + λr(x), zr(x, t), wr(x, t)), (x, t) ∈ Ωr, (10)

vr(x, (r − 1)h) = 0, x ∈ [0, ω], r = 1, N, (11)

λ1(x)− λN (x)− limt→T−0

vN (x, t) = 0, x ∈ [0, ω], (12)

λs(x) + limt→sh−0

vs(x, t)− λs+1(x) = 0, x ∈ [0, ω], s = 1, N − 1. (13)

zr(x, t) = ψ(t) +

x∫0

vr(ξ, t)dξ +

x∫0

λr(ξ)dξ, (x, t) ∈ Ωr, r = 1, N, (14)

wr(x, t) = ϕ(t) + ψ(t)x+

x∫0

ξ∫0

∂vr(ξ1, t)

∂tdξ1dξ, (x, t) ∈ Ωr, r = 1, N, (15)

ur(x, t) = ϕ(t) + ψ(t)x+

x∫0

ξ∫0

vr(ξ1, t)dξ1dξ +

x∫0

ξ∫0

λr(ξ1)dξ1dξ, (x, t) ∈ Ωr, r = 1, N, (16)

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 123: 20 4 MATHEMATICAL 20 JOURNAL

122 Nurgul T. Orumbayeva

where (13) is the condition for the continuity of the solution in the inner lines of the partition.

Problem (10),(16) for fixed λr(x), zr(x, t), wr(x, t), ur(x, t), is a one-parameter family ofCauchy problems for systems of ordinary differential equations, where x ∈ [0, ω], and isequivalent to the nonlinear integral equation

vr(x, t) =

t∫(r−1)h

f(x, τ, ur(x, τ), vr(x, τ) + λr(x), zr(x, τ), wr(x, τ))dτ. (17)

Instead of vr(x, τ) substitute the corresponding right-hand side of (17) and repeat thisprocess ν times (ν = 1, 2, . . .) as soon as we get

vr(x, t) =

t∫(r−1)h

f

(x, τ1, ur(x, τ1),

τ1∫(r−1)h

f

(x, τ2, ur(x, τ2), . . .

. . .

τν−1∫(r−1)h

f

(x, τν , ur(x, τν), vr(x, τν) + λr(x), zr(x, τν), wr(x, τν)

)dτν+

+ . . .+ λr(x), zr(x, τ2), wr(x, τ2)

)dτ2 + λr(x), zr(x, τ1), wr(x, τ1)

)dτ1. (18)

Hence, defining limt→rh−0

vr(x, t), substituting them into (12), (13), we obtain a system of

nonlinear equations for λr(x) :

λ1(x)− λN (x)−Nh∫

(N−1)h

f

(x, τ1, uN (x, τ1),

τ1∫(N−1)h

f

(x, τ2, uN (x, τ2), . . .

...

τν−1∫(N−1)h

f

(x, τν , uN (x, τν), vN (x, τν) + λN (x), zN (x, τν), wN (x, τν)

)dτν + . . .

. . .+ λN (x), zN (x, τ2), wN (x, τ2)

)dτ2 + λN (x), zN (x, τ1), wN (x, τ1)

)dτ1 = 0, x ∈ [0, ω],

λs(x) +

sh∫(s−1)h

f

(x, τ1, us(x, τ1),

τ1∫(s−1)h

f

(x, τ2, us(x, τ2), . . .

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 124: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 123

. . .

τν−1∫(s−1)h

f

(x, τν , us(x, τν), vs(x, τν) + λs(x), zs(x, τν), ws(x, τν)

)dτν + . . .

...+ λs(x), zs(x, τ2), ws(x, τ2)

)dτ2 + λs(x), zs(x, τ1), ws(x, τ1)

)dτ1 − λs+1(x) = 0,

x ∈ [0, ω], s = 1, N − 1.

which we write in the form

Qν,h(x, λ, v, z, w, u) = 0. (19)

In the absence of partition (N = 1, h = T ) the system of equations (19) has the form

T∫0

f

(x, τ1, u(x, τ1),

τ1∫0

f

(x, τ2, u(x, τ2), . . .

τν−1∫0

f

(x, τν , u(x, τν), v(x, τν)

+λ(x), z(x, τν), w(x, τν)

)dτν + . . .+ λ(x), z(x, τ2), w(x, τ2)

)dτ2

+λ(x), z(x, τ1), w(x, τ1)

)dτ1 = 0, x ∈ [0, ω].

To find a system of functions λr(x), vr(x, t), zr(x, t), wr(x, t), ur(x, t), r = 1, N, we have aclosed system consisting of equations (19), (18), (14), (15) and (16), defined in terms of thefunction f, the partition step h > 0 and the number of substitutions ν.

Let us choose a step h > 0 : Nh = T (N = 1, 2, . . .), vector function

λ(0)(x) = (λ(0)1 (x), λ

(0)2 (x), . . . , λ

(0)N (x))′ ∈ C([0, ω], RNn),

and assume that problem (10)–(16) for λr(x) = λ(0)r (x), r = 1, N, has a solution v

(0)r (x, t) ∈

C(Ωr, Rn), z

(0)r (x, t) ∈ C(Ωr, R

n), w(0)r (x, t) ∈ C(Ωr, R

n), u(0)r (x, t) ∈ C(Ωr, R

n), r = 1, N.Many such λ(0)(x) ∈ C([0, ω], RnN ) denote G0(f, x, h), and the corresponding λ(0)(x) havethe system of solutions to problems (10)–(16) in terms of

v(0)(x, [t]) = (v(0)1 (x, t), v

(0)2 (x, t), . . . , v

(0)N (x, t))′,

z(0)(x, [t]) = (z(0)1 (x, t), z

(0)2 (x, t), . . . , z

(0)N (x, t))′,

w(0)(x, [t]) = (w(0)1 (x, t), w

(0)2 (x, t), . . . , w

(0)N (x, t))′,

u(0)(x, [t]) = (u(0)1 (x, t), u

(0)2 (x, t), . . . , u

(0)N (x, t))′.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 125: 20 4 MATHEMATICAL 20 JOURNAL

124 Nurgul T. Orumbayeva

By taking λ(0)(x) ∈ G0(f, x, h), v(0)(x, [t]), u(0)(x, [t]), z(0)(x, [t]), w(0)(x, [t]), continuous func-tions on [0, ω] ρ(x) > 0, θ(x) > 0, φ(x) > 0 build sets:

S(λ(0)(x), ρ(x)) =

(λ1(x), λ2(x), . . . , λN (x))′ ∈ C([0, ω], RnN ) :

‖λr(x)− λ(0)r (x)‖ < ρ(x), r = 1, N,

S(v(0)(x, [t]), θ(x)) =

(v1(x, t), v2(x, t), . . . , vN (x, t))′, vr(x, t) ∈ C(Ωr, Rn) :

maxr=1,N

supt∈[(r−1)h,rh)

‖vr(x, t)− v(0)r (x, t)‖ < θ(x), r = 1, N,

S(z(0)(x, [t]), φ(x)) = (z1(x, t), z2(x, t), . . . , zN (x, t))′, zr(x, t) ∈ C(Ωr, Rn) :

‖zr(x, t)− z(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

S(w(0)(x, [t]), φ(x)) = (w1(x, t), w2(x, t), . . . , wN (x, t))′, wr(x, t) ∈ C(Ωr, Rn) :

‖wr(x, t)− w(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

S(u(0)(x, [t]), φ(x)) = (u1(x, t), u2(x, t), . . . , uN (x, t))′, ur(x, t) ∈ C(Ωr, Rn) :

‖ur(x, t)− u(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

G01(ρ(x), θ(x), φ(x)) = (x, t, v, z, w, u) : (x, t) ∈ Ω,

‖v − λ(0)r (x)− v(0)r (x, t)‖ < ρ(x) + θ(x), (x, t) ∈ Ωr, r = 1, N,

‖v − λ(0)N (x)− limt→T−0

v(0)N (x, t)‖ < ρ(x) + θ(x), t = T,

‖z − z(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

‖z − limt→Nh−0

z(0)N (x, t)‖ < φ(x), t = T,

‖w − w(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

‖w − limt→Nh−0

w(0)N (x, t)‖ < φ(x), t = T, ‖u− u(0)r (x, t)‖ < φ(x), (x, t) ∈ Ωr, r = 1, N,

‖u− limt→Nh−0

u(0)N (x, t)‖ < φ(x), t = T.

By U0(f, L1(x), L2(x), L3(x), L4(x), x, h) we denote the collection

(λ(0)(x), v(0)(x, [t]), z(0)(x, [t]), w(0)(x, [t]), u(0)(x, [t]), ρ(x), θ(x), φ(x))

for which the function f(x, t, v, w, u) in G01(ρ(x), θ(x), φ(x)) has continuous partial deriva-

tives f ′v(x, t, v, z, w, u), f ′z(x, t, v, z, w, u), f ′w(x, t, v, z, w, u), f ′u(x, t, v, z, w, u) and

‖f ′v(x, t, v, z, w, u)‖ ≤ L1(x), ‖f ′z(x, t, v, z, w, u)‖ ≤ L2(x),

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 126: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 125

‖f ′w(x, t, v, z, w, u)‖ ≤ L3(x), ‖f ′u(x, t, v, z, w, u)‖ ≤ L4(x).

By system λr(x), vr(x, t), zr(x, t), wr(x, t), ur(x, t), r = 1, N, let us make the top fiveλ(x), v(x, [t]), z(x, [t]), w(x, [t]), u(x, [t]), where λ(x) = (λ1(x), λ2(x), . . . , λN (x))′,

v(x, [t]) = (v1(x, t), v2(x, t), . . . , vN (x, t))′,

z(x, [t]) = (z1(x, t), z2(x, t), . . . , zN (x, t))′,

w(x, [t]) = (w1(x, t), w2(x, t), . . . , wN (x, t))′,

u(x, [t]) = (u1(x, t), u2(x, t), . . . , uN (x, t))′.

