· 2 page 26 € vs=[0.5sin(2000πt)+sin(4000πt)+1.5sin(6000πt)] the three spectral components...

48
1 Microelectronic Circuit Design Third Edition Solutions to Exercises CHAPTER 1 Page 11 V LSB = 5.12V 2 10 bits = 5.12 V 1024bits = 5.00 mV V MSB = 5.12V 2 = 2.560V 1100010001 2 = 2 9 + 2 8 + 2 4 + 2 0 = 785 10 V O = 786 5.00mV ( ) = 3.925 V or V O = 2 1 + 2 2 + 2 6 + 2 10 ( ) 5.12V = 3.912 V Page 12 The dc component is V A = 4V. The signal consists of the remaining portion of v A : v a = (5 sin 2000πt + 3 cos 1000 πt) Volts. Page 19 i SC = i 1 + βi 1 = v s R 1 + β v s R 1 = β + 1 ( ) v s R 1 v OC = β + 1 ( ) R S β + 1 ( ) R S + R 1 v S R th = v OC i SC = β + 1 ( ) R S β + 1 ( ) R S + R 1 R 1 β + 1 ( ) = 1 β + 1 ( ) R 1 + 1 R S R th = R S R 1 β + 1 ( ) Page 23 v o = 5cos 2000πt + 25 o ( ) = −−5sin 2000πt + 25 o 90 o ( ) [ ] = 5sin 2000πt 65 o ( ) V o = 5 ∠− 65 o V s = 0.001 0 o A v = 5 ∠− 65 o 0.001 0 o = 5000∠− 65 o

Upload: others

Post on 21-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Microelectronic Circuit DesignThird Edition

    Solutions to Exercises

    CHAPTER 1

    Page 11

    VLSB =5.12V

    210 bits=

    5.12V1024bits

    = 5.00 mV VMSB =5.12V

    2= 2.560V

    11000100012 = 29 + 28 + 24 + 20 = 78510 VO = 786 5.00mV( ) = 3.925 V

    or VO = 2−1 + 2−2 + 2−6 + 2−10( ) 5.12V = 3.912 V

    Page 12The dc component is VA = 4V. The signal consists of the remaining portion of vA: va = (5 sin 2000πt + 3 cos 1000 πt) Volts.

    Page 19

    iSC = i1 + βi1 =vsR1

    + βvsR1

    = β +1( ) vsR1

    vOC =β +1( )RS

    β +1( )RS + R1vS

    Rth =vOCiSC

    =β +1( )RS

    β +1( )RS + R1R1β +1( )

    =1

    β +1( )R1

    +1RS

    → Rth = RSR1β +1( )

    Page 23

    vo = −5cos 2000πt + 25o( ) = − −5sin 2000πt + 25o − 90o( )[ ] = 5sin 2000πt − 65o( )

    Vo = 5∠− 65o Vs = 0.001∠0

    o Av =5∠− 65o

    0.001∠0o= 5000∠− 65o

  • 2

    Page 26

    vs = 0.5sin 2000πt( ) + sin 4000πt( ) +1.5sin 6000πt( )[ ]The three spectral components are f1 =1000 Hz f2 = 2000 Hz f3 = 3000 Hz

    a( ) The gain of the band - pass filter is zero at both f1 and f3. At f2, Vo =10 1V( ) =10V ,and vO =10.0sin 4000πt( ) volts.b( ) The gain of the low - pass filter is zero at both f2 and f3. At f2, Vo = 6 0.5V( ) = 3V ,

    and vO = 3.00sin 2000πt( ) volts.

    Page 27

    39kΩ 1− 0.1( ) ≤ R ≤ 39kΩ 1+ 0.1( ) or 35.1 kΩ≤ R ≤ 42.9 kΩ3.6kΩ 1− 0.01( ) ≤ R ≤ 3.6kΩ 1+ 0.01( ) or 3.56 kΩ≤ R ≤ 3.64 kΩ

    Page 29

    P =VS

    2

    R1 + R2 Pnom =

    152

    54kΩ= 4.17 mW

    Pmax =1.1x15( )

    2

    0.95x54kΩ= 5.31 mW Pmin =

    0.9x15( )2

    1.05x54kΩ= 3.21 mW

    Page 33

    R =10kΩ 1+10−3

    oC−55− 25( )oC

    = 9.20 kΩ R =10kΩ 1+

    10−3

    oC85− 25( )oC

    =10.6 kΩ

  • 3

    CHAPTER 2

    Page 47

    ni = 2.31x1030 K−3cm−6( ) 300K( )3 exp −0.66eV

    8.62x10−5eV / K( ) 300K( )

    = 2.27x1013 cm3

    ni = 1.08x1031 K−3cm−6( ) 50K( )3 exp −1.12eV

    8.62x10−5eV / K( ) 50K( )

    = 4.34x10−39 cm3

    ni = 1.08x1031 K−3cm−6( ) 325K( )3 exp −1.12eV

    8.62x10−5eV / K( ) 325K( )

    = 4.01x1010 cm3

    L3 =cm3

    4.34x10−3910−2

    mcm

    3

    → L = 6.13x1010 m

    Page 48

    vp = µ pE = 500cm2

    V − s10

    Vcm

    = 5.00x10

    3 cms

    vn = −µnE =1350cm2

    V − s1000

    Vcm

    =1.35x10

    6 cms

    E =VL

    =1

    2x10−4Vcm

    = 5.00x103Vcm

    Page 48

    µn =vnE

    =4.3x105cm / s

    100V / cm= 4300

    cm2

    s µ p =

    v pE

    =2.1x105cm / s

    100V / cm= 2100

    cm2

    s

    µn =vnE

    =8.5x105cm / s

    100V / cm= 8500

    cm2

    s

  • 4

    Page 50

    ni2 =1.08x1031 400( )

    3exp

    −1.12

    8.62x10−5 400( )

    = 5.40x1024 / cm6

    ρ =1σ

    =1

    1.60x10−19 2.32x1012( ) 1350( ) + 2.32x1012( ) 500( )[ ]=1450 Ω− cm

    ni2 =1.08x1031 50( )

    3exp

    −1.12

    8.62x10−5 50( )

    =1.88x10−77 / cm6

    ρ =1σ

    =1

    1.60x10−19 4.34x10−39( ) 6500( ) + 4.34x10−39( ) 2000( )[ ]=1.69x1053 Ω− cm

    Page 54

    ni2 =1.08x1031 400( )

    3exp

    −1.12

    8.62x10−5 400( )

    = 5.40x1024 / cm6

    p = N A − N D =1016 − 2x1015 = 8x1015

    holes

    cm3 n =

    ni2

    p=

    5.40x1024

    8x1015= 6.75x108

    electrons

    cm3

    n = N D = 2x1016 electrons

    cm3 n =

    ni2

    p=

    1020

    2x1016= 5.00x103

    holes

    cm3 n > p→ n - type silicon

    Page 55Reading from the graph for NT = 10

    16/cm3, 1250 cm2/V-s and 400 cm2/V-s.Reading from the graph for NT = 10

    17/cm3, 800 cm2/V-s and 230 cm2/V-s.

    Page 57

    σ =1000 =1.60x10−19µnn → unn = 6.25x1021 / cm3 = 6.25x1019( ) 100( )

    (a) NT = 2x1016 / cm3 (b) NT = 5x10

    16 / cm3

  • 5

    Page 58

    p = N A − N D = 4x1018 holes

    cm3 n =

    ni2

    p=

    1020

    4x1018= 25

    electrons

    cm3

    NT =4x1018

    cm3 and mobilities from Fig. 2.8

    p = N A − N D = 7x1019 holes

    cm3 n =

    ni2

    p=

    1020

    7x1019=1.4

    electrons

    cm3

    NT =7x1019

    cm3 and mobilities from Fig. 2.8

    ρ =1σ

    =1

    1.60x10−19 1.4( ) 100( ) + 7x1019( ) 50( )[ ]=1.79 mΩ− cm

    Page 59

    VT =kTq

    =1.38x10−23 50( )

    1.602x10−19= 4.31 mV

    VT =1.38x10−23 300( )

    1.602x10−19= 25.8 mV

    VT =1.38x10−23 400( )

    1.602x10−19= 34.5mV

    Page 59

    Dn =kTq

    µn = 25.8mV 1362cm2

    V − s

    = 35.1

    cm2

    s Dp =

    kTq

    µ p = 25.8mV 492cm2

    V − s

    =12.7

    cm2

    s

    jn = qDndndx

    =1.60x10−19C 20cm2

    s

    1016

    cm3 −µm

    104µmcm

    = 320

    A

    cm2

    jp = −qDpdpdx

    = −1.60x10−19C 4cm2

    s

    1016

    cm3 −µm

    104µmcm

    = −64

    A

    cm2

  • 6

    CHAPTER 3

    Page 79

    Emax =1εs

    −qN A−x p

    0

    ∫ dx =qN A x pεs

    Emax = −1εs

    qN D0

    xn

    ∫ dx = qN D xnεs

    For the values in Ex.3.2 :

    Emax =1.6x10−19C 1017 / cm3( ) 1.13x10−5cm( )

    11.7 8.854x10−14 F / cm( )=175

    kVcm

    Emax =1.6x10−19C 1020 / cm3( ) 1.13x10−8cm( )

    11.7 8.854x10−14 F / cm( )=175

    kVcm

    Emax =2 1.05V( )

    2.63x10−6cm= 799

    kVcm

    xp = 0.0258µm 1+2x1018

    1020

    −1

    = 0.0253 µm xn = 0.0258µm 1+1020

    2x1018

    −1

    = 5.06x10−4 µm

    Page 82

    T =1.602x10−19 25.8mV( )

    1.03 1.38x10−23( )= 291K

    Page 84

    iD = 5x10−15 A exp

    −0.040.025

    −1

    = −3.99 fA iD = 5x10

    −15 A exp−2.00.025

    −1

    = −5.00 fA

    Page 86

    VBE = VT ln 1+IDIS

    = 0.025V ln 1+

    40x10−6 A

    2x10−15 A

    = 0.593 V

    VBE = VT ln 1+IDIS

    = 0.025V ln 1+

    400x10−6 A

    2x10−15 A

    = 0.651 V ΔVBE = 57.6 mV

    VBE = VT ln 1+IDIS

    = 0.0258V ln 1+

    40x10−6 A

    2x10−15 A

    = 0.612 V

    VBE = VT ln 1+IDIS

    = 0.0258V ln 1+

    400x10−6 A

    2x10−15 A

    = 0.671 V ΔVBE = 59.4 mV

    Page 89

    wd = 0.113µm 1+10V

    0.979V= 0.378 µm Emax =

    2 10.979V( )0.378x10−4cm

    = 581kVcm

  • 7

    Page 89

    IS =10 fA 1+10V0.8V

    = 36.7 fA

    Page 92

    Cjo =11.7 8.854x10−14 F / cm( )

    0.113x10−4cm= 91.7

    nF

    cm2 Cj 0V( ) = 91.7

    nF

    cm210−2cm( ) 1.25x10−2cm( ) =11.5 pF

    Cj 5V( ) =11.5 pF

    1+5V

    0.979V

    = 4.64 pF

    Page 92

    CD =10−5 A0.025V

    10−8 s = 4.00 pF CD =8x10−4 A0.025V

    10−8 s = 320 pF CD =5x10−2 A0.025V

    10−8 s = 0.02 µF

    Page 97

    Two points on the load line : VD = 0, ID =5V5kΩ

    =1 mA; ID = 0, VD = 5V

    Page 108

    From the answer, the diodes are on,on,off.

