2. description of the equipment utilised for the...

377
REPORT ON THE INTERCOMPARISON OF THE REALISATION IN CENAM (MEXICO) OF THE ITS-90 BETWEEN THE SILVER POINT AND 1700°C, USING VACUUM TUNGSTEN-STRIP LAMPS AS TRANSFER STANDARDS 1. Introduction The CCT decided during its 19th session in September 1996 to undertake an international Intercomparison of local realisations of the ITS-90 above the silver point, using high-stability vacuum tungsten strip lamps as transfer standards. The intercomparison has been qualified as a key intercomparison with the potential effect of entailing documented bilateral agreements as to the equivalence of local realisations of the ITS-90 in the envisaged temperature range. Here are reported the results obtained at the Centro Nacional de Metrología, of Mexico with the lamps set II of the NPL (C860 and C864 serial numbers), received from the National Research Council of Canada on March 1st, 1998, and returned to the National Physical Laboratory of England on May 1st, 1998. 2. Description of the equipment utilised for the calibration of the lamps The A. C. thermometric bridge As suggested in the protocol, an ASL F-18 a. c. resistance bridge it was utilised to measure a Rt/Rs ratio to determine the resistance value Ramb of the tungsten strips of each lamp. The thermalised standard resistor for the measurement of Ramb An 1 ohm Wilkins Resistor, model 5685A, Serial No. 263380 in “Tinsley” thermalised box was utilised as the standard resistor of the Rt/Rs determination for the measurement of Ramb for each lamp. The value of calibration of this standard resistor, at the temperature of the thermalised box (around 36,5°C) is 0,999 970 1 with an estimated uncertainty of 0,8 µΩ/(k=2) The a. c. thermometric bridge for the measurement of Tamb For the measurement of the temperature Tamb of the bases of the lamps, were employed a type Pt-100 resistance thermometer and an ASL F250 a. c. thermometric bridge. The sensor was calibrated between the Hg and the Ga points, according to the ITS-90. The outer diameter of this thermometer fitted the hole drilled at the base of the lamps, and the thermal contact was aimed by the means of a silicon grease. The shunt resistor dipped in a bath of controlled temperature for the measurement of Ish, the current supplied to the tungsten strip of the lamps A Yokogawa Standard Resistor, type 2792, serial No. 66VW2059 with a measured d. c. value (by the manufacturer) of 10,000 2 mW at 20°C, was employed as a shunt resistor for the determination of the d. c. current supplied to the lamps, connected in series with the lamp’s socket, from the “current” terminals of the resistor.

Upload: doanxuyen

Post on 28-Feb-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

REPORT ON THE INTERCOMPARISON OF THE REALISATION IN CENAM (MEXICO) OF THE ITS-90 BETWEEN THE SILVER POINT AND 1700°C, USING VACUUM TUNGSTEN-STRIP LAMPS AS TRANSFER STANDARDS

1. Introduction The CCT decided during its 19th session in September 1996 to undertake an international Intercomparison of local realisations of the ITS-90 above the silver point, using high-stability vacuum tungsten strip lamps as transfer standards. The intercomparison has been qualified as a key intercomparison with the potential effect of entailing documented bilateral agreements as to the equivalence of local realisations of the ITS-90 in the envisaged temperature range. Here are reported the results obtained at the Centro Nacional de Metrología, of Mexico with the lamps set II of the NPL (C860 and C864 serial numbers), received from the National Research Council of Canada on March 1st, 1998, and returned to the National Physical Laboratory of England on May 1st, 1998.

2. Description of the equipment utilised for the calibration of the lamps

• The A. C. thermometric bridge

As suggested in the protocol, an ASL F-18 a. c. resistance bridge it was utilised to measure a Rt/Rs ratio to determine the resistance value Ramb of the tungsten strips of each lamp.

• The thermalised standard resistor for the measurement of Ramb

An 1 ohm Wilkins Resistor, model 5685A, Serial No. 263380 in “Tinsley” thermalised box was utilised as the standard resistor of the Rt/Rs determination for the measurement of Ramb for each lamp.

The value of calibration of this standard resistor, at the temperature of the thermalised box (around 36,5°C) is 0,999 970 1 Ω with an estimated uncertainty of 0,8 µΩ/Ω (k=2)

• The a. c. thermometric bridge for the measurement of Tamb

For the measurement of the temperature Tamb of the bases of the lamps, were employed a type Pt-100 resistance thermometer and an ASL F250 a. c. thermometric bridge. The sensor was calibrated between the Hg and the Ga points, according to the ITS-90. The outer diameter of this thermometer fitted the hole drilled at the base of the lamps, and the thermal contact was aimed by the means of a silicon grease.

• The shunt resistor dipped in a bath of controlled temperature for the measurement of Ish, the current supplied to the tungsten strip of the lamps

A Yokogawa Standard Resistor, type 2792, serial No. 66VW2059 with a measured d. c. value (by the manufacturer) of 10,000 2 mW at 20°C, was employed as a shunt resistor for the determination of the d. c. current supplied to the lamps, connected in series with the lamp’s socket, from the “current” terminals of the resistor.

Page 2: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

This resistor was dipped in the oil of a Guildline controlled temperature bath, model 9732VT, set at 28°C. Because to the difference to temperature of the specification of the resistor value, was necessary to carry out a correction to the resistance value to temperature of the bath during the calibrations, according to a chart provided by the manufacturer. The uncertainty of the value of the resistance is ±0,05 mΩ, with assumed k=1.

• The multimeter utilised for the determination of Ish.

A Hewlett-Packard multimeter, model 3458A, provided with an IEEE-488 interface was utilised for the measurement of the current supplied to the shunt resistor connected in series with the tungsten strip of the lamp under study. The calculation of Ish was done by means of the Ohm’s law, from the measured voltage at the resistor terminals.

• The pyrometer

See please paragraph 4.2.1.1

• The multimeter utilised for the measurement of Iph, the photocurrent from the pyrometer

Another Hewlett-Packard multimeter, also model 3458A, was utilised for the measurement of the photocurrent of the pyrometer converted to an analogue voltage at the output terminals marked with the “schreiber” legend in the measurement unit of the instrument. The data of the multimeter, and from the other utilised for the determination of Ish, were acquired with a piece of software developed by CENAM.

• The circulating bath for the water flowing into the lamps bases

A circulating bath, Lauda Brinkmann model RM6, was utilised to supply distilled water to the base of the lamps to maintain its temperature at 20°C ± 0,02°C during the calibrations. The volume capacity of this bath is around 6 litres.

3. Reception of the lamps On March 1st, 1998, CENAM received the lamps set No. II of the NPL (serial numbers C860 and C864) from hands of Mr. C. K. Ma of the National Research Council of Canada (NRC), including an ATA carnet and a pro-forma invoice.

3.1.Measurement of Ramb and Tamb upon reception

As requested in paragraph 3.2.1.1, the measurement of Ramb, the resistance of the lamps elements was performed monitoring the base temperature, utilising the cables supplied with the lamps. The metal case of the lamps was allowed to stabilise to the lab temperature for more hour, and were extrapolated to zero current from 20 mA and 20√2 mA.

• Connections Spade connectors of the supplied cables were connected to the screws at the lamp base from the current terminals of the F18 bridge, and clip alligators were connected from the voltage terminals of the F18 to the small tubes fitted at the base, that are used to supply fresh water.

Page 3: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

• Position and grounding

The metal case of the lamps were kept in vertical (normal) position and closed as the wires permitted. A copper wire AWG 12 was connected from the handle of the metallic case to a ground bus installed at the laboratory.

• Results

Values measured for Ramb and Tamb upon the reception of the lamps, were:

Ramb for Lamp C860 = 40,049 milliohms at Tamb of the base = 23,32°C;

Ramb for Lamp C864 = 41,995 milliohms at Tamb of the base = 24,18 °C.

3.2.Measurement of Ramb and Tamb after the calibration of the lamps

• Results

After the lamps were calibrated the values of Ramb and Tamb were the following:

Ramb for Lamp C860 = 40,156 milliohms at Tamb of the base = 23,76°C;

Ramb for Lamp C864 = 41,537 milliohms at Tamb of the base = 24,52 °C.

Figures 1 and 2 show the plots of the measured resistance as function of the base temperature for each lamp.

4.1 Experimental and theoretical procedures

4.1.1 Realisation of the ITS-90 at CENAM

An IKE-LP2 pyrometer, described in brief in 4.2.1.1, and a silver point blackbody manufactured by the National Research Council of Canada, filled with high purity silver, have been the elements to realise the temperature scale as a radiances ratio in the CENAM, as stated in the ITS-90.

From the reference photocurrent, obtained with the radiance of the blackbody at the silver point, a temperature scale is developed from a photocurrents ratio in the pyrometer, that is related to the radiances ratio of the ITS-90, as follows:

R TI T

I Tc Tc TREF

EF REF

EF( , )

( )( )

exp( / )exp( / )

λλλ

= =−

−90 2

2 90

11

(eq. 1)

Corrections for the non linearity of the photodetector for different photocurrents ratios, and for the effective wavelength of the utilised interference filter in the pyrometer, are necessary to apply in order to improve the accuracy of the measurements.

4.1.2 Transference of radiance temperatures to strip lamps

For the lamps of the CENAM, the d. c. current supplied to the strip filament of a standard lamp (previously aged, stabilised and aligned), is adjusted to produce the same photocurrent in the pyrometer, as with the radiance of the blackbody at the silver point (this is reference photocurrent for the selected wavelength). Under this condition, the temperature of the silver point is assigned to the radiance temperature of the lamp at the

Page 4: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

effective wavelength of the measurement. Later, a set of different currents supplied to the strip filament is determined for a scale of radiance temperatures of the lamp.

4.2 Report on the results 4.2.1. Local conditions The measurements of Ramb and Tamb requested on paragraph 3.2.1.1 were performed in the Platinum Resistance Laboratory of CENAM, where a F18 thermometric bridge was available. This lab is about 15x15,5x3 cubic meter of volume, and was having some troubles to control its temperature at 22,5°C ± 0,7°C, during the time of the measurements. It has a 15 m long brick wall and a big window, single glass, of the same length in the opposite side.

The calibrations of the lamps were performed at the Pyrometry Lab, that is about 6,3x5x3 cubic meter of volume, with double door to reduce the temperature disturbance when they are open. The walls are masonry built with bricks without windows.

The CENAM facilities are located 23 km far away the city of Queretaro, in the south-east direction, at 1910 m about the sea level. Ambient conditions are given 4.2.1.3.

4.2.1.1 The Reference thermometer

To measure the radiance temperatures of the lamps, was utilised a LP2 pyrometer, manufactured by the IKE of Sttutgart, with serial number 80-32/95.11. The detailed description of this instrument is given in [2]. A short description is given here. Its operation is based on the photocurrent produced in a silicon photodiode by the radiance coming into the optical system of the instrument. The photodiode is inside a thermally controlled box that prevents changes in the sensitivity due to different temperatures of operation. Two wheels holding two sets of filters, allow to select either 650 nm or 912 nm wavelengths, or any of the neutral density filters ND1, ND1,3 or ND2. The instrument also offers the option to transmit the signal free of the action of these filters. When the filters are selected, they are allocated in a position where the incoming beam is collimated. The photocurrent of the detector is converted to a voltage signal by means of a transconductance amplifier built very close to the detector. This voltage is measured in a separated unit of the main body of the pyrometer as if were an absolute photocurrent. The objetive lens of the pyrometer is built with two achromats, for the calibrations were utilised a f200 mm and a f400 mm for a 512 mm/1095 mm target distance range.

• Calibration of the reference photocurrent of the pyrometer The calibration of the reference photocurrent at 650 nm of this pyrometer was performed against a silver point blackbody, whose crucible was manufactured by the National Research Council of Canada from high purity graphite (Ultracarbon America, grade UF-4S) and filled with about 780 g of high purity silver (99,9999 %), Alfa AESAR Stock No. 11357, lot K10E13. The detailed description of the geometry of this blackbody is given in [1]. The opening of its cavity has a diameter of 1,5 mm with an estimated emissivity of 0,99997±0,00003. The analogue signal coming out from the “schreiber” terminals of the measuring unit of the pyrometer, was connected to the input of a digital multimeter described in Section 2 above. On all of the results presented in this report, the photocurrent under darkness conditions is substracted from the measured values.

Page 5: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

This darkness photocurrent is measured against a small cavity 12 mm in diameter and 10 mm depth painted with a flat black paint. In Mexico “velvet” finishing paints are not commercially available.