Assuming the existence of λ(0)(x) ∈ G0(f, x, h), for the initial approximation of problem (10)-(16) we take the functions λ(0)(x), v(0)(x, [t]), z(0)(x, [t]), w(0)(x, [t]), u(0)(x, [t]), r = 1, N ,and successive approximations are built according to the following algorithm:

Step 1. A) Assuming that

zr(x, t) = z(0)r (x, t), wr(x, t) = w(0)r (x, t), ur(x, t) = u(0)r (x, t), r = 1, N,

we find first approximations of λr(x), vr(x, t) by solving problem (10)–(13). Taking

λ(1,0)(x) = λ(0)(x), v(1,0)r (x, t) = v(0)r (x, t),

we find the system of couples λ(1)r (x), v(1)r (x, t), r = 1, N, the limit of the sequence

λ(1,m)r (x), v

(1,m)r (x, t), determined by the following algorithm:

Step 1.1. a) Substituting v(1,0)r (x, t), r = 1, N, in (19), from the system of functional

equations

Qν,h(x, λ, v(1,0), z(0), w(0), u(0)) = 0

define λ(1,1)r (x), r = 1, N.

b) In the right-hand side of (18), substituting instead of vr(x, t), λr(x), respectively,

v(1,0)r (x, t), λ

(1,1)r (x), r = 1, N, define v(1,1)r (x, t), r = 1, N.

Step 1.2. a) Substituting v(1,1)r (x, t), r = 1, N, in (19), from the system of functional

equations

Qν,h(x, λ, v(1,1), z(0), w(0), u(0)) = 0

define λ(1,2)r (x), r = 1, N.

b) In the right-hand side of (18), substituting instead of vr(x, t), λr(x), respectively,

v(1,1)r (x, t), λ

(1,2)r (x), r = 1, N, define v(1,2)r (x, t), r = 1, N. On (1,m)-th step we get a

system of pairs λ(1,m)r (x), v

(1,m)r (x, t), r = 1, N. Assume that a sequence of systems of

couples λ(1,m)r (x), v

(1,m)r (x, t) at m→∞ converges to λ(1)r (x), v

(1)r (x, t), r = 1, N.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 127: 20 4 MATHEMATICAL 20 JOURNAL

126 Nurgul T. Orumbayeva

B) Functions u(1)r (x, t), z

(1)r (x, t), w

(1)r (x, t), r = 1, N, are determined from the relations

z(1)r (x, t) = ψ(t) +

x∫0

v(1)r (ξ, t)dξ +

x∫0

λ(1)r (ξ)dξ, (x, t) ∈ Ωr, r = 1, N,

w(1)r (x, t) = ϕ(t) + ψ(t)x+

x∫0

ξ∫0

∂v(1)r (ξ1, t)

∂tdξ1dξ, (x, t) ∈ Ωr, r = 1, N,

u(1)r (x, t) = ϕ(t) + ψ(t)x+

x∫0

ξ∫0

v(1)r (ξ1, t)dξ1dξ +

x∫0

ξ∫0

λ(1)r (ξ1)dξ1dξ, (x, t) ∈ Ωr, r = 1, N.

Step 2. A) Assuming that

zr(x, t) = z(1)r (x, t), wr(x, t) = w(1)r (x, t), ur(x, t) = u(1)r (x, t), r = 1, N,

we find second approximations of λr(x), vr(x, t) by solving problem (10)–(13). Taking

λ(2,0)(x) = λ(1)(x), v(2,0)r (x, t) = v(1)r (x, t),

we find the system of couples λ(2)r (x), v(2)r (x, t), r = 1, N, as the limit of the sequence

λ(2,m)r (x), v

(2,m)r (x, t), determined by the following algorithm:

Step 2.1. a) Substituting v(2,0)r (x, t), r = 1, N, in (19), from the system of functional

equations

Qν,h(x, λ, v(2,0), z(1), w(1), u(1)) = 0

define λ(2,1)r (x), r = 1, N.

b) In the right-hand side of (18), substituting instead of vr(x, t), λr(x), respectively,

v(2,0)r (x, t), λ

(2,1)r (x), r = 1, N, define v(2,1)r (x, t), r = 1, N.

Step 2.2. a) Substituting v(2,1)r (x, t), r = 1, N, in (19), from the system of functional

equations

Qν,h(x, λ, v(2,1), z(1), w(1), u(1)) = 0

define λ(2,2)r (x), r = 1, N.

b) In the right-hand side of (18), substituting instead of vr(x, t), λr(x), respectively,

v(2,1)r (x, t), λ

(2,2)r (x), r = 1, N, define v(2,2)r (x, t), r = 1, N. At the (2,m)-th step we obtain

a system of couples λ(2,m)r (x), v

(2,m)r (x, t), r = 1, N. Assume that a sequence of systems

of couples λ(2,m)r (x), v

(2,m)r (x, t) at m→∞ converges to λ(2)r (x), v

(2)r (x, t), r = 1, N.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 128: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 127

B) Functions u(2)r (x, t), z

(2)r (x, t), w

(2)r (x, t), r = 1, N, are determined from the relations

z(2)r (x, t) = ψ(t) +

x∫0

v(2)r (x1, t)dx1 +

x∫0

λ(2)r (x1)dx1, (x, t) ∈ Ωr, r = 1, N,

w(2)r (x, t) = ϕ(t) + ψ(t)x+

x∫0

x1∫0

∂v(2)r (x2, t)

∂tdx2dx1, (x, t) ∈ Ωr, r = 1, N,

u(2)r (x, t) = ϕ(t) +ψ(t)x+

x∫0

x1∫0

v(2)r (x2, t)dx2dx1 +

x∫0

x1∫0

λ(2)r (x2)dx2dx1, (x, t) ∈ Ωr, r = 1, N.

Continuing the process, at the k–th step we obtain the system

λ(k)r (x), v(k)r (x, t), z(k)r (x, t), w(k)r (x, t), u(k)r (x, t), r = 1, N.

Sufficient conditions for the feasibility, convergence of the algorithm and the existenceof a solution to a multi-characteristic boundary value problem with functional parameters(10)–(16) are established by

Theorem 1. Suppose that there is h > 0 : Nh = T, (N = 1, 2, . . .), ν ∈ N, (λ(0)(x),v(0)(x, [t]), z(0)(x, [t]), w(0)(x, [t]), u(0)(x, [t]), ρ(x), θ(x), φ(x)) ∈ U0(f, L1(x), L2(x), L3(x),

L4(x), x, h), for which the Jacobi matrix∂Qν,h(x, λ, v, z, w, u)

∂λis reversible for all (x, λ(x),

v(x, [·]), z(x, [·]), w(x, [·])), u(x, [·]), where x ∈ [0, ω], (λ(x), v(x, [t]), z(x, [t]), w(x, [t]), u(x, [t]))∈ S(λ(0)(x), ρ(x)) × S(v(0)(x, [t]), θ(x)) × S(z(0)(x, [t]), φ(x)) × S(w(0)(x, [t]), φ(x)) ×S(u(0)(x, [t]), φ(x)) and the following inequalities hold:

1)

∥∥∥∥[∂Qν,h(x, λ, v, z, w, u)

∂λ

]−1∥∥∥∥ ≤ γν(x, h),

2) qν(x, h) =(L1(x)h)ν

ν!

[1 + γν(x, h)

ν∑j=1

(L1(x)h)j

j!

]≤ µ < 1,

3) [c0(x) + 1]c2(x)[L2(x) + L3(x) + L4(x)]x∫0

c(ξ)exp

( ξ∫0

c(ξ1)dξ1

ξ∫0

max1, L1(ξ1)[c0(ξ1)c1(ξ1) + c0(ξ1) + 1]γν(ξ1, h)‖Qν,h(ξ1, λ(0), v(0), z(0), w(0), u(0))‖dξ1dξ

+c0(x)γν(x, h)‖Qν,h(x, λ(0)(x), v(0), z(0), w(0), u(0))‖ < θ(x),

4) [c0(x)c1(x)+c0(x)+1]c2(x)[L2(x)+L3(x)+L4(x)]x∫0

c(ξ)exp

( ξ∫0

c(ξ1)dξ1

) ξ∫0

max1, L1(ξ1)

×[c0(ξ1)c1(ξ1) + c0(ξ1) + 1]γν(ξ1, h)‖Qν,h(ξ1, λ(0), v(0), z(0), w(0), u(0))‖dξ1dξ

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 129: 20 4 MATHEMATICAL 20 JOURNAL

128 Nurgul T. Orumbayeva

+[c0(x)c1(x) + 1]γν(x, h)‖Qν,h(x, λ(0), v(0), z(0), w(0), u(0))‖ < ρ(x),

5) c(x)

k−1∑j=0

1

j!

( x∫0

c(ξ)dξ

)j

×x∫

0

max1, L1(ξ)[c0(ξ)c1(ξ) + c0(ξ) + 1]γν(ξ, h)‖Qν,h(ξ, λ(0), v(0), z(0), w(0), u(0))‖dξ

+ max1, L1(x)[c0(x)c1(x) + c0(x) + 1]γν(x, h)‖Qν,h(x, λ(0), v(0), z(0), w(0), u(0))‖ < φ(x),

where c(x) = max

[c0(x)c1(x) + 2c0(x) + 2]c2(x), L1(x)[c0(x)c1(x) + 2c0(x) + 2]c2(x) + 1

×[L2(x) + L3(x) + L4(x)], c0(x) =1

1− qν(x, h)

ν∑j=1

(L1(x)h)j

j!, c1(x) = γν(x, h)

(L1(x)h)ν

ν!,

c2(x) =1

1− qν(x, h)

ν∑j=0

(L1(x)h)j

j!h.

Then the sequence of functions determined by the algorithm (λ(k)(x), v(k)(x, [t]),z(k)(x, [t]), w(k)(x, [t])), u(k)(x, [t]), k = 1, 2, . . . , contained in S(λ(0)(x), ρ(x)) ×S(v(0)(x, [t]), θ(x))×S(z(0)(x, [t]), φ(x))×S(w(0)(x, [t]), φ(x))×S(u(0)(x, [t]), φ(x)), convergesto (λ∗(x), v∗(x, [t]), z∗(x, [t]), w∗(x, [t]), u∗(x, [t])) which is the solution of problem (10)-(16)and the following estimates are valid:

a) max

maxr=1,N

‖λ∗r(x)− λ(k)r (x)‖+ maxr=1,N

supt∈[(r−1)h,rh)

‖v∗r (x, t)− v(k)r (x, t)‖,

maxr=1,N

supt∈[(r−1)h,rh)

∥∥∥∂v∗r (x, t)∂t

− ∂v(k)r (x, t)

∂t

∥∥∥,x∫

0

maxr=1,N

‖λ∗r(ξ)− λ(k)r (ξ)‖dξ +

x∫0

maxr=1,N

supt∈[(r−1)h,rh)

‖v∗r (ξ, t)− v(k)r (ξ, t)‖dξ

≤ c(x)

(k − 1)!