    I1 = ID1 + ID2 10V - VB

    2.5kΩ=

    VB − 0.6V − −20V( )10kΩ

    +VB − 0.6V − −10V( )

    10kΩ= 0→VB =1.87 V

    ID1 =1.87 − 0.6 − −20V( )

    10kΩ= 2.13 mA ID2 =

    1.87 − 0.6 − −10V( )10kΩ

    =1.13 mA

    VD3 = − 1.87 − 0.6( ) = −1.27 V

    Page 110

    Rmin =5kΩ

    205−1

    =1.67 kΩ VO = 20V1kΩ

    5kΩ+1kΩ= 3.33 V (VZ is off) VO = 5 V (VZ is conducting)

    Page 111

    VL − 20V1kΩ

    +VL − 5V0.1kΩ

    +VL

    5kΩ= 0→VL = 6.25 V IZ =

    6.25V − 5V0.1kΩ

    =12.5mA

    PZ = 5V 12.5mA( ) +100Ω 12.5mA( )2

    = 78.1 mW

    Page 112

    Line Regulation =0.1kΩ

    0.1kΩ+ 5kΩ=19.6

    mVV

    Load Regulation = 0.1kΩ 5kΩ = 98.0 Ω

  • 8

    Page 117

    Vdc = VP −Von = 6.3 2 −1= 7.91 V Idc =7.91V0.5Ω

    =15.8 A Vr =IdcC

    T =15.8A0.5F

    160

    s = 0.527 V

    ΔT =1ω

    2VrVP

    =1

    2π 60( )2

    0.527V8.91V

    = 0.912 ms θc =120π 0.912ms( )180

    o

    π=19.7o

    Page 118

    Vdc = VP −Von =10 2 −1=13.1 V Idc =13.1V

    2Ω= 6.57 A C =

    IdcVr

    T =6.57A0.1F

    160

    s =1.10 F

    ΔT =1ω

    2VrVP

    =1

    2π 60( )2

    0.1V14.1V

    = 0.316 ms θc =120π 0.316ms( )180

    o

    π= 6.82o

    Page 118

    For VT = 0.025V , VD =kTq

    ln 1+IDIS

    = 0.025V ln 1+

    48.6 A

    10−15 A

    = 0.961 V

    VD =kTq

    ln 1+IDIS

    =

    1.38x10−23 J / K 300K( )1.60x10−19C

    ln 1+48.6 A

    10−15 A

    = 0.994 V

    VD =kTq

    ln 1+IDIS

    =

    1.38x10−23 J / K 273K + 50K( )1.60x10−19C

    ln 1+48.6 A

    10−15 A

    =1.07 V

  • 9

    CHAPTER 4

    Page 151

    (i) Kn' = µn

    εoxTox

    = 500cm2

    V − s

    3.9 8.854x1014 F / cm( )25x10−7cm

    = 69.1x10−6C

    V 2 − s= 69.1

    µAV 2

    (ii) Kn = Kn' W

    L= 50

    µAV 2

    20µm1µm

    =1000

    µAV 2

    Kn = 50µAV 2

    60µm3µm

    =1000

    µAV 2

    Kn = 50µAV 2

    10µm0.25µm

    = 2000

    µAV 2

    (iii) For VGS = 0V and 1V , VGS < VTN and the transistor is off. Therefore ID = 0.

    VGS - VTN = 2 -1.5 = 0.5V and VDS = 0.1 V → Triode region operation

    ID = Kn' W

    LVGS −VTN −

    VDS2

    VDS = 25

    µAV 2

    10µm1µm

    2 −1.5−

    0.12

    0.1V

    2 =11.3 µA

    VGS - VTN = 3 -1.5 = 1.5V and VDS = 0.1 V → Triode region operation

    ID = Kn' W

    LVGS −VTN −

    VDS2

    VDS = 25

    µAV 2

    10µm1µm

    3−1.5−

    0.12

    0.1V

    2 = 36.3 µA

    Kn' = 25

    µAV 2

    100µm1µm

    = 250

    µAV 2

    Page 152

    Ron =1

    Kn' W

    LVGS −VTN( )

    =1

    250µAV 2

    2 −1( )= 4.00 kΩ Ron =

    1

    250µAV 2

    4 −1( )=1.00 kΩ

    VGS = VTN +1

    KnRon=1V +

    1

    250µAV 2

    2000Ω( )= 3.00 V

  • 10

    Page 155

    VGS - VTN = 5-1 = 4 V and VDS = 10 V → Saturation region operation

    ID =Kn2

    VGS −VTN( )2

    =12

    mA

    V 25−1( )

    2V 2 = 8.00 mA

    Kn = Kn' W

    L→

    WL

    =1mA40µA

    =251

    W = 25L = 8.75 µm

    Assuming saturation region operation,

    ID =Kn2

    VGS −VTN( )2

    =12

    mA

    V 22.5−1( )

    2V 2 =1.13 mA

    gm = Kn VGS −VTN( ) =1mAV 2 2.5−1( )V =1.50 mS

    Checking : gm =2 1.125mA( )

    2.5−1( )V=1.50 mS

    Page 156

    (i) VGS - VTN = 5-1 = 4 V and VDS = 10 V → Saturation region operation

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) =12

    mA

    V 25−1( )

    2V 2 1+ 0.02 10( )[ ] = 9.60 mA

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) =12

    mA

    V 25−1( )

    2V 2 1+ 0 10( )[ ] = 8.00 mA

    (ii) VGS - VTN = 4 -1 = 3 V and VDS = 5 V → Saturation region operation

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) = 252µAV 2

    4 −1( )2V 2 1+ 0.01 5( )[ ] =118 µA

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) =252

    µAV 2

    5−1( )2V 2 1+ 0.01 10( )[ ] = 220 µA

    Page 157

    (i) Assuming pinchoff region operation, ID =Kn2

    0 −VTN( )2

    =502

    µAV 2

    +2V( )2

    =100 µA

    VGS = VTN +2IDKn

    = 2V +2 100 µA( )50µA /V 2

    = 4.00 V

    (ii) Assuming pinchoff region operation, ID =Kn2

    VGS −VTN( )2

    =502

    µAV 2

    1− −2V( )[ ]2

    = 225 µA

  • 11

    Page 159

    (i) VTN = VTO + γ VSB + 0.6V − 0.6V( ) =1+ 0.75 0 + 0.6 − 0.6( ) =1 VVTN =1+ 0.75 1.5+ 0.6 − 0.6( ) =1.51 V VTN =1+ 0.75 3+ 0.6 − 0.6( ) =1.84 V

    (ii − a) VGS is less than the threshold voltage, so the transistor is cut off and ID = 0.

    (b) VGS - VTN = 2 -1 = 1 V and VDS = 0.5 V → Triode region operation

    ID = Kn VGS −VTN −VDS2

    VDS =1

    mA

    V 22 −1−

    0.52

    0.5V

    2 = 375 µA

    (c) VGS - VTN = 2 -1 = 1 V and VDS = 2 V → Saturation region operation

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) = 0.5mA

    V 22 −1( )

    2V 2 1+ 0.02 2( )[ ] = 520 µA

    Page 160

    a( ) VGS is greater than the threshold voltage, so the transistor is cut off and ID = 0.

    b( ) VGS - VTN = -2 +1 = 1 V and VDS = 0.5 V → Triode region operation

    ID = Kn VGS −VTN −VDS2

    VDS = 0.4

    mA

    V 2−2 +1−

    −0.52

    −0.5( )V 2 =150 µA

    c( ) VGS - VTN = −2 +1 = 1 V and VDS = 2 V → Saturation region operation

    ID =Kn2

    VGS −VTN( )2

    1+ λVDS( ) =0.42

    mA

    V 2−2 +1( )

    2V 2 1+ 0.02 2( )[ ] = 208 µA

    Page 165

    Active area =120Λ2 =120 0.5µm( )2

    = 30 µm2 L = 2Λ = 1µm W = 10Λ = 5µm

    Gate area = 20Λ2 = 20 0.5µm( )2

    = 5 µm2 N =104µm( )

    2

    14Λ( ) 16Λ( ) 0.5µm( )2

    =1.79 x 106 transistors

  • 12

    Page 167

    CGC = 200µFm2

    5x10

    −6 m( ) 0.5x10−6 m( ) = 0.500 fF

    Triode region : CGD = CGS =CGC

    2+ CGSOW = 0.25 fF + 300

    pFm

    5x10

    −6 m( ) =1.75 fF

    Saturation region : CGS =23

    CGC + CGSOW = 0.333 fF + 300pFm

    5x10

    −6 m( ) =1.83 fF

    CGD = CGSOW = 300pFm

    5x10

    −6 m( ) =1.50 fF

    Page 169

    KP = Kn =150U LAMBDA = λ = 0.0133 VTO = VTN =1 PHI = 2φF = 0.6

    W = W = 1.5U L = L = 0.25U

    Page 173

    i( ) Assume saturation region operation and λ = 0. Then ID is indpendent of VDS, and ID = 50 µA.VDS = VDD − ID RD =10 − 50kΩ 50µA( ) = 7.50 V . VDS ≥VGS −VTN , so our assumption was correct.Q - Point = 50.0 µA, 7.50 V( )

    ii( ) VEQ =270kΩ

    270kΩ+ 750kΩ10V = 2.647 V REQ = 270kΩ 750kΩ Assume saturation region.

    ID =25x10−6

    2A

    V 22.647 −1( )

    2V 2 = 33.9 µA VDS = VDD − ID RD =10 −100kΩ 33.9µA( ) = 6.61 V .

