univie.ac.at2 discrete dynamics in nature and society see 1, 2 . it is obvious that every...

24
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2011, Article ID 976505, 23 pages doi:10.1155/2011/976505 Research Article Generalized Systems of Variational Inequalities and Projection Methods for Inverse-Strongly Monotone Mappings Wiyada Kumam, 1, 2, 3 Prapairat Junlouchai, 1 and Poom Kumam 2, 3 1 Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathumthani 12110, Thailand 2 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand 3 Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand Correspondence should be addressed to Poom Kumam, [email protected] Received 20 February 2011; Accepted 3 May 2011 Academic Editor: Jianshe Yu Copyright q 2011 Wiyada Kumam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce an iterative sequence for finding a common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for three inverse- strongly monotone mappings. Under suitable conditions, some strong convergence theorems for approximating a common element of the above two sets are obtained. Moreover, using the above theorem, we also apply to find solutions of a general system of variational inequality and a zero of a maximal monotone operator in a real Hilbert space. As applications, at the end of the paper we utilize our results to study some convergence problem for strictly pseudocontractive mappings. Our results include the previous results as special cases extend and improve the results of Ceng et al., 2008 and many others. 1. Introduction Variational inequalities are known to play a crucial role in mathematics as a unified framework for studying a large variety of problems arising, for instance, in structural analysis, engineering sciences and others.Roughly speaking, they can be recast as fixed-point problems, and most of the numerical methods related to this topic are based on projection methods. Let H be a real Hilbert space with inner product ·, · and ·, and let E be a nonempty, closed, convex subset of H. A mapping A : E H is called α-inverse-strongly monotone if there exists a positive real number α> 0 such that Ax Ay, x y α Ax Ay 2 , x, y E 1.1

Upload: others

Post on 04-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Hindawi Publishing CorporationDiscrete Dynamics in Nature and SocietyVolume 2011, Article ID 976505, 23 pagesdoi:10.1155/2011/976505

Research ArticleGeneralized Systems of Variational Inequalitiesand Projection Methods for Inverse-StronglyMonotone Mappings

Wiyada Kumam,1, 2, 3 Prapairat Junlouchai,1 and Poom Kumam2, 3

1 Department of Mathematics, Faculty of Science and Technology, Rajamangala University of TechnologyThanyaburi (RMUTT), Thanyaburi, Pathumthani 12110, Thailand

2 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi(KMUTT), Bangmod, Bangkok 10140, Thailand

3 Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand

Correspondence should be addressed to Poom Kumam, [email protected]

Received 20 February 2011; Accepted 3 May 2011

Academic Editor: Jianshe Yu

Copyright q 2011 Wiyada Kumam et al. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

We introduce an iterative sequence for finding a common element of the set of fixed points of anonexpansive mapping and the solutions of the variational inequality problem for three inverse-strongly monotone mappings. Under suitable conditions, some strong convergence theorems forapproximating a common element of the above two sets are obtained. Moreover, using the abovetheorem, we also apply to find solutions of a general system of variational inequality and a zero ofa maximal monotone operator in a real Hilbert space. As applications, at the end of the paper weutilize our results to study some convergence problem for strictly pseudocontractive mappings.Our results include the previous results as special cases extend and improve the results of Ceng etal., (2008) and many others.

1. Introduction

Variational inequalities are known to play a crucial role in mathematics as a unifiedframework for studying a large variety of problems arising, for instance, in structuralanalysis, engineering sciences and others.Roughly speaking, they can be recast as fixed-pointproblems, and most of the numerical methods related to this topic are based on projectionmethods. Let H be a real Hilbert space with inner product 〈·, ·〉 and ‖ · ‖, and let E be anonempty, closed, convex subset of H. A mapping A : E → H is called α-inverse-stronglymonotone if there exists a positive real number α > 0 such that

⟨Ax −Ay, x − y

⟩ ≥ α∥∥Ax −Ay

∥∥2, ∀x, y ∈ E (1.1)

Page 2: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

2 Discrete Dynamics in Nature and Society

(see [1, 2]). It is obvious that every α-inverse-strongly monotone mapping A is monotoneand Lipschitz continuous. A mapping S : E → E is called nonexpansive if

∥∥Sx − Sy

∥∥ ≤ ∥

∥x − y∥∥, ∀x, y ∈ E. (1.2)

We denote by F(S) the set of fixed points of S and by PE the metric projection of H onto E.Recall that the classical variational inequality, denoted by V I(A,E), is to find an x∗ ∈ E suchthat

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ E. (1.3)

The set of solutions of V I(A,E) is denoted by Γ. The variational inequality has been widelystudied in the literature; see, for example, [3–6] and the references therein.

For finding an element of F(S)∩Γ, Takahashi and Toyoda [7] introduced the followingiterative scheme:

xn+1 = αnxn + (1 − αn)SPE(xn − λnAxn), (1.4)

for every n = 0, 1, 2, . . ., where x0 = x ∈ E, {αn} is a sequence in (0, 1), and {λn} is a sequencein (0, 2α). On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space Rn, Korpelevich (1976) [8] introduced the following so-calledextragradient method:

x0 = x ∈ E,

yn = PE(xn − λnAxn),

xn+1 = PE

(xn − λnAyn

),

(1.5)

for every n = 0, 1, 2, . . ., where λn ∈ (0, 1/k). Many authors using extragradient method forapproximating common fixed points and variational inequality problems (see also [9, 10]).Recently, Nadezhkina and Takahashi [11] and Zeng et al. [12] proposed some iterativeschemes for finding elements in F(S)∩Γ by combining (1.4) and (1.5). Further, these iterativeschemes are extended in Y. Yao and J. C. Yao [13] to develop a new iterative scheme forfinding elements in F(S) ∩ Γ.

Consider the following problem of finding (x∗, y∗) ∈ E×E such that (see cf. Ceng et al.[14]):

⟨λAy∗ + x∗ − y∗, x − x∗⟩ ≥ 0, ∀x ∈ E,

⟨μBx∗ + y∗ − x∗, x − y∗⟩ ≥ 0, ∀x ∈ E,

(1.6)

Page 3: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 3

which is called general system of variational inequalities (GSVI), where λ > 0 and μ > 0 are twoconstants. In particular, if A = B, then problem (1.6) reduces to finding (x∗, y∗) ∈ E × E suchthat

⟨λAy∗ + x∗ − y∗, x − x∗⟩ ≥ 0, ∀x ∈ E,

⟨μAx∗ + y∗ − x∗, x − y∗⟩ ≥ 0, ∀x ∈ E,

(1.7)

which is defined by [15, 16], and is called the new system of variational inequalities. Further,if x∗ = y∗, then problem (1.7) reduces to the classical variational inequality VI(A,E), that is, findx∗ ∈ E such that 〈Ax∗, x − x∗〉 ≥ 0, for all x ∈ E.