( x∫0

c(ξ)dξ

)(k−1)e

x∫0

c(ξ)dξx∫

0

max1, L1(ξ)[c0(ξ)c1(ξ) + c0(ξ) + 1]

×γν(ξ, h)‖Qν,h(ξ, λ(0), v(0), z(0), w(0), u(0))‖dξ,

b) max

maxr=1,N

supt∈[(r−1)h,rh)

‖z∗r (x, t)− z(k)r (x, t)‖, maxr=1,N

supt∈[(r−1)h,rh)

‖w∗r(x, t)− w(k)r (x, t)‖,

maxr=1,N

supt∈[(r−1)h,rh)

‖u∗r(x, t)− u(k)r (x, t)‖

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 130: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 129

≤x∫

0

max

maxr=1,N

‖λ∗r(ξ)− λ(k)r (ξ)‖+ maxr=1,N

supt∈[(r−1)h,rh)

‖v∗r (ξ, t)− v(k)r (ξ, t)‖,

maxr=1,N

supt∈[(r−1)h,rh)

∥∥∥∂v∗r (ξ, t)∂t

− ∂v(k)r (ξ, t)

∂t

∥∥∥,ξ∫

0

maxr=1,N

‖λ∗r(ξ1)− λ(k)r (ξ1)‖dξ +

ξ∫0

maxr=1,N

supt∈[(r−1)h,rh)

‖v∗r (ξ1, t)− v(k)r (ξ1, t)‖dξ1dξ.

Furthermore any solution (λ(x), v(x, [t]), z(x, [t]), w(x, [t]), u(x, [t])) to problems (10)-(16) inS(λ(0)(x), ρ(x))× S(v(0)(x, [t]), θ(x)) × S(z(0)(x, [t]), φ(x)) × S(w(0)(x, [t]), φ(x)) ×S(u(0)(x, [t]), φ(x)) is isolated.

The proof is given on the basis of the above algorithm, similar to the scheme of the proofof Theorem 1 of [14].

Functions v(k)r (x, t), z

(k)r (x, t), w

(k)r (x, t), u

(k)r (x, t), k = 1, 2, . . ., are defined by equalities:

v(k)r (x, t) =

λ(k)r (x) + v

(k)r (x, t), at (x, t) ∈ Ωr, r = 1, N,

λ(k)N (x) + lim

t→T−0v(k)N (x, t), at t = Nh,

z(k)r (x, t) = ψ(t) +

x∫0

v(k)r (ξ, t)dξ,

w(k)r (x, t) = ϕ(t) + ψ(t) +

x∫0

ξ∫0

∂v(k)r (ξ1, t)

∂tdξ1dξ,

u(k)r (x, t) = ϕ(t) + ψ(t)x+

x∫0

ξ∫0

v(k)r (ξ1, t)dξ1dξ

and by G(u(0)(x, [t]), φ(x)) denote lots of piecewise-continuously differentiable to x, t functionsu : Ω → Rn, satisfying the inequalities ‖v(x, t) − λ(0)(x) − v(0)(x, t)‖ < φ(x), ‖v(x, T ) −λ(0)(x) − v(0)(x, T )‖ < φ(x), ‖z(x, t) − z(0)(x, t)‖ < φ(x), ‖z(x, T ) − z(0)(x, T )‖ < φ(x),‖w(x, t) − w(0)(x, t)‖ < φ(x), ‖w(x, T ) − w(0)(x, T )‖ < φ(x), ‖u(x, t) − u(0)(x, t)‖ < φ(x),

‖u(x, T )− u(0)(x, T )‖ < φ(x), where v(x, t) = ∂2u(x,t)∂x2

, z(x, t) = ∂u(x,t)∂t , w(x, t) = ∂u(x,t)

∂t .

In view of the equivalence of problems (1)-(4) and (10)-(16), Theorem 1 implies

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 131: 20 4 MATHEMATICAL 20 JOURNAL

130 Nurgul T. Orumbayeva

Theorem 2. If the conditions of Theorem 1 are satisfied, then the sequence of functionsu(k)(x, t), k = 1, 2, . . . , contained in G(u(0)(x, [t]), φ(x)), converges to u∗(x, t) which is thesolution to problem (1)-(4) in G(u(0)(x, [t]), φ(x)) and this inequality is valid

‖u∗(x, t)− u(k)(x, t)‖ ≤x∫

0

c(ξ)∞∑

j=k−1

1

j!

( ξ∫0

c(ξ1)dξ1

)j

×ξ∫

0

max1, L1(ξ1)[c0(ξ1)c1(ξ1)+c0(ξ1)+1]γν(ξ1, h)‖Qν,h(ξ1, λ(0), v(0), z(0), w(0), u(0))‖dξ1dξ,

(x, t) ∈ Ω. Moreover, any solution to problem (1)-(4) in G(u(0)(x, [t]), φ(x)) is isolated.

References

[1] Nakhushev A.M. Equations of mathematical biology, Moscow: Vysshaya Shkola, 1995 (in Rus-sian). Zbl 0991.35500.

[2] Kozhanov A.I. Composite Type Equations and Inverse Problems (Inverse and Iii-Posed Prob-lems), VSP: Utrecht (1999). DOI: 10.1515/9783110943276.

[3] Kozhanov A.I., Lukina G.A. Pseudoparabolic and pseudohyperbolic equations in noncylindricaltime domains, Mathematical notes of NEFU, 3:26 (2019), 15-30. DOI: 10.25587/SVFU.2019.17.12.002.

[4] Kozhanov A.I., Pinigina N.R. Boundary-value problems for some higher-order nonclassical dif-ferential equations, Mathematical Notes, 101 (2017), 467-474. DOI: 10.1134/S0001434617030087.

[5] Dzhumabaev D.S. Criteria for the unique solvability of a linear boundary-value problem for anordinary differential equation, U.S.S.R. Computational Mathematics and Mathematical Physics, 29:1(1989), 34-46. DOI: 10.1016/0041-5553(89)90038-4.

[6] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fredholmintegro-differential equations, Journal of Computational and Applied Mathematics, 294 (2016), 342-357. DOI: 10.1016/j.cam.2015.08.023.

[7] Dzhumabaev D.S. Well-posedness of nonlocal boundary value problem for a system of loadedhyperbolic equations and an algorithm for finding its solution, Journal of Mathematical analysis andApplications, 461:1 (2018), 817-836. DOI: 10.1016/j.jmaa.2017.12.005.

[8] Assanova A.T. On a nonlocal problem with integral conditions for the system of hyperbolicequations, Differential Equations, 54:2 (2018), 201-214. DOI: 10.1134/S0012266118020076.

[9] Orumbaeva N.T. On an algorithm of finding periodical boundary value problem for system ofthe quasi-linear of hyperbolic equations, Siberian Electronic Mathematical Reports, 10 (2013), 464-474(in Russian). DOI: 10.17377/semi.2013.10.036.

[10] Orumbaeva N., Shayakhmetova B. On a method of finding a solution of semi-periodic boundaryvalue problem for hyperbolic equations, AIP Conference Proceedings, 1759 (2016), Art. No. 020121.DOI: 10.1063/1.4959735.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 132: 20 4 MATHEMATICAL 20 JOURNAL

On a solution of a nonlinear semi-periodic boundary value problem... 131

[11] Orumbaeva N.T. On solvability of non-linear semi-periodic boundary-value problem for systemof hyperbolic equations, Russian Mathematics (Izv. VUZ), 9 (2016), 26-41.DOI: 10.3103/S1066369X16090036.

[12] Orumbaeva N.T. Algorithms for finding a solution to the initial boundary value problems fordifferential equations in partial derivatives, Bulletin of the Karaganda University-Mathematics, 2:82(2016), 107-112. ISSN 2518-7929 (Print), ISSN 2663-5011 (Online).

[13] Orumbaeva N.T., Sabitbekova G. On a Solution of a Nonlinear Semi-periodic Boundary ValueProblem for a Differential Equation with Arbitrary Functions, Springer Proceedings in Mathematics& Statistics, 216 (2017), 158-163. https://doi.org/10.1007/978-3-319-67053-9 14.

[14] Orumbaeva N.T., Sabitbekova G. A boundary value problem for nonlinear differential equationwith arbitrary functions, Bulletin of the Karaganda University-Mathematics, 1:85 (2017), 71-76. DOI:10.31489/2017M1/71-76.

[15] Kosmakova M.T., Orumbayeva N.T., Medeubaev N.K., Tuleutaeva Zh.M. Problems of heatconduction with different boundary conditions in noncylindrical domains, AIP Conference Proceedings,1997 (2018), Art. No. 020071. https://aip.scitation.org/doi/abs/10.1063/1.5049065.

[16] Assanova A.T., Iskakova N.B., Orumbayeva N.T. Well-posedness of a periodic boundary valueproblem for the system of hyperbolic equations with delayed argument, Bulletin of the KaragandaUniversity-Mathematics, 1:89 (2018), 8-14. DOI: 10.31489/2018M1/8-14.

[17] Orumbayeva N.T., Keldibekova A.B. On the solvability of the duo-periodic problem for thehyperbolic equation system with a mixed derivative, Bulletin of the Karaganda University-Mathematics,1:93 (2019), 59-71. DOI:10.31489/2019M1/59-71.

[18] Assanova A.T., Iskakova N.B., Orumbayeva N.T. On the well-posedness of periodic problemsfor the system of hyperbolic equations with finite time delay, Mathematical Methods in the AppliedSciences, 43:2 (2020), 881-902. DOI: 10.1002/mma.5970.

[19] Sabitbekova G., Orumbayeva N.T., Kasymetova M.T. On the solvability of a family periodicboundary value problems for ordinary differential equations, Bulletin of the Karaganda University-Mathematics, 4:72 (2013), 89-96.

[20] Trenogin V.A. Funktsionalnyi analiz: ucheb. posobie dlia stud. vuzov [Functional analysis:textbook for university students], Moscow: Nauka, 1980 (in Russian).

Орумбаева Н.Т., Кельдибекова А.Б. ҮШIНШI РЕТТI ПСЕВДОПАРАБОЛАЛЫҚТЕҢДЕУ ҮШIН БЕЙСЫЗЫҚТЫ ЖАРТЫЛАЙ ПЕРИОДТЫ ШЕТТIК ЕСЕПТIҢ БIРШЕШIМI ЖАЙЫНДА

Псевдопараболикалық типтегi эволюциялық теңдеу үшiн бейсызықты жартылай пе-риодты шеттiқ есеп зерттелуде. Жаңа айнымалыларды енгiзу арқылы осы үшiншi реттiжартылай периодты есеп қарапайым бiрiншi реттi периодты дифференциалдық теңде-улер жүйесi үйiрiне және функционалдық қатынастарға келтiрiледi. Зерттелетiн есептiңжуық шешiмiн табу алгоритмi ұсынылған.