• Results of the calibration of the reference photocurrent For the radiance temperature of the silver point blackbody, it was obtained the

photocurrent, at the effective wavelength λef = 651,82 nm, described below:

IREF = 1,3658 x 10-11 Ampere

TREF = 1 234,93 Kelvin

• Effective wavelength (λλλλe)/local reference wavelength (λλλλr1) The Pyrometry laboratory of CENAM does not have means to measure the effective wavelength of the utilised interference filter. Then, a source to specify this parameter is a table of values provided by the manufacturer, as follows:

Table 1 T1 = T2 + 10K T1 = TAu

T2 / K λ12 / nm λ12 / nm

1000 652,04 651,98

1400 651,90 651,91

1800 651,82 651,87

2200 651,76 651,84

2600 651,72 651,82

3000 651,70 651,81 where λ12 is the mean effective wavelength between the temperatures T1 and T2. The TAu value in the table represents the temperature of the gold point (1337,33 K). In these measurements, the reference temperature is the silver point, not the gold point, then is necessary to determine a value for λ12 for any pair of temperatures T1 and T2 that is in agreement with the following equation:

λ λ12 01 2

1 1= +

+

aT

aT

(eq. 2)

The values that satisfy equation 2 are λ0 =651,527 and a = 0,39964 K. With them, the value of λ12 and those given in the Table 1 are in agreement within ± 0,01 nm

Page 6: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

• Aperture ratio; f-number The filament strip of the lamps were located at 63 cm to the objetive lenses of the pyrometer. For this distance, the aperture diameter of the pyrometer as per the specification of the manufacturer is 40 mm, this yields to: f630 mm/40 mm = 15,75

• Target distance As indicated above the target distance between the filament strip and the objetive lenses of the pyrometer was 63 cm.

• Target field dimensions At the distance of 63 cm, and the f200 mm and f400 mm objetive lenses, the measured target field diameter is 0,7 mm.

4.2.1.2 Transfer lamps

• Orientation of the lamps To locate the vertical position of the strip filament, a magnified image of it was produced on a screen and this was compared with the cord of a hanging free plumb bob. The horizontal reference angle was located by m Horizontal spatial radiance distribution

After orientating and performing the photoelectric focusing of the lamp element under study, as indicated in 3.2.1.2, but only for the 650 nm wavelength, the lamp was decentered at both sides of its filament to determine the spatial radiance distribution. The obtained values are given in Tables I and II and plotted in Figures 3 and 4.

Table I

Spatial radiance distribution at the height of the notch for lamp C860 at 650 nm

X (mm) Iph (A) Iph/Imax

21,59 5,903E-11 71,82%

21,72 7,496E-11 91,20%

21,84 8,213E-11 99,93%

21,97 8,217E-11 99,98%

22,10 8,219E-11 100,00%

22,23 8,218E-11 99,99%

22,35 8,219E-11 100,00%

22,48 8,215E-11 99,95%

22,61 8,205E-11 99,83%

22,73 7,957E-11 96,81%

22,86 6,619E-11 80,53%

Page 7: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table II

Spatial radiance distribution at the height of the notch for lamp C864 at 650 nm

X (mm) Iph (A) Iph/Imax

25,15 4,018E-11 48,29%

25,27 5,930E-11 71,27%

25,40 7,792E-11 93,65%

25,53 8,318E-11 99,98%

25,65 8,319E-11 99,99%

25,78 8,320E-11 100,00%

25,91 8,318E-11 99,98%

26,04 8,318E-11 99,98%

26,16 8,314E-11 99,93%

26,29 8,310E-11 99,88%

26,42 8,181E-11 98,33%

26,54 6,846E-11 82,28%

26,67 4,811E-11 57,82%

Page 8: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Angular distribution of the radiance

After rotating the filament around the vertical axis of each lamp, were obtained the values given in Tables III and IV for the angular distribution at 650 nm, and plotted in Figures 5 and 6:

Table III

Angular distribution of the radiance of the lamp C860 at 650 nm

θ (°) Iph (A) θ (°) Iph (A)

-11,25 8,200E-11 -0,25 8,221E-11

-10,25 8,206E-11 0,75 8,222E-11

-9,25 8,211E-11 1,75 8,222E-11

-8,25 8,214E-11 2,75 8,224E-11

-7,25 8,212E-11 3,75 8,226E-11

-6,25 8,210E-11 4,75 8,230E-11

-5,25 8,211E-11 5,75 8,235E-11

-4,25 8,217E-11 6,75 8,237E-11

-3,25 8,217E-11 7,75 8,220E-11

-2,25 8,219E-11 8,75 8,198E-11

-1,25 8,221E-11

Table IV

Angular distribution of the radiance of lamp C864 at 650 nm

θ (°) Iph (A) θ (°) Iph (A)

-12,67 8,324E-11 -0,67 8,320E-11

-11,67 8,327E-11 0,33 8,319E-11

-10,67 8,330E-11 1,33 8,318E-11

-9,67 8,331E-11 2,33 8,315E-11

-8,67 8,331E-11 3,33 8,313E-11

-7,67 8,331E-11 4,33 8,320E-11

-6,67 8,331E-11 5,33 8,338E-11

-5,67 8,330E-11 6,33 8,349E-11

-4,67 8,329E-11 7,33 8,336E-11

-3,67 8,325E-11 8,33 8,322E-11

-2,67 8,322E-11 9,33 8,319E-11

-1,67 8,319E-11 10,33 8,318E-11

Page 9: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

In Figures 5 and 6, the 0° position corresponds to the alignment where the beam of a pilot laser reflects to its origin. This was checked doing the laser’s beam to cross a hole made in a card, to produce a reflected image of something resembling a concentric circle of multiple thin dots around the hole, after striking the filament. An arrow on the figures indicates the position utilised for the calibrations, that was the one obtained for the orientation where the horizontal reference angle is got, i. e., where the notch in the filament and a white dot marked on the rear window are seen in a same line that defines the optical axis of the pyrometer.

For these adjustments, the lamps were set for a radiance temperature of 1100°C, that corresponds to the filament current denoted as I(5).

• Nominal base temperature and its stability Because of a mistake on the utilised parameters to calculate the temperature of the sensor used for the measurement of the base temperature, the adjusted temperature in the circulating bath was not 20°C as indicated during the time of the calibrations. In a check made a posteriori on this sensor, was found that the actual values of those parameters yield to about 1,9°C above the 20°C set at the controller. As the measurements were all finished when the mistake was detected, the only option we found to fix the situation was to report our measurements at the corrected values of the calculated temperature. These are shown in Table V, as follows:

Table V. Corrected values of base temperature

Lamp minimum maximum Remarks

C860 21,87°C 22,23°C 1st run of measurements

C860 21,91°C 22,25° 2nd run of measurements

C864 21,76°C 21,88°C 1st run of measurements

C864 21,71°C 21,81°C 2nd run of measurements

• Total burning time a) Lamp C860, was turned “ON” for a total of 19h 55’, for positioning adjustments and

for performing its calibration. This amount accounts for a total of 148,4 Amperes·hours.

b) Lamp C864, was turned “ON” for a total of 20h 26’, for positioning adjustments and for performing its calibration. This amount accounts for a total of 151,89 Amperes·hours.

4.2.1.3 Ambient conditions

• Tamb The temperature of the Pyrometry Laboratory of CENAM, where the calibrations of the lamps were performed, is controlled to 23°C within ±1°C.

Page 10: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

The temperature of the Platinum Resistance Laboratory, where the measurements of Ramb and Tamb were made, was having some troubles to control its temperature. During the measurements, the temperature varied between 20°C and 24°C.

• Relative humidity The relative humidity in these laboratories is not under control and depends on the climate outside, that during the time of the calibrations, was between 22% and 45%, after more than 5 months without rain.

• Maximum and minimum values

Table VI

Description Maximum Minimum

Room temperature 24,0°C 22,1°C

Relative humidity 22,2 % 45,3 %

Page 11: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CSIRO Technical Memorandum TIP-P134

Measurement report on vacuum strip lamps calibrated as intercomparison artefacts as part of the CCT key comparison of local realisations of the ITS-90 between the silver point and

1700oC

Dr Mark Ballico

November 1997

Notes (1) Measurement procedures are as specified in the intercomparison protocol [1] supplied by the pilot

laboratory, NMi (Netherlands) (2) Reporting format in this report is based on the format laid out in section 4 of the intercomparison

protocol [1]. (3) This report is based on measurements performed in September 1997 Artefacts Vacuum strip lamps C564 and C681 supplied by NMi (Netherlands). Both lamps were transported packed in block of foam rubber, inside a hard briefcase. The artefacts were carefully hand carried as cabin baggage.

1. Experimental and theoretical procedures

1.1 Realisation of the ITS-90

1.1.1 Description of equipment The APEP-2 pyrometer was developed at NML during the 1980’s and is described in detail in [2]. A 100 mm diameter compound lens masked to 60 mm is the objective lens, imaging the lamp filament 1:1 onto a 0.6 mm diameter bevelled pinhole with an object distance of 600 mm. Light from the pinhole is collimated and passed through a filter rejecting wavelengths from 850 to 1100nm. The collimated beam then passes through a 50 mm square, 3 cavity interference filter (roughly 10nm bandwidth around 650nm, and with wing transmission lower than 10-5 from UV to IR), before detection by a Hamamatsu S1337-1010BQ large area silicon photo-diode. The signal is amplified by a low noise current amplifier (108V/A) and measured by a HP3458A voltmeter. Measurements are made in a temperature and

Page 12: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

2

humidity controlled room (21±0.2oC, RH 50±5%). A rotatable prism is used to reflect radiation from either the reference radiator or the test lamps. The current reference radiator consists of 860g of 99.999% pure gold held in a closed carbon crucible (ultra high purity graphite < 10ppm impurities), with a small, thin walled (1.5mm) graphite tube inserted into the sample. The conical end of the graphite tube has a 60o full angle. Details of the construction of these black-bodies can be found in [3]. The cavity formed by the tube constitutes a very close approximation to a black-body. A double aperture insert (2.0 mm inside diameter) placed inside the crucible at the entrance to the 46.1 mm long, 8 mm I.D. black-body cavity enhances the emissivity. The theory given in [3] for calculation of the emissivity of the black-body fixed point gives an emissivity of 0.99995 , which is included as a correction in the realisation of the temperature scale. The black-body fixed point is held in the centre of a sodium heat-pipe furnace liner (uniformity better than 0.1oC), protected by a silica tube. High purity graphite and alumina annular spacers reduce the heat loss from the front of the fixed point black-body, whilst allowing several mm clearance to the F/10 viewing cone of the APEP2 pyrometer.

1.1.2 Experimental procedures The pyrometer’s linearity, size of source effect and relative spectral response are measured yearly, or whenever a change is made to the pyrometer design. Several melts and freezes of the gold fixed point black-body are made before and after any lamp calibrations to provide a reference against which the lamps are calibrated. These are achieved by cycling the black-body furnace 3-4 oC above and below the nominal freezing point temperature. The melt/freeze duration is normally 30-90 minutes.

1.1.3 Formal derivation of spectral radiance temperature The spectral radiance temperature TR of a strip lamp is defined by solving the following equations [4]:

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

R SOSE L V L V

g s T e T d R s e T d

g T e T e T

L BB

w S S BB BB

w ref S ref S ref R

= +

=

=

∫ ∫

1 ( ) ( )

, , ( ) ,

, , ,

λ ε λ λ λ ε λ λ λ

ε λ λ λ

Where; e(λ,T) is the spectral radiance at λ from a black-body at temperature T (Planck’s law) TBB is the ITS-90 assigned temperature of the fixed point (1064.18oC for gold) εBB is the calculated emissivity of the fixed point black-body (0.99995) λref is the reference wavelength for the pyrometer (650nm) TR is the effective radiance temperature of the strip lamp at the reference wavelength L is the linearity correction function, expressed as polynomial VL is the pyrometer signal when measuring the lamp VBB is the pyrometer signal when viewing the fixed-point black-body SOSE is the size of source effect difference between the lamp and the fixed point black-body s(λ) is the pyrometer’s measured relative spectral response (RSR), g is the transmission of the lamp envelope, normally taken as 0.92, εw(λ,T) is the emissivity of tungsten, bi-linearly interpolated from the values given in reference [5].

1.2 Transfer of radiance temperatures to strip lamps

1.2.1 Description of equipment 1. Positioning: Micrometer translation stages allow reproducible positioning (to 5 µm) and angular

rotation (to 2 minutes of arc) of all sources to be viewed by the pyrometer.