We can characteristic problem, if x∗ ∈ F(S) ∩ V I(A,E), then it follows that x∗ = Sx∗ =PE[x∗ − ρAx∗], where ρ > 0 is a constant.

In 2008, Ceng et al. [14] introduced a relaxed extragradient method for findingsolutions of problem (1.6). Let the mappings A,B : E → H be α-inverse-strongly monotoneand β-inverse-strongly monotone, respectively. Let S : E → E be a nonexpansive mapping.Suppose x1 = u ∈ E and {xn} is generated by

yn = PE

(xn − μBxn

),

xn+1 = αnu + βnxn + γnSPE

(yn − λnAyn

),

(1.8)

where λ ∈ (0, 2α), μ ∈ (0, 2β), and {αn}, {βn}, {γn} are three sequences in [0, 1] such thatαn + βn + γn = 1, for all n ≥ 1. First, problem (1.6) is proven to be equivalent to a fixed pointproblem of a nonexpansive mapping.

In this paper, motivated by what is mentioned above, we consider generalized systemof variational inequalities as follows.

Let E be a nonempty, closed, convex subset of a real Hilbert spaceH. LetA,B,C : E →H be three mappings. We consider the following problem of finding (x∗, y∗, z∗) ∈ E × E × Esuch that

〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈μBz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈τCx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E,

(1.9)

which is called a general system of variational inequalitieswhere λ > 0, μ > 0 and τ > 0 are threeconstants.

In particular, ifA = B = C, then problem (1.9) reduces to finding (x∗, y∗, z∗) ∈ E×E×Esuch that

〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ E,

〈μAz∗ + y∗ − z∗, x − y∗〉 ≥ 0, ∀x ∈ E,

〈τAx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E.

(1.10)

Page 4: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

4 Discrete Dynamics in Nature and Society

Next, we consider some special classes of the GSVI problem (1.9) reduce to the followingGSVI.

(i) If τ = 0, then the GSVI problems (1.9) reduce to GSVI problem (1.6).

(ii) If τ = μ = 0, then the GSVI problems (1.9) reduce to classical variational inequalityVI(A,E) problem.

The above system enters a class of more general problems which originated mainly from theNash equilibrium points and was treated from a theoretical viewpoint in [17, 18]. Observe atthe same time that, to construct a mathematical model which is as close as possible to a realcomplex problem, we often have to use constraints which can be expressed as one severalsubproblems of a general problem. These constrains can be given, for instance, by variationalinequalities, by fixed point problems, or by problems of different types.

This paper deals with a relaxed extragradient approximation method for solving asystem of variational inequalities over the fixed-point sets of nonexpansive mapping. Underclassical conditions, we prove a strong convergence theorem for this method. Moreover, theproposed algorithm can be applied for instance to solving the classical variational inequalityproblems.

2. Preliminaries

Let E be a nonempty, closed, convex subset of a real Hilbert space H. For every point x ∈ H,there exists a unique nearest point in E, denoted by PEx, such that

‖x − PEx‖ ≤ ∥∥x − y∥∥, ∀y ∈ E. (2.1)

PE is call the metric projection of H onto E.Recall that, PEx is characterized by following properties: PEx ∈ E and

⟨x − PEx, y − PEx

⟩ ≤ 0,∥∥x − y

∥∥2 ≥ ‖x − PEx‖2 +∥∥PEx − y

∥∥2,

(2.2)

for all x ∈ H and y ∈ E.

Lemma 2.1 (see cf. Zhang et al. [19]). The metric projection PE has the following properties:

(i) PE : H → E is nonexpansive;

(ii) PE : H → E is firmly nonexpansive, that is,

∥∥PEx − PEy∥∥2 ≤ ⟨

PEx − PEy, x − y⟩, ∀x, y ∈ H; (2.3)

(iii) for each x ∈ H,

z = PE(x) ⇐⇒ ⟨x − z, z − y

⟩ ≥ 0, ∀y ∈ E. (2.4)

Page 5: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 5

Lemma 2.2 (see Osilike and Igbokwe [20]). Let (E, 〈·, ·〉) be an inner product space. Then for allx, y, z ∈ E and α, β, γ ∈ [0, 1] with α + β + γ = 1, one has

∥∥αx + βy + γz

∥∥2 = α‖x‖2 + β

∥∥y

∥∥2 + γ‖z‖2 − αβ

∥∥x − y

∥∥2 − αγ‖x − z‖2 − βγ

∥∥y − z

∥∥2

. (2.5)

Lemma 2.3 (see Suzuki [21]). Let {xn} and {yn} be bounded sequences in a Banach space X andlet {βn} be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 =(1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then,limn→∞‖yn − xn‖ = 0.

Lemma 2.4 (see Xu [22]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0, (2.6)

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)∑∞

n=1 αn = ∞,

(ii) lim supn→∞(δn/αn) ≤ 0 or∑∞

n=1 |δn| < ∞.

Then, limn→∞an = 0.

Lemma 2.5 (Goebel and Kirk [23]). Demiclosedness Principle. Assume that T is a nonexpansiveself-mapping of a nonempty, closed, convex subset E of a real Hilbert space H. If T has a fixed point,then I − T is demiclosed; that is, whenever {xn} is a sequence in E converging weakly to some x ∈ E(for short, xn ⇀ x ∈ E), and the sequence {(I − T)xn} converges strongly to some y (for short,(I − T)xn → y), it follows that (I − T)x = y. Here, I is the identity operator of H.

The following lemma is an immediate consequence of an inner product.

Lemma 2.6. In a real Hilbert spaceH, there holds the inequality

∥∥x + y∥∥2 ≤ ‖x‖2 + 2

⟨y, x + y

⟩, ∀x, y ∈ H. (2.7)

Remark 2.7. We also have that, for all u, v ∈ E and λ > 0,

‖(I − λA)u − (I − λA)v‖2 = ‖(u − v) − λ(Au −Av)‖2

= ‖u − v‖2 − 2λ〈u − v,Au −Av〉

+ λ2‖Au −Av‖2

≤ ‖u − v‖2 + λ(λ − 2α)‖Au −Av‖2.

(2.8)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from E toH.

Page 6: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

6 Discrete Dynamics in Nature and Society

3. Main Results

In this section, we introduce an iterative precess by the relaxed extragradient approximationmethod for finding a common element of the set of fixed points of a nonexpansive mappingand the solution set of the variational inequality problem for three inverse-stronglymonotonemappings in a real Hilbert space. We prove that the iterative sequence converges strongly toa common element of the above two sets.