Кiлттiк сөздер. Дифференциалдық теңдеулер, бейсызықты есеп, үшiншi реттi теңдеу,шеттiк есеп, алгоритм.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 133: 20 4 MATHEMATICAL 20 JOURNAL

132 Nurgul T. Orumbayeva

Орумбаева Н.Т., Кельдибекова А.Б. ОБ ОДНОМ РЕШЕНИИ НЕЛИНЕЙНОЙ ПО-ЛУПЕРИОДИЧЕСКОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ ПСЕВДОПАРАБОЛИЧЕСКОГОУРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА

Исследуется нелинейная полупериодическая краевая задача для эволюционного урав-нения псевдопараболического типа. Вводя новые переменные данная полупериодическаязадача третьего порядка сводится к периодической краевой задаче для семейства системобыкновенных дифференциальных уравнений первого порядка и функциональным со-отношениям. Предложен алгоритм нахождения приближенного решения исследуемойзадачи.

Ключевые слова. Дифференциальные уравнения, нелинейная задача, уравнение тре-тьего порядка, краевая задача, алгоритм.

Kazakh Mathematical Journal, 19:1 (2019) 119–132

Page 134: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 133–143

An approximate solution to quasilinear boundary valueproblems for Fredholm integro-differential equation

Sandugash T. Mynbayeva1,2,a

1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan2K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan

ae-mail: [email protected]

Communicated by: Anar Assanova

Received: 02.12.2020 ⋆ Accepted/Published Online: 15.12.2020 ⋆ Final Version: 25.12.2020

Abstract. An approximate method for solving quasilinear boundary value problem for Fredholm integro-

differentiated equation is proposed. The method is based on approximation of the integral term by

Simpson’s formula and reduction of the initial problem to a quasilinear boundary value problem for a

system of loaded differential equations. An algorithm for finding a numerical solution and a method for

constructing approximate solution of approximating boundary value problem are proposed.

Keywords. quasilinear Fredholm integro-differential equation, Dzhumabaev’s parameterization method,

Newton method, Simpson’s formula.

Dedicated to the bright memory of an outstanding scientist,Doctor of Physical and Mathematical Sciences, Professor,

my scientific supervisor Dzhumabaev Dulat Syzdykbekovich

1 Introduction

In the present paper we consider the quasilinear boundary value problem (BVP) forFredholm integro-differential equation (IDE)

dx

dt= A(t)x+

m∑k=1

φk(t)

T∫0

ψk(τ)x(τ)dτ + f0(t) + εf(t, x), t ∈ (0, T ), x ∈ Rn, (1)

Bx(0) + Cx(T ) = d, d ∈ Rn, (2)

2010 Mathematics Subject Classification: 34G20; 45B05; 45J05; 47G20.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08955461).c⃝ 2020 Kazakh Mathematical Journal. All right reserved.

Page 135: 20 4 MATHEMATICAL 20 JOURNAL

134 Sandugash T. Mynbayeva

where ε > 0, the n × n matrices A(t), φk(t), ψk(τ), k = 1,m, and the n vector f0(t) arecontinuous on [0, T ], f : [0, T ]×Rn → Rn is continuous; ∥x∥ = max

i=1,n|xi|.

Denote by C([0, T ], Rn

)the space of continuous functions x : [0, T ] → Rn with the norm

∥x∥1 = maxt∈[0,T ]

∥x(t)∥. A solution to problem (1), (2) is a continuously differentiable on (0, T )

function x(t) ∈ C([0, T ], Rn

), which satisfies equation (1) and boundary condition (2).

The aim of the paper is to develop an approximate method for solving quasilinear BVP(1), (2). For this purpose, Dzhumabaev’s parametrization method [1] and an approximationof integro–differential equation by a loaded differential equation are used.

BVPs for Fredholm IDEs are studied by many authors [2-8]. In finding approximatesolutions to IDEs, loaded differential equations (LDEs) arise, which are obtained by replacingthe integral terms of IDEs with a quadrature formula [9-12]. Loaded differential equationsand problems for these equations are considered in [13-15].

2 Scheme of the method

We divide the interval [0, T ) into 2N, N ∈ N, parts:

[0, T ) =

2N∪r=1

[tr−1, tr), tr = rh, h =T

2N,

and replace the integral term in equation (1) with the Simpson’s formula

T∫0

ψk(τ)x(τ)dτ =h

3

[ψk(0)x(0) + ψk(T )x(T )

+2

N−1∑j=1

ψk(t2j)x(t2j) + 4

N∑j=1

ψk(t2j−1)x(t2j−1)

]. (3)

Then we get LDE of the form:

dx

dt= A(t)x+

h

3

m∑k=1

φk(t)

[ψk(0)x(0) + ψk(T )x(T ) + 2

N−1∑j=1

ψk(t2j)x(t2j)

+4N∑j=1

ψk(t2j−1)x(t2j−1)

]+ f0(t) + εf(t, x), t ∈ (0, T ), x ∈ Rn. (4)

Let xr(t) be the restriction of the function x(t) to the rth subinterval, i.e. xr(t) = x(t)for t ∈ [tr−1, tr), r = 1, 2N. Then, problem (4), (2) is reduced to the multipoint BVP for the

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 136: 20 4 MATHEMATICAL 20 JOURNAL

An approximate solution to quasilinear BVP for the Fredholm IDE 135

system of the LDEs:

dxrdt

= A(t)xr +h

3

m∑k=1

φk(t)

[ψk(0)x1(0) + ψk(T )x(T ) + 2

N−1∑j=1

ψk(t2j)x2j+1(t2j)

+4N∑j=1

ψk(t2j−1)x2j(t2j−1)

]+ f0(t) + εf(t, xr), t ∈ [tr−1, tr), r = 1, 2N, (5)

Bx1(0) + Cx(t2N ) = d, (6)

limt→tp−0

xp(t) = xp+1(tp), p = 1, 2N − 1, (7)

limt→T−0

x2N (t) = x(t2N ), (8)

where (7), (8) are continuity conditions of the solution at the interior points of partition andat the point t = T .

We consider the value of functions xr(t) at the beginning points of the subintervals asadditional parameters: λr = xr(tr−1), and make the substitution ur(t) = xr(t)−λr, r = 1, 2N,on each rth interval we get BVP with parameters

durdt

= A(t)[ur + λr] +h

3

m∑k=1

φk(t)

[ψk(0)λ1 + ψk(T )λ2N+1 + 2

N−1∑j=1

ψk(t2j)λ2j+1

+4N∑j=1

ψk(t2j−1)λ2j

]+ f0(t) + εf(t, ur + λr), t ∈ [tr−1, tr), r = 1, 2N, (9)

ur(tr−1) = 0, r = 1, 2N, (10)

Bλ1 + Cλ2N+1 = d, (11)

λp + limt→tp−0

up(t)− λp+1 = 0, p = 1, 2N. (12)

Let C([0, T ],∆2N , R

2nN)

denote the space of function systems u[t] =(u1(t), u2(t), . . . , u2N (t)

), where ur : [tr−1, tr) → Rn is continuous and has the finite left-sided

limit limt→tr−0

ur(t) for any r = 1, 2N, with the norm∥∥u[·]∥∥

2= max

r=1,2Nsup

t∈[tr−1,tr)∥ur(t)∥.

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 137: 20 4 MATHEMATICAL 20 JOURNAL

136 Sandugash T. Mynbayeva

A solution to problem (9)-(12) is a pair(λ∗, u∗[t]

)with λ∗ =

(λ∗1, λ

∗2, . . . , λ

∗2N+1

)∈

Rn(2N+1) and u∗[t] =(u∗1(t), u

∗2(t), . . . , u

∗2N (t)

)∈ C

([0, T ],∆2N , R

2nN), whose components

u∗r(t), r = 1, 2N , satisfy equations (9), (11), continuity conditions (12) for λr = λ∗r ,r = 1, 2N + 1, and initial conditions (10).

We will use the limit values of the solution to problem (9), (10) later on, when we turnto problem (4), (2). It is therefore reasonable to consider the following Cauchy problem onthe closed subintervals:

dvrdt

= A(t)[vr + λr] +h

3

m∑k=1

φk(t)

[ψk(0)λ1 + ψk(T )λ2N+1 + 2

N−1∑j=1

ψk(t2j)λ2j+1

+4

N∑j=1

ψk(t2j−1)λ2j

]+ f0(t) + εf(t, vr + λr), t ∈ [tr−1, tr], r = 1, 2N, (13)

vr(tr−1) = 0, r = 1, 2N. (14)

Denote by C([0, T ],∆2N , R

2nN)

the space of function systems v[t] =(v1(t), v2(t),

. . . , v2N (t)), where vr : [tr−1, tr] → Rn is continuous for any r = 1, 2N, with the norm∥∥v[·]∥∥

3= max

r=1,2Nmax

t∈[tr−1,tr]∥vr(t)∥.

It is clear that if function systems u[t, λ∗] and v[t, λ∗] are the solutions to problems (9),(10) and (13), (14), respectively, then

ur(t, λ) = vr(t, λ), t ∈ [tr−1, tr), r = 1, 2N,

limt→tr−0

ur(t, λ) = vr(tr, λ), r = 1, 2N.

3 Algorithm for finding approximate solution

Denote by PC([0, T ],∆2N , Rn) the space of piecewise continuous functions x : [0, T ] → Rn

with the possible discontinuity points of the first kind: t = tj , j = 1, 2N, with the norm∥x∥4 = sup

t∈[0,T ]∥x(t)∥.

Let us choose a vector λ(0) =(λ(0)1 , λ

(0)2 , . . . , λ

(0)2N+1

)∈ Rn(2N+1). Assume that the Cauchy

problems (13), (14) with λ = λ(0) have the solutions v(0)r (t), r = 1, 2N, and the function

system v(0)[t] =(v(0)1 (t), v

(0)2 (t), . . . , v

(0)2N (t)

)∈ C

([0, T ],∆2N , R

2nN). Compose the piecewise

continuous function x0(t) on [0, T ] by the equalities x0(t) = λ(0)r + u

(0)r (t), t ∈ [tr−1, tr),

r = 1, 2N, x0(T ) = λ(0)2N+1.