Page 13: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

3

2. Current supply: The lamps are supplied by a HP6032A source which is operated as a voltage source. Current stability is achieved using an in-house amplifier using feedback from the difference between the voltage across a current monitoring resistor and that obtained by potentiometric division of a reference voltage source.

3. Current measurement: The lamp current is measured using a 0.01Ω, 100A, circulated oil cooled 4 terminal resistor. The voltage across the resistor is measured using a calibrated HP3458A DVM.

4. Base Temperature: The lamp base temperature is controlled using a flow of cooling water supplied from the laboratory water supply through a heat exchanger coil in a controlled temperature water bath. The lamp temperature is monitored using a 12mm long 4mm OD ceramic encapsulated PRT sensor, inserted into the temperature monitoring hole of the lamp under test. The resistance of the PRTs was measured using a HP3456 DVM in 4 wire resistance mode.

1.2.2 Local conditions

1.2.3 Reference thermometer 1. Effective wavelength: This is not explicitly used in the calibration, as direct integration over the

relative spectral response (RSR) of the pyrometer and the emissivity and tungsten are used. However, the commonly defined “effective wavelength” is provided for reference in Table 7 and Table 8.

2. Local reference wavelength: All spectral radiance temperatures are corrected back to 650.00 nm (in air)

3. Full width at half maximum of the spectral response function: 10.4 nm. 4. Aperture ratio: Objective lens is masked to 60mm, giving f/10 optics 5. Target distance: 600mm 6. Target field dimensions: nominally a 0.6mm diameter disk 7. SOSE: This is measured using blackened disks on an illuminated diffuser [8]. Figure 1 gives the

measured SOSE. 8. SOSE for strip lamp: No “effective source diameter” is explicitly calculated; rather, the measured

SOSE function is appropriately integrated [8] over the nominal dimensions of the target strip. The size of source effect of the fixed point black-body is measured directly using a black-body fixed-point simulator with a view-through hole to outside of the furnace. The computed size of source effect correction for the two lamps used in the present work is given in Table 1.

Table 1: Computed difference in SOSE between the gold fixed-point black-body and two strip lamps, for the APEP-2 pyrometer.

Strip size Computed SOSE 1.5mm × 60mm 1.196×10-3 1.3mm × 50mm 1.241×10-3

Page 14: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

4

1 10 100-0.00020.00000.00020.00040.00060.00080.00100.00120.00140.00160.00180.00200.00220.0024

Data fitted curve 10 * fit residual

Sim

ulat

ed S

OSE

Disk diameter (mm)

Figure 1: Measured size of source effect for the APEP2 pyrometer.

1.2.4 Transfer lamps 1. Transverse-vertical orientation: The pyrometer target spot was located centrally in the tungsten

strip, adjacent to the small locating notch. 2. Axial location: The lamp filament was brought into focus at the pyrometer aperture by visual

alignment, by viewing the 0.6mm aperture from the detector side using a telescope with a 650nm filter.

3. Rotational and tilt orientation: The lamp orientation was adjusted such that the (roughly 4mm diameter) white paint dot on the rear envelope of the lamp was tangent to the notch in the lamp filament, when viewed through the pyrometer with the lens masked to give a large depth of focus.

4. Nominal base temperature and stability: 21oC within a range ±40mK 5. Total burning time: Each lamp had the burning history given in Table 2 whilst at NML.

Page 15: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

5

Table 2: Burning history of lamps used as artefacts in the intercomparison (individual times are ±±±±0.2 hours)

Temperature (deg. C) Duration (hours)1100 (align etc.) 4.00

1700 (anneal) 1.001100 0.75962 0.75

1000 0.751064 0.751085 0.751100 0.751200 0.401300 0.401400 0.401500 0.401600 0.401700 0.40962 0.75

1000 0.751064 0.751085 0.751100 0.751200 0.401300 0.401400 0.401500 0.401600 0.401700 0.40

TOTAL 18.05

1.2.5 Ambient conditions Ambient temperature: 20.8 < Tamb < 21.2 Relative humidity: 45% < Rhamb < 55%

2. Measurement results

2.1 Annealing The lamps were annealed for 1 hour at a nominal 650nm radiance temperature of 1700oC. Table 3 gives the change in radiance temperature, ∆T, for a constant filament current giving a radiance temperature of nominally at 1100oC.

2.2 Filament resistance The resistance of the lamp filament was measured using an ASL F-18 AC resistance bridge and a nominally 1Ω reference resistor. A 4 wire resistance technique, as specified in [1] was used. The lamp

Table 3: Change in radiance temperature at a nominal 1100oC radiance temperature, due to 1 hour anneal at 1700oC.

Artefact ∆T Lamp C564 -0.190oC Lamp C681 +0.021oC

Page 16: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

6

current terminals were used as the resistance current terminal . The outer brass cooling tubes were used as the resistance voltage terminals, by means of the cylindrical copper terminals supplied with the lamps by NMi. The measurements were made at 50mA and 21/2×50mA, and extrapolated back to zero current, assuming the lamp filament is heated proportionally to the square of the filament current. Table 4 gives the results of the measurements. The uncertainty in the measured base temperature is 5mK at the 95% confidence level, and the uncertainty in the calculated resistance at 0mA is 0.5µΩ (at 95% C.L.).

A polynomial was fitted to the resistivity vs. temperature data for tungsten given in [6] and used to convert the resistances of the “After calibration” data to the “On receipt” temperature, in order to estimate the change in strip resistance due to the effects of calibration. A 95% C.L. uncertainty of 74ppm/oC was estimated for this conversion. Table 5 gives the calculated resistance change and its uncertainty.

2.3 Transverse scans As specified in the intercomparison protocol, the reference pyrometer signal was measured as a function of the transverse position of the strip lamp artefacts, in order to provide confirmation that the pyrometer target size is sufficiently small by comparison with the width of the lamp filament. The results of measurements at a nominal 650nm radiance temperature of 1100oC are presented in Figure 2 and Figure 3. These results indicate that this condition is well satisfied for both lamps, lamp C681 having a 0.73mm uniform region and lamp C564 having a 0.66mm uniform region. The small increase in radiance temperature on the left of C564’s strip is thought to be due to current density peaking at the alignment notch in the lamp filament.

2.4 Rotational scans As specified in the intercomparison protocol, the reference pyrometer signal was measured as a function of the orientation, in the horizontal plane, of the strip lamp artefacts. The results of measurements at a nominal 650nm radiance temperature of 1100oC are presented in Figure 4 and Figure 5. Data is also presented for scans taken with a 10% transmission ND filter between the pyrometer and the lamp, to suppress inter-reflections between them. For lamp C564, no significant difference inter-reflections between the lamp and pyrometer were observed. A broad inter-reflection peak around 0.8o from the specified lamp alignment position was observed. For lamp C681, a significant difference was observed upon interposing the ND filter. Enhancements in radiance due to inter-reflection between the lamp and the pyrometer were observed on either side of specified alignment position. Further examination clearly showed one to be caused by reflection between the pyrometer lens and the lamp envelope, and the other by reflection between the pyrometer lens and the lamp filament. These could be clearly identified by passing a light beam back through the pyrometer optics, and examining the size of the cone of light reflected by the lamp’s strip and envelope. At the specified orientation of the lamp, both of these reflections of the pyrometer’s objective lens by the lamp fell outside the objective aperture, and so should not contribute to the

Table 4: Filament resistance measurements on strip lamps C681 and C564, on receipt of the lamps and just before leaving the laboratory.

Artefact Temperature R0mA R50mA-R0mA Lamp C564 On receipt 22.705oC 40.20021 mΩ 7.48 µΩ “ After calibration 22.769oC 40.20744 mΩ 7.44 µΩ Lamp C681 On receipt 22.782oC 34.31369 mΩ 3.62 µΩ “ After calibration 22.349oC 34.24730 mΩ 3.68 µΩ

Table 5: Change in filament resistance at ca. 23oC over the calibration period at CSIRO.

Artefact Resistance change 95% C.L. uncertainty Lamp C564 -2.8 µΩ 1.5 µΩ Lamp C681 -3.7 µΩ 1.7 µΩ

Page 17: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

7

measured lamp irradiance. The ND filter data indicate a broad inter-reflection peak, intrinsic to the lamp, centred roughly 1.5o from the specified lamp alignment position.

2.5 Calibration Two consecutive calibrations were performed on each lamp, under the conditions specified in [1]. The time taken for the lamps to stabilise at each temperature is given in Table 2. Table 7 and Table 8 give the calibration results for lamps C564 and C681 respectively, in the format specified in [1]. Table 6 gives the definitions of the terms used in these calibration tables.

Both lamps appear to have decreased in radiance temperature by roughly 0.1oC between the two calibrations, which may indicate that the lamps have not been fully stabilised upon receipt by CSIRO

Table 6: Definition of terms used in the calibration results tables.

Term Definition I Index to calibration point (as specified in [1]) R Measured photo-current ratio to the gold point black-body Tλ Lamp radiance temperature at λeff Tλ(SOS) “ “ corrected for SOSE between fixed point and lamp Tλ(SOS,LIN) “ “ also corrected for pyrometer linearity Iset Actual lamp current Iref Lamp current specified in [1] λeff Effective wavelength of the pyrometer T(λref,21C) Lamp radiance temperature corrected to λref (=650nm) dT/dTB Lamp base temperature coefficient (given in [1]) dT/dI Sensitivity of lamp radiance temperature to lamp current

(from a polynomial fitted to calibration data) T(λref,20C,Iref) Lamp radiance temperature at the reference conditions.

Page 18: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

8

9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.70.90

0.92

0.94

0.96

0.98

1.00

1.02

transverse position (mm)

norm

alis

ed ra

dian

ce

0.996

0.997

0.998

0.999

1.000

1.001

1.002

Figure 2: Normalised radiance signal from the pyrometer as a function of the transverse position of lamp C564. (The dashed curve is the same data on a expanded scale)

8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.70.90

0.92

0.94

0.96

0.98

1.00

1.02

transverse position (mm)

norm

alise

d ra

dian

ce

0.995

0.996

0.997

0.998

0.999

1.000

1.001

Figure 3: Normalised radiance signal from the pyrometer as a function of the transverse position of lamp C681. (The dashed curve is the same data on a expanded scale)

Page 19: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

9

-15 -10 -5 0 5 100.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

lamp alignment mark

No filter With ND filter

Nor

mali

sed

radi

ance

Rotation angle (degrees)

Figure 5: Normalised radiance signal from the pyrometer as a function of the orientation in the horizontal plane of lamp C681 (angles are clockwise viewed from above).

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.996

0.997

0.998

0.999

1.000

1.001

lamp alignment mark

no filter with ND filter

Nor

mali

sed

radi

ance

Rotation angle (degrees)

Figure 4: Normalised radiance signal from the pyrometer as a function of the orientation in the horizontal plane of lamp C564 (angles are clockwise viewed from above).

Page 20: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

10

Table 7: Two calibrations of lamp C564, showing (A) corrections for size of source effect and linearity, assuming it as a black-body radiator and (B) corrections to the reference conditions 650nm, 20oC base temperature and specified lamp currents (lower table).