In order to prove our main result, the following lemmas are needed.

Lemma 3.1. For given x∗, y∗, z∗ ∈ E × E × E, (x∗, y∗, z∗) is a solution of problem (1.9) if and only ifx∗ is a fixed point of the mapping G : E → E defined by

G(x) = PE

{PE

[PE(x − τCx) − μBPE(x − τCx)

]

−λAPE

[PE(x − τCx) − μBPE(x − τCx)

]}, ∀x ∈ E,

(3.1)

where y∗ = PE(z∗ − μBz∗) and z∗ = PE(x∗ − τCx∗).

Proof.

⟨λAy∗ + x∗ − y∗, x − x∗⟩ ≥ 0, ∀x ∈ E,

⟨μBz∗ + y∗ − z∗, x − y∗⟩ ≥ 0, ∀x ∈ E,

〈τCx∗ + z∗ − x∗, x − z∗〉 ≥ 0, ∀x ∈ E,

(3.2)

⇔⟨(−y∗ + λAy∗) + x∗, x − x∗⟩ ≥ 0, ∀x ∈ E,

⟨(−z∗ + μBz∗)+ y∗, x − y∗⟩ ≥ 0, ∀x ∈ E,

〈(−x∗ + τCx∗) + z∗, x − z∗〉 ≥ 0, ∀x ∈ E,

(3.3)

⇔⟨(y∗ − λAy∗) − x∗, x∗ − x

⟩ ≥ 0, ∀x ∈ E,

⟨(z∗ − μBz∗

) − y∗, y∗ − x⟩ ≥ 0, ∀x ∈ E,

〈(x∗ − τCx∗) − z∗, z∗ − x〉 ≥ 0, ∀x ∈ E,

(3.4)

x∗ = PE

(y∗ − λAy∗),

y∗ = PE

(z∗ − μBz∗

),

z∗ = PE(x∗ − τCx∗),

(3.5)

⇔ x∗ = PE[PE(z∗ − μBz∗) − λAPE(z∗ − μBz∗)].

Page 7: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 7

Thus,

x∗ = PE

{PE

[PE(x∗ − τCx∗) − μBPE(x∗ − τCx∗)

]−λAPE

[PE(x∗ −τCx∗) − μBPE(x∗ − τCx∗)

]}.

(3.6)

Lemma 3.2. The mapping G defined by Lemma 3.1 is nonexpansive mappings.

Proof. For all x, y ∈ E,

∥∥G(x) −G

(y)∥∥ =

∥∥PE

{PE

[PE(x − τCx) − μBPE(x − τCx)

]

−λAPE

[PE(x − τCx) − μBPE(x − τCx)

]}

− PE

{PE

[PE

(y − τCy

) − μBPE

(y − τCy

)]

−λAPE

[PE

(y − τCy

) − μBPE

(y − τCy

)]}

≤ ∥∥[PE(x − τCx) − μBPE(x − τCx)]

− λAPE

[PE(x − τCx) − μBPE(x − τCx)

]

− [PE

(y − τCy

) − μBPE

(y − τCy

)]

−λAPE

[PE

(y − τCy

) − μBPE

(y − τCy

)]∥∥

=∥∥(I − λA)

[PE(x − τCx) − μBPE(x − τCx)

]

−(I − λA)[PE

(y − τCy

) − μBPE

(y − τCy

)]∥∥

≤ ∥∥[PE(x − τCx) − μBPE(x − τCx)] − [

PE

(y − τCy

) − μBPE

(y − τCy

)]∥∥

=∥∥(I − μB

)[PE(x − τCx)] − (

I − μB)[PE

(y − τCy

)]∥∥

≤ ∥∥PE(x − τCx) − PE

(y − τCy

)∥∥

≤ ∥∥(x − τCx) − (y − τCy

)∥∥

=∥∥(I − τC)(x) − (I − τC)

(y)∥∥

≤ ∥∥x − y∥∥.

(3.7)

This shows that G : E → E is a nonexpansive mapping.

Throughout this paper, the set of fixed points of the mapping G is denoted by Υ.Now, we are ready to proof our main results in this paper.

Page 8: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

8 Discrete Dynamics in Nature and Society

Theorem 3.3. Let E be a nonempty, closed, convex subset of a real Hilbert spaceH. Let the mappingA,B,C : E → H be α-inverse-strongly monotone, β-inverse-strongly monotone, and γ-inverse-strongly monotone, respectively. Let S be a nonexpansive mapping of E into itself such that F(S) ∩Υ/= ∅. Let f be a contraction ofH into itself and given x1 ∈ H arbitrarily and {xn} is generated by

zn = PE(xn − τCxn),

yn = PE

(zn − μBzn

),

xn+1 = αnf(xn) + βnxn + γnSPE

(yn − λAyn

), n ≥ 0,

(3.8)

where λ ∈ (0, 2α), μ ∈ (0, 2β), τ ∈ (0, 2γ), and {αn}, {βn}, {γn} are three sequences in [0, 1] suchthat

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then, {xn} converges strongly to x ∈ F(S) ∩ Γ, where x = PF(S)∩Γf(x) and (x, y, z) is a solution ofproblem (1.9), where

y = PE

(z − μBz

),

z = PE(x − τCx).(3.9)

Proof. Let x∗ ∈ F(S) ∩ Γ. Then, x∗ = Sx∗ and x∗ = Gx∗, that is,

x∗ = PE

{PE

[PE(x∗ − τCx∗) − μBPE(x∗ − τCx∗)

] − λAPE

[PE(x∗ − τCx∗) − μBPE(x∗ − τCx∗)

]}.

(3.10)

Put x∗ = PE(y∗−λAy∗) and tn = PE(yn−λAyn). Then, x∗ = PE[PE(z∗−μBz∗)−λAPE(z∗−μBz∗)]implies that y∗ = PE(z∗ −μBz∗), where z∗ = PE(x∗ − τCx∗). Since I − λA, I −μB and I − τC arenonexpansive mappings. We obtain that

‖tn − x∗‖ =∥∥PE

(yn − λAyn

) − x∗∥∥

=∥∥PE

(yn − λAyn

) − PE

(y∗ − λAy∗)∥∥

≤ ∥∥(yn − λAyn

) − (y∗ − λAy∗)∥∥

=∥∥(I − λA)yn − (I − λA)y∗∥∥

≤ ∥∥yn − y∗∥∥

(3.11)

=∥∥yn − PE

(z∗ − μBz∗

)∥∥

=∥∥PE

(zn − μBzn

) − PE

(z∗ − μBz∗

)∥∥

Page 9: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 9

≤ ∥∥(I − μB

)zn −

(I − μB

)z∗∥∥

≤ ‖zn − z∗‖,(3.12)

‖zn − z∗‖ = ‖PE(xn − τCxn) − PE(x∗ − τCx∗)‖≤ ‖(xn − τCxn) − (x∗ − τCx∗)‖= ‖(I − τC)xn − (I − τC)x∗‖≤ ‖xn − x∗‖.