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 138: 20 4 MATHEMATICAL 20 JOURNAL

An approximate solution to quasilinear BVP for the Fredholm IDE 137

Given some positive numbers ρ, ρλ, and ρv, we introduce the following sets:

S(λ(0), ρλ

)=

λ = (λ1, λ2, . . . , λ2N+1) ∈ Rn(2N+1) : ∥λ−λ(0)∥ = max

j=1,2N+1∥λj −λ(0)j ∥ < ρλ

,

S(v(0), ρv

)=

v[t] ∈ C

([0, T ],∆2N , R

2nN): ∥v[·]− v(0)[·]∥3 < ρv

,

S(x(0)(t), ρ

)=

x(t) ∈ PC

([0, T ],∆2N , R

n): ∥x(t)− x(0)(t)∥4 < ρ

.

Condition A. Suppose that the Cauchy problems (13), (14) have unique solutionsvr(t, λ), r = 1, 2N, for all λ ∈ S

(λ(0), ρλ

). Moreover, the function system v[t, λ] = (v1(t, λ),

v2(t, λ), . . . , v2N (t, λ)) ∈ C([0, T ],∆2N , R

2nN), and

∥∥v[·, λ]− v(0)[·]∥∥3< ρv.

Further we assume that Condition A is met and the inequality ρv + ρλ ≤ ρ holds.Substituting vr(t, λ) into continuity conditions (12) and taking into account equation (11),

we get the system of n(2N + 1) nonlinear algebraic equation in parameters λ ∈ Rn(2N+1):

Bλ1 + Cλ2N+1 = d, (15)

λp + vp(tp, λ)− λp+1 = 0, p = 1, 2N. (16)

Rewrite this system in the form:

Q∗(∆2N , λ) = 0, λ ∈ Rn(2N+1). (17)

If equation (17) has a solution λ∗ =(λ∗1, λ

∗2, . . . , λ

∗2N+1

)∈ S

(λ(0), ρλ

), then the pair(

λ∗, v[t, λ∗])is a solution to the problem (11)-(14). Therefore, the function x∗(t) given by

the equality x∗(t) = λ∗r + v∗r (t, λ∗r), for t ∈ [tr−1, tr), r = 1, 2N, and x∗(T ) = λ∗2N+1 will be a

solution to the problem (4), (2).Thus, in order to solve BVP (4), (2) it is enough to find a solution to the system of

algebraic equations (17) and solve the Cauchy problem (13), (14) for finding the values ofparameters.

To solve system (17), we use Newton’s method. The explicit form of Q∗(∆2N , λ) can befound only in exceptional cases. However, if v[t, λ] is the solution to problem (13), (14) forλ = λ ∈ S(λ(0), ρλ) then

Q∗(∆2N ; λ) =

Bλ1 + Cλ2N+1 − d

λ1 + v1(t1, λ)− λ2

. . .

λ2N + v2N (t2N , λ)− λ2N+1

. (18)

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 139: 20 4 MATHEMATICAL 20 JOURNAL

138 Sandugash T. Mynbayeva

Condition B. The function f(t, x) has the uniformly continuous partial derivativesf ′x(t, x) in G

0(ρ) = (t, x) : t ∈ [0, T ], ∥x− x(0)(t)∥ < ρ.

In order to find∂vr(t, λ)

∂λi, r = 1, 2N, i = 1, 2N + 1, we consider problem (13), (14).

Differentiating both sides of equation (13) and initial condition (14) with respect to λi, weget

d

dt

(∂vr(t, λ)

∂λi

)= A(t)

[∂vr(t, λ)

∂λi+ σri

]+h

3

m∑k=1

φk(t)[ψk(0)σ1i + ψk(T )σ2N+1,i

+2ψk(t2j)σ2j+1,i + 4ψk(t2j−1)σ2j,i] + εf ′x(t, vr + λr)

[∂vr(t, λ)

∂λi+ σri

], t ∈ [tr−1, tr],

∂vr(t, λ)

∂λi

∣∣∣∣t=tr−1

= 0, r = 1, 2N, i = 1, 2N + 1,

where j = N, j ∈ N,

σli =

I, i = l, I is the identity matrix of dimension n,

O, i = l, O is n× n zero matrix .

Hence, if we denote by zri(t, λ1, . . . , λ2N+1) the partial derivative∂vr(t, λ1, . . . , λ2N+1)

∂λi,

r = 1, 2N, i = 1, 2N + 1, then the function zri(t, λ) is a solution to the linear matrixCauchy problem

dzridt

= A(t)[zri + σri

]+h

3

m∑k=1

φk(t)[ψk(0)σ1i + ψk(T )σ2N+1,i + 2ψk(t2j)σ2j+1,i

+4ψk(t2j−1)σ2j,i]+ εf ′x(t, vr + λr)

[zri + σri

], t ∈ [tr−1, tr], (19)

zri(tr−1) = 0, r = 1, 2N, i = 1, 2N + 1. (20)

It is clear that by virtue of Condition B, the vector Q∗(∆2N , λ) of the dimension n(2N+1)

has uniformly continuous Jacobi matrix∂Q∗(∆2N , λ)

∂λin S(λ(0), ρλ). The Jacobi matrix has

the form:B O . . . O C

I + z11(t1, λ) −I + z12(t1, λ) . . . z1,2N (t1, λ) z1,2N+1(t1, λ)

z21(t2, λ) I + z22(t2, λ) . . . z2,2N (t2, λ) z2,2N+1(t2, λ). . . . . . . . . . . .

z2N,1(t2N , λ) z2N,2(t2N , λ) . . . I + z2N,2N (t2N , λ) −I + z2N,2N+1(t2N , λ)

. (21)

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 140: 20 4 MATHEMATICAL 20 JOURNAL

An approximate solution to quasilinear BVP for the Fredholm IDE 139

We solve BVP (4), (2) by the following Algorithm.

Step 0. Solving the Cauchy problems (13), (14) for λ = λ(0), we find functions vr(t, λ(0)),

r = 1, 2N. By the equalities

x(0)(t) = λ(0)r + vr(t, λ

(0)), t ∈ [tr−1, tr), r = 1, 2N, and x(0)(T ) = λ(0)2N+1,

we define the piecewise continuous on [0, T ] function x(0)(t).

Step 1. A) Using formula (18), we compose vector

Q∗(∆2N ;λ(0)) =

(0)1 + Cλ

(0)2N+1 − d

λ(0)1 + v1(t1, λ

(0))− λ(0)2

. . .

λ(0)2N + v2N (t2N , λ

(0))− λ(0)2N+1

.

B) Solve the matrix Cauchy problems (19), (20) for vr = vr(t, λ(0)), λ = λ(0) and find

functions zri(t, λ(0)), r = 1, 2N, i = 1, 2N + 1. Using formula (21), we compose the Jacobi

matrix∂Q∗(∆2N , λ

(0))

∂λ

=

B O . . . O C

I + z11(t1, λ(0)) −I + z12(t1, λ

(0)) . . . z1,2N (t1, λ(0)) z1,2N+1(t1, λ

(0))

z21(t2, λ(0)) I + z22(t2, λ

(0)) . . . z2,2N (t2, λ(0)) z2,2N+1(t2, λ

(0)). . . . . . . . . . . .

z2N,1(t2N , λ(0)) z2N,2(t2N , λ(0)) . . . I + z2N,2N (t2N , λ(0)) −I + z2N,2N+1(t2N , λ(0))

.C) Solving the system of linear algebraic equations

∂Q∗(∆2N , λ(0))

∂λ∆λ = − 1

αQ∗(∆2N , λ

(0)), α ≥ 0,

we find ∆λ(0). Now, the vector λ(1) is defined as follows: λ(1) = λ(0) +∆λ(0).

D) Solving the Cauchy problems (13), (14) for λ = λ(1), we find functions vr(t, λ(1)),

r = 1, 2N. By the equalities

x(1)(t) = λ(1)r + vr(t, λ(1)), t ∈ [tr−1, tr), r = 1, 2N, and x(1)(T ) = λ

(1)2N+1,

we define the piecewise continuous on [0, T ] function x(1)(t).

Continuing the process, in the kth step of the algorithm, we obtain λ(k) ∈ Rn(2N+1) and

functions v(k)r (t, λ(k)), r = 1, 2N. By the equalities

x(k)(t) = λ(k)r + vr(t, λ(k)), t ∈ [tr−1, tr), r = 1, 2N, and x(k)(T ) = λ

(k)2N+1,

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 141: 20 4 MATHEMATICAL 20 JOURNAL

140 Sandugash T. Mynbayeva

we define the piecewise continuous on [0, T ] function x(k)(t). It is easily seen that

∥λ(k) − λ∗∥ ≤ γ∗∥Q∗(∆2N ;λ(k))∥, (22)

where λ∗ is the solution to equation (17). Estimate (22) allows us to measure the proximitybetween the approximate and exact solutions in the kth step of the algorithm.

Example. Solve the quasilinear BVP for Fredholm IDEs

dx

dt=

(t t2 − 11 t3

)+

(1 tt2 1

) T∫0

(τ 01 τ2

)x(τ)dτ

+

(− t4

10 − 2t3 − 3t2

5 + 73t12 + 27

20

−t4 − t3 − 9t2

20 − t5 + 251

60

)+ ε

(x21

x1 + x22

), t ∈ (0, T ),

x(0)− x(T ) =

(−1−1

),

where ε =1

10, T = 1.

The exact solution to this problem is x∗(t) =

(t2 − 2t+ 1

).

Let us solve the problem by the proposed algorithm. We divide the interval [0, T ] into 4equal parts. Below, in Figures 1–3, we give the obtained results.

Figure 1 – Graphs of exact solution and initial approximation to the solution of the problem

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 142: 20 4 MATHEMATICAL 20 JOURNAL

An approximate solution to quasilinear BVP for the Fredholm IDE 141

Figure 2 – Graphs of exact solution and the first approximation to the solution of the problem

Figure 3 – Graphs of exact solution and the fourth approximation to the solution of the problem

For the difference of the exact and corresponding approximate solutions to the problem,the following estimates are true:

supt∈[0,T ]

∥x∗(t)− x(0)(t)∥ < 0.2859,

max supt∈[0,T ]

∥x∗(t)− x(1)(t)∥ < 4.4897 · 10−3,

max supt∈[0,T ]

∥x∗(t)− x(1)(t)∥ < 6.3318 · 10−10.

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 143: 20 4 MATHEMATICAL 20 JOURNAL

142 Sandugash T. Mynbayeva

The offered algorithm is effective and allows us to obtain the approximate solution to thequasilinear BVP for the Fredholm IDE of higher order accuracy.

References

[1] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem foran ordinary differential equation, U.S.S.R. J. Comput. Math. Math. Phys., 29:1 (1989), 34-46. DOI:10.1016/0041-5553(89)90038-4.