A i R Tλ Tλ(SOS) Tλ(SOS,LIN)1 0.262 964.054 964.139 964.1392 0.447 1002.078 1002.169 1002.1693 1.025 1066.217 1066.317 1066.3174 1.314 1086.605 1086.709 1086.7095 1.577 1102.044 1102.150 1102.1506 4.691 1201.935 1202.057 1202.0577 12.173 1302.030 1302.169 1302.1698 28.247 1402.388 1402.545 1402.5459 59.573 1502.692 1502.869 1502.871

10 116.005 1602.995 1603.192 1603.20111 211.368 1703.501 1703.720 1703.753

1 0.262 963.950 964.035 964.0352 0.446 1001.982 1002.073 1002.0733 1.024 1066.113 1066.213 1066.2134 1.312 1086.516 1086.619 1086.6195 1.575 1101.945 1102.051 1102.0516 4.686 1201.829 1201.951 1201.9517 12.161 1301.917 1302.056 1302.0568 28.220 1402.269 1402.426 1402.4269 59.506 1502.533 1502.710 1502.712

10 115.881 1602.824 1603.021 1603.03011 211.155 1703.323 1703.542 1703.575

B i Iset Iref λeff T(λref,21C) dT/dTB dT/dI T(λref,20C,Iref)

1 4.479950 4.480 649.935 964.132 0.091 156 964.0492 4.721010 4.721 649.924 1002.160 0.065 152 1002.0933 5.169005 5.169 649.908 1066.305 0.037 141 1066.2684 5.321990 5.322 649.903 1086.695 0.030 132 1086.6665 5.440995 5.441 649.900 1102.135 0.026 123 1102.1096 6.272000 6.272 649.878 1202.037 0.011 114 1202.0267 7.194020 7.194 649.857 1302.142 -0.001 104 1302.1408 8.188960 8.189 649.837 1402.509 0.000 98 1402.5139 9.242050 9.242 649.820 1502.827 0.000 93 1502.822

10 10.346990 10.347 649.804 1603.147 0.000 88 1603.14811 11.502010 11.502 649.787 1703.687 0.000 87 1703.686

1 4.479940 4.480 649.935 964.028 0.091 156 963.9462 4.720995 4.721 649.924 1002.064 0.065 152 1001.9993 5.168980 5.169 649.908 1066.201 0.037 141 1066.1674 5.322010 5.322 649.903 1086.606 0.030 132 1086.5745 5.440970 5.441 649.900 1102.037 0.026 123 1102.0146 6.272029 6.272 649.878 1201.931 0.011 114 1201.9167 7.194012 7.194 649.857 1302.029 -0.001 104 1302.0288 8.188932 8.189 649.837 1402.391 0.000 98 1402.3989 9.241988 9.242 649.820 1502.668 0.000 93 1502.669

10 10.346946 10.347 649.804 1602.977 0.000 88 1602.98211 11.501991 11.502 649.787 1703.509 0.000 87 1703.510

Page 21: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

11

Table 8: Two calibrations of lamp C681, showing (A) corrections for size of source effect and linearity, assuming it as a black-body radiator and (B) corrections to the reference conditions 650nm, 20oC base temperature and specified lamp currents (lower table).

A i R Tλ Tλ(SOS) Tλ(SOS,LIN)1 0.260 963.583 963.665 963.6652 0.445 1001.856 1001.944 1001.9443 1.025 1066.158 1066.255 1066.2554 1.313 1086.538 1086.637 1086.6375 1.576 1101.971 1102.073 1102.0736 4.699 1202.089 1202.207 1202.2067 12.215 1302.415 1302.549 1302.5498 28.329 1402.758 1402.910 1402.9109 59.762 1503.145 1503.315 1503.317

10 116.133 1603.169 1603.359 1603.36911 211.073 1703.254 1703.465 1703.498

1 0.260 963.470 963.553 963.5532 0.445 1001.753 1001.841 1001.8413 1.024 1066.098 1066.194 1066.1944 1.312 1086.480 1086.579 1086.5795 1.574 1101.881 1101.984 1101.9846 4.694 1201.994 1202.112 1202.1127 12.205 1302.318 1302.452 1302.4528 28.317 1402.705 1402.857 1402.8569 59.730 1503.069 1503.239 1503.241

10 116.085 1603.103 1603.293 1603.30311 210.948 1703.150 1703.361 1703.394

B i Iset Iref λeff T(λref,21C) dT/dTB dT/dI T(λref,20C,Iref)1 5.508000 5.508 649.935 963.658 0.064 121.95 963.5942 5.821990 5.822 649.924 1001.935 0.044 116.28 1001.8903 6.399005 6.399 649.908 1066.243 0.021 109.89 1066.2234 6.594008 6.594 649.903 1086.624 0.016 103.09 1086.6095 6.744990 6.745 649.900 1102.059 0.013 97.09 1102.0456 7.794990 7.795 649.878 1202.186 0.001 90.91 1202.1857 8.948000 8.948 649.857 1302.522 0.000 84.03 1302.5228 10.182900 10.183 649.837 1402.874 0.000 78.74 1402.8669 11.487060 11.487 649.820 1503.273 0.000 75.19 1503.278

10 12.851020 12.851 649.804 1603.315 0.000 71.94 1603.31611 14.273000 14.273 649.787 1703.433 0.000 70.42 1703.433

1 5.507980 5.508 649.935 963.545 0.064 121.95 963.4792 5.821920 5.822 649.924 1001.832 0.044 116.28 1001.7793 6.398990 6.399 649.908 1066.182 0.021 109.89 1066.1604 6.594010 6.594 649.903 1086.566 0.016 103.09 1086.5515 6.745000 6.745 649.900 1101.969 0.013 97.09 1101.9566 7.795000 7.795 649.878 1202.092 0.001 90.91 1202.0917 8.948000 8.948 649.857 1302.425 0.000 84.03 1302.4258 10.182980 10.183 649.837 1402.821 0.000 78.74 1402.8199 11.487010 11.487 649.820 1503.197 0.000 75.19 1503.198

10 12.850960 12.851 649.804 1603.249 0.000 71.94 1603.24611 14.273160 14.273 649.787 1703.328 0.000 70.42 1703.339

Page 22: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

12

3. Uncertainties The discussion of uncertainties is broken into two sections: Firstly a description of the physical parameters that have an effect on the calibration. Secondly, a table of the numerical values (Table 9) of these uncertainties, combined in accordance with the ISO guide to the expression of uncertainty in measurement [7]. Note: Details of the assumptions and mathematical expressions used to convert these parameters into equivalent uncertainties in temperature are given in [8].

3.1.1 Reference black-body radiator 1. Emissivity: Uncertainty due to physical dimensions of the black-body, the emissivity of the surface

material, and axial gradients in the crucible. 2. Purity: Estimated from the melt and freeze data using the well known technique of plotting the

temperature vs. 1/F where F is the fraction of metal melted. 3. Gradients: Conduction losses through the wall of the black-body due to radiative heat losses. 4. Reproduceability/other: Estimate of other systematic errors, determined by a variety of changes to

the system, such as purge gas rate, freeze/melt duration, furnace balance etc. .

3.1.2 Detector 1. Short term drift: The measured stability of the sensitivity of the pyrometer over a 12 hour period.

3.1.3 Linearity 1. Random: the uncertainty in the measured linearity, resulting from the detector noise 2. Systematic: The estimate of the inherent uncertainty of a doubling step of the doubler apparatus

used to measure the linearity of the detector+amplifier+DVM.

3.1.4 Size of source effect 1. BB SOSE: The uncertainty in the SOSE of the fixed-point black-body 2. Systematics: The estimated systematic errors inherent in the SOSE measurement apparatus. 3. Integration: Uncertainty in the integrated SOSE for the strip, resulting from the numerical

integration technique used. 4. Strip width: Uncertainty in the SOSE due to uncertainty in the measurement of the width of the lamp

filament 5. Curve fit: Uncertainty in the SOSE resulting from the deviation of the fitted curve to the measured

SOSE points.

3.1.5 Spectral parameters 1. Calibration: The uncertainty in the wavelength calibration of the monochromator. 2. Leakage: The estimated out-of-band sensitivity of the pyrometer 3. Temperature coefficient: Uncertainty due to known temperature coefficient of the interference filter

and the long term (over months) pyrometer temperature stability 4. Reproducibility: The type-A uncertainty derived from repeated measurements of the effective

wavelength of the pyrometer. 5. Stability: The measured long term stability of the interference filter

3.1.6 Lamp 1. Base temp: Uncertainty of the measurement of the lamp base temperature. 2. Horiz. posn. : Uncertainty arising from the ability to set the lamp to the specified transverse

position. 3. Rotation: Uncertainty arising from the ability to set the lamp to the specified angular position.

Page 23: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

13

4. Supply stability: Short term current stability of the lamp supply. 5. Thermal EMFs: A 0.01 Ω resistor was used as a current shunt, thus contribution from stray thermo-

voltages may affect the current measurement. 6. DVM calibration: The DVM is calibrated yearly, and this component takes account of drifts over

this period. 7. Shunt calibration: The calibration uncertainty of the shunt resistor used to measure the lamp current. 8. Window transmittance: Changes in transmission due to non-reproduceability of the cleaning of the

lamp window. No account is made for changes in the window transmittance during the calibration due to effects such as deposition of tungsten etc.)

9. Prism reflectance: Change in pyrometer sensitivity between the prism position for viewing the fixed point and that for viewing the lamp.

10. dT/dλ: Reference wavelength: An estimate of 3% in dTR/dλ, and a maximum shift of 0.5nm is allowed for in the error budget in converting to the reference wavelength

3.1.7 Other parameters Several other parameters, for which the uncertainty contribution was considered negligible were: 1. DVM resolution for lamp current measurement. 2. DVM resolution for photo-current measurement. 3. Detector noise: Signals were averaged over a 5 minute period, resulting in negligible contribution to

the uncertainty from the noise in the detector system. 4. Neutral Density filters: Not applicable, since we use the pyrometer to step from the gold point in a

single step. 5. Correction of RH: As absorption due to water vapour is negligible at 650nm, no explicit correction

is included.

Page 24: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

14

Table 9: Summary of the numerical values of the uncertainty sub-components in the calibration of strip lamps at CSIRO, and their combination into an overall uncertainty estimate.

λ(nm) = 649.85 Tref (K) = 1337.33 T(K) 1235 1337 1573 1773 1973I(A) 4.48 5.17 7.19 9.24 11.5K/nm 0.111 0.131 0.186 0.242 0.307K/A 156 141 104 93 87

Compt. Sub-component semi-range µ_I units Type ν_I ________Temp. (deg. C)_________or 95% C.L. 962 1064 1300 1500 1700

component uncertainty (1σ) (mK)λ calibration 0.02 0.012 nm B 8 2 0 5 10 17

leakage 0.3 1.7E-01 ppm B 2 4 0 4 6 6temp. coeff. 0.3 0.2 K B 8 0 0 1 2 2reproducability 0.010 nm A 8 1 0 4 9 14stability 0.01 0.006 nm B 2 1 0 2 5 8

Ref. BB emissivity 5.10E-05 2.9E-05 ratio B 8 2 2 3 4 5purity 10 5.8 mK B 2 5 6 7 8 9wall gradients 1 0.6 mK B 2 1 1 1 1 1reprod/other 4 2.3 mK B 2 2 2 3 3 3

Detect. short term drift 1.00E-04 5.8E-05 ratio A 2 4 5 6 8 10

SOSE BB SOSE 2.0E-05 ratio B 2 1 2 2 3 4systematics 1.0E-05 ratio B 2 1 1 1 1 2integration 1.0E-05 ratio B 2 1 1 1 1 2strip width 1.0E-05 ratio A 2 1 1 1 1 2curve fit 1.0E-05 ratio A 8 1 1 1 1 2

Linearity random 3.0 ppm A 8 0 0 1 1 1systematic 6.0 ppm/step B 2 1 0 2 5 8

Lamp base temp. 40 23.1 mK A 40 2 2 1 0 0horiz. posn. 8.0E-05 4.6E-05 ratio A 2 3 4 5 7 8rotation 2.0E-05 1.2E-05 ratio A 2 1 1 1 2 2supply stab. 3.0 1.7 ppm B 40 1 1 1 1 2thermal EMFs 0.5 0.3 uV B 8 5 4 3 3 3DVM calib. 15 8.7 ppm B 40 6 6 6 7 9shunt calib. 2 1.2 ppm B 40 1 1 1 1 1window trans. 1.00E-04 5.8E-05 ratio A 2 4 5 6 8 10prism refl. 3.00E-05 1.7E-05 ratio B 2 1 1 2 2 3dT/dλ 3.00E-02 1.7E-02 rel. err. B 8 0 0 1 1 1

TOTAL µ_c mK 12.98 13.13 17.78 24.99 34.33ν_eff 210 24 28 38 41k 1.97 2.06 2.05 2.03 2.02µ_95% mK 26 27 36 51 69

Temp. (C) µ_95% (mK)962 26

1000 261064 271100 291200 321300 361400 441500 511600 601700 69

Page 25: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

15

1. References: [1] “Protocol to the comparison of local realisations of the ITS-90 between the silver point and 1700oC using tungsten strip lamps as transfer standards”, document supplied by NMi (June 1997) [2] “A Precision Photoelectric Pyrometer for the realisation for IPTS-68 above 1064.43oC”, T. P. Jones and J. Tapping: Metrologia 18, pp.23-31 (1982) [3] “The Realization of the IPTS-68 above 1064.43 using the NSL Photoelectric Pyrometer”, T.P. Jones and J. Tapping: Metologia, Vol,8, No.1, pp.4-11(1972) [4] “Recommissioning the NML high precision pyrometer APEP-2”, M. Ballico, Proceedings of 2nd Biennial Conference of the MSA, 1997, Melbourne, Australia [5] “Monochromatic emissivity of tungsten in the temperature range 1200-2600oK and in the wavelength range 0.4-4µm”, Latyev, L.N. et. al., High Temperatures - High Pressures, Vol.2, pp.175-181, 1970 [6] “The Electrical Engineering Handbook”, Editor R. C. Dorf, 1993, CRC Press, London [7] “Guide to the Expression of Uncertainties in Measurement”, International organisation for Standardisation, 1993, ISBN 92-67-10188-9 [8] “Independent Australian realisation of the International temperature scale of 1990 using the recommissioned APEP2 pyrometer”, M. Ballico, CSIRO technical memorandum P-48, November 1997.