(3.13)

Substituting (3.13) into (3.12), we have

‖tn − x∗‖ ≤ ‖xn − x∗‖, (3.14)

and by (3.11)we also have

∥∥yn − y∗∥∥ ≤ ‖xn − x∗‖. (3.15)

Since xn+1 = αnf(xn) + βnxn + γnStn and by Lemma 2.2, we compute

‖xn+1 − x∗‖ =∥∥αnf(xn) + βnxn + γnStn − x∗∥∥

=∥∥αn

(f(xn) − x∗) + βn(xn − x∗) + γn(Stn − x∗)

∥∥

≤ αn

∥∥f(xn) − x∗∥∥ + βn‖xn − x∗‖ + γn‖Stn − x∗‖≤ αn

∥∥f(xn) − x∗∥∥ + βn‖xn − x∗‖ + γn‖tn − x∗‖≤ αn

∥∥f(xn) − x∗∥∥ + βn‖xn − x∗‖ + γn‖xn − x∗‖= αn

∥∥f(xn) − x∗∥∥ + (1 − αn)‖xn − x∗‖= αn

∥∥f(xn) − f(x∗) + f(x∗) − x∗∥∥ + (1 − αn)‖xn − x∗‖≤ αn

∥∥f(xn) − f(x∗)∥∥ + αn

∥∥f(x∗) − x∗∥∥ + (1 − αn)‖xn − x∗‖≤ αnk‖xn − x∗‖ + αn

∥∥f(x∗) − x∗∥∥ + (1 − αn)‖xn − x∗‖

Page 10: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

10 Discrete Dynamics in Nature and Society

= (αnk + (1 − αn))‖xn − x∗‖ + αn

∥∥f(x∗) − x∗∥∥

= (1 − αn(1 − k))‖xn − x∗‖ + αn

∥∥f(x∗) − x∗∥∥

= (1 − αn(1 − k)) ‖xn − x∗‖ + αn(1 − k)

∥∥f(x∗) − x∗∥∥

(1 − k).

(3.16)

By induction, we get

‖xn+1 − x∗‖ ≤ M, (3.17)

where M = max{‖x0 − x∗‖ + (1/(1 − k))‖f(x∗) − x∗‖}, n ≥ 0. Therefore, {xn} is bounded.Consequently, by (3.11), (3.12) and (3.13), the sequences {tn}, {Stn}, {yn}, {Ayn}, {zn}, {Bzn},{Cxn}, and {f(xn)} are also bounded. Also, we observe that

‖zn+1 − zn‖ = ‖PE(xn+1 − τCxn+1) − PE(xn − τCxn)‖

≤ ‖(I − τC)xn+1 − (I − τC)xn‖

≤ ‖xn+1 − xn‖,

(3.18)

‖tn+1 − tn‖ =∥∥PE

(yn+1 − λAyn+1

) − PE

(yn − λAyn

)∥∥

≤ ∥∥(yn+1 − λAyn+1) − (

yn − λAyn

)∥∥

=∥∥(I − λA)yn+1 − (I − λA)yn

∥∥

≤ ∥∥yn+1 − yn

∥∥

=∥∥PE

(zn+1 − μBzn+1

) − PE

(zn − μBzn

)∥∥

≤ ‖zn+1 − zn‖

≤ ‖xn+1 − xn‖.

(3.19)

Let xn+1 = (1 − βn)wn + βnxn. Thus, we get

wn =xn+1 − βnxn

1 − βn=

αnf(xn) + γnSPC

(yn − λnAyn

)

1 − βn=

αnu + γnStn1 − βn

(3.20)

Page 11: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 11

It follows that

wn+1 −wn =αn+1f(xn+1) + γn+1Stn+1

1 − βn+1− αnf(xn) + γnStn

1 − βn

=αn+1f(xn+1)1 − βn+1

+γn+1Stn+11 − βn+1

− αn+1f(xn)1 − βn+1

+αn+1f(xn)1 − βn+1

− αnf(xn)1 − βn

− γnStn1 − βn

=αn+1

1 − βn+1

(f(xn+1) − f(xn)

)+(

αn+1

1 − βn+1− αn

1 − βn

)f(xn) +

γn+1Stn+11 − βn+1

− γnStn1 − βn

=αn+1

1 − βn+1

(f(xn+1) − f(xn)

)+(

αn+1

1 − βn+1− αn

1 − βn

)f(xn)

+γn+1Stn+11 − βn+1

− γn+1Stn1 − βn+1

+γn+1Stn1 − βn+1

− γnStn1 − βn

=αn+1

1 − βn+1

(f(xn+1) − f(xn)

)+(

αn+1

1 − βn+1− αn

1 − βn

)f(xn)

+γn+1

1 − βn+1(Stn+1 − Stn) +

(γn+1

1 − βn+1− γn1 − βn

)Stn

=αn+1

1 − βn+1

(f(xn+1) − f(xn)

)+(

αn+1

1 − βn+1− αn

1 − βn

)f(xn)

+(

αn+1

1 − βn+1− αn

1 − βn

)Stn +

γn+11 − βn+1

(Stn+1 − Stn)

=αn+1

1 − βn+1

(f(xn+1) − f(xn)

)+(

αn+1

1 − βn+1− αn

1 − βn

)(f(xn) + Stn

)

+γn+1

1 − βn+1(Stn+1 − Stn).