[2] Bykov Ya.A. On some problems in the theory of integro-differential equations, Frunze: Kirgiz.Gos. Univ., 1957 (in Russian).

[3] Boichuk A.A., Samoilenko A.M. Generalized Inverse Operators and Fredholm Boundary-ValueProblems, Boston: VSP. Utrecht, 2004. DOI: 10.1515/9783110944679.

[4] Parts I., Pedas A., Tamme E. Piecewise polynomial collocation for Fredholm integro-differentialequations with weakly singular kernels, SIAM J. Numer. Anal., 43 (2005), 1897-1911. DOI:10.1137/040612452.

[5] Wazwaz A.M. Linear and nonlinear integral equations: Methods and applications, Beijing,Berlin, Heidelberg: Higher Education Press, Springer-Verlag, 2011. DOI: 10.1007/978-3-642-21449-3.

[6] Turkyilmazoglu M. An effective approach for numerical solutions of high-order Fredholm integro-differential equations, Appl. Math. Comput., 227 (2014), 384–398. DOI: 10.1016/j.amc.2013.10.079.

[7] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fred-holm integro-differential equations, J. Comput. Appl. Math., 294:2 (2016), 342-357. DOI:10.1016/j.cam.2015.08.023.

[8] Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equations andtheir applications on solving the boundary value problems, J. Comput. Appl. Math., 327:1 (2018),79-108. DOI: 10.1016/j.cam.2017.06.010.

[9] Dzhumabaev D.S., Bakirova E.A. Criteria for the well-posedness of a linear two-point boundaryvalue problem for systems of integro-differential equations, Differential Equations, 46:4 (2010), 553-567.DOI: 10.1134/S0012266110040117.[10] Dzhumabaev D.S. Computational methods for solving the boundary value problems for the loaded

differential and Fredholm integro-differential equations, Math. Meth. Appl. Sci., 41:4 (2018), 1439-1462. DOI: 10.1002/mma.4674.[11] Bakirova E.A., Iskakova N.B., Assanova A.T. Numerical method for the solution of linear

boundary-value problems for integrodifferential equations based on spline approximations, Ukr. Math.J., 71:9 (2020), 1341–1358. DOI: 10.1007/s11253-020-01719-8.[12] Dzhumabaev D.S. A method for solving the linear boundary value problem an integro-differential

equation, Comput. Math. Math. Phys., 50:7 (2010), 1150-1161. DOI: 10.1134/S0965542510070043.[13] Nakhushev A.M. Loaded equations and applications, Moscow: Nauka, 2012 (in Russian).[14] Aida-zade K.R., Abdullaev V.M. Numerical method of solution to loaded nonlocal boundary

value problems for ordinary differential equations, Comput. Math. Math. Phys., 54:7 (2014), 1096-1109 (in Russian).

[15] Dzhumabaev D.S., Bakirova E.A., Mynbayeva S.T. A method of solving a nonlinear boundary

value problem with a parameter for a loaded differential equation, Math. Meth. Appl. Sci., 43:2

(2020), 1788-1802. DOI: 10.1002/mma.6003.

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 144: 20 4 MATHEMATICAL 20 JOURNAL

An approximate solution to quasilinear BVP for the Fredholm IDE 143

Мынбаева С.Т. ФРЕДГОЛЬМ ИНТЕГРАЛДЫҚ-ДИФФЕРЕНЦИАЛДЫҚ ТЕҢДЕ-УI ҮШIН КВАЗИСЫЗЫҚТЫ ШЕТТIК ЕСЕПТIҢ ЖУЫҚ ШЕШIМI

Фредгольм интегралдық-дифференциалдық теңдеуi үшiн квазисызықты шеттiк есеп-тi шешудiң жуық әдiсi ұсынылған. Бұл әдiс интегралдық мүшенi Симпсон формуласыменжуықтауға және бастапқы есептi жүктелген дифференциалдық теңдеулер жүйесi үшiнквазисызықты шеттiк есепке келтiруге негiзделген. Жуықтаушы шеттiк есептiң сандықшешiмiн табу алгоритмi және жуық шешiмiн құру әдiсi ұсынылған.

Кiлттiк сөздер. квазисызықты Фредгольм интегралдық-дифференциалдық теңдеуi,Джумабаев параметрлеу әдiсi, Ньютон әдiсi, Симпсон формуласы.

Мынбаева С.Т. ПРИБЛИЖЕННОЕ РЕШЕНИЕ КВАЗИЛИНЕЙНОЙ КРАЕВОЙЗАДАЧИ ДЛЯ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ФРЕДГОЛЬМА

Предложен приближенный метод решения квазилинейной краевой задачи дляинтегро-дифференцированного уравнения Фредгольма. Метод основан на аппроксима-ции интегрального члена формулой Симпсона и сведении исходной задачи к квазили-нейной краевой задаче для системы нагруженных дифференциальных уравнений. Пред-ложен алгоритм нахождения численного решения и метод построения приближенногорешения аппроксимирующей краевой задачи.

Ключевые слова. квазилинейное интегро-дифференциальное уравнение Фредгольма,метод параметризации Джумабаева, метод Ньютона, формула Симпсона.

Kazakh Mathematical Journal, 20:4 (2020) 133–143

Page 145: 20 4 MATHEMATICAL 20 JOURNAL

Kazakh Mathematical Journal ISSN 2413–6468

20:4 (2020) 144–154

Boundary value problem for systems of loadeddifferential equations with singularities

Kulzina Zh. Nazarova1,a, Kairat I. Usmanov1,b

1Yasawi International Kazakh-Turkish University, Turkistan, Kazakhstanae-mail:[email protected], [email protected]

Communicated by: Anar Assanova

Received: 13.12.2020 ? Accepted/Published Online: 20.12.2020 ? Final Version: 25.12.2020

Abstract. In this paper we investigate a linear two-point boundary value problem for systems of loaded

differential equations with singularity. To study the task, we use the parameterization method proposed

by Professor D. Dzhumabaev, that is, we introduce new parameters and, based on these parameters,

we change variables. When passing to new variables, we obtain initial conditions. Using the so-called

fundamental matrix of the main part and substituting the obtained solutions into the boundary value

conditions, we get a system of equations for the entered parameters. According to invertibility of the

matrix of this system, necessary conditions for existence of a solution to the considered problem are

established.

Keywords. System of loaded differential equations, parametrization method, boundary value conditions,

conformable derivative, unique solvability.

Dedicated to the memory of

Professor Dulat Dzhumabaev

1 Introduction

In [1-10], definitions and basic properties of the conformable derivative were introduced.

Definition 1. Let a function f : [0,∞) → R. Then for all t > 0 the conformablederivative from the function f is defined in the form:

Tα(f)(t) = limε→0

f(t+ εt1−α)− f(t)

ε,

2010 Mathematics Subject Classification: 34A08; 34B05; 34K37.Funding: This research is funded by the Science Committee of the Ministry of Education and Science of

the Republic of Kazakhstan (Grant No. AP08956307).c© 2020 Kazakh Mathematical Journal. All right reserved.

Page 146: 20 4 MATHEMATICAL 20 JOURNAL

Boundary value problem for systems of loaded differential equations with singularities 145

where α ∈ (0, 1) . If f is differentiable up to order α on (0, a) , a > 0, and limε→0+

f (α)(t) exists,

then f (α)(0)= limε→0+

f (α)(t).

Definition 2. The conformable integral of the order α ∈ (0, 1] from a function f isdefined by the equality:

Iaα(f)(t) =

∫ t

aτα−1f (τ) dτ.

Lemma 1. Let for t > 0 functions f and g be differentiable up to order α ∈ (0, 1). Then

1) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

2) Tα(c) = 0, for all f(t) = const.

3) Tα(fg) = fTα(f) + Tα(f)g.

4) Tα

(fg

)= fTα(f)−Tα(f)g

g2.

5) If f is differentiable, then Tα(f)(t) = t1−α dfdt (t).

Lemma 2. Let α ∈ (0, 1] and a function f be continuous when t > a, then

TαIaα(f)(t) = f(t).

In this paper, on the interval [0, T ], we consider the two-point boundary value problemfor systems of loaded differential equations with conformable derivative

Tα(x)(t) = A(t)x+m+1∑j=1

Kj(t)x (θj−1) + f(t), t ∈ [0, T ] , (1)

0 = θ0 < θ1 < ... < θm = T,

Bx(0) + Cx(T ) = d, d ∈ Rn, (2)

where (n×n)- matrices tα−1A(t), Kj(t) and n- dimensional vector function f(t) are continuouson [0, T ]. Boundary value problem (1)-(2) is investigated by the parametrization methodproposed by Professor D.S. Dzhumabaev [11-15].

2 Scheme of the method and the main assertion

We break the segment [0, T ): [0, T ) =⋃mr=1[θr−1, θr), and denote restriction of the func-

tion x(t) on the r−th interval [θr−1, θr), r = 1,m, by xr(t). Then the origin two-pointboundary value problem for systems of loaded differential equations is reduced to the equiv-alent multi-point boundary value problem

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 147: 20 4 MATHEMATICAL 20 JOURNAL

146 Kulzina Zh. Nazarova, Kairat I. Usmanov

Tα (xr) (t) = A(t)xr +

m∑j=1

Kj(t)xj (θj−1) +Km+1(t) limt→T−0

xm+1 (t) + f(t), (3)

t ∈ [θr−1, θr), r = 1,m,

Bx1(0) + C limt→T−0

xm(t) = d, (4)

limt→θs−0

xs(t) = xs+1(θs), s = 1,m− 1. (5)

Here (5) are conditions for gluing at inner points of the partition t = jh, j = 1, N − 1.If a function x(t) is a solution of the problem (1)-(2), then a system of its restriction

x[t] = (x1(t), x2(t), ..., xm(t))′ will be a solution of the multipoint boundary value problem(3)-(5). And in inverse, if system of vector functions x[t] = (x1(t), x2(t), ..., xm(t))′ is asolution of the problem (3)-(5), then the function x(t), defined by the equalities

x(t) = xr(t), t ∈ [θr−1, θr), r = 1,m, x(T ) = limt→T−0

xm(t),

will be a solution of the original boundary value problem (1)-(2).By λr we denote a value of the function xr(t) at the point t = θr−1 and on each interval

[θr−1, θr), we change the variable xr(t) = ur(t) + λr, r = 1,m. Introduce the additionalparameter λm+1 = lim

t→T−0xm(t), then the boundary value problem (3)-(5) is reduced to the

equivalent multi-point boundary value problem with parameters:

Tα(ur)(t) = A(t)[ur + λr] +m+1∑j=1

Kj(t)λj + f(t), (6)

ur (θr−1) = 0, t ∈ [θr−1, θr), r = 1,m , (7)

Bλ1 + Cλm+1 = d, (8)

λs + limt→sh−0

us(t) = λs+1, s = 1,m. (9)

The problems (3)-(5) and (6)-(9) are equivalent in the sense, that if the system of functionsx[t] = (x1(t), x2(t), ..., xm(t))′ is a solution of the problem (3)-(5), then the pair (λ, u[t]),where λ = (λ1, λ2, ..., λm, λm+1)

′, u[t] = (u1(t), u2(t), ..., um(t)), defined by the equalities:λr = xr (θr−1) , r = 1,m, λm+1 = lim

t→T−0xm(t) and ur(t) = xr(t)− xr(θr−1), r = 1,m,

will be a solution of the problem (6)-(9). And in inverse, if the pair (λ, u[t]), whereλ = (λ1, λ2, ..., λm+1)

′, u[t] = (u1(t), u2(t), ..., um(t))′ is a solution of the problem (6)-(9),then the system of functions x[t] = (λ1 + u1(t), λ2 + u2(t), ..., λm+ um(t))′, x(T ) = λm+1 willbe a solution of the problem (3)-(5).