    VDS ≥VGS −VTN , so our assumption was correct. Q - Point = 33.9 µA, 6.61 V( )

    iii( ) VGS does not change : VGS = 3.00 V . ID = 30x10−6

    2A

    V 23−1( )

    2V 2 = 60.0 µA

    VDS = VDD − ID RD =10 −100kΩ 60.0µA( ) = 4.00 V . VDS ≥VGS −VTN , so our assumption was correct.Q - Point = 60.0 µA, 4.00 V( )

    iv( ) VGS does not change : VGS = 3.00 V . ID =25x10−6

    2A

    V 23−1.5( )

    2V 2 = 28.1 µA

    VDS = VDD − ID RD =10 −100kΩ 28.1µA( ) = 7.19 V . VDS ≥VGS −VTN , so our assumption was correct.Q - Point = 28.1 µA, 7.19 V( )

  • 13

    Page 174

    VDS =10 −25x10−6 105( )

    23−1( )

    21+ 0.01VDS( )→VDS =10 − 5 1+ 0.01VDS( )

    VDS =10 − 51.05

    V = 4.76 V ID =25x10−6

    23−1( )

    21+ 0.01 4.76( )[ ] = 52.4 µA

    Page 176

    For ID = 0, VDS = 10 V . For VDS = 0, ID =10V

    66.7kΩ=150µA.

    The load line intersects the VGS = 3 - V curve at ID = 50 µA, VDS = 6.7 V .

    Page 178

    i( ) 4 = VGS +30x10−6 3.9x104( )

    2VGS −1( )

    2→VGS

    2 − 0.291VGS − 5.838 = 0→VGS = 2.566V , − 2.275V

    ID =30x10−6

    22.566 −1( )

    2= 36.8 µA VDS =10 −114kΩ 36.8µA( ) = 5.81 V

    Q - Point : 36.8 µA,5.81 V( )

    ii( ) 4 = VGS +25x10−6 3.9x104( )

    2VGS −1.5( )

    2→VGS

    2 − 0.949VGS − 5.955 = 0→VGS = 2.960V , − 2.012V

    ID =25x10−6

    22.960 −1.5( )

    2= 26.7 µA VDS =10 −114kΩ 26.7µA( ) = 6.96 V

    Q - Point : 26.7 µA,6.96 V( )

    ii( ) 4 = VGS +25x10−6 6.2x104( )

    2VGS −1( )

    2→VGS

    2 − 0.710VGS − 4.161= 0→VGS = 2.426V , −1.716V

    ID =25x10−6

    22.426 −1( )

    2= 25.4 µA VDS =10 −137kΩ 25.4µA( ) = 6.52 V

    Q - Point : 25.4 µA,6.52 V( )

  • 14

    Page 180

    i( ) Assume saturation. For ID = 99.5µA, VGS = 4V - 99.5µA 1.8kΩ( ) = 3.821V

    ID =25µA

    23.821−1( )

    2= 99.5µA which agrees. VDS =10V − 99.5µA 40.8kΩ( ) = 5.94 V

    Saturation region operation is correct.

    ii( ) VEQ =1.5MΩ

    1.5MΩ+1MΩ10V = 6.00 V REQ =1.5MΩ 1MΩ = 600kΩ Assume saturation region.

    6 = VGS +25x10−6 22x103( )

    2VGS −1( )

    2→VGS

    2 +1.636VGS − 20.82 = 0→VGS = 3.818V

    ID =25x10−6

    23.818 −1( )

    2= 99.3 µA VDS =10 − 40kΩ 99.3µA( ) = 6.03 V

    Saturation region operation is correct. Q- Point : 99.3 µA, 6.03 V( )

    iii( ) R1 + R2 =10V2µA

    = 5MΩ R1

    R1 + R210V = 6V → R1 = 5MΩ

    6V10V

    = 3 MΩ→ R2 = 2 MΩ

    REQ = 3MΩ 2MΩ =1.2 MΩ

    Page 182

    VGS = 6 − 22000ID VSB = 22000ID VTN =1+ 0.75 VSB + 0.6 − 0.6( ) ID = 25µA2 VGS −VTN( )2

    Spreadsheet iteration yields ID = 83.2 µA.

    Page 183

    Equation 4.55 becomes 6 - 1+ 0.75 VSB + 0.6 − 0.6( ) + 2.83[ ] −VSB = 0.VSB

    2 − 6.065VSB + 7.231= 0→VSB =1.63V .

    RS =1.63V

    10−4 A=16.3 kΩ→16 kΩ RD =

    10 − 6 −1.63( )V10−4 A

    = 23.7kΩ→ 24 kΩ

    Page 185

    i( ) Using Eq. (4.58) VGS = 3.3−2x10−4 10kΩ( )

    2VGS −1( )

    2→VGS

    2 −VGS − 2.3 = 0→VGS = 2.097V

    VGS =2x10−4

    22.097 −1( )

    2=120.3µA VDS = VGS Q - Po int : 120 µA, 2.10 V( )

    ii( ) Since there was no voltage drop across RG in (i), the equations and answers are identical tothe first part.

  • 15

    Page 186

    4 −VDS1.8x106

    = 2.5x10−4 4 −1−VDS2

    VDS →VDS = 2.96 mV ID =

    4 −VDS1.8x106

    = 2.22 µA

    Q - Po int : 2.22 µA, 2.96 mV( ) Checking; ID Ron =2.22µA

    2.5x10−4 4 −1( )= 2.96 mV

    Page 189

    i( ) 10 − 6 =25x10−6 62x104( )

    2VGS +1( )

    2−VGS →VGS

    2 + 0.710VGS − 4.161= 0→VGS = −2.426V , +1.716V

    ID =25x10−6

    2−2.426 +1( )

    2= 25.4 µA VDS = − 10 −137kΩ 25.4µA( )[ ] = −6.52 V

    Q - Point : 25.4 µA, - 6.52 V( )

    Page 192

    i( ) Circuits/cm2 ∝α2 = 1µm0.25µm

    2

    = 16

    Power - Delay Product ∝1

    α3=

    1

    43=

    164

    → 64 times improvement

    ii( ) iD* = µnεox

    Tox /αW /αL /α

    vGS −VTN −vDS2

    vDS =α iD P

    * = VDDiD* = VDD α iD( ) =α P

    P*

    A*=

    αPW /α( ) L /α( )

    =α3PA

    iii( ) fT =1

    2π500cm2 /V − s

    10−4cm( )2

    1V( ) = 7.96 GHz fT =1

    2π500cm2 /V − s

    0.25x10−4cm( )2

    1V( ) =127 GHz

    Page 193

    The field in the first sentence at the top of the page should be 105V / cm.

    VL

    =104Vcm

    → L = 105Vcm

    10

    −4cm( ) =10 V L = 105 Vcm

    10

    −5cm( ) =1 V

  • 16

    CHAPTER 5

    Page 213

    βF =αF

    1−αF=

    0.9701− 0.970

    = 32.3 βF =0.993

    1− 0.993=142 βF =

    0.2501− .250

    = 0.333

    αF =βF

    βF +1=

    4041

    = 0.976 αF =200201

    = 0.995 αF =34

    = 0.750

    Page 215

    iC =10−15 A exp

    0.7000.025

    − exp

    −9.300.025

    10−15 A0.5

    exp−9.300.025

    −1

    =1.45 mA

    iE =10−15 A exp

    0.7000.025

    − exp

    −9.300.025

    +

    10−15 A100

    exp0.7000.025

    −1

    =1.46 mA

    iB =10−15 A

    100exp

    0.7000.025

    −1

    +

    10−15 A0.5

    exp−9.300.025

    −1

    =14.5 µA

    Page 217

    iC =10−16 A exp

    0.7500.025

    − exp

    0.7000.025

    10−16 A0.4

    exp0.7000.025

    −1

    = 563 µA

    iE =10−16 A exp

    0.7500.025

    − exp

    0.7000.025

    +

    10−16 A75

    exp0.7500.025

    −1

    = 938 µA

    iB =10−16 A

    75exp

    0.7500.025

    −1

    +

    10−16 A0.4

    exp0.7000.025

    −1

    = 376 µA

    Page 217

    iT =10−15 A exp

    0.7500.025

    − exp

    −20.025

    =10.7 mA

    iT =10−16 A exp

    0.7500.025

    − exp

    −50.025

    =1.07 mA

  • 17

    Page 220

    VBE = VT lnICIS

    +1

    = 0.025V ln

    10−4 A

    10−16 A+1

    = 0.691 V

    VBE = VT lnICIS

    +1

    = 0.025V ln

    10−3 A

    10−16 A+1

    = 0.748 V

    Page 221

    npn :VBE > 0, VBC < 0→ Forward −Active Region pnp :VEB > 0, VCB > 0→ Saturation Region

    Page 223

    βF =αF

    1−αF=

    0.950.05

    =19 βR =αR

    1−αR=

    0.250.75

    =13

    VBE = 0, VBC

  • 18

    Page 226

    a( ) The currents do not depend upon VCC as long as the collector - base junction is reversebiased. (Later when Early voltage VA is discussed, one should revisit this problem.)

    b( ) Forward - active region : IB =100 µA, IE = βF +1( )IB = 5.10 mA, IC = βF IB = 5.00 mA

    VBE = VT lnICIS

    +1

    = 0.025V ln

    5.00mA

    10−16 A+1

    = 0.789 V Checking : VBC = −5 + 0.789 = −4.21 V

    c( ) Forward - active region with VCB ≥ 0 requires VCC ≥VBE or VCC ≥ 0.764 V

    Page 228

    IE =−0.7V − −9V( )

    5.6kΩ=1.48 mA IB =

    IEβF +1

    = 29.1 µA, IC = βF IB =1.45 mA

    VCE = VC −VE = 9 − 4300IC( ) − −0.7( ) = 3.47 V Q - Point : 1.45 mA, 3.47 V( )

    IE =βF +1βF

    IC =5150

    100µA =102µA R =−0.7V − −9V( )

    102µA=

    8.3V102µA

    = 81.4 kΩ

    Nearest 5% value is 82 kΩ.

    Page 229

    i( ) IE =−0.7V − −9V( )

    5.6kΩ=1.48 mA IB =

    IEβF +1

    = 29.1 µA, IC = βF IB =1.45 mA

    ii( ) IE =βF +1βF

    IC =5150

    IC = 1.02IC VBE = VT lnICIS

    +1

    = 0.025ln 2x10

    15 IC +1( )

    VBE + 8200 5.10x10−16 exp

    VBE0.025

    −1

    = 9→VBE = 0.7079 V using a calculator solver or spreadsheet.