Page 26: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 1 -

COMPARISON OF LOCAL REALIZATIONS OF THE ITS-90 BETWEEN THE SILVER POINT AND 1700 °C USING VACUUM TUNGSTEN-STRIP LAMPS AS TRANSFER STANDARDS

Report on measurements performed at IMGC

by T. Ricolfi and M. Battuello

1. Local realization of the ITS-90 1.1 Description of the equipment 1.1.1 Reference thermometers Two different thermometers have been used for this exercise: one working at 655 nm and the other one working at 950 nm. The technical data of these thermometers are reported in Table 1. Table 1. Technical data of the reference thermometers

Item

Thermometer at 655 nm

Thermometer at 950 nm

Focal length of objective 200 mm 200 mm Target distance 600 mm 475 mm Target size 1 mm 1.1 mm Aperture ratio 12:1 11:1 Interference filter - centre wavelength - half width

655 nm 11 nm

950 nm 13.3 nm

Detector Si (Hamamatsu S2386-5K) Si (Hamamatsu S1336-44BQ)Temperature of detector 18 °C 28 °C Amplifier gains 5 gains from 106 to 1010 V/A 3 gains from 5x106 to

5x108 V/A

References in the literature for these thermometers are found in [1] and [2]. 1.1.2 Fixed-point blackbody The silver point is used as reference temperature for realizing the ITS-90. A schematic diagram of the crucible and blackbody assembly is shown in Fig. 1. The metal ingot (about 446 g) is contained into a pure graphite crucible whose available volume is about 48 cm3. The silver sample was supplied by Cominco and its nominal purity is 99.9999%. The blackbody cavity is a cylinder 9.5 mm in diameter and 66 mm in depth which is terminated with a conical bottom. The cavity aperture is delimited by a platinum diaphragm 3 mm in diameter. The effective emissivity of the cavity has been estimated to be 0.99994±0.00001.

Page 27: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 2 -

1.2 Characterization of the reference thermometers 1.2.1 Spectral responsivity The spectral responsivity of the reference thermometers is measured using a monochromator of 500 mm focal length and the experimental setup shown in Fig. 2. The measurement procedure consists of the following operations: (a) Wavelength calibration of the monochromator. This is performed using one or more spectral lamps as radiation sources and a silicon photodiode as detector to localize the spectral lines that are focused onto a circular diaphragm past the exit slit of the monochromator. (b) Measurement of the input spectral curve to the thermometer. A tungsten-strip lamp in front of the entrance slit and a neutral pyroelectric detector with gold-black coating flush with the circular diaphragm are used for this measurement. (c) Measurement of the output spectral curve from the thermometer. After removing the pyroelectric detector, the thermometer is aimed at the diaphragm as shown in Fig. 4. The same spectral distribution previously measured with the neutral detector is then used as input curve to the thermometer and the corresponding output curve is measured. (d) Calculation of the spectral responsivity. The relative spectral responsivity of the thermometer is calculated as the ratio of the measured input and output curves. The standard uncertainty in the effective wavelengths calculated from the measured responsivity curves has been estimated to be 0.05 nm at 655 nm and 0.1 nm at 950 nm. The limiting effective wavelength of the two thermometers has been found to obey to the well known relationship 1/λ = a + b/T where T is expressed in kelvin, λ in nanometers, and a = 1.5272774 x 10-3 b = -7.540588 x 10-4 for the thermometer at 655 nm, and a = 1.053157 x 10-3 b = -3.530246 x 10-4 for the thermometer at 950 nm. 1.2.2 Non-linearity The non-linearity of the signal of the reference thermometers was checked using a flux doubling technique with two lamps and a beam splitter. No non-linearity was found up to

Page 28: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 3 -

the upper limit of the comparison, that is 1700 °C. The standard uncertainty in the non-linearity measurements was estimated to be 1x10-4. 1.2.3 Size-of-source effect The SSE was measured using an integrating sphere as radiance source according to the scheme shown in Fig. 3. To simulate a tungsten strip lamp, measurements were also performed by replacing the central black spot with a black strip 1.5 mm wide. The results are shown in Fig. 4 and Fig. 5. 1.2.4 Gain ratios To cover the interval from the silver point to 1700 °C, the following amplifier gains are used with the two thermometers: - 1010, 109 and 108 V/A for the 655 nm thermometer - 5x108, 5x107 and 5x106 V/A for the 950 nm thermometer The ratios between two adjacent gains were measured using a lamp as radiant source. The results are shown in Table 2. Table 2. Measured gain ratios

Gain ratio

Measured ratio

Thermometer at 655 nm Thermometer at 950 nm 1010/109 9.13711 109/108 11.05242

5x108/5x107 9.98486 5x107/5x106 10.02164

1.3 Procedure for setting up the ITS-90 The scale is established onto a tungsten strip lamp using the thermometers as photoelectric comparators. The steps for setting up the scale are as follows: 1. The thermometer is calibrated at the silver point. Only freezing plateaus are considered in

this operation. The temperature distribution around the blackbody aperture is measured during the freezing plateau.

2. The fixed-point calibration is transferred immediately to a reference lamp and then from this to the lamp under calibration.

3. The lamp is successively brought to temperatures above the silver point. At each temperature the signal ratio between the lamp and the reference lamp maintained at the silver point is measured.

4. After adjusting the signal ratios according to Table 2, the lamp temperatures are calculated using the defining equation of the ITS-90.

Corrections for the SSE are computed as follows:

Page 29: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 4 -

(a) The SSE contribution in the fixed-point furnace is calculated using the curves in Fig. 4 or Fig. 5 relative to the black spot of 1.5 mm and the temperature distributions measured during freezing. Let this contribution be SSEf.

(b) The difference between the two curves in Fig. 4 or Fig. 5 is calculated in correspondence to a source diameter equal to the length of the filament of the lamp. Let ∆SSE be this difference. Note: this procedure implies the assumption of uniform temperature on the lamp filament.

(c) The correction in terms of thermometer signal at the silver point is given by SSEf - ∆SSE. This correction can be converted to temperature through the sensitivity of the thermometer.

(d) The temperature correction at a higher temperature T is given by the product of the correction at TAg by (T/TAg)2.

2. Execution of the intercomparison exercise 2.1 Preliminary operations 2.1.1 Measurement of the room temperature resistance Ramb The room temperature resistance of the lamp element was measured using a AΣL F18 resistance bridge. A reference resistor of 1 Ω was used. 2.1.2 Positioning and checking The guidelines of the protocol were strictly followed for alignment and focussing. Horizontal and angular radiance distributions were measured. 2.1.2 Restabilization of the lamps The restabilization was done according to the protocol guidelines. The thermometer at 655 nm was used. 2.2 Calibration of the lamps The procedure described in Section 1.3 was adopted for calibrating the transfer lamps of the comparison. The calibration at 655 nm and 950 nm was done in parallel, ie, at each current value of the transfer lamp measurements were done in sequence with the two thermometers. For each lamp and for each wavelength two complete runs were done. Note. During the calibration it was noticed that the room light generated a stray radiation component at 655 nm. Measurements at this wavelength were then done in the dark. Similarly, it was noticed that at high temperatures the transfer lamp disturbed the readings on the reference lamp. This problem was overcome by screening the thermometers when observing the reference lamp. 2.3 Total burning time The total burning time was 26 h and 15 minutes for lamp 1 and 24 h and 45 minutes for lamp 2.

Page 30: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 5 -

3. Presentation of results 3.1 Preliminary measurements 3.1.1 Measurements of Ramb The results are reported in Table 3. Table 3 Results relative to Ramb

Lamp Before calibration Ramb (ΩΩΩΩ) tamb(°C)

After calibration Ramb (ΩΩΩΩ) tamb(°C)

1 (C860) 2 (C864)

0.0400998 23.01 0.0418553 22.97

0.0400825 23.00 0.0418636 23.03

3.1.2 Angular distribution of radiance The results of this measurement are reported in Fig. 6 and Fig. 7. 3.1.3 Restabilization The results are shown in Table 4. Table 4 Results of restabilization

Lamp Drift at I(5) after restabilization (°C)

Lamp 1 Lamp 2

-0.022 -0.036

3.2 Results of calibration The results of calibration have been arranged according to the protocol instructions. Those relative to lamp 1 are reported in Tables 5 and 6 and those relative to lamp 2 in Tables 7 and 8. It is to be noted that no corrections for non-linearity have been made. Also the reduction of data at 950 nm to RH =0% has not been applied for lack of information about the effect of humidity on the thermometer.

Page 31: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 6 -

Table 5.A Measurement results at 650 nm for lamp 1 (C860)

No. I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb) (°C)

Tλ(λe;Tb) (°C) corrected for SSE

Ambient conditions tamb(°C) RH%

1st run 1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

5.07185 5.37984 5.94382 6.14082 6.28381 7.29777 8.39772 9.56968 10.80464 12.09859 13.44554

5.07182 5.37981 5.94379 6.14079 6.28378 7.29774 8.39770 9.56966 10.80462 12.09857 13.44552

0.00015 0.00016 0.00018 0.00018 0.00019 0.00023 0.00028 0.00032 0.00036 0.00041 0.00046

0.00018 0.00019 0.00021 0.00021 0.00022 0.00026 0.00030 0.00034 0.00038 0.00043 0.00048

0.99934 1.69970 3.88473 5.01273 5.97897 17.7057245.68871105.3070220.7684427.4003773.5039

0.99915 1.69967 3.88422 5.01297 5.97957 17.7091345.71769105.3350220.8088427.6602773.6516

961.734 999.741 1063.781 1084.852 1099.814 1199.759 1299.735 1399.756 1499.693 1599.528 1699.268

961.721 999.740 1063.771 1084.856 1099.822 1199.778 1299.807 1399.790 1499.719 1599.625 1699.302

961.788 999.798 1063.844 1084.917 1099.881 1199.836 1299.823 1399.855 1499.804 1599.652 1699.406

961.775 999.797 1063.834 1084.921 1099.889 1199.855 1299.895 1399.889 1499.830 1599.749 1699.440

22.9 22.9 22.9 22.9 23.0 23.0 22.9 23.0 23.0 23.0 23.0

22.9 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.1

46.2 46.8 46.3 46.9 47.8 47.5 47.9 48.3 48.8 48.2 49.2

57.0 56.3 55.8 55.9 56.1 57.0 57.5 56.7 51.4 51.0 52.0

Page 32: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 7 -

Table 5.B Measurement results at 650 nm for lamp 1 (C860) ..(continued)

No. λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb)(°C)

Tb (°C)

∂Tλ/∂Τb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[(λr;I(l)](°C)

∂Tλ/∂Ι (°C/A)

∆Tλ(Ι)(°C)

Tλ[(λr;I(j)](°C)

Tλλλλ final (°C)

1st run

1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

655.022 655.014 655.002 654.998 654.995 654.979 654.965 654.953 654.942 654.933 654.924

655.022 655.014 655.002 654.998 654.995 654.979 654.965 654.953 654.942 654.933 654.924

961.788 999.798 1063.844 1084.917 1099.881 1199.836 1299.823 1399.855 1499.804 1599.652 1699.406

961.775 999.797 1063.834 1084.921 1099.889 1199.855 1299.895 1399.889 1499.830 1599.749 1699.440

-0.111 -0.118 -0.131 -0.135 -0.139 -0.161 -0.186 -0.213 -0.242 -0.273 -0.307

-0.111 -0.118 -0.131 -0.135 -0.139 -0.161 -0.186 -0.213 -0.242 -0.273 -0.307

0.557 0.592 0.655 0.675 0.694 0.802 0.924 1.055 1.196 1.347 1.512

0.557 0.592 0.655 0.675 0.694 0.802 0.924 1.055 1.196 1.347 1.512

962.345 1000.3901064.4991085.5921100.5751200.6381300.7471400.9101501.0001600.9991700.918

962.332 1000.3891064.4891085.5961100.5831200.6571300.8191400.9441501.0261601.0961700.952