(3.21)

Combining (3.19) and (3.21), we obtain

‖wn+1 −wn‖ − ‖xn+1 − xn‖ ≤∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣∥∥f(xn+1) − f(xn)

∥∥ +∣∣∣∣

αn+1

1 − βn+1− αn

1 − βn

∣∣∣∣∥∥f(xn) + Stn

∥∥

+∣∣∣∣

γn+11 − βn+1

∣∣∣∣‖Stn+1 − Stn‖ − ‖xn+1 − xn‖

≤∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣k‖xn+1 − xn‖ +∣∣∣∣

αn+1

1 − βn+1− αn

1 − βn

∣∣∣∣∥∥f(xn) + Stn

∥∥

+∣∣∣∣

γn+11 − βn+1

∣∣∣∣‖tn+1 − tn‖ − ‖xn+1 − xn‖

≤∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣k‖xn+1 − xn‖ +∣∣∣∣

αn+1

1 − βn+1− αn

1 − βn

∣∣∣∣∥∥f(xn) + Stn

∥∥

Page 12: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

12 Discrete Dynamics in Nature and Society

+∣∣∣∣

γn+11 − βn+1

∣∣∣∣‖xn+1 − xn‖ − ‖xn+1 − xn‖

=∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣k‖xn+1 − xn‖ +

∣∣∣∣

αn+1

1 − βn+1− αn

1 − βn

∣∣∣∣∥∥f(xn) + Stn

∥∥

+∣∣∣∣γn+1 − 1 + βn+1

1 − βn+1

∣∣∣∣‖xn+1 − xn‖

=∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣k‖xn+1 − xn‖ +

∣∣∣∣

αn+1

1 − βn+1− αn

1 − βn

∣∣∣∣∥∥f(xn) + Stn

∥∥

+∣∣∣∣

αn+1

1 − βn+1

∣∣∣∣‖xn+1 − xn‖.

(3.22)

This together with (i), (ii), and (iii) implies that

lim supn→∞

(‖wn+1 −wn‖ − ‖xn+1 − xn‖) ≤ 0. (3.23)

Hence, by Lemma 2.3, we have

limn→∞

‖wn − xn‖ = 0. (3.24)

Consequently,

limn→∞

‖xn+1 − xn‖ = limn→∞

(1 − βn

)‖wn − xn‖ = 0. (3.25)

From (3.18) and (3.19), we also have ‖zn+1 − zn‖ → 0‖tn+1 − tn‖ → 0 and ‖yn+1 − yn‖ → 0 asn → ∞. Since

xn+1 − xn = αnf(xn) + βnxn + γnStn − xn = αn

(f(xn) − xn

)+ γn(Stn − xn), (3.26)

it follows by (ii) and (3.25) that

limn→∞

‖xn − Stn‖ = 0. (3.27)

Page 13: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 13

Since x∗ ∈ F(S) ∩ Γ, from (3.15) and Lemma 2.2, we get

‖xn+1 − x∗‖2 = ∥∥αnf(xn) + βnxn + γnStn − x∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖Stn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥PE

(yn − λAyn

) − PE

(y∗ − λAy∗)∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥(yn − λAyn

) − (y∗ − λAy∗)∥∥2

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥(yn − y∗) − λ

(Ayn −Ay∗)∥∥2

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn[‖yn − y∗‖2 − 2λ

⟨yn − y∗, Ayn −Ay∗⟩ + λ2

∥∥Ayn −Ay∗∥∥2]

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn[∥∥yn − y∗∥∥2 − 2λα

∥∥Ayn −Ay∗∥∥2 + λ2∥∥Ayn −Ay∗∥∥2

]

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn[∥∥yn − y∗∥∥2 + λ(λ − 2α)

∥∥Ayn −Ay∗∥∥2]

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn[‖xn − x∗‖2 + λ(λ − 2α)

∥∥Ayn −Ay∗∥∥2]

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2 + γnλ(λ − 2α)∥∥Ayn −Ay∗∥∥2

= αn

∥∥f(xn) − x∗∥∥2 +(βn + γn

)‖xn − x∗‖2 + γnλ(λ − 2α)∥∥Ayn −Ay∗∥∥2

= αn

∥∥f(xn) − x∗∥∥2 + (1 − αn)‖xn − x∗‖2 + γnλ(λ − 2α)∥∥Ayn −Ay∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 + γnλ(λ − 2α)∥∥Ayn −Ay∗∥∥2

.

(3.28)

Therefore, we have

−γnλ(λ − 2α)∥∥Ayn −Ay∗∥∥2 ≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)× (‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖.

(3.29)

From (ii), (iii), and ‖xn+1 − xn‖ → 0, as n → ∞, we get ‖Ayn −Ay∗‖ → 0 as n → ∞.

Page 14: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

14 Discrete Dynamics in Nature and Society

Since x∗ ∈ F(S) ∩ Υ, from (3.11) and Lemma 2.2, we get

‖xn+1 − x∗‖2 = ∥∥αnf(xn) + βnxn + γnStn − x∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥yn − y∗∥∥2

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥PE

(zn − μBzn

) − PE

(z∗ − μBz∗

)∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥(zn − μBzn

) − (z∗ − μBz∗

)∥∥2

= αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn

∥∥(zn − z∗) − (

μBzn − μBz∗)∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn[‖zn − z∗‖2 + μ

(μ − 2β

)‖Bzn − Bz∗‖2]

≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 + γnμ(μ − 2β

)‖Bzn − Bz∗‖2.(3.30)

Thus, we also have

−γnμ(μ − 2β

)‖Bzn − Bz∗‖2 ≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)× (‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖.

(3.31)

By again (ii), (iii), and (3.25), we also get ‖Bzn − Bz∗‖ → 0 as n → ∞.Let x∗ ∈ F(S) ∩ Υ; again from (3.12), (3.13) and Lemma 2.2, we get

‖xn+1 − x∗‖2 = ∥∥αnf(xn) + βnxn + γnStn − x∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖zn − z∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖(xn − τCxn) − (x∗ − τCx∗)‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn[‖xn − x∗‖2 + τ

(τ − 2γ

)‖Cxn − Cx∗‖2]

≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 + γnτ(τ − 2γ

)‖Cxn − Cx∗‖2.(3.32)

Page 15: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 15

Again, we have

−γnτ(τ − 2γ

)‖Cxn − Cx∗‖2 ≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)

× (‖xn − x∗‖ − ‖xn+1 − x∗‖)

≤ αn

∥∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖.

(3.33)

Similarly again by (ii), (iii), and ‖xn − xn+1‖ → 0 as n → ∞, and from (3.33), we also that‖Cxn − Cx∗‖ → 0.