    IC = 5x10−16 exp

    0.70790.025

    = 992 µA VCE = 9 − 4300IC − −0.708( ) = 5.44 V

    Page 229

    ISD =ISBJTαF

    =2x10−14 A

    0.95= 21.0 fA

    Page 232

    −IC =−0.7V − −9V( )

    5.6kΩ=1.48 mA IB =

    −ICβR +1

    = 0.741 mA, - IE = βR IB = 0.741 mA

  • 19

    Page 234

    i( ) VCESAT = 0.025V( ) ln 10.5

    1+1mA

    2 40µA( )1−

    1mA

    50 40µA( )

    = 99.7 mV

    ii( ) VBE = 0.025V( ) ln0.1mA + 1− 0.5( )1mA

    10−15 A150

    +1− 0.5

    = 0.694 mV

    VBC = 0.025V( ) ln0.1mA−

    1mA50

    10−15 A1

    0.5

    150

    +1− 0.5

    = 0.627 mV VBE −VBC = 67.7mV

    Page 237

    Dn =kTq

    µn = 0.025V 500cm2 /V − s( ) =12.5cm2 / s

    IS =qADnni

    2

    N ABW=

    1.6x10−19C 50µm2( ) 10−4cm / µm( ) 12.5cm2 / s( ) 1020 / cm6( )1018 / cm3( ) 1µm( )

    =10−18 A

    Page 240

    i( ) VT =1.38x10−23 J / K( ) 373K( )

    1.60x10−19C= 32.2mV CD =

    ICVTτF =

    10A0.0322V

    4x10−9 s( ) =1.24 µF

    ii( ) fβ =fTβF

    =300MHz

    125= 2.40 MHz

    Page 241

    (a) IC =10−15 Aexp

    0.70.025

    1+

    1050

    =1.74 mA βF = 75 1+

    1050

    = 90.0 IB =

    1.74mA90.0

    =19.3 µA

    (b) IC =10−15 Aexp

    0.70.025

    =1.45 mA βF = 75 IB =

    1.45mA75

    =19.3 µA

    Page 243

    gm = 40 10−4( ) = 4.00 mS gm = 40 10−3( ) = 40.0 mS

    CD = 4.00mS 25 ps( ) = 0.100 pF CD = 40.0mS 25 ps( ) =1.00 pF

  • 20

    Page 249

    VEQ =180kΩ

    180kΩ+ 360kΩ12V = 4.00V | REQ =180kΩ 360kΩ =120kΩ

    IB =4.00 − 0.7

    120 + 75+1( )16VkΩ

    = 2.470µA | IC = 75IB =185.3µA | IE = 76IB =187.7µA

    VCE =12 − 22000IC −16000IE = 4.92V | Q - po int : 185 µA, 4.92 V( )

    Page 250

    i( ) I2 =IC5

    =50IB

    5=10IB

    ii( ) VEQ =18kΩ

    18kΩ+ 36kΩ12V = 4.00V | REQ =18kΩ 36kΩ =12kΩ

    IB =4.00 − 0.7

    12 + 500 +1( )16VkΩ

    = 0.4111µA | IC = 500IB = 205.5µA | IE = 76IB = 206.0µA

    VCE =12 − 22000IC −16000IE = 4.18V | Q - po int : 206 µA, 4.18 V( )

    Page 251

    The voltages all remain the same, and the currents are reduced by a factor of 10. Hence all

    the resistors are just scaled up by a factor of 10.

    120 kΩ→1.2 MΩ 82 kΩ→ 820 kΩ 6.8 kΩ→ 68 kΩ

    Page 253

    i( ) VCE = 0.7 V at the edge of saturation. 0.7V = 12V - RC +7675

    16kΩ

    205µA( )→ RC = 38.9 kΩ

    ii( ) VBESAT = 4 −12kΩ 24µA( ) −16kΩ 184µA( ) = 0.768 V VCESAT =12 − 56kΩ 160µA( ) −16kΩ 184µA( ) = 0.096 V

    Page 254

    IB =9 − 0.7

    36 + 50 +1( )1VkΩ

    = 95.4µA | IC = 50IB = 4.77 mA | IE = 76IB =187.7µA

    VCE = 9 −1000 IC + IB( ) = 4.13V | Q - po int : 4.77 mA, 4.13 V( )

  • 21

    CHAPTER 6

    Page 280

    NM L = 0.8V − 0.4V = 0.4 V NMH = 3.6V − 2.0V =1.6 V

    Page 282

    V10% = VL + 0.1 ΔV( ) = −2.6V + 0.1 −0.6 − −2.6( )[ ] = −2.4 V orV10% = VH − 0.9 ΔV( ) = −0.6V − 0.9 −0.6 − −2.6( )[ ] = −2.4 V

    V90% = VL + 0.9 ΔV( ) = −2.6V + 0.9 −0.6 − −2.6( )[ ] = −0.8 V orV90% = VH − 0.1 ΔV( ) = −0.6V − 0.1 −0.6 − −2.6( )[ ] = −0.8 V

    V50% =VH + VL

    2=−0.6− 2.6

    2= −1.6 V tr = t4 − t3 = 3 ns t f = t2 − t1 = 5 ns

    Page 283

    At P = 1 mW : PDP =1mW 1ns( ) =1 pJ At P = 3 mW : PDP = 3mW 1ns( ) = 3 pJAt P = 20 mW : PDP = 20mW 2ns( ) = 40 pJ

    Page 285

    Z = A + B( ) B + C( ) = AB + AC + BB + BC = AB + BB + AC + BB + BCZ = AB + B + AC + B + BC = B A +1( ) + AC + B C +1( ) = B + AC + BZ = B + B + AC = B + AC

    Page 288

    IDD =P

    VDD=

    0.4mW2.5V

    =160 µA R =VDD −VL

    IDD=

    2.5V − 0.2V160µA

    =14.4 kΩ

    1.6x10−4 A =10−4A

    V 2WL

    S

    2.5− 0.6 −0.22

    0.2 V

    2 →WL

    S

    =4.44

    1

    Page 289

    IDD =VDD −VL

    R=

    3.3V − 0.1V102kΩ

    = 31.4µA

    31.4x10−6 A = 6x10−5A

    V 2WL

    S

    3.3− 0.75−0.12

    0.1 V

    2 →WL

    S

    =2.09

    1

  • 22

    Page 290

    0.15V =Ron

    Ron + 28.8kΩ2.5V → Ron =1.84 kΩ

    WL

    S

    =1

    10−4 2.5− 0.60 −0.15

    2

    1.84kΩ( )

    →WL

    S

    =2.98

    1

    Page 291

    i( ) Ron =1

    6x10−51.03

    1

    3.3− 0.75−

    0.22

    = 6.61 kΩ VL =6.61kΩ

    6.61kΩ+102kΩ3.3V = 0.201 V

    ii( ) 1KnR

    =

    V 2

    A1Ω

    = V

    Page 293

    KnR = 6x10−5( ) 1.031

    1.02x10

    5( ) = 6.30V

    NM H = 3.3− 0.75+1

    2 6.30( )−1.63

    3.36.30

    =1.45 V NML = 0.75+1

    6.30−

    2 3.3( )3 6.30( )

    = 0.318 V

    Page 297

    i( ) VH = 2.5− 0.6 + 0.75 VH + 0.6 − 0.6( )[ ]→VH =1.416 Vii( ) 80x10−6 A =100x10−6 A

    V 2WL

    S

    1.55− 0.60 −0.15

    2

    0.15 V

    2 →WL

    S

    =6.10

    1

    VTNL = 0.6 + 0.5 .15 + 0.6 − 0.6( ) = 0.646 V 80x10−6 A =

    100x10−6

    2A

    V 2WL

    L

    2.5− 0.15− 0.646( )2V 2 →

    WL

    L

    =0.551

    1=

    11.82

    (iii ) 80x10−6 A =100x10−6A

    V 2WL

    S

    1.55− 0.60 −0.12

    0.1 V

    2 →WL

    S

    =8.89

    1

    VTNL = 0.6 + 0.5 .1+ 0.6 − 0.6( ) = 0.631 V 80x10−6 A =

    100x10−6

    2A

    V 2WL

    L

    2.5− 0.1− 0.631( )2V 2 →

    WL

    L

    =0.511

    1=

    11.96

  • 23

    Page 300

    The high logic level is unchanged : VH = 2.11

    60x10−6 A = 50x10−6A

    V 2WL

    S

    2.11− 0.75−0.12

    0.1 V

    2 →WL

    S

    =9.16

    1

    VTNL = 0.75 + 0.5 .1+ 0.6 − 0.6( ) = 0.781 V60x10−6 A =

    50x10−6

    2A

    V 2WL

    L

    3.3− 0.1− 0.781( )2V 2 →

    WL

    L

    =0.410

    1=

    12.44

    Page 302

    γ = 0→VTN = 0.6V and VH = 2.5 - 0.6 = 1.9 V IDD = 0 for vO = VH

    100x10−6101

    1.9 − 0.6 −

    VL2

    VL =

    100x10−6

    221

    2.5−VL − 0.6( )

    2

    6VL2 −116.8VL + 3.61 = 0→VL = 0.235V IDD =100x10

    −6 101

    1.9 − 0.6 −

    0.2352

    0.235 = 278 µA

    Checking : IDD =100x10−6

    221

    2.5− 0.235− 0.6( )

    2= 277 µA

    Page 307

    VTNL = −1.5+ 0.5 0.2 + 0.6 − 0.6( ) = −1.44V60.6x10−6 =

    100x10−6

    2WL

    L

    0 −1.44( )2→

    WL

    L

    =0.585

    1=

    11.71

    60.6x10−6 =100x10−6WL

    S

    3.3− 0.6 −0.22

    0.2→

    WL

    S

    =1.17

    1

    Page 308

    IDS =100x10−6 2.22

    1

    2.5− 0.6 −

    0.22

    0.2 = 79.9 µA which checks.

    Page 309

    The PMOS transistor is still saturated so IDL =144 µA, and VH = 2.5 V .

    144x10−6 =100x10−651

    2.5− 0.6 −

    VL2

    VL →VL = 0.158 V

    Page 314

    Place a third transistor with WL

    =2.22

    1 in parallel with tansistors A and B.

  • 24

    Page 315

    Place a third transistor in series with tansistors A and B.

    The new W/L ratios of transistors A, B and C are WL

    = 32.22

    1=

    6.661

    .

    Page 321

    M L1 is saturated for all three voltages. IDD =40x10−6

    21.11

    1

    L

    −2.5− −0.6( )[ ]2

    = 80.1 µA

    Note that the voltages in two rows are in error in the table.

    11000 132 64.4 0 11111 64.6 31.9 31.9

    The voltages can be estimated using the on - resistance method.

    For the 11000 case, RonA =132mV − 64.4mV

    80.1µA= 844 Ω RonB =

    64.4mV80.1µA

    = 804 Ω

    For the 00101 case, RonE =64.4mV80.1µA

    = 804 Ω.

    For the 01110 case, RonC =203mV −132mV

    80.1µA= 886 Ω RonD =

    132mV − 64.4mV80.1µA

    = 844 Ω

    The voltage across a given conducting device is IDRon. Small variations in Ron are ignored.