Appearance of the initial conditions (7) makes it possible to solve the Cauchy problem(6), (7). We use Definition 2 and results of Lemma 2, then

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 148: 20 4 MATHEMATICAL 20 JOURNAL

Boundary value problem for systems of loaded differential equations with singularities 147

ur(t) =

∫ t

θr−1

τα−1

A(τ) [u(τ) + λr] dτ +

m+1∑j=1

Kj(τ)λj + f(τ)

dτ, (10)

t ∈ [θr−1, θr), r = 1,m.

From (10) defining limt→sh−0

us(t), s = 1,m, and putting their corresponding expressions into

the conditions (8) and (9), we get the system of linear equations concerning to the unknownparameters λr, r = 1,m+ 1 :

Bλ1 + Cλm+1 = d, (11)

λs +

∫ θs

θs−1

τα−1A(τ)λsdτ +m+1∑j=1

∫ θs

θs−1

Kj(τ)λjdτ − λs+1

= −∫ θs

θs−1

τα−1A(τ)u(τ)dτ −∫ θs

θs−1

τα−1f(τ)dτ, (12)

combining the same parameters

Bλ1 + Cλm+1 = d, (13)(I +

∫ θs

θs−1

τα−1A(τ)λsdτ +

∫ θs

θs−1

Ks(τ)dτ

)λs +

m+1∑j = 1j 6= s

∫ θs

θs−1

Kj(τ)λjdτ − λs+1

= −∫ θs

θs−1

τα−1A(τ)u(τ)dτ −∫ θs

θs−1

τα−1f(τ)dτ. (14)

A matrix of the dimension n(m + 1) × n(m + 1), corresponding to the left-hand side of thesystems of linear equations (13), (14) is denoted by Q(θ). Then the system of linear equations(13), (14) is written in the form

Q(θ)λ = −F (θ)−G(u, θ), λ ∈ RnN , (15)

where

F (θ) =

d,

∫ θ1

0τα−1f(τ)dτ , . . . ,

∫ T

T−θm−1

τα−1f(τ)dτ

,

G(u, θ) =

0,

∫ θ1

0τα−1A(τ)u(τ)dτ , . . . ,

∫ T

T−θm−1

τα−1A(τ)u(τ)dτ

.

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 149: 20 4 MATHEMATICAL 20 JOURNAL

148 Kulzina Zh. Nazarova, Kairat I. Usmanov

Thus, to find unknown pairs (λ, u[t]), solutions to the problem (6)-(9), we have a closed systemof equations (10), (15). We find the solution of the multipoint boundary value problem (6)-(9) as a limit of the sequence of pairs (λ′(k), u(k)[t]), k =0,1,2, ..., determined by the followingalgorithm.

Step 0. a) Assuming, that the matrix Q(h) is invertible, from the equation Q(h)λ =

−F (h) we define initial approximation by the parameter λ(0) = (λ(0)1 , λ

(0)2 , ..., λ

(0)N ) ∈ RnN :

λ(0) = −[Q(h)]−1F (h).

b) Putting the found λ(0)r , r = 1, N , into the right-hand side of the system of integro-

differential equations (6) and solving the special Cauchy problem with conditions (7), we find

u(0)[t] = (u(0)1 (t), u

(0)2 (t), ..., u

(0)N (t))′.

Step 1. a) Putting the found values u(0)r (t), r = 1, N , into the right side of (15), from

the equation [Q(h)]λ = −F (h)−G(u(0), h) we define λ(1) = (λ(1)1 , λ

(1)2 , ..., λ

(1)N ).

b) Putting the found λ(1)r , r = 1, N , into the right-hand side of the system of integro-

differential equations (6) and solving the special Cauchy problem with conditions (7), we find

u(1)[t] = (u(1)1 (t), u

(1)2 (t), ..., u

(1)N (t))′.

Continuing the process, on the k-th step of the algorithm, we find the system of pairs(λ(k), u(k)[t]), k =0,1,2, . . . . Unknown functions u[t] = (u1(t), u2(t), . . . , uN (t)) are deter-mined from the special Cauchy problem for systems of integro-differential equations (6) withinitial conditions (7). Unlike the Cauchy problem for ordinary differential equations, thespecial Cauchy problem for systems of integro-differential equations is not always solvable.Suppose that there is a so-called fundamental matrix of the principal part of the differentialequation, then the following theorem is true:

Theorem [9, p. 499]. Let α ∈ (0, 1) . Then a solution of the problem

Tα(ur)(t) = A(t)ur(t) + g(t, u), u(t0) = η ∈ Rn

is determined by the formula:

u(t) = ηEα(A, t− t0) +

∫ t

t0

(t− s)α−1Eα(−A, s− t0)Eα(A, t− t0)g(τ, u(τ))dτ,

where Eα(λ, s) = exp(λ s

α

α

).

According to this theorem, we obtain

ur(t) = Eα(A(t), t− θr−1)∫ t

θr−1

(t− τ)α−1Eα(−A(τ), τ − θr−1) (A(τ)λr

+m+1∑j=1

Kj(τ)λj

dτ + Eα(A(t), t− θr−1)∫ t

θr−1

(t− τ)α−1Eα(−A(τ), τ − θr−1)f(τ)dτ, (16)

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 150: 20 4 MATHEMATICAL 20 JOURNAL

Boundary value problem for systems of loaded differential equations with singularities 149

t ∈ [θr−1, θr), r = 1,m,

where Eα(A(t), t− θr−1) = exp(∫ t

θr−1(τ − θr−1)α−1A(τ)dτ

).

From (16) defining limt→sh−0

us(t), s = 1,m, and putting their corresponding expressions into

the conditions (8) and (9), we get the system of linear equations concerning to the unknownparameters λr, r = 1,m+ 1:

Bλ1 + Cλm+1 = d, (17)

λs + Eα(A(θs), θs − θs−1)∫ θs

θs−1

(t− τ)α−1Eα(−A(τ), τ − θr−1)

A(τ)λs +

m+1∑j=1

Kj(τ)λj

−λs+1 = −Eα(A(θs), θs − θs−1)∫ θs

θr−1

(t− τ)α−1Eα(−A(τ), τ − θr−1)f(τ)dτ , (18)

combining the same parameters

Bλ1 + Cλm+1 = d, (19)(I + Eα(A(θs), θs − θs−1)

∫ θs

θs−1

(t− τ)α−1Eα(−A(τ), τ − θs−1)A(τ)dτ

)λs

+Eα(A(θs), θs − θs−1)m+1∑j=1

∫ θs

θs−1

(t− τ)α−1Eα(−A(τ), τ − θs−1)Kj(τ)dτλj − λs+1

= −Eα(A(θs), θs − θs−1)∫ θs

θs−1

(t− τ)α−1Eα(−A(τ), τ − θs−1)f(τ)dτ. (20)

A matrix of the dimension n(m + 1) × n(m + 1), corresponding to the left-hand side of thesystems of linear equations (19), (20) is denoted by Q(θ). Then the system of linear equations(19), (20) is written in the form

Q∗(θ)λ = −F (θ), λ ∈ RnN , (21)

where

F (h) =

d, Eα(A(θ1), θ1)

∫ θ1

0(t− τ)α−1Eα(−A(τ), τ)f(τ)dτ , . . . ,

Eα(A(T ), T − θm−1)∫ T

θm−1

(t− τ)α−1Eα(−A(τ), τ − θm−1)f(τ)dτ

.

Based on the proposed algorithm on finding a solution, it follows:

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 151: 20 4 MATHEMATICAL 20 JOURNAL

150 Kulzina Zh. Nazarova, Kairat I. Usmanov

Theorem 1. For unique solvability of the boundary value problem (1), (2), it is necessaryand sufficient that the matrix Q∗(θ) is invertible.

Example. Consider

T1/2(x)(t) = tx(0) + x

(1

3

)+ x(1) + 2t, t ∈ [0, 1] , (22)

x(0) = x(1). (23)

We break the interval [0, 1) =[0, 13)∪[13 , 1), and denote restriction of the function x(t)

on the interval[0, 13)

by x1(t), and on the interval[13 , 1)

by x2(t). Then

T1/2(x1)(t) = tx1(0) + x2

(1

3

)+ limt→1−0

x2(t) + 2t, t ∈[0,

1

3

),

T1/2(x2)(t) = tx1(0) + x2

(1

3

)+ limt→1−0

x2(t) + 2t, t ∈[

1

3, 1

),

x1(0) = limt→1−0

x2(t),

limt→ 1

3−0x1(t) = x2

(1

3

).

Denote λ1 = x1(0), λ2 = x2(13

), λ3 = lim

t→1−0x1(t), and change x1(t) = u1(t) + λ1,

x2(t) = u2(t) + λ2. Then we obtain

T1/2(u1)(t) = tλ1 + λ2 + λ3 + 2t, t ∈[0,

1

3

), (24)

u1(0) = 0, (25)

T1/2(u2)(t) = tλ1 + λ2 + λ3 + 2t, t ∈[

1

3, 1

), (26)

u2

(1

3

)= 0, (27)

λ1 = λ3, (28)

λ1 + limt→ 1

3−0u1(t) = λ2, (29)

λ2 + limt→1−0

u2(t) = λ3. (30)

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 152: 20 4 MATHEMATICAL 20 JOURNAL

Boundary value problem for systems of loaded differential equations with singularities 151

Solutions of the Cauchy problems (24)-(25) and (26)-(27) is defined as follows

u1(t) =

∫ t

0

√τdτλ1 +

∫ t

0

dτ√τλ2 +

∫ t

0

dτ√τλ3 + 2

∫ t

0

√τdτ, t ∈

[0,

1

3

),

u2(t) =

∫ t

13

√τdτλ1 +

∫ t

13

dτ√τλ2 +

∫ t

13

dτ√τλ3 + 2

∫ t

13

√τdτ, t ∈

[1

3, 1

).