On the other hand, we compute that

‖zn − z∗‖2 = ‖PE(xn − τCxn) − PE(x∗ − τCx∗)‖2

≤ 〈(xn − τCxn) − (x∗ − τCx∗), PE(xn − τCxn) − PE(x∗ − τCx∗)〉= 〈(xn − τCxn) − (x∗ − τCx∗), zn − z∗〉

=12

[‖(xn − τCxn) − (x∗ − τCx∗)‖2 + ‖zn − z∗‖2

−‖(xn − τCxn) − (x∗ − τCx∗) − (zn − z∗)‖2]

=12

[‖(I − τC)xn − (I − τC)x∗‖2 + ‖zn − z∗‖2

−‖(xn − τCxn) − (x∗ − τCx∗) − (zn − z∗)‖2]

≤ 12

[‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖(xn − zn) − τ(Cxn − Cx∗) − (x∗ − z∗)‖2

]

=12

[‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖[(xn − zn) − (x∗ − z∗)] − τ(Cxn − Cx∗)‖2

]

=12

[‖xn − x∗‖2 + ‖zn − z∗‖2 − ‖(xn − zn) − (x∗ − z∗)‖2

+2τ〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ2‖Cxn − Cx∗‖2].

(3.34)

So, we obtain

‖zn − z∗‖2 ≤ ‖xn − x∗‖2 − ‖(xn − zn) − (x∗ − z∗)‖2

+ 2τ〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ2‖Cxn − Cx∗‖2.(3.35)

Hence, by (3.12), it follows that

‖xn+1 − x∗‖2 = ∥∥αnf(xn) + βnxn + γnStn − x∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖Stn − x∗‖2

Page 16: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

16 Discrete Dynamics in Nature and Society

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖tn − x∗‖2

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖zn − z∗‖2

≤ αnk‖xn − x∗‖2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+ 2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ2γn‖Cxn − Cx∗‖2

= αnk‖xn − x∗‖2 + (1 − αn)‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+ 2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉 − τ2γn‖Cxn − Cx∗‖2

≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+ 2τγn〈(xn − zn) − (x∗ − z∗), Cxn − Cx∗〉

≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − γn‖(xn − zn) − (x∗ − z∗)‖2

+ 2τγn‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖,

(3.36)

which implies that

γn‖(xn − zn) − (x∗ − z∗)‖2 ≤ αnk‖xn − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ 2τγn‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖

≤ αnk‖xn+1 − x∗‖2 + 2γnτ‖(xn − zn) − (x∗ − z∗)‖‖Cxn − Cx∗‖

+ ‖xn − xn+1‖(‖xn − x∗‖ + ‖xn+1 − x∗‖).

(3.37)

By (ii), (iii), ‖xn − xn+1‖ → 0, and ‖Cxn − Cx∗‖ → 0 as n → ∞, from (3.37) and we get‖(xn − zn) − (x∗ − z∗)‖ → 0 as n → ∞. Now, observe that

‖(zn − tn) + (x∗ − z∗)‖2 = ∥∥zn − PE

(yn − λAyn

)+ PE

(y∗ − λAy∗

) − z∗∥∥2

=∥∥zn − PE

(yn − λAyn

)+ PE

(y∗ − λAy∗)

−z∗ + μBzn − μBzn + μBz∗ − μBz∗∥∥2

=∥∥zn − μBzn −

(z∗ − μBz∗

)

−[PE

(yn − λAyn

) − PE

(y∗ − λAy∗)] + μ(Bzn − Bz∗)

∥∥2

Page 17: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 17

≤ ∥∥zn − μBzn −

(z∗ − μBz∗

) − [PE

(yn − λAyn

) − PE

(y∗ − λAy∗)]∥∥2

+ 2μ⟨Bzn − Bz∗, zn − μBzn −

(z∗ − μBz∗

)

−[PE

(yn − λAyn

) − PE

(y∗ − λAy∗)] + μ(Bzn − Bz∗)

=∥∥zn − μBzn −

(z∗ − μBz∗

) − [PE

(yn − λAyn

) − PE

(y∗ − λAy∗)]∥∥2

+ 2μ〈Bzn − Bz∗, (zn − tn) + (x∗ − z∗)〉

≤ ∥∥zn − μBzn −

(z∗ − μBz∗

)∥∥2

− ∥∥PE

(yn − λnAyn

) − PE

(y∗ − λnAy∗)∥∥2

+ 2μ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

≤ ∥∥zn − μBzn −(z∗ − μBz∗

)∥∥2

− ∥∥SPE

(yn − λnAyn

) − SPE

(y∗ − λnAy∗)∥∥2

+ 2μ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

=∥∥zn − μBzn −

(z∗ − μBz∗

)∥∥2 − ‖Stn − Sx∗‖2

+ 2μ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖

≤ ∥∥zn − μBzn −(z∗ − μBz∗

) − (Stn − x∗)∥∥

× (‖zn − μBzn −(z∗ − μBz∗

)‖ + ‖Stn − x∗‖)

+ 2μ‖Bzn − Bz∗‖‖(zn − tn) + (x∗ − z∗)‖.

(3.38)

Since ‖Stn −xn‖ → 0, ‖(xn −zn)− (x∗ −z∗)‖ → 0, and ‖Bzn −Bz∗‖ → 0, as n → ∞, it followsthat

‖(zn − tn) + (x∗ − z∗)‖ → 0, as n → ∞. (3.39)

Since

‖Stn − tn‖ ≤ ‖Stn − xn‖ + ‖(xn − zn) − (x∗ − z∗)‖ + ‖(zn − tn) + (x∗ − z∗)‖, (3.40)

we obtain

limn→∞

‖Stn − tn‖ = 0. (3.41)

Page 18: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

18 Discrete Dynamics in Nature and Society

Next, we show that

lim supn→∞

⟨f(x) − x, xn − x

⟩ ≤ 0, (3.42)

where x = PF(S)∩Υf(x).Indeed, since {tn} and {Stn} are two bounded sequence in E, we can choose a

subsequence {tni} of {tn} such that tni of tn such that tni ⇀ z ∈ E and

lim supn→∞

⟨f(x) − x, Stn − x

⟩= lim

i→∞⟨f(x) − x, Stni − x

⟩. (3.43)

Since limn→∞‖Stn − tn‖ = 0, we obtain Stni ⇀ z as i → ∞. Now, we claim that z ∈ F(S) ∩ Υ.First by Lemma 2.5, it is easy to see that z ∈ F(S).

Since ‖Stn − tn‖ → 0, ‖Stn − xn‖ → 0, and

‖tn − xn‖ = ‖tn − Stn + Stn − xn‖≤ ‖tn − Stn‖ + ‖Stn − xn‖= ‖Stn − tn‖ + ‖Stn − xn‖,

(3.44)

we conclude that ‖tn − xn‖ → 0 as n → ∞. Furthermore, by Lemma 3.2 that G isnonexpansive, then

‖tn −G(tn)‖ = ‖G(xn) −G(tn)‖≤ ‖xn − tn‖.

(3.45)

Thus limn→∞‖tn − G(tn)‖ = 0. According to Lemma 2.5, we obtain z ∈ Υ. Therefore, thereholds z ∈ F(S) ∩ Υ.