19.98 19.99 20.01 20.02 20.02 20.02 20.00 20.01 20.01 19.99 20.00

20.00 20.02 19.99 20.00 19.98 20.01 20.00 20.01 20.01 19.99 20.00

0.048 0.032 0.015 0.013 0.011

0.048 0.032 0.015 0.013 0.011

0.0001 0.0003 -0.0002 -0.0003 -0.0002

0.0000 -0.0006 0.0002 0.0000 0.0002

962.346 1000.390 1064.499 1085.591 1100.575 1200.638 1300.747 1400.910 1501.000 1600.999 1700.918

962.332 1000.388 1064.489 1085.596 1100.584 1200.657 1300.819 1400.944 1501.026 1601.096 1700.952

127.27119.48108.71105.80103.9094.32 88.09 83.16 79.00 75.81 72.11

127.27119.48108.71105.80103.9094.32 88.09 83.16 79.00 75.81 72.11

0.019 0.019 0.020 0.019 0.020 0.022 0.025 0.027 0.028 0.031 0.033

0.023 0.023 0.023 0.022 0.023 0.025 0.026 0.028 0.030 0.033 0.035

962.365 1000.409 1064.519 1085.610 1100.595 1200.660 1300.772 1400.937 1501.028 1601.030 1700.951

962.355 1000.411 1064.512 1085.618 1100.607 1200.682 1300.845 1400.972 1501.056 1601.131 1700.987

962.360 1000.410 1064.516 1085.614 1100.601 1200.671 1300.809 1400.955 1501.042 1601.081 1700.969

Page 33: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 8 -

Table 6.A Measurement results at 950 nm for lamp 1 (C860)

No. I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb)(°C)

Tλ(λe;Tb) (°C) corrected for SSE

Ambient conditions tamb(°C) RH%

1st run 1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

5.07185 5.37984 5.94382 6.14082 6.28381 7.29777 8.39772 9.56968 10.80464 12.09859 13.44554

5.07182 5.37981 5.94379 6.14079 6.28378 7.29774 8.39770 9.56966 10.80462 12.09857 13.44552

0.00015 0.00016 0.00018 0.00018 0.00019 0.00023 0.00028 0.00032 0.00036 0.00041 0.00046

0.00018 0.00019 0.00021 0.00021 0.00022 0.00026 0.00030 0.00034 0.00038 0.00043 0.00048

0.65145 0.93751 1.65132 1.96636 2.21859 4.66618 8.93079 15.8138626.2444741.2588561.91307

0.65141 0.93762 1.65131 1.96624 2.21839 4.66653 8.93103 15.8174626.2526641.2677661.91912

920.092 955.318 1014.4281033.8251047.5771139.1161230.0871320.4341410.1211499.1981587.525

920.086 955.329 1014.4271033.8181047.5661139.1261230.0911320.4721410.1791499.2431587.548

920.120 955.348 1014.461 1033.859 1047.612 1139.156 1230.132 1320.485 1410.179 1499.262 1587.596

920.114 955.359 1014.460 1033.852 1047.601 1139.166 1230.136 1320.523 1410.237 1499.307 1587.619

22.9 22.9 22.9 22.9 23.0 23.0 22.9 23.0 23.0 23.0 23.0

22.9 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.1

46.2 46.8 46.3 46.9 47.8 47.5 47.9 48.3 48.8 48.2 49.2

57.0 56.3 55.8 55.9 56.1 57.0 57.5 56.7 51.4 51.0 52.0

Page 34: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 9 -

Table 6.B Measurement results at 950 nm for lamp 1 (C860) ..(continued)

No. λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb)(°C)

Tb (°C)

∂Tλ/∂Τb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[(λr;I(l)](°C)

∂Tλ/∂Ι(°C/A)

∆Tλ(Ι)(°C)

Tλ[(λr;I(j)](°C)

Tλλλλ final (°C)

1st run

1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

949.793 949.785 949.773 949.770 949.767 949.751 949.738 949.726 949.715 949.706 949.697

949.793 949.785 949.773 949.770 949.767 949.751 949.738 949.726 949.715 949.706 949.697

920.120 955.348 1014.461 1033.859 1047.612 1139.156 1230.132 1320.485 1410.179 1499.262 1587.596

920.114 955.359 1014.460 1033.852 1047.601 1139.166 1230.136 1320.523 1410.237 1499.307 1587.619

-0.162 -0.172 -0.190 -0.196 -0.200 -0.230 -0.262 -0.296 -0.332 -0.369 -0.409

-0.162 -0.172 -0.190 -0.196 -0.200 -0.230 -0.262 -0.296 -0.332 -0.369 -0.409

-0.034 -0.037 -0.043 -0.045 -0.047 -0.057 -0.069 -0.081 -0.095 -0.108 -0.124

-0.034 -0.037 -0.043 -0.045 -0.047 -0.057 -0.069 -0.081 -0.095 -0.108 -0.124

920.086 955.311 1014.4181033.8141047.5651139.0991230.0631320.4041410.0841499.1541587.472

920.080 955.322 1014.4171033.8071047.5541139.1091230.0671320.4421410.1421499.1991587.495

19.98 19.99 20.01 20.02 20.02 20.02 20.00 20.01 20.01 19.99 20.00

20.00 20.02 19.99 20.00 19.98 20.01 20.00 20.01 20.01 19.99 20.00

0.048 0.032 0.015 0.013 0.011

0.048 0.032 0.015 0.013 0.011

0.0001 0.0003 -0.0002 -0.0003 -0.0002

0.0000 -0.0006 0.0002 0.0000 0.0002

920.087 955.311 1014.418 1033.814 1047.565 1139.099 1230.063 1320.404 1410.084 1499.154 1587.472

920.080 955.321 1014.417 1033.807 1047.554 1139.109 1230.067 1320.442 1410.142 1499.199 1587.495

117.97110.43100.0297.19 95.36 85.99 79.75 74.74 70.55 67.35 63.21

117.97110.43100.0297.19 95.36 85.99 79.75 74.74 70.55 67.35 63.21

0.018 0.018 0.018 0.017 0.018 0.020 0.022 0.024 0.025 0.028 0.029

0.021 0.021 0.021 0.020 0.021 0.022 0.024 0.025 0.027 0.029 0.030

920.105 955.329 1014.436 1033.831 1047.583 1139.119 1230.085 1320.428 1410.109 1499.182 1587.501

920.101 955.342 1014.438 1033.827 1047.575 1139.131 1230.091 1320.467 1410.169 1499.228 1587.525

920.103 955.336 1014.437 1033.829 1047.579 1139.125 1230.088 1320.448 1410.139 1499.205 1587.513

Page 35: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 10 -

Table 7.A Measurement results at 650 nm for lamp 2 (C864)

No. I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb)(°C)

Tλ(λe;Tb) (°C) corrected for SSE

Ambient conditions tamb(°C) RH%

1st run 1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

4.933 5.236 5.788 5.980 6.120 7.107 8.177 9.314 10.513 11.767 13.074

4.933 5.236 5.788 5.980 6.120 7.107 8.177 9.314 10.513 11.767 13.074

4.93282 5.23581 5.78779 5.97979 6.11978 7.10674 8.17670 9.31366 10.51262 11.76657 13.07353

4.93277 5.23576 5.78774 5.97973 6.11972 7.10669 8.17665 9.31361 10.51256 11.76652 13.07348

0.00018 0.00019 0.00021 0.00021 0.00022 0.00026 0.00030 0.00034 0.00038 0.00043 0.00047

0.00023 0.00024 0.00026 0.00027 0.00028 0.00031 0.00035 0.00039 0.00044 0.00048 0.00052

0.99749 1.69629 3.87542 4.99793 5.96558 17.6740045.65080105.1127220.4656426.6824772.5184

0.99741 1.69680 3.87447 4.99677 5.96407 17.6683745.63880105.1121220.4484426.7341772.7902

961.606 999.593 1063.5861084.6041099.6211199.5821299.6421399.5211499.4971599.2601699.043

961.600 999.615 1063.5661084.5841099.6001199.5511299.6121399.5201499.4861599.2791699.105

961.660 999.650 1063.649 1084.669 1099.688 1199.659 1299.730 1399.620 1499.608 1599.384 1699.181

961.654 999.672 1063.629 1084.649 1099.667 1199.628 1299.700 1399.619 1499.597 1599.403 1699.243

23.1 23.0 23.0 22.9 23.0 23.0 23.0 22.9 22.9 23.0 23.0

23.1 22.9 22.9 22.9 23.0 23.0 23.0 23.1 23.1 23.0 23.1

44.7 46.3 47.2 48.5 49.2 50.0 50.7 51.1 46.4 47.0 47.2

38.0 38.4 39.2 40.3 40.7 42.1 41.8 42.2 41.9 36.0 35.7

Page 36: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 11 -

Table 7.B Measurement results at 650 nm for lamp 2 (C864) ..(continued)

No. λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb)(°C)

Tb (°C)

∂Tλ/∂Τb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[(λr;I(l)](°C)

∂Tλ/∂Ι (°C/A)

∆Tλ(Ι)(°C)

Tλ[(λr;I(j)](°C)

Tλλλλ final (°C)

1st run

1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

655.022 655.014 655.002 654.998 654.995 654.979 654.965 654.953 654.942 654.933 654.924

655.022 655.014 655.002 654.998 654.995 654.979 654.965 654.953 654.942 654.933 654.924

961.660 999.650 1063.649 1084.669 1099.688 1199.659 1299.730 1399.620 1499.608 1599.384 1699.181

961.654 999.672 1063.629 1084.649 1099.667 1199.628 1299.700 1399.619 1499.597 1599.403 1699.243

-0.111 -0.118 -0.131 -0.135 -0.139 -0.161 -0.186 -0.213 -0.242 -0.273 -0.307

-0.111 -0.118 -0.131 -0.135 -0.139 -0.161 -0.186 -0.213 -0.242 -0.273 -0.307

0.557 0.592 0.655 0.675 0.694 0.802 0.924 1.055 1.196 1.347 1.512

0.557 0.592 0.655 0.675 0.694 0.802 0.924 1.055 1.196 1.347 1.512

962.217 1000.2421064.3041085.3441100.3821200.4611300.6541400.6751500.8041600.7311700.693

962.211 1000.2641064.2841085.3241100.3611200.4301300.6241400.6741500.7931600.7501700.755

20.00 20.00 20.01 20.00 20.01 20.00 20.01 20.01 20.00 20.00 20.01

19.99 20.01 20.02 20.01 20.01 20.00 20.01 20.01 20.01 20.01 20.00

0.042 0.028 0.012 0.001 0.009

0.042 0.028 0.012 0.001 0.009

0.0000 0.0000 -0.0001 0.0000 0.0000

0.0004 -0.0003 -0.0002 0.0000 0.0000

962.217 1000.242 1064.304 1085.344 1100.382 1200.461 1300.654 1400.675 1500.804 1600.731 1700.693

962.212 1000.263 1064.284 1085.324 1100.361 1200.430 1300.624 1400.674 1500.793 1600.750 1700.755

129.08121.62111.25108.42106.5697.02 90.65 85.64 81.44 78.16 74.41

129.08121.62111.25108.42106.5697.02 90.65 85.64 81.44 78.16 74.41

0.023 0.023 0.023 0.023 0.023 0.025 0.027 0.029 0.031 0.034 0.035

0.030 0.029 0.029 0.029 0.030 0.030 0.032 0.033 0.036 0.038 0.039

962.240 1000.265 1064.327 1085.367 1100.405 1200.486 1300.681 1400.704 1500.835 1600.765 1700.728

962.242 1000.292 1064.313 1085.353 1100.391 1200.460 1300.656 1400.707 1500.829 1600.788 1700.794

962.241 1000.278 1064.320 1085.360 1100.398 1200.473 1300.669 1400.706 1500.832 1600.777 1700.761

Page 37: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 12 -

Table 8.A Measurement results at 950 nm for lamp 2 (C864)

No. I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb)(°C)

Tλ(λe;Tb) (°C) corrected for SSE

Ambient conditions tamb(°C) RH%

1st run 1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

4.933 5.236 5.788 5.980 6.120 7.107 8.177 9.314 10.513 11.767 13.074

4.933 5.236 5.788 5.980 6.120 7.107 8.177 9.314 10.513 11.767 13.074

4.93282 5.23581 5.78779 5.97979 6.11978 7.10674 8.17670 9.31366 10.51262 11.76657 13.07353

4.93277 5.23576 5.78774 5.97973 6.11972 7.10669 8.17665 9.31361 10.51256 11.76652 13.07348

0.00018 0.00019 0.00021 0.00021 0.00022 0.00026 0.00030 0.00034 0.00038 0.00043 0.00047

0.00023 0.00024 0.00026 0.00027 0.00028 0.00031 0.00035 0.00039 0.00044 0.00048 0.00052