Thus

u1(t) =√t3λ1 +

√tλ2 +

√tλ3 + 2

√t3, t ∈

[0,

1

3

), (31)

u2(t) =

(√t3 −

√1

27

)λ1 +

(√t−√

1

3

)λ2 +

(√t−

√1

3

)λ3 + 2

(√t3 −

√1

27

), (32)

t ∈[

1

3, 1

).

From (31), (32) we determine the limits limt→ 1

3

u1(t), limt→1

u2(t) and put into (29) and (30). Then

the equations (28), (29) and (30) can be written in the form:

λ1 − λ3 = 0,

λ1 +

√1

27λ1 +

√1

3λ2 +

√1

3λ3 − λ2 = −

√4

27,

λ2 +

(1−

√1

27

)λ1 +

(1−

√1

3

)λ2 +

(1−

√1

3

)λ3 − λ3 = −2

(1−

√1

27

).

Or, combining the same parameters, we get

λ1 − λ3 = 0, (33)

1.19λ1 − 0.42λ2 + 0.58λ3 = −0.38, (34)

0.81λ1 + 1.42λ2 − 0.58λ3 = −1.62. (35)

The matrix corresponding to the left-hand side of the equations (33), (34) and (35) is denotedby Q(θ). Then

Q (θ) =

1 0 −11.19 −0.42 1.580.81 1.42 −0.58

.

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 153: 20 4 MATHEMATICAL 20 JOURNAL

152 Kulzina Zh. Nazarova, Kairat I. Usmanov

Since the matrix Q(θ) has the inverse:

Q−1 (θ) =

0.5 0.35 0.10.49 −0.05 0.69−0.51 0.35 0.1

,

then system of the equations (33), (34) and (35) has a unique solution andλ1 = −0.30,λ2 = −1.09,λ3 = −0.30.

Since

u1(t) =√t3λ1 +

√tλ2 +

√tλ3 + 2

√t3, t ∈

[0,

1

3

),

u2(t) =

(√t3 −

√1

27

)λ1 +

(√t−√

1

3

)λ2 +

(√t−

√1

3

)λ3 + 2

(√t3 −

√1

27

),

t ∈[

1

3, 1

),

then

x1(t) = u1(t) + λ1 =√t3λ1 +

√tλ2 +

√tλ3 + 2

√t3 − 0.3 , t ∈

[0,

1

3

),

x2(t) = u2(t) + λ2 =

(√t3 −

√1

27

)λ1 +

(√t−

√1

3

)λ2 +

(√t−

√1

3

)λ3

+2

(√t3 −

√1

27

)− 1.09, t ∈

[1

3, 1

).

Therefore, the solution of the boundary value problem (22)-(23) can be written in the form

x(t) =

√t3λ1 +

√tλ2 +

√tλ3 + 2

√t3 − 0.3 , t ∈

[0, 13),(√

t3 −√

127

)λ1 +

(√t−√

13

)λ2 +

(√t−

√13

)λ3 + 2

(√t3 −

√127

)− 1.09,

t ∈[13 , 1),

−0.3, t = 1.

References

[1] Khalil R., Horani M.A., Yousef A. and Sababheh M. A new definition of fractional derivative,J. Comput. Appl. Math., 264:1 (2014), 65-70. DOI: 10.1016/j.cam.2014.01.002.

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 154: 20 4 MATHEMATICAL 20 JOURNAL

Boundary value problem for systems of loaded differential equations with singularities 153

[2] Unal E. and Gokdogan A. Solution of conformable fractional ordinary differential equations viadifferential transform method, Optik, 128 (2017), 264-273. DOI: 10.1016/j.ijleo.2016.10.031.

[3] Hashemi M.S. Invariant subspaces admitted by fractional differential equations with conformablederivatives, Chaos Solit. Fract., 107 (2018), 161-169. DOI: 10.1016/j.chaos.2018.01.002.

[4] Hammad M.A. and Khalil R. Abels formula and wronskian for conformable fractional differentialequations, Int. J. Differ. Equ. Appl., 13:3 (2014), 177-183. DOI: 10.12732/ijdea.v13i3.1753.

[5] Iyiola O.S. and Nwaeze E.R. Some new results on the new conformable fractional calculuswith application using d’Alambert approach, Progr. Fract. Differ. Appl., 2:2 (2016), 115-122.DOI:10.18576/pfda/020204.

[6] Abdeljawad T., Alzabut J. and Jarad F. A generalized Lyapunov-type inequality in the frameof conformable derivatives, Adv. Differ. Equ., 2017:321 (2017). DOI: 10.1186/s13662-017-1383-z.

[7] Refai M.A. and Abdeljawad T. Fundamental results of conformable Sturm-Liouvilleeigenvalue problems, Complexity, vol. 2017, Article ID 3720471, 7 pages, 2017.https://doi.org/10.1155/2017/3720471.

[8] Horani M.A.L., Hammad M.A. and Khalil R. Variation of parameters for local fractionalnonhomogenous linear differential equations, J. Math. Comput. Sci., 16:2 (2016), 147-153. DOI:10.22436/jmcs.016.02.03.

[9] Sene Ndolane Solutions for some conformable differential equations, Progr. Fract. Differ. Appl.,4:4 (2018), 493-501.

[10] Unal E., Gokdogan A. and Cumhur I. The operator method for local fractional linear differentialequations, Optik, 131 (2017), 986-993. DOI:10.1016/J.IJLEO.2016.12.007.

[11] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem foran ordinary differential equation, U.S.S.R. Comput. Maths. Math. Phys., 29:1 (1989), 34-46. DOI:10.1016/0041-5553(89)90038-4.

[12] Dzhumabaev D.S. A method for solving the linear boundary value problem for an integro-differential equation, Comput. Math. Math. Phys., 50:7 (2010), 1150-1161. DOI:10.1134/S0965542510070043.

[13] Dzhumabaev D.S. An algorithm for solving a linear two-point boundary value problem foran integro-differential equation, Comput. Math. Math. Phys., 53:6 (2013), 736-758. DOI:10.1134/S0965542513060067.

[14] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fred-holm integro-differential equations, J. Comput. Appl. Math., 294:2 (2016), 342-357. DOI:10.1016/j.cam.2015.08.023.

[15] Dzhumabaev D.S. Computational methods of solving the boundary value problems for the loaded

differential and Fredholm integro-differential equations, Mathematical Methods in the Applied Sci-

ences, 41:4 (2018), 1439-1462. DOI: 10.1002/mma.4674.

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 155: 20 4 MATHEMATICAL 20 JOURNAL

154 Kulzina Zh. Nazarova, Kairat I. Usmanov

Назарова К.Ж., Усманов Қ.Ы. ЕРЕКШЕЛIКТЕРI БАР ЖҮКТЕЛГЕН ДИФФЕ-РЕНЦИАЛДЫҚ ТЕҢДЕУЛЕР ЖҮЙЕЛЕРIНЕ АРНАЛҒАН ШЕТТIК ЕСЕП ТУРА-ЛЫ

Бұл жұмыста ерекшелiгi бар жүктелген дифференциалдық теңдеулер жүйелерi үшiнсызықты екi нүктелiк шеттiк есеп зерттеледi. Қойылған есептi зерттеу үшiн профессорД.С. Джұмабаевтың ұсынған параметрлеу әдiсi қолданылады, яғни жаңа параметрлеренгiзiлiп, осы параметрлер негiзiнде жаңа айнымалыларға ауыстырылады. Жаңа айны-малыларға көшу барысында бастапқы шарттарды аламыз. Дифференциалдық теңдеудiңбас бөлiгiнiң iргелi матрицасын қолдана отырып Коши есебiнiң шешiмiн аламыз. Алы-нған шешiмдердi шеттiк шарттарға қоя отырып, бiз енгiзiлген параметрлерге қатыстытеңдеулер жүйесiн аламыз. Осы жүйенiң матрицасының қайтарымдылығын талап етеотырып, қарастырылып отырған есептiң бiрмәндi шешiмдiлiгiнiң қажеттi шарттарынорнатамыз.

Кiлттiк сөздер. Жүктелген дифференциалдық теңдеулер жүйесi, параметрлеу әдiсi,шекаралық шарттар, конформабельдi туынды, бiрмәндi шешiмдiлiк.

Назарова К.Ж., Усманов К.И. О КРАЕВОЙ ЗАДАЧЕ ДЛЯ СИСТЕМ НАГРУЖЕН-НЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ОСОБЕННОСТЯМИ

В работе исследуется линейная двухточечная краевая задача для систем нагружен-ных дифференциальных уравнений с особенностью. Для исследования поставленной за-дачи используется метод параметризации, предложенный профессором Д.С. Джумабае-вым, то есть вводятся новые параметры и на основе данных параметров делается заменапеременных. При переходе к новым переменным получаем начальные условия. Исполь-зуя фундаментальную матрицу главной части дифференциального уравнения и подстав-ляя полученные решения в краевые условия, получаем систему уравнений относительновведённых параметров. На основе обратимости матрицы данной системы установленынеобходимые условия существования решения рассматриваемой задачи.

Keywords. Система нагруженных дифференциальных уравнений, метод параметри-зации, краевые условия, конформабельная производная, однозначная разрешимость.

Kazakh Mathematical Journal, 20:4 (2020) 144–154

Page 156: 20 4 MATHEMATICAL 20 JOURNAL

KAZAKH MATHEMATICAL JOURNAL

20:4 (2020)

Собственник "Kazakh Mathematical Journal":Институт математики и математического моделирования

Журнал подписан в печатьи выставлен на сайте http://kmj.math.kz / Института математики и

математического моделирования30.12.2020 г.

Тираж 300 экз. Объем 155 стр.Формат 70×100 1/16. Бумага офсетная 1

Адрес типографии:Институт математики и математического моделирования

г. Алматы, ул. Пушкина, 125Тел./факс: 8 (727) 2 72 70 93e-mail: [email protected]: http://kmj.math.kz