    ABCDE Y (mV) 2 (mV) 3 (mV) IDD (uA) ABCDE Y (mV) 2 (mV) 3 (mV) IDD (uA)

    00000 2.5 V 0 0 0 10000 2.5 V 2.5 V 0 000001 2.5 V 0 0 0 10001 2.5 V 2.5 V 0 000010 2.5 V 0 0 0 10010 2.5 V 2.5 V 2.5 V 000011 2.5 V 0 0 0 10011 200 130 64 80.100100 2.5 V 0 2.5 V 0 10100 2.5 V 2.5 V 2.5 V 000101 130 0 64 80.1 10101 130 130 64 80.100110 2.5 V 2.5 V 2.5 V 0 10110 2.5 V 2.5 V 2.5 V 000111 130 64 64 80.1 10111 100 83 64 80.101000 2.5 V 0 0 0 11000 130 64 0 80.101001 2.5 V 0 0 0 11001 130 64 0 80.101010 2.5 V 0 0 0 11010 130 64 64 80.101011 2.5 V 0 0 0 11011 110 43 22 80.101100 2.5 V 0 2.5 V 0 11100 130 64 64 80.101101 130 0 64 80.1 11101 66 32 32 80.101110 200 64 130 80.1 11110 110 64 87 80.101111 114 21 43 80.1 11111 65 32 32 80.1

    Page 322

    Pav =2.5V 80.1 µA( )

    2= 0.100 mW

  • 25

    Page 323

    PD = 10-12 F 2.5V( )

    232x106 Hz( ) = 2x10−4W = 200 µW or 0.200 mW

    Page 324

    i( ) The inverter in Fig. 6.38(a) was designed for a power dissipation of 0.2 mW.To reduce the power by a factor of two, we must reduce the W/L ratios by a factor of 2.

    WL

    L

    =12

    11.68

    =

    13.36

    WL

    S

    =12

    4.711

    =

    2.361

    ii( ) To increase the power by a factor of 4mW0.2mW

    , we must increase the W/L ratios by a factor of 20.

    WL

    L

    = 201.81

    1

    =

    36.21

    WL

    S

    = 22.22

    1

    =

    44.41

    iii( ) To reduce the power by a factor of three, we must reduce the W/L ratios by a factor of 3.WL

    L

    =13

    1.811

    =

    0.6031

    =1

    1.66

    WL

    A

    =13

    3.331

    =

    1.111

    WL

    BCD

    =13

    6.661

    =

    2.221

    Page 327

    tr = 2.2 28.8x103Ω( ) 2x10−13 F( ) =12.7 ns τ PLH = 0.69 28.8x103Ω( ) 2x10−13 F( ) = 3.97 ns

    Page 330

    t f = 3.7 2.37x103Ω( ) 2.5x10−13 F( ) = 2.19 ns τ PHL =1.2 2.37x103Ω( ) 2.5x10−13 F( ) = 0.711 ns

    tr = 2.2 28.8x103Ω( ) 2.5x10−13 F( ) =15.8 ns τ PLH = 0.69 28.8x103Ω( ) 2.5x10−13 F( ) = 4.97 ns

    τP =0.711 ns + 4.97 ns

    2= 2.84 ns

    Page 335

    i( ) The PMOS transistor is saturated for vO = VL. IDD =40x10−6

    223.7

    1

    L

    −2.5− −0.6( )[ ]2

    =1.71 mA

    Pav =2.5V 1.71mA( )

    2= 2.14 mW PD = 5x10

    −12 F 2.5V − 0.2V( )2 1

    2x10−9 s

    =13.2 mW

    ii( ) We must increase the power by a factor of 20pF5pF

    2ns1ns

    = 8,

    so the W/L ratios must also be increased by a factor of 8.

    WL

    L

    = 823.7

    1

    =

    1901

    WL

    S

    = 847.4

    1

    =

    3791

    PD = 20x10−12 F 2.5V − 0.2V( )

    2 1

    10−9 s

    = 106 mW

  • 26

    CHAPTER 7

    Page 355

    a( ) K p = 40x10−6201

    = 800

    µAV 2

    Kn =100x10−6 20

    1

    = 2000

    µAV 2

    = 2.00 mA

    V 2

    b( ) VTN = 0.6 + 0.5 2.5 + 0.6 − 0.6( ) =1.09 Vc( ) VTP = −0.6 − 0.75 2.5 + 0.7 − 0.7( ) = −1.31 V

    Page 357

    a( ) For vI =1V , VGSN −VTN =1− 0.6 = 0.4V and VGSP −VTP = −1.5+ 0.6 = −0.9VMN is saturated for vO ≥ 0.4 V . MP is in the triode region for vO ≥1.6 V . ∴ 1.6 V ≤ vO ≤ 2.5 V

    b( ) MP is saturated for vO ≤1.6 V . ∴ 0.4 V ≤ vO ≤1.6 Vc( ) MN is in the triode region for vO ≤ 0.4 V . MP is saturated for vO ≤1.6 V . ∴ 0 ≤ vO ≤ 0.4 V

    Page 357

    WL

    P

    =KnK p

    WL

    N

    = 2.5101

    =

    251

    Page 358

    i( ) Both transistors are saturated since VGS = VDS .Kn2

    VGSN −VTN( )2

    =K p2

    VGSP −VTP( )2 Kn = K p VTN = VTP

    VGSN = −VGSP → vI = VDD − vI → vI =VDD

    2

    ii( ) 10K p

    2VGSN −VTN( )

    2=

    K p2

    VGSP −VTP( )2→ 10 VGSN −VTN( ) = −VGSP + VTP

    10 vI − 0.6( ) = 4 − vI − 0.6→ vI =1.273 V

  • 27

    Page 360

    KR =

    KnWL

    N

    K pWL

    P

    =KnK p

    = 2.5

    VIH =2KR VDD −VTN + VTP( )

    KR −1( ) 1+ 3KR−

    VDD − KRVTN + VTP( )KR −1

    VIH =2 2.5( ) 2.5− 0.6 − 0.6( )

    2.5−1( ) 1+ 3 2.5( )−

    2.5− 2.5 0.6( ) − 0.6( )2.5−1

    =1.22V

    VOL =KR +1( )VIH −VDD − KRVTN −VTP

    2KR=

    2.5 +1( )1.22 − 2.5− 2.5 0.6( ) + 0.62 2.5( )

    = 0.174V

    VIL =2 KR VDD −VTN + VTP( )

    KR −1( ) KR + 3−

    VDD − KRVTN + VTP( )KR −1

    VIL =2 2.5 2.5− 0.6 − 0.6( )

    2.5−1( ) 2.5 + 3−

    2.5− 2.5 0.6( ) − 0.6( )2.5−1

    = 0.902V

    VOH =KR +1( )VIL + VDD − KRVTN −VTP

    2=

    2.5+1( )0.902 + 2.5− 2.5 0.6( ) + 0.62

    = 2.38V

    NM H = VOH −VIH = 2.38 −1.22 =1.16 V NML = VIL −VOL = 0.902 − 0.174 = 0.728 V

    Page 362

    C should be 0.75 pF, and the delay in the inverter in Fig. 7.13(b) should be 1.6 ns.

    i( ) Symmetrical Inverter : τ P =1.2RonnC =1.20.75x10−12 F

    2 10−4( ) 2.5− 0.6( )Ω = 2.4 ns

    ii( ) Symmetrical Inverter : Ronn =τP

    1.2C=

    10−9 s

    1.2 5x10−12 F( )=167Ω

    WL

    N

    =1

    RonnKn' VGS −VTN( )

    =1

    167 10−4( ) 2.5− 0.6( )=

    31.51

    WL

    P

    = 2.5WL

    N

    = 78.8

    Page 364

    The inverters need to be increased in size by a factor of 280ps250ps

    =1.12.

    WL

    N

    =1.123.77

    1

    =

    4.221

    WL

    P

    =1.129.43

    1

    =

    10.61

  • 28

    Page 364

    WL

    N

    =3.77

    1

    3.3− 0.753.3− 0.5

    =

    3.431

    WL

    P

    =9.43

    1

    3.3− 0.753.3− 0.5

    =

    8.591

    Page 364

    τPHL = 2.4RonnC =2.4C

    Kn VGS −VTN( )=

    2.4C

    Kn 2.5− 0.6( )=1.26

    CKn

    τPLH = 2.4RonpC =2.4C

    K p VGS −VTN( )=

    2.4C

    K p 2.5− 0.6( )=1.26

    CK p

    Page 365

    τPHL = 2.4RonnC =2.4C

    Kn VGS −VTN( )=

    2.4C

    Kn 3.3− 0.75( )= 0.94

    CKn

    τPLH = 2.4RonpC =2.4C

    K p VGS −VTN( )=

    2.4C

    K p 3.3− 0.75( )= 0.94

    CK p

    Page 366

    The inverter in Fig. 7.12 is a symmetrical design, so the maximum current occurs for vO = vI =VDD

    2.

    Both transistors are saturated. iDN =10-4

    221

    1.25− 0.6( )

    2= 42.3 µA

    Checking : iDP =4x10-5

    251

    1.25− 0.6( )

    2= 42.3 µA

    Page 367

    PDP ≅CVDD

    2

    5=

    10−13 F 2.5V( )2

    5= 0.13 pJ PDP ≅

    CVDD2

    5=

    10−13 F 3.3V( )2

    5= 0.22 pJ

    Page 371

    Remove the NMOS and PMOS transistors connected to input E, and ground the source of

    the NMOS transistor connected to input D. The are now 4 NMOS transistors in series, and

    WL

    N

    = 421

    =

    81

    WL

    P

    =51

  • 29

    Page 376

    There are two NMOS transistors in series in the AB and CD NMOS paths, and three PMOS

    transistors in the ACE and BDE PMOS paths. Therefore :

    WL

    N −ABCD

    = 221

    =

    41

    WL

    N −E

    =21

    WL

    P

    = 351

    =

    151

    Page 380

    AB+C

    B

    A

    C

    P = CVDD2 f = 50x10−12 F( ) 5V( )2 107 Hz( ) =12.5 mW

    Page 383

    β =50 pF50 fF

    1

    2

    = 31.6 τ P = 31.6τ o + 31.6τ o = 63.2τ o | z = eln z | z

    1

    ln z = e ln z( )1

    ln z = e

    β =50 pF50 fF

    1

    7

    = 2.683

    1, 2.68 , 2.6832 = 7.20, 2.6833 = 19.3, 2.6834 = 51.8, 2.6835 = 139, 2.6836 = 373

    A6 = 1+ 3.16 +10 + 31.6 +100 + 316( ) Ao = 462AoA7 = 1+ 2.68 + 7.20 +19.3 + 51.8 +139 + 373( ) Ao = 594 Ao

  • 30

    CHAPTER 8

    Page 401

    NS =28 •220

    27 •210= 211 = 2048 segments NS =

    230

    29 •210= 211 = 2048 segments

    Page 403

    i( ) N = 28 •220 = 228 = 268,435,456 IDD =0.05W3.3V

    =15.2 mA Current/cell =15.2mA

    228cells= 56.4 pA

    ii( ) Reverse the direction of the substrate arrows, and connect the substrates of the PMOStransistors to VDD.