On the other hand, it follows from (2.2) that

lim supn→∞

⟨f(x) − x, xn − x

⟩= lim sup

n→∞

⟨f(x) − x, Stn − x

= limn→∞

⟨f(x) − x, Stni − x

=⟨f(x) − x, z − x

≤ 0.

(3.46)

Page 19: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 19

Finally, we show that xn → x, and by (3.14) that

‖xn+1 − x‖2 = ∥∥αnf(xn) + βnxn + γnStn − x

∥∥2

≤ ∥∥βn(xn − x) + γn(Stn − x)

∥∥2 + 2αn

⟨f(xn) − x, xn+1 − x

≤ ∥∥βn(xn − x) + γn(Stn − x)

∥∥2 + 2αn

⟨f(xn) − f(x), xn+1 − x

+ 2αn

⟨f(x) − x, xn+1 − x

≤[βn‖xn − x‖2 + γn‖Stn − x‖2

]+ 2αn

∥∥f(xn) − f(x)

∥∥‖xn+1 − x‖

+ 2αn

⟨f(x) − x, xn+1 − x

≤[βn‖xn − x‖2 + γn‖tn − x‖2

]+ 2αnα‖xn − x‖‖xn+1 − x‖

+ 2αn

⟨f(x) − x, xn+1 − x

≤ (1 − αn)2‖xn − x‖2 + αnα(‖xn − x‖2 + ‖xn+1 − x‖2

)

+ 2αn

⟨f(x) − x, xn+1 − x

(3.47)

which implies that

‖xn+1 − x‖2 ≤(1 − 2(1 − α)αn

1 − ααn

)‖xn − x‖2 + α2

n

1 − ααn‖xn − x‖2

+2αn

1 − ααn

⟨f(x) − x, xn+1 − x

:= (1 − σn)‖xn − x‖2 + δn, n ≥ 0,

(3.48)

where σn = (2(1−α)αn)/1−ααn and δn = α2n/(1−ααn)‖xn−x‖2+2αn/(1−ααn)〈f(x)−x, xn+1−x〉.

Therefore, by (3.46) and Lemma 2.4, we get that {xn} converges to x, where x = PF(S)∩Υf(x).This completes the proof.

Setting A = B = C, we obtain the following corollary.

Corollary 3.4. Let E be a nonempty, closed, convex subset of a real Hilbert spaceH. Let the mappingA : E → H be α-inverse-strongly monotone. Let S be a nonexpansive mapping of E into itself suchthat F(S) ∩ Υ/= ∅. Let f be a contraction of H into itself and given x0 ∈ H arbitrarily and {xn} isgenerated by

zn = PE(xn − τAxn),

yn = PE

(zn − μAzn

),

xn+1 = αnf(xn) + βnxn + γnSPE

(yn − λAyn

), n ≥ 1,

(3.49)

where λ, μ, τ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1] such that

Page 20: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

20 Discrete Dynamics in Nature and Society

(i) αn + βn + γn = 1,

(ii) limn→∞ αn = 0 and∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} converges strongly to x ∈ F(S) ∩ Υ, where x = PF(S)∩Υf(x) and (x, y, z) is a solution ofproblem (1.10), where

y = PE

(z − μAz

),

z = PE(x − τAx).(3.50)

Setting A ≡ B ≡ 0 (the zero operators), we obtain the following corollary for solvingthe foxed points problem and the classical variational inequality problems.

Corollary 3.5. Let E be a nonempty, closed, convex subset of a real Hilbert spaceH. Let the mappingA : E → H be α-inverse-strongly monotone. Let S be a nonexpansive mapping of E into itself suchthat F(S) ∩ V I(A,E)/= ∅. Let f be a contraction of H into itself and given x0 ∈ H arbitrarily and{xn} is generated by

xn+1 = αnf(xn) + βnxn + γnSPE(xn − λAxn), n ≥ 1, (3.51)

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1] such that

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} converges strongly to x ∈ F(S) ∩ V I(A,E), where x = PF(S)∩V I(A,E)f(x).

4. Some Applications

We recall that a mapping T : E → E is called strictly pseudocontractive if there exists some kwith 0 ≤ k < 1 such that

∥∥Tx − Ty∥∥2 ≤ ∥∥x − y

∥∥2 + k∥∥(I − T)x − (I − T)y

∥∥2, ∀x, y ∈ E. (4.1)

For recent convergence result for strictly pseudocontractive mappings, put A = I − T . Then,we have

∥∥(I −A)x − (I −A)y∥∥2 ≤ ∥∥x − y

∥∥2 + k∥∥Ax −Ay

∥∥2. (4.2)

On the other hand,

∥∥(I −A)x − (I −A)y∥∥2 ≤ ∥∥x − y

∥∥2 +∥∥Ax −Ay

∥∥2 − 2⟨x − y,Ax −Ay

⟩. (4.3)

Page 21: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 21

Hence, we have

⟨x − y,Ax −Ay

⟩ ≥ 1 − k

2∥∥Ax −Ay

∥∥2

. (4.4)

Consequently, if T : E → E is a strictly pseudocontractive mapping with constant k, then themapping A = I − T is (1 − k)/2-inverse-strongly monotone.

Setting A = I − T , B = I − V , and C = I −W , we obtain the following corollary.

Theorem 4.1. Let E be a nonempty, closed, convex subset of a real Hilbert space H. Let T, V,Wbe strictly pseudocontractive mappings with constant k of C into itself, and let S be a nonexpansivemapping of E into itself such that F(S) ∩ Υ/= ∅. Let f be a contraction of H into itself and givenx0 ∈ H arbitrarily and {xn} is generated by

zn = (I − τ)xn + τWxn,

yn =(I − μ

)zn + μVzn,

xn+1 = αnf(xn) + βnxn + γnS((1 − λ)yn + λTyn

), n ≥ 1,

(4.5)

where λ ∈ (0, 2α), μ ∈ (0, 2β), and τ ∈ (0, 2γ) and {αn}, {βn}, {γn} are three sequences in [0, 1]such that

(i) αn + βn + γn = 1,

(ii) limn→∞ αn = 0 and∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to x ∈ F(S) ∩ Υ, where x = PF(S)∩Υf(x) and (x, y, z) is a solution ofproblem (1.9), where

y = PE

(z − μBz

),

z = PE(x − τCx).(4.6)

Proof. Since A = I − T , B = I − V , and C = I −W , we have

PE(xn − τCxn) = (I − τ)xn + τWxn,

PE

(yn − λAyn

)= (I − λ)yn + λTyn,

PE

(zn − μBzn

)=(I − μ

)zn + μVzn.