0.64905 0.93389 1.64419 1.95759 2.21006 4.64957 8.90573 15.7661726.1751341.1363161.77647

0.64880 0.93364 1.64426 1.95769 2.20964 4.64993 8.90418 15.7635526.1723741.1409661.77472

919.745 954.932 1013.9551033.3211047.1331138.6471229.6681319.9281409.6261498.5821587.021

919.709 954.906 1013.9591033.3271047.1111138.6571229.6421319.9001409.6061498.6051587.014

919.773 954.962 1013.988 1033.355 1047.168 1138.687 1229.713 1319.979 1409.684 1498.646 1587.092

919.737 954.936 1013.992 1033.361 1047.146 1138.697 1229.687 1319.951 1409.664 1498.669 1587.085

23.1 23.0 23.0 22.9 23.0 23.0 23.0 22.9 22.9 23.0 23.0

23.1 22.9 22.9 22.9 23.0 23.0 23.0 23.1 23.1 23.0 23.1

44.7 46.3 47.2 48.5 49.2 50.0 50.7 51.1 46.4 47.0 47.2

38.0 38.4 39.2 40.3 40.7 42.1 41.8 42.2 41.9 36.0 35.7

Page 38: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 13 -

Table 8.B Measurement results at 950 nm for lamp 2 (C864) ..(continued)

No. λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb)(°C)

Tb (°C)

∂Tλ/∂Τb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[(λr;I(l)](°C)

∂Tλ/∂Ι (°C/A)

∆Tλ(Ι)(°C)

Tλ[(λr;I(j)](°C)

Tλλλλ final (°C)

1st run

1 2 3 4 5 6 7 8 9

10 11

2nd run 1 2 3 4 5 6 7 8 9

10 11

949.793 949.785 949.773 949.770 949.767 949.752 949.738 949.726 949.715 949.706 949.697

949.793 949.785 949.773 949.770 949.767 949.752 949.738 949.726 949.715 949.706 949.697

919.773 954.962 1013.988 1033.355 1047.168 1138.687 1229.713 1319.979 1409.684 1498.646 1587.092

919.737 954.936 1013.992 1033.361 1047.146 1138.697 1229.687 1319.951 1409.664 1498.669 1587.085

-0.162 -0.172 -0.190 -0.196 -0.200 -0.230 -0.262 -0.296 -0.332 -0.369 -0.409

-0.162 -0.172 -0.190 -0.196 -0.200 -0.230 -0.262 -0.296 -0.332 -0.369 -0.409

-0.034 -0.037 -0.043 -0.045 -0.047 -0.057 -0.069 -0.081 -0.095 -0.108 -0.124

-0.034 -0.037 -0.043 -0.045 -0.047 -0.057 -0.069 -0.081 -0.095 -0.108 -0.124

919.739 954.925 1013.9451033.3101047.1211138.6301229.6441319.8981409.5891498.5381586.968

919.703 954.899 1013.9491033.3161047.0991138.6401229.6181319.8701409.5691498.5611586.961

20.00 20.00 20.01 20.00 20.01 20.00 20.01 20.01 20.00 20.00 20.01

19.99 20.01 20.02 20.01 20.01 20.00 20.01 20.01 20.01 20.01 20.00

0.042 0.028 0.012 0.001 0.009

0.042 0.028 0.012 0.001 0.009

0.0000 0.0000 -0.0001 0.0000 0.0000

0.0004 -0.0003 -0.0002 0.0000 0.0000

919.739 954.925 1013.945 1033.310 1047.121 1138.630 1229.644 1319.898 1409.589 1498.538 1586.968

919.703 954.899 1013.949 1033.316 1047.099 1138.640 1229.618 1319.870 1409.569 1498.561 1586.961

119.56112.35102.3299.57 97.77 88.43 82.07 76.99 72.71 69.37 65.55

119.56112.35102.3299.57 97.77 88.43 82.07 76.99 72.71 69.37 65.55

0.022 0.021 0.021 0.021 0.022 0.023 0.025 0.026 0.028 0.030 0.031

0.027 0.027 0.027 0.027 0.027 0.027 0.029 0.030 0.032 0.033 0.034

919.761 954.946 1013.966 1033.331 1047.143 1138.653 1229.669 1319.924 1409.617 1498.568 1586.999

919.730 954.926 1013.976 1033.343 1047.126 1138.667 1229.647 1319.900 1409.601 1498.594 1586.995

919.746 954.936 1013.971 1033.337 1047.135 1138.660 1229.658 1319.912 1409.609 1498.581 1586.997

Page 39: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 14 -

4. Uncertainties The uncertainties in the final radiance temperature Tλ originate from the combination of the uncertainties in the measured Tλ(λe;Tb) and the uncertainties in the corrections. A map of the various uncertainty sources is shown in Fig. 8. The standard uncertainty estimates at the various calibration points are reported in Tables 9 and Table 10. Because the uncertainties were the same for the two lamps, only those referring to lamp 1 have been reported. The labels in the tables should be read as follows: - s (TAg): uncertainty in the fixed-point calibration - s (λe): uncertainty in the effective wavelength - s(R): uncertainty in the signal ratio - s(x;y;θ;ϕ): uncertainty in positioning - s(SSE): uncertainty in the size-of-source effect correction - s[Tλ(λ)]: uncertainty in the wavelength correction - s[Tλ(Tb)]: uncertainty in the base temperature correction - s[Tλ(I)]: uncertainty in the current correction

Page 40: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 15 -

Table 9 Uncertainties at 650 nm for lamp 1

I(j) (A)

Tλ final

(°C)

Standard uncertainty components

(°C)

Combined standard

uncertainty (°C)

s(TAg) s(λe) s(R) s(x;y;θ;ϕ) s(SSE) s[Tλ(λ)] s[Tλ(Ι)]

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

962.360 1000.410 1064.516 1085.614 1100.601 1200.671 1300.809 1400.955 1501.042 1601.081 1700.969

0.020 0.021 0.023 0.024 0.025 0.028 0.032 0.037 0.041 0.046 0.051

0.000 0.003 0.008 0.010 0.012 0.022 0.033 0.045 0.059 0.074 0.090

0.007 0.007 0.008 0.008 0.009 0.020 0.022 0.038 0.043 0.048 0.053

0.028 0.030 0.032 0.034 0.034 0.040 0.044 0.050 0.056 0.064 0.070

0.011 0.011 0.013 0.013 0.013 0.015 0.018 0.020 0.022 0.025 0.028

0.056 0.059 0.065 0.068 0.069 0.080 0.092 0.105 0.120 0.135 0.151

0.026 0.024 0.022 0.022 0.020 0.018 0.018 0.016 0.016 0.016 0.014

0.072 0.075 0.081 0.085 0.086 0.101 0.117 0.138 0.159 0.182 0.205

Page 41: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 16 -

Table 10 Uncertainties at 950 nm for lamp 1

I(j) (A)

Tλ final

(°C)

Standard uncertainty components

(°C)

Combined standard

uncertainty (°C)

s(TAg) s(λe) s(R) s(x;y;θ;ϕ) s(SSE) s[Tλ(λ)] s[Tλ(Ι)]

5.072 5.380 5.944 6.141 6.284 7.298 8.398 9.570 10.805 12.099 13.446

920.103 955.336 1014.437 1033.829 1047.579 1139.125 1230.088 1320.448 1410.139 1499.205 1587.513

0.028 0.030 0.033 0.034 0.034 0.039 0.044 0.050 0.056 0.062 0.068

0.004 0.000 0.006 0.008 0.010 0.021 0.034 0.049 0.064 0.081 0.099

0.009 0.010 0.011 0.011 0.012 0.013 0.030 0.034 0.037 0.041 0.069

0.038 0.040 0.044 0.046 0.046 0.052 0.060 0.068 0.074 0.082 0.092

0.006 0.006 0.007 0.007 0.007 0.008 0.009 0.010 0.012 0.013 0.014

0.003 0.004 0.004 0.005 0.005 0.006 0.007 0.008 0.009 0.011 0.012

0.024 0.022 0.020 0.020 0.020 0.018 0.016 0.014 0.014 0.014 0.012

0.054 0.056 0.060 0.063 0.063 0.073 0.089 0.105 0.120 0.139 0.168

Page 42: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Key comparison lamps - IMGC

- 17 -

References 1. T. Ricolfi and F. Girard: "Precision radiation thermometer for the realization of the ITS-

90 above 962 °C". In: Proc. TEMPBEIJING '97, B. Zhang, L. Han, X. Zhao (eds.). Standards Press of China, Beijing (1997), pp. 55-60

2. M. Battuello, T. Ricolfi and L. Wang: "Realization of the ITS-90 above 962 °C with a photodiode-array radiation thermometer". Metrologia 32, 371-378 (1995/96)

Page 43: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 1 rap_comp_inter3_INM.doc

Bureau National de Métrologie / Institut National de Métrologie BNM / INM

CNAM, 292, rue Saint Martin 75003 Paris Bernard Rougié rougie@cnam/fr tel : 01 40 27 20 22

Georges Bonnier bonnier@cnam/fr tel : 01 40 27 21 58 Georges Negro negro@cnam/fr tel : 01 40 27 25 96

Fax 01 42 71 37 36

CCT : Radiance temperature comparison results Two transfer lamps N° 860 and 864 from the CCT temperature key comparison loop N°2 have been

measured in BNM-INM in September 1998. They came from NPL and were sent to IMGC. This report fits as well as possible with the proposed design report. Description of measurement apparatus, procedure, uncertainty and radiance temperature results are given.

1. Experimental and theoretical procedures 1.1. Realisation of ITS90

1.1.1. Description of the apparatus

1.1.1.1. Reference black body radiator The reference is a copper fixed point black body. The gold point black body we intended to use failed

during CCT lamps measurements.

The whole radiant part is graphite made. The diaphragm cavity diameter is 8 mm and the length 70 mm. It is included in an horizontal quartz cell opened on the observing side. An Helium gas flow prevents oxidation and reduces optical move of black body’s image.

The heating device is made of 18 ‘Kanthal’ elements. They are separated in 3 zones regulated by three independent regulators. The temperature uniformity is checked to be better than 1 K along the crucible.

The crucible is prepared in liquid phase on a high purity metal filling bench. It contains 800 g of high purity copper(99.995%). After operation, copper and graphite filling pieces samples are picked up for impurity analyse.

1.1.2. Procedure The black body is previously stabilised at a 2°C temperature under or above the melting or freezing point.

Then the regulator set point is changed for 4 °C up or down so that the temperature pass beyond the melting or freezing point. The radiance temperature sampling interval time is 2 mn. To observe the freezing point we must give a set point 15°C under the freezing temperature up to the beginning of the plateau to overrun the copper over cooling effect.

The plateau is defined as the time range where measurements are not more different than 0.05 K away from the average. The temperature plateau uncertainty is 0.25 K.

1.1.3. Spectral radiance temperature This temperature is the black body cavity internal wall one, it will be given as ‘reference temperature’ in

the results table.

1.1.3.1. Temperature difference due to the wall of the cavity The temperature gradient through the graphite thickness as been computed taking in account the radiant

power loss and the graphite wall thermal conductivity. The gradient is very low : 0.004 K. Its uncertainty will be neglected. The value T(FP) is the ITS-90 copper freezing point minus the gradient value.

Page 44: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 2 rap_comp_inter3_INM.doc

1.1.3.2. Emissivity correction The emissivity has been computed by Monte Carlo method : Its value is 0.9994 with an uncertainty of

0.0002.

1.1.3.3. Impurities The copper impurity analyse shows among 20 tested metals a rate no larger than 5 ppm except a 10 ppm

rate for silver. The corresponding change in freezing temperature will be neglected.

1.2. Transfer of radiance temperatures to strip lamps

1.2.1. Thermometer The light sources (reference fixed point black body, lamps, alignment laser and spectral line lamps) are

placed on a fix bench.

The measurement device, pyrometer, is a complicated one with a two mirrors optical entrance, a monochromator and detectors, placed on a single moving stage allowing a 1.6 m range of movement. Additional functions such as linearity measurement, CCD camera for sources alignment and internal alignment laser are available.

The optical entrance is constituted by a concave and a convex gold coated mirror. The image magnification is unity, the focusing distance of the main concave mirror is 1 meter and the frontal distance from source to aperture stop is 500 mm.

The aperture and field stops are respectively 45 mm ( *or 25 mm) and 0.5 mm circular diaphragms. So the geometrical extend is defined by a 0.006 sr solid angle and a 0.25 mm² field area ( *: Solid angle is 0.0019 sr for a few part of our first measurements).