    Page 406

    MA1 : At t = 0+, VGS −VTN = 4V and VDS = 2.5V, so transistor MA1 is operating in the triode region.

    i1 = 60x10−6 1

    1

    5−1−

    2.52

    2.5 = 413 µA

    MA2 : At t = 0+, VGS = VDS, so transistor MA2 is operating in the saturation region.

    VTN 2 =1+ 0.6 2.5+ 0.6 − 0.6( ) =1.592V i2 = 60x10−6

    211

    5− 2.5−1.592( )

    2= 24.8 µA

    Page 408

    MA1 : At t = 0+, VGS = VDS, so transistor MA1 is operating in the saturation region.

    i1 =60x10−6

    211

    5−1( )

    2= 480 µA

    MA2 : At t = 0+, VGS = VDS, so transistor MA2 is operating in the saturation region.

    i1 =60x10−6

    211

    5−1( )

    2= 480 µA

    Page 411

    i( ) At t = 0+, VGS −VTN = 3 - 0.7 = 2.3 V and VDS =1.9 V, so transistor MA is operating in the triode region.

    i1 = 60x10−6 1

    1

    3− 0.7 −

    1.92

    1.9 =154 µA t f = 3.6RonC = 3.6

    50x10−15 F

    60x10−6 3− 0.7( )=1.30 ns

    ii( ) VC = VBL −VTN VC = 3− 0.7 + 0.5 VC + 0.6 − 0.6( )[ ]→VC =1.89 V | VC = 3− 0.7 = 2.3Viii( ) n = CV

    q=

    25x10−15 F 1.89V( )1.60x10−19C

    = 2.95 x 105electrons

  • 31

    Page 413

    ΔV =VC −VBLCBLCC

    +1=

    1.9 − 0.9549CCCC

    +1V = 0.019 V ΔV =

    VC −VBLCBLCC

    +1=

    0 − 0.9549CCCC

    +1V = −0.019 V

    τ = RonCC

    CCCBL

    +1= 5kΩ

    25 fF1

    49+1

    = 0.123 ns or τ ≅ RonCC = 5kΩ 25 fF( ) = 0.125 ns

    Page 414

    At t = 0+, VGS −VTN = 3 - 0( ) - 0.7 = 2.3 V and VDS =1.5 V , so transistor MA2 is operating in

    the triode region. iD = 60x10−6 2

    1

    3− 0.7 −

    1.52

    1.5 = 279 µA

    Page 416

    i( ) In setting the drain currents equal, we see that the change in W/L cancels out, andthe voltages remain the same.

    ∴ iD =12

    60x10-6( ) 51

    1.33− 0.7( )

    2= 59.5 µA PD = 2 59.5µA( ) 3V( ) = 0.357 mW

    As a check, the current should scale with W/L : iD =52

    23.5µA( ) = 58.8 µA

    ii( ) 12

    25x10-6( ) 21

    2.5−VO − 0.6( )

    2=

    12

    60x10-6( ) 21

    VO − 0.6( )

    2

    1.4VO2 + 0.92VO − 2.746 = 0→VO =1.11V

    iD =12

    25x10-6( ) 21

    2.5−1.11− 0.6( )

    2=15.6 µA PD = 2 15.6µA( ) 2.5V( ) = 78.0 µW

    Checking : 12

    60x10-6( ) 21

    1.11− 0.6( )

    2=15.6 µA

    Page 418

    Ron =1

    60x10−6 3−1.3−1( )= 23.8 kΩ τ = 23.8kΩ 25 fF( ) = 0.595 ns

    Page 420

    For all possible input combinations there will be two inverters and 3 output lines in the low state.

    PD = 5 0.2mW( ) =1.0 mW

    Page 422

    WL

    L

    =2

    2.221.81

    1

    =

    1.631

  • 32

    Page 424

    i( ) For a 0 - V input, all transistors will be on and the input nodes will all discharge to 0 V.For the 3 - V input, the nodes will all charge to 3 V as long as VTN ≤ 2V.

    VTN = 0.7 + 0.5 3 + 0.6 − 0.6( ) =1.26 V . Thus the nodes will all be a 3 V.2 ≥ 0.7 + γ 3 + 0.6 − 0.6( )→γ ≤1.158ii( ) The output will drop below VDD / 2. For the PMOS device, VGS −VTP = 3−1.9 − 0.7 = 0.4V .

    The PMOS transistor will be saturated. For the NMOS device, VGS −VTP =1.9 − 0.7 =1.2V .

    Assume linear region operation.

    40x10-6

    251

    −1.1+ 0.7( )

    2=100x10-6

    21

    1.9 − 0.7 −

    VO2

    VO

    VO2 − 2.4VO + 0.16 = 0→VO = 68.6 mV

  • 33

    CHAPTER 9

    Page 442

    iC2iC1

    = exp0.2V

    0.025V

    = 2.98 x 10

    3 iC2iC1

    = exp0.4V

    0.025V

    = 8.89 x 10

    6 2.98x103( )2

    = 8.88 x 106

    Page 444

    The current must be reduced by 5 while the voltages remain the same.

    IEE =300µA

    5= 60 µA RC = 5 2kΩ( ) =10 kΩ

    Page 445

    IB =IE

    βF +1 IB3 =

    92.9µA21

    = 4.42 µA IB 4 =107µA

    21= 5.10 µA

    IB3RC = 4.42µA 2kΩ( ) = 8.84 mV

  • 34

    Page 452

    a( ) For all inputs low : IEE =−1− 0.7 − −5.2( )

    11.7VkΩ

    = 299µA

    ΔV2

    = VH −VREF = −0.7− −1( ) = 0.3 V ΔV = 0.6 V RC2 =0.6V

    299µA= 2.00 kΩ

    For an inputs high : IEE =−0.7− 0.7 − −5.2( )

    11.7VkΩ

    = 325µA RC1 =0.6V

    325µA=1.85 kΩ

    b( ) Based upon analysis above, RC = 0.6V325µA =1.85 kΩ

    Page 453

    For all inputs low : IEE =−1− 0.7 − −5.2( )

    11.7VkΩ

    = 299µA

    ΔV2

    = VH −VREF = −0.7− −1( ) = 0.3 V ΔV = 0.6 V RC =0.6V

    299µA= 2.00 kΩ

    Page 454

    RE =VE − −VEE( )

    0.3mA=

    0 − 0.7 − −5.2V( )0.3

    VmA

    =15.0 kΩ

    Page 455

    a( ) For IE = 0, vO = -5.2 V. b( ) For IE = 0, vO = -5.2V10kΩ

    10kΩ+15kΩ= −2.08 V

    Page 456

    i( ) The transistor's power dissipation is P = VCB IC + VBE IE = 5V 2.55mA5051

    + 0.7V 2.55mA( ) =14.3 mW

    The total power dissipation in the circuit is P = VCC IC + VEE IE = 5V 2.55mA5051

    + 5V 2.55mA( ) = 25.3 mW

    For vO = −3.7V , IE =−3.7 − −5( )

    1300−

    3.75000

    = 260 µA. At the Q - point, IE =−0.7 − −5( )

    1300−

    0.75000

    = 3.17 mA

    The transistor's power dissipation is P = VCB IC + VBE IE = 5V 3.17mA5051

    + 0.7V 3.17mA( ) =17.8 mW

    ii( ) - 4V = -5.2V 10kΩ10kΩ+ RE

    → RE = 3.00 kΩ

    IE =5.2V3kΩ

    =1.73 mA IE =−4− −5.2( )

    3000−

    410000

    = 0 IE =4 − −5.2( )

    3000+

    410000

    = 3.47 mA

  • 35

    Page 458

    Increase the value of each resistor by a factor of 10.

    Page 461

    RC =ΔVIEE

    =0.6V

    0.5mA=1.2kΩ τP = 0.69 1.2kΩ( ) 2 pF( ) =1.66 ns

    P = 5.2V 0.5 + 0.1 + 0.1( )mA = 3.64mW PDP = 6.0 pJ

    Page 464

    For vO = VH , IC = 0, and P = 0. P = VDD IDD = 5V 2.43mA( ) =12.1 mAIncrease R by a factor of 10 : R = 10 2kΩ( ) = 20kΩ.

    Page 466

    i( ) Γ = exp 0.10.0258

    = 48.2 IB ≥

    10A20

    1+20

    0.1 48.2( )1−

    1148.2

    = 3.34 A βFOR =10A

    3.34A= 3.00

    ii( ) αR =0.2

    0.2 +1=

    16

    IB ≥10A20

    1+20

    0.2 54.6( )1−

    654.6

    =1.59 A

    iii( ) Γ = exp 0.150.025

    = 403 IB ≥

    10A20

    1+20

    0.1 403( )1−

    11403

    = 0.769 A

    iv( ) VT =1.38x10−23 273+150( )

    1.60x10−19= 36.5 mV VCEMIN = 36.5mV ln

    0.05+10.05

    =111 mV

    Page 467

    Γ = 54.6 αR =0.25

    1+ 0.25=

    15

    IB ≥10mA

    40

    1+40

    0.25 54.6( )1−

    554.6

    =1.08 mA βFOR =10mA

    1.08mA= 9.24

  • 36

    Page 467

    i( ) 1ns = 6.4ns ln 1mA− IBR2.5mA40.7

    − IBR

    1.169 =

    1mA− IBR0.0614mA− IBR

    → IBR = −5.49 mA

    ii( ) iCMAX =VCC −VCE

    βF≅

    5− 02500

    = 2.5mA QXS = 6.4ns 1mA−2.5mA40.7

    = 6.01 pC

    QF = iFτF = 2.5mA 0.25ns( ) = 0.625 pC QXS >> QF

    Page 471

    i( ) vI = VL = 0.15 V IIL = − 5− 0.954000 = −1.01 mA VBE2 = VL + VCESAT1Using the value of VCESAT in Fig.9.32, VBE2 = 0.15 + 0.04 = 0.19 V

    A better estimate is VCESAT1 = 25mV ln2 +1

    2

    =10.1 mV

    VBE2 = 0.15 + 0.010 = 0.16 V

    ii( ) vI = VH = 5 V IIH = 25−1.54000

    =1.75 mA VBE2 = 0.8 V

    Using Eq. (5.29), VBESAT = 0.025V ln

    0.875mA + 1−23

    2.4mA( )

    10−15 A1

    40+ 1−

    23

    = 0.729 V

    Page 477

    i( ) 5V - N (2kΩ)βR IB ≥1.5V IB =5−1.54000

    = 0.875mA

    βR ≤3.5V

    5(2kΩ) 0.875mA( )= 0.4 βR ≤

    3.5V

    10(2kΩ) 0.875mA( )= 0.2

    ii( ) IB2 = 2 +1( ) 5−1.54000 = 2.63 mA 2.43mA + N 1.01mA( ) ≤ 28.3 2.63mA( )→ N ≤ 71

  • 37

    Page 479

    vI = VL and vO = 0 : IB 4 =5−VB 41600

    =5− 0 + 0.7 + 0.7( )

    1600= 2.25mA IL = 41IB 4 = 92.3 mA

    5−1600IL41− 0.7 − 0.7 ≥ 3

    5− 3+ 0.7 + 0.7( )1600

    = 0.375mA IL = 41IB 4 =15.4 mA

    VCE = 5−130ΩIC −VO = 5V −130Ω 15.4mA( ) − 3.7 = −0.702V Oops! - the transistor is not forward active. Assume saturation with VCESAT = 0.15V .