(4.7)

Thus, the conclusion follows immediately from Theorem 3.3.

If f(x) = x0, for all x ∈ E, and T = V = W in Theorem 4.1, we obtain the followingcorollary.

Page 22: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

22 Discrete Dynamics in Nature and Society

Corollary 4.2. Let E be a nonempty, closed, convex subset of a real Hilbert spaceH. Let T be strictlypseudocontractive mappings with constant k of C into itself, and let S be a nonexpansive mapping ofE into itself such that F(S) ∩ Υ/= ∅. Given x0 ∈ H arbitrarily and {xn} is generated by

zn = (I − τ)xn + τTxn,

yn =(I − μ

)zn + μTzn,

xn+1 = αnx0 + βnxn + γnS((1 − λ)yn + λTyn

), n ≥ 1,

(4.8)

where λ ∈ (0, 2α), μ ∈ (0, 2β), and τ ∈ (0, 2γ) and {αn}, {βn}, {γn} are three sequences in [0, 1]such that

αn + βn + γn = 1,

limn→∞

αn = 0 and∞∑

n=1

αn = ∞,

0 < lim infn→∞

βn ≤ lim supn→∞

βn < 1.

(4.9)

Then, {xn} converges strongly to x ∈ F(S) ∩ Υ, where x = PF(S)∩Υx and (x, y, z) is a solution ofproblem (1.10), where

y = PE

(z − μAz

)

z = PE(x − τAx).(4.10)

Acknowledgments

W. Kumam would like to give thanks to the Centre of Excellence in Mathematics, theCommission on Higher Education, Thailand, for their financial support for Ph.D. programat KMUTT. Moreover, the authors also would like to thank the Higher Education ResearchPromotion and National Research University Project of Thailand, Office of the HigherEducation Commission for financial support (under CSEC Project no. 54000267) and P.Kumam was supported by the Commission on Higher Education and the Thailand ResearchFund under Grant no. MRG5380044.

References

[1] F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbertspace,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.

[2] F. Liu and M. Z. Nashed, “Regularization of nonlinear ill-posed variational inequalities andconvergence rates,” Set-Valued Analysis, vol. 6, no. 4, pp. 313–344, 1998.

[3] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” TheMathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.

[4] J. C. Yao and O. Chadli, “Pseudomonotone complementarity problems and variational inequalities,”in Handbook of Generalized Convexity and Generalized Monotonicity, J. P. Crouzeix, N. Haddjissas, and S.Schaible, Eds., vol. 76, pp. 501–558, Springer, Amsterdam, the Netherlands, 2005.

Page 23: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Discrete Dynamics in Nature and Society 23

[5] Y. Yao, Y. C. Liou, and J. C. Yao, “An extragradient method for fixed point problems and variationalinequality problems,” Journal of Inequalities and Applications, vol. 2007, Article ID 38752, 12 pages, 2007.

[6] L .C. Zeng and J. C. Yao, “Strong convergence theorem by an extragradient method for fixed pointproblems and variational inequality problems,” Taiwanese Journal of Mathematics, vol. 10, no. 5, pp.1293–1303, 2006.

[7] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings andmonotone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417–428,2003.

[8] G. M. Korpelevic, “An extragradient method for finding saddle points and for other problems,”Matecon, vol. 12, no. 4, pp. 747–756, 1976.

[9] P. Kumam, “A relaxed extragradient approximation method of two inverse-strongly monotonemappings for a general system of variational inequalities, fixed point and equilibrium problems,”Bulletin of the Iranian Mathematical Society, vol. 36, no. 1, pp. 227–252, 2010.

[10] W. Kumam and P. Kumam, “Hybrid iterative scheme by a relaxed extragradient method forsolutions of equilibrium problems and a general system of variational inequalities with applicationto optimization,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 640–656, 2009.

[11] N. Nadezhkina and W. Takahashi, “Weak convergence theorem by an extragradient method fornonexpansive mappings and monotone mappings,” Journal of Optimization Theory and Applications,vol. 128, no. 1, pp. 191–201, 2006.

[12] L. C. Zeng, N. C. Wong, and J. C. Yao, “Strong convergence theorems for strictly pseudocontractivemappings of Browder-Petryshyn type,” Taiwanese Journal of Mathematics, vol. 10, no. 4, pp. 837–849,2006.

[13] Y. Yao and J. C. Yao, “On modified iterative method for nonexpansive mappings and monotonemappings,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1551–1558, 2007.

[14] L. C. Ceng, C. Y. Wang, and J. C. Yao, “Strong convergence theorems by a relaxed extragradientmethod for a general system of variational inequalities,” Mathematical Methods of Operations Research,vol. 67, no. 3, pp. 375–390, 2008.

[15] R. U. Verma, “On a new system of nonlinear variational inequalities and associated iterativealgorithms,”Mathematical Sciences Research Hot-Line, vol. 3, no. 8, pp. 65–68, 1999.

[16] R. U Verma, “Iterative algorithms and a new system of nonlinear variational inequalities,” Advancesin Nonlinear Variational Inequalities, vol. 3, no. 8, pp. 117–124.

[17] G. Kassay, J. Kolumban, and Z. Pales, “Factorization of minty and stampacchia variational inequalitysystems,” European Journal of Operational Research, vol. 143, no. 2, pp. 377–389, 2002.

[18] G. Kassay and J. Kolumban, “System of multi-valued variational inequalities,” PublicationesMathematicae Debrecen, vol. 56, no. 1-2, pp. 185–195, 2000.

[19] S. Zhang, J. Lee, and C. Chan, “Algorithms of common solutions to quasi variational inclusion andfixed point problems,” Applied Mathematics and Mechanics, vol. 29, no. 5, pp. 571–581, 2008.

[20] M. O. Osilike and D. I. Igbokwe, “Weak and strong convergence theorems for fixed points ofpseudocontractions and solutions of monotone type operator equations,” Computers & Mathematicswith Applications, vol. 40, no. 4-5, pp. 559–567, 2000.

[21] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter non-expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,vol. 305, no. 1, pp. 227–239, 2005.

[22] H. K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of MathematicalAnalysis and Applications, vol. 298, no. 1, pp. 279–291, 2004.

[23] K. Goebel andW. A. Kirk, Topics inMetric Fixed Point Theory, Cambridge University Press, Cambridge,UK, 1990.

Page 24: univie.ac.at2 Discrete Dynamics in Nature and Society see 1, 2 . It is obvious that every α-inverse-strongly monotone mapping Ais monotone and Lipschitz continuous. A mapping S: E

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of