    IL = IB + IC =5− 0.8 + 0.7 + 3.0( )

    1600+

    5− 0.15 + 0.7 + 3( )130

    = 9.16 mA

  • 38

    CHAPTER 10

    Page 509

    Vo = 2PoRL = 2 20W( ) 16Ω( ) = 25.3 V Av =VoVi

    =25.3V0.005V

    = 5.06x103

    Io =VoRL

    =25.3V16Ω

    =1.58 A Ii =Vi

    RS + Rin=

    0.005V10kΩ+ 20kΩ

    = 0.167µA Ai =IoIi

    =1.58A

    0.167µA= 9.48x106

    AP =PoPS

    =25.3V 1.58A( )

    0.005V 0.167µA( )= 4.79x1010 Checking : Ap = 5.06x10

    3( ) 9.48x106( ) = 4.80x1010

    Page 510

    i( ) AvdB = 20 log 5060( ) = 74.1 dB AidB = 20 log 9.48x106( ) =140 dB APdB =10 log 4.80x1010( ) =107 dBii( ) AvdB = 20 log 4x104( ) = 92.0 dB AidB = 20 log 2.75x108( ) =169 dB APdB =10 log 1.10x1013( ) =130 dB

    Page 511

    i( ) The constant slope region spanning a maximum input range is between 0.4≤ vI ≤ 0.65,

    and the bias voltage VI should be centered in this range : VI =0.4 + 0.65

    2V = 0.525 V .

    vi ≤ 0.65− 0.525 = 0.125 V and vi ≤ 0.525− 0.40 = 0.125 V . For vI = 0.8V, the slope is 0. Av = 0.

    (ii) vO = VO + vo For vi = 0, vI = VI = 0.6, VO =14V and Av = +40. Vo = AvVi = 40 0.01V( ) = 4VvO = 14.0 + 4.00sin1000πt( ) volts VO =14 V

    Page 519

    g11 =1

    20kΩ+ 76 50kΩ( )= 0.262 µS g21 = 0.262µS 76( ) 50kΩ( ) = 0.995

    g22 =1

    50kΩ+

    120kΩ

    +75

    20kΩ= 3.82 mS g12 = −

    1

    g22 20kΩ( )= −

    1

    3.82mS 20kΩ( )= -0.0131

    Rin =1

    g11= 3.82 MΩ A = g21 = 0.995 Rout =

    1g22

    = 262 Ω

  • 39

    Page 520

    i( ) P = Av Ai = Av2RS + Rin

    RL

    ii( ) Vo = 2 100W( ) 8Ω( ) = 40 V 40 = 0.001 50kΩ5kΩ+ 50kΩ

    A

    8Ω0.5Ω+ 8Ω

    → A = 46,800

    P =Io

    2RL2

    =0.5Ω

    240V8Ω

    2

    = 6.25 W Ai =40V8Ω

    5kΩ+ 50kΩ0.001V

    = 2.75 x 10

    8

    iii( ) 40 = 0.001 5kΩ5kΩ+ 5kΩ

    A

    8Ω8Ω+ 8Ω

    → A =160,000

    P =Io

    2RL2

    =8Ω2

    40V8Ω

    2

    =100 W! Ai =40V8Ω

    5kΩ+ 5kΩ0.001V

    = 5.00 x 10

    7

    Page 521

    Av s( ) =300s

    s + 5000( ) s +100( ) Zeros at s = 0 and s = ∞; Poles at s = -5000 and s = −100.

    Page 523

    Av s( ) = −2π x 106

    s + 5000π=

    −400

    1+s

    5000π

    → Amid = −400 fH =5000π

    2π= 2.50 kHz

    BW = fH − fL = 2.50 kHz − 0 = 2.50 kHz GBW = 400( ) 2.50kHz( ) =1.00 MHz

    Page 524

    i( ) Av j5( ) = 5052 − 4

    52 − 2( )2

    + 4 52( )= 41.87 20 log 41.87( ) = 32.4 dB

    ∠Av j5( ) =∠ 52 − 4( ) − tan−1−2 5( )52 − 2

    = 0 − −23.5o( ) = 23.5o

    Av j1( ) = 5012 − 4

    12 − 2( )2

    + 4 12( )= 67.08 20 log 41.87( ) = 36.5 dB

    ∠Av j1( ) =∠ 12 − 4( ) − tan−1−2 1( )12 − 2

    =180o − −63.43o( ) = 243o = −117o

  • 40

    Page 524

    ii( ) Av jω( ) = 201+ j

    0.1ω1−ω2

    Av j0.95( ) =20

    12 +0.1( )

    20.952( )

    1− 0.952( )2

    =14.3 ∠Av j0.95( ) =∠20 − tan−10.1 0.95( )1− 0.952

    = 0 − 44.3o( ) = −44.3o

    Av j1( ) =20

    12 +0.1( )

    212( )

    1−12( )2

    = 0 ∠Av j1( ) =∠20 − tan−10.1 1( )1−12

    = 0 − 90o( ) = −90.0o

    Av j1.1( ) =20

    12 +0.1( )

    21.12( )

    1−1.12( )2

    =17.7 ∠Av j1.1( ) =∠20 − tan−10.1 1.1( )1−1.12

    = 0 − −27.6o( ) = 27.6o

    Page 526

    fH =1

    2π1

    1kΩ 100kΩ( ) 200 pF( )= 804 kHz

    Page 527

    Av s( ) =250

    1+250π

    s

    Ao = 250 fL =250π2π

    =125 Hz fH =∞ BW =∞−125 =∞

    Page 528

    fL =1

    2π1

    1kΩ 100kΩ( ) 0.1µF( )=15.8 Hz

  • 41

    Page 529

    i( ) Av s( ) = −4001+

    100s

    1+

    s50000

    Ao = 400 or 52 dB

    fL =1002π

    =15.9 Hz fH =50000

    2π= 7.96 kHz BW = 7960 −15.9 = 7.94 kHz

    ii( ) ∠Av j0( ) = −90− 0 − 0 = −90o

    ∠Av j100( ) = −90o − tan−1 100100

    − tan

    −1 10050000

    = −90− 45− 0.57 = −136

    o

    ∠Av j50000( ) = −90o − tan−150000100

    − tan

    −1 5000050000

    = −90− 89.9 − 45 = −225

    o

    ∠Av j∞( ) = −90− 90 − 90 = −270o

    Page 531

    The numerator coefficient should be 6 x106.

    Av s( ) = 302x105 s

    s2 + 2x105 s +1014 Ao = 30

    fo =1

    2π1014 =1.59 MHz Q =

    107

    2x105= 50 BW =

    1.59MHz50

    = 31.8 kHz

    Page 533

    The transfer fucntion should be Av s( ) =6.4x1012π 2s

    s + 200π( ) s + 80000π( )2

    .

    Av s( ) =1000

    1+200π

    s

    1+

    s80000π

    2 Ao =1000 or 60 dB

    fL =200π2π

    =100 Hz fH = 0.64480000π

    = 25.8 kHz BW = 25800 −100 = 25.7 kHz

  • 42

    CHAPTER 11

    Page 545

    vid =10V100

    = 0.100V =100 mV vid =10V

    104= 0.001 V =1.00 mV vid =

    10V

    106=1.00x10−5V =10.0 µV

    Page 547

    Av = −360kΩ68kΩ

    = −5.29 vO = −5.29 0.5V( ) = −2.65 V iS =0.5V68kΩ

    = 7.35 µA iO = −i2 = −iS = −7.35 µA

    Page 549

    IS =2V

    4.7kΩ= 426 µA I2 = IS = 426 µA Av = −

    24kΩ4.7kΩ

    = −5.11 VO = −5.11 2V( ) = −10.2 V

    Page 551

    Av =1+36kΩ2kΩ

    = +19.0 vO =19.0 −0.2V( ) = − 3.80 V iO =−3.80V

    36kΩ+ 2kΩ= −100 µA

    Page 552

    i( ) Av =1+39kΩ1kΩ

    = +40.0 AvdB = 20log 40.0( ) = 32.0 dB Rin =100kΩ ∞ =100kΩ

    vO = 40.0 0.25V( ) =10.0 V iO =10.0V

    39kΩ+1kΩ= 250 µA

    ii( ) Av =1054

    20 = 501 1+R2R1

    = 501 R2R1

    = 500 iO =vO

    R2 + R1

    10R2 + R1

    ≤ 0.1 mA

    R1 + R2 ≥100kΩ 501R1 ≥100kΩ→ R1 ≥ 200 Ω There are many possibilities.

    (R1 = 200 Ω, R2 =100 kΩ), but (R1 = 220 Ω, R2 =110 kΩ) is a better solution since

    resistor tolerances could cause iO to exceed 0.1 mA in the first case.

    Page 554

    Inverting Amplifier : Av = −30kΩ1.5kΩ

    = −20.0 Rin = R1 =1.5 kΩ

    vO = −20.0 0.15V( ) = −3.00 V iO =vOR2

    =−3.00V30kΩ

    = −100 µA

    Non - Inverting Amplifier : Av =1+30kΩ1.5kΩ

    = +21.0 Rin =vSiS

    =0.15V

    0A=∞

    vO = 21.0 0.15V( ) = 3.15 V iO =vO

    R2 + R1=

    3.15V30kΩ+1.5kΩ

    =100 µA

  • 43

    Page 555

    Vo1 = 2V −3kΩ1kΩ

    = −6V Vo2 = 4V −

    3kΩ2kΩ

    = −6V vO = −6sin1000πt − 6sin2000πt( ) V

    The summing junction is a virtual ground : Rin1 =v1i1

    = R1 =1 kΩ Rin2 =v2i2

    = R2 = 2 kΩ

    Io1 =Vo1R3

    =−6V3kΩ

    = −2mA Io2 =Vo2R3

    =−6V3kΩ

    = −2mA iO = −2sin1000πt − 2sin2000πt( ) mA

    Page 559

    i( ) I2 =3V

    10kΩ+100kΩ= 27.3 µA

    ii( ) Av = −100kΩ10kΩ

    = −10.0 VO = −10 3V − 5V( ) = 20.0 V IO =VO −V−100kΩ

    =VO −V+100kΩ

    V+ = V2R4

    R3 + R4= 5

    100kΩ10kΩ+100kΩ

    = 4.545V IO =20.0 − 4.545

    100kΩ=155 µA I2 =

    5V10kΩ+100kΩ

    = 45.5 µA

    iii( ) Av = − 36kΩ2kΩ = −18.0 VO = −18 8V − 8.25V( ) = 4.50 V IO =VO −V−36kΩ

    =VO −V+36kΩ

    V+ = V2R2

    R1 + R2= 8.25

    36kΩ2kΩ+ 36kΩ

    = 7.816V IO =4.50 − 7.816

    36kΩ= −92.1 µA

    Page 560

    I =VA −VB

    2R1=

    5.001V − 4.999V2kΩ

    =1.00 µA

    VA = V1 + IR2 = 5.001V +1.00µA 49kΩ( ) = 5.05 VVB = V2 − IR2 = 4.999V −1.00µA 49kΩ( ) = 4.95 V

    VO = −R4R3

    VA −VB( ) = −

    10kΩ10kΩ

    5.05− 4.95( ) = −0.100 V

    Page 564

    i( ) Av = −R2R1

    = −1026

    20 = −20.0 R1 = Rin =10kΩ R2 = 20R1 = 200kΩ

    C =1

    2π 3kHz( ) 200kΩ( )= 265 pF Closest values : R1 =10kΩ R2 = 200kΩ C = 270 pF

  • 44

    Page 564

    ii( ) Rin = R1 =10 kΩ ΔV = −ICΔT C =

    5V10kΩ

    110V

    1ms( ) = 0.05µF

    t (msec)vO 2 4 6 8

    -10V

    Page 567

    vO = −RCdvSdt

    = − 20kΩ( ) 0.02µF( ) 2.50V( ) 2000π( ) cos2000πt( ) = −6.28cos2000πt V

    Page 569

    i( ) AvA = AvB = AvC = −R2R1

    = −68kΩ2.7kΩ

    = −25.2 RinA = RinB = RinC = R1 = 2.7 kΩ

    The op - amps are ideal : RoutA = RoutB = RoutC = 0

    ii( ) Av = AvA AvB AvC = −25.2( )3

    = −16,000 Rin = RinA = 2.7 kΩ Rout = RoutC = 0

    Page 570

    Av = −25.2( )3 2.7kΩ

    Rout + 2.7kΩ

    2

    ≥ 0.99 25.2( )3

    2.7kΩRout + 2.7kΩ

    2

    ≥ 0.99

    2.7kΩRout + 2.7kΩ

    ≥ 0.9950 Rout ≥13.6 Ω

    Page 574

    i( ) Av 0( ) = +1 Av s( ) =ωo

    2

    s2 + s 2ωo +ωo2

    Av jω( ) =ωo

    2

    jω 2ωo +ωo2 −ω2

    Av jωH( ) =1

    2 →

    ωo2

    ωo2 −ωH

    2( )2

    + 2ωH2ωo

    2

    =1

    2 → 2ωo

    4 =ωo4 +ωH

    4 →ωo =ωH

    ii( ) 12

    =C1C2

    R2

    2R→C1 = 2C2 →C2 =

    1

    2 2.26kΩ( ) 20000π( )= 4.98nF

    C2 = 0.005 µF C1 = 0.01 µF

  • 45

    Page 574

    iii( ) To decrease the cutoff frequency from 5kHz to 2 kHz, we must increase the

    resistances by a factor of 5kHz2kHz

    = 2.50→ R1 = R2 = 2.50 2.26kΩ( ) = 5.65 kΩ

    iv( ) 12

    =CC

    R1R2R1 + R2

    → R12 + 2R1R2 + R2

    2 = 2R1R2 → R12 = −R2

    2 - - can' t be done!

    Q =R1R2

    R1 + R2

    dQdR2

    =1

    R1 + R2( )2

    R1 R1 + R2( )2 R1R2

    − R1R2

    = 0→ R2 = R1 →Qmax =12

    Page 575

    SC1Q =

    C1Q

    dQdC1

    =C1Q

    1

    2 C1C2

    R1R2R1 + R2

    =C1Q

    Q2C1

    = 0.5

    SR2Q =

    R2Q

    dQdR2

    R1 = R2 →Q =12

    C1C2

    → SR2Q = 0

    Page 577

    i( ) Av jωo( ) = K−ωo

    2

    −ωo2 + j 3− K( )ωo2 +ωo2

    =K

    3− K Av jωo( ) =

    K3− K

    ∠90o

    ii( ) fo =1

    2π 10kΩ 20kΩ( ) 0.0047µF( ) 0.001µF( )= 5.19 kHz

    Q =10kΩ20kΩ

    4.7nF +1.0nF

    4.7nF 1.0nF( )+ 1− 2( )

    20kΩ 1.0nF( )10kΩ 4.7nF( )

    −1

    = 0.829

    iii( ) SKQ = KQdQdK

    Q =1

    3− K

    dQdK

    =−1

    3− K( )2−1( ) = Q2 SKQ = KQ

    dQdK

    = KQ

    Q =1

    3− K→ KQ = 3Q −1 SK

    Q = 3Q −1 =1.12

    Page 578

    Rth = 2kΩ 2kΩ =1kΩ fo =1

    2π 1kΩ 82kΩ( ) 0.02µF( ) 0.02µF( )= 879 Hz Q =

    12

    82kΩ1kΩ

    = 4.53

  • 46

    Page 582

    ii( ) ABP jωo( ) = KQ = R2R1 10 =

    294kΩR1

    → R1 = 29.4 kΩ

    iii( ) fo =1

    2πRC=

    1

    2π 40.2kΩ( ) 2nF( )=1.98 kHz BW =

    12πR2C

    =1

    2π 402kΩ( ) 2nF( )=198 Hz

    ABP jωo( ) = −R2R1

    = −402kΩ20.0kΩ

    = −20.1

    iv( ) Blindly using the equations at the top of page 580 yields

    fomin =

    12πRC

    =1

    2π 1.01( ) 29.4kΩ( ) 1.02( ) 2.7nF( )=1946 Hz

    fomax =

    12πRC

    =1

    2π 0.99( ) 29.4kΩ( ) 0.98( ) 2.7nF( )= 2067 Hz

    BW min =1

    2πR2C=

    1

    2π 1.01( ) 294kΩ( ) 1.02( ) 2.7nF( )=195 Hz

    BW max =1

    2πR2C=

    1

    2π 0.99( ) 294kΩ( ) 0.98( ) 2.7nF( )= 207 Hz

    ABPmin = −

    R2R1

    = −294kΩ 1.01( )

    14.7kΩ 0.99( )= −20.4 ABP

    max = −R2R1

    = −294kΩ 0.99( )14.7kΩ 1.01( )

    = −19.6

    The W/C results are similar if R and C are not the same for example where ωo =1

    RA RBCACB.

    Page 583

    i( ) - a( ) R1 = R2 = 5 2.26kΩ( ) =11.3 kΩ C1 =0.02µF

    5= 0.004 µF C2 =

    0.01µF5

    = 0.002 µF

    fo =1

    2π 11.3kΩ( ) 11.3kΩ( ) 0.004µF( ) 0.002µF( )= 4980 Hz

    Q =11.3kΩ11.3kΩ

    0.004µF( ) 0.002µF( )0.004µF + 0.002µF

    = 0.471

    b( ) R1 = R2 = 0.885 2.26kΩ( ) = 2.00 kΩ C1 = 0.02µF0.885 = 0.0226 µF C2 =0.01µF0.885

    = 0.0113 µF

    fo =1

    2π 2.00kΩ( ) 2.00kΩ( ) 0.0226µF( ) 0.0113µF( )= 4980 Hz

    Q =2.00kΩ2.00kΩ

    0.0226µF( ) 0.0113µF( )0.0226µF + 0.0113µF

    = 0.471

  • 47

    Page 583

    ii( ) fo =1

    2π 1kΩ( ) 82kΩ( ) 0.02µF( ) 0.02µF( )= 879 Hz Q =

    82kΩ1kΩ

    0.02µF( ) 0.02µF( )0.02µF + 0.02µF

    = 4.53

    The values of the resistors are unchanged. C1 = C2 =0.02µF

    4= 0.005 µF

    fo =1

    2π 1kΩ( ) 82kΩ( ) 0.005µF( ) 0.005µF( )= 3520 Hz Q =

    82kΩ1kΩ

    0.005µF( ) 0.005µF( )0.005µF + 0.005µF

    = 4.53

    Page 585

    The diode will conduct and pull the output up to vO = vS =1.0 V . v1 = vO + vD =1.0 + 0.6 =1.6 V

    For a negative input, there is no path for current through R, so vO = 0 V . The op - amp

    sees a -1V input so the output will limit at the negative power supply : vO = −10 V .

    The diode has a 10 - V reverse bias across it, so VZ >10 V .

    Page 587

    i( ) vS = 2 V : Diode D1 conducts, and D2 is off. The negative input is a virtual ground.v1 = −vD2 = −0.6 V . The current in R is 0, so vO = 0 V .

    vS = −2 V : Diode D2 conducts, and D1 is off. The negative input is a virtual ground.

    vO = −R2R1

    vS = −68kΩ22kΩ

    −2V( ) = +6.18 V v1 = vO + vD1 = 6.78 V .

    vS =15V−3.09

    = −4.85 V v1 = vO + vD1 = 6.78 V . When vO = 15 V , vD2 = -15.6 V , so VZ =15.6 V .

    ii( ) vO = 20kΩ20kΩ10.2kΩ3.24kΩ

    2Vπ

    = 2.00 V

    Page 589

    V− = −R1

    R1 + R2VEE = −

    1kΩ1kΩ+ 9.1kΩ

    10V = −0.990 V V+ =1kΩ

    1kΩ+ 9.1kΩ10V = +0.990 V

    Vn = 0.990V − −0.990V( ) =1.98 V

    Page 591

    T = 2 10kΩ( ) 0.001µF( ) ln 1+ 0.51− 0.5

    = 21.97µs f =

    1T

    = 45.5 kHz

  • 48

    Page 594

    β = −22kΩ

    22kΩ+18kΩ= 0.550 T = 11kΩ( ) 0.002µF( ) ln

    1+0.75

    1− 0.550

    = 20.4 µs

    Tr = 11kΩ( ) 0.002µF( ) ln1+ 0.55

    5V5V

    1−0.75

    =13.0 µs