The spectral selection is achieved with a monochromator. It is a Czerny-Turner type with 0.5 focal distance and 1200gr/mm grating. The slit function has a symmetrical trapezoidal shape (middle height width 3.2 nm).

The detector is a silicon photo diode 1337 Hamamatsu type whose output current is collected by a trans-impedance amplifier. The value of impedance is 109 or 1010. Its linearity has been checked by the linearity measurement device included in the optical entrance arrangement.

All the elements, optical entrance, monochromator and detector are taken as a single device we call here pyrometer.

1.2.2. Procedure The temperature measurement of lamps is made by comparing lamps with a copper fixed point black

body. The gold point black body we intended to use failed during CCT lamps measurements. This defect has increased the lamps burning time.

We can consider that lamps are directly compared to the black body, but with a roughly 10 hours comparing time. The stability of the pyrometer is good enough to assume that there is no change in the response pyrometer for 10 hours. Furthermore the freezing and melting plateau have been previously checked not to be more different than 25 mK. According to this, we have made the pyrometer response measurement, said “ pyrometer calibration ”, in front of the fixed point black body, two times a day : The first one in the morning by observing the melting plateau and the second one in the evening with the freezing plateau.

The relative change in response along the day was always lower than 5.10-4. A linear interpolation has been done to compute the equivalent response for each lamp measurement time.

The pyrometer calibration has been made only for the 650 nm wavelength. Along the day the ratio of 950 nm and 650 nm pyrometer response with the black body has been measured so that we could compute the equivalent response at 950 nm as well as 650 nm.

The two lamps of the CCT comparison have been measured together at both wavelengths by the pyrometer for a period between the ‘morning’ and ‘evening’ pyrometer calibrations. A local lamp has been regularly included in the measurement cycle to give an information on pyrometer stability.

Page 45: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 3 rap_comp_inter3_INM.doc

The whole calibration procedure (§ 3.2.2) has been exactly executed. The valid temperature measurements have been done in five runs, each one including current number (1 to 5) or (5 to 11) and one (5,7,9,11 and 11) for particular check.

We didn’t make the radiance temperature measurement at the 950 nm wavelength for the current numbers 10 and 11. In our procedure this measurement generates a range of photo current larger than 1 to 1000 that we can not accept for several reasons. We didn’t make the additional run which was necessary and would have added a delay in the comparison schedule.

2. Results and uncertainties description 2.1. Reference black body radiator

The internal wall radiance temperature of the black body is 1357.766 K. It appears in the results as ‘reference black body radiator (T[FP])’. The emissivity is taken in account by dividing the measured black body flux by its value (0.9996). This correction, included in the photo current ratio, does not appear in results tables. Its uncertainty is 0.0002.

2.2. Reference thermometer

2.2.1. Ratio of photo current The interval time separating lamp and black body photo currents measurements is about 5 hours. We

adopt as photo current ratio’s uncertainty the relative pyrometer response drift during this time. Although we have made a linear interpolation of pyrometer sensitivity we choose its drift, 0.015%, as the 1/3rd of difference between ‘morning’ and ‘evening’ pyrometer calibration.

2.2.2. Source size effect The device designed for this correction did not operate as we hoped at 650 nm and 950 nm. Hence, the

measurement has been made with a device lent for a few days by a sphere manufacturer. We can not do measurements for various radiuses of the sphere but the sphere radius , r=19 mm, corresponds to the hottest part of the black body. The radiance homogeneity is checked to be better than 2% on its entire area. A 5 mm length and r0=2.5 mm radius graphite cavity is placed in the centre of the sphere aperture and SSE value is computed as the flux in the black centre target divided by the flux on an other part of the sphere aperture.

Wavelength SSE(2.5 mm, 19 mm)

650 nm 1.8E-03

950 nm 2.0E-03

Due to the large difference between the black body and the lamp radiation area, we consider that the correction applied can only take in account the black body size of source effect. The uncertainty related to this effect is enlarged by 1/3rd of the correction value itself because of the absence of lamp effect measurement.

2.2.3. Spectral parameters

2.2.3.1. Wavelength selection The central wavelength value of the monochromator spectral transfer function has been calibrated by the

mean of several spectral lines of Mercury and Rubidium. The wavelengths are given in normal air condition. The reproducibility is 0.005 nm but the non linearity of wavelength versus mechanical translation increases uncertainty up to 0.02 nm.

Important note : Due to a mistake in the reading of the wavelength calibration table, the 900 nm value has been chosen in place of the 950 nm one. All the measurements have been done at the 900 nm wavelength.

Because of spectral width the effective wavelength is not exactly equal to the central wavelength, but it does not differ from the central one more than 0.02 nm for all temperatures.

Page 46: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 4 rap_comp_inter3_INM.doc

2.2.3.2. Blocking The transmittance, outside the transfer function, is not exactly null. Hence, the flux is affected for a small

part by the entire spectrum of the source. By using band pass and high pass filters we have evaluated the relative parasite part of flux. This has been done only for the black body. The blocking effect is 4.10-3 for 650 nm. The blocking effect is ten times lower for 950 nm and will be neglected. We estimate that our measurement can not lead to a correction but gives the uncertainty related to this effect.

Assuming that the parasite transmittance is constant in the active spectral range, we have computed the part of flux coming from outside the central transfer function.

Dif T Pl T Se d( ) ( , ) ( )= ⋅ ⋅ ⋅∫α λ λ λ600

1050

Dif(T) : is the parasite part of flux with T the real temperature of the source.

Pl(λ,T) : Planck law

Se(λ) : global spectral sensitivity of pyrometer

α : Coefficient computed for Dif(T) to be equal to the one measured with the black body.

This assumption gives a weight too large to the wavelengths far from 650 nm and maximises the corresponding error.

The relative photo current ratio change due to unperfected blocking is equal to Dif(Tblack-body)-Dif(Tlampe). We give computation result and we consider it as the uncertainty due to this effect.

Temperature 960°C 1300°C 1700°C

Flux ratio uncertainty

4.10-4 9.10-4 1.210-3

Temperature uncertainty

0.026 0.102 0.220

2.3. Transfer lamps

2.3.1. Lamp current correction The current in the lamps is given by measuring the voltage on a resistor placed in the circuit . It is

regularly set at a value very close to the one of current table. The remaining correction is made by using a first order polynomial evaluation of dTλ(I)/dI.

The uncertainty of current measurement is 5.10-5.

2.3.2. Base temperature correction These corrections have been made according to the procedure. They are very low. Their uncertainty is not

very well established. We estimate it to 0.2 °C for ‘Tbase’ giving rise to 0.01 °C for radiance temperature in the worse condition.

2.3.3. Residual parameters

2.3.3.1. Light sources position Various scans of the horizontal transverse radiance of the ribbon have been done at several positions of

the lamps along the optical axis and several height levels up and down around the notch. A scan is a set of eleven values acquired within 1.5 mm.

2.3.3.1.1. Focusing The focusing position along the optical axis has been derived from these scans. The position sensitivity is

about 0.5% of the distance from the lamp to the focusing mirror. The width of the plateau is 0.6 mm for the best position.

Page 47: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 5 rap_comp_inter3_INM.doc

2.3.3.1.2. Orientation The temperature variation versus angle around vertical axis shows a very sensitive change for the 864

lamp. The slope is 0.86 K/°. This value leads to a very important uncertainty and we wish it could result from a wrong measurement. It would be interesting to compare this result to the one which would have been done by other laboratories.

y = 0.0875x2 + 0.866x + 1099.7

1097.01097.51098.01098.51099.01099.51100.01100.51101.01101.51102.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Lamp C864

Lamp C860

Polynomial (LampC864)

Figure 1 Temperature versus angle of orientation

2.3.3.1.3. Horizontal and vertical transverse position We have evaluated the horizontal position as the centre of the graph of a scan. This one fits with the value

given by the CCD camera better than 0.1 mm.

The scan graphs done at different heights around the notch show a loss of signal by the same height and side of the notch as we thought it would be..

The slope of the radiance has been evaluated around the central point :

horizontal vertical L860 0 0.12 %/mm L864 0.8 %/mm 0.15 %/mm

The alignment uncertainties are evaluated to 0.1 mm for position and 0.2° for orientation from which we can derive radiance and temperature uncertainties by using the position and orientation gradients.

2.4. Numerical characteristics table Effective wavelength (air condition) 650 nm/900 nm

Half width of spectral response function 3.2 nm

Aperture ratio (f number) 0.08 (f/12) ; 0.05 for 5 measurements

Target distance 500 mm

Target field dimension 0.5 mm diameter

Size of source effect r0 = 2.5 mm, r = 19 mm

Effective source diameter for SSE lamp ~0, Black body 25 mm

Nominal base temperature/ stability value 20,3°C / 0,2°C

Total burning time 35 hours

2.5. Results table Note : as explain in §2.2.3, the 900 nm wavelength has been measured instead of the 950 nm one

Page 48: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 6 rap_comp_inter3_INM.doc

MEAN

wavelength in air condition

Lamp 860 Lamp 864

Nbrmeas 650 nm 900 nm 650 nm 900 nm

1 961.71 927.79 962.08 927.76

2 999.75 963.52 1000.11 963.46

3 1063.82 1023.51 1064.13 1023.40

4 1084.92 1043.23 1085.19 1043.06

5 1099.90 1057.18 1100.26 1057.11

6 1199.95 1150.24 1200.24 1150.08

7 1299.88 1242.52 1300.49 1242.72

8 1400.01 1334.70 1400.41 1334.57

9 1499.92 1426.05 1500.50 1426.03

10 1599.90 1600.48

11 1699.71 1700.40

Page 49: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 7 rap_comp_inter3_INM.doc

2.6. Table of uncertainties We give the values of uncertainties for the lowest medium and highest temperature.

Uncertainty on parameter

960°C 1300°C 1700°C

Wavelength 650 950 650 950 650 950 650 950

Reference black body radiator

0.03K 0.035 K 0.023 0.026 0.038 0.043 0.061 0.068

Photo current measurement

0.015% 0.015% 0.010 0.014 0.016 0.022 0.026 0.035

Photo current linearity

0.01% 0.01% 0.007 0.009 0.011 0.015 0.017 0.024

Size of source effect 0.06% 0.07% 0.040 0.064 0.065 0.105 0.102 0.165

Blocking - - 0.026 - 0.102 - 0.22 -

Wavelength knowledge

0.02 nm - 0.003 0.003 0.008 0.006 0.028 0.020

Lamp current : resistor and Voltmeter calibration

0.005% - 0.030 0.030 0.036 0.036 0.049 0.049

Lamp short term stability

Drift

- - - - - - - -

Dependence on base temperature dT with

dTb

0.2°C - 0.01 0.01 - - - -

Alignment 0.1 mm L860 0.008 0.011 0.013 0.018 0.020 0.028

0.1 mm L864 0.053 0.074 0.086 0.120 0.136 0.188

Orientation 0,2° L864 0.095 0.131 0.154 0.214 0.243 0.336

Final uncertainty L860 0.064 0.079 0.134 0.123 0.259 0.193

Final uncertainty L864 0.126 0.170 0.222 0.274 0.380 0.430

Conclusion The reproducibility of our measurements, not reported here, is five times lower than global uncertainty

and influences any values. Both most important parameters are blocking effect and size of source effect. The precise estimation of blocking effect is very difficult and we have, as a precaution, increase its uncertainty value. The size of source effect has not been estimated as well as we hoped to do because our device measurement do not operate correctly yet. Hence in this case the uncertainty is larger than the one we could normally obtain with the apparatus to come..

We wait for the other laboratories report concerning the lamp 864 orientation temperature sensitivity which seems to exceed the normal values. We hope to reduce uncertainty part due to this effect which is bigger than all other ones.

Page 50: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 8 rap_comp_inter3_INM.doc

Annexes

Table A : Lamp C860; lambda = 650 nm Number of current

Lamp current as defined in appendix B

Lamp current ratio i(lamp)/i(T[FP])

ref temp of black body T(FP)

Lamp temperature Temp corrected of source size effect

Detector Non Linearity

Air Humidity

Nbrmeas1 lampcur1_th Courant 860 ratio_860 temp1_ref TEL860_Finter TL860SSE T864NL T864RH0 1 5.07200 5.07168 0.1970 1357.77 961.55 961.67 1 5.07200 5.07173 0.1969 1357.77 961.52 961.65 2 5.38000 5.38046 0.3370 1357.77 999.67 999.80 2 5.38000 5.38041 0.3369 1357.77 999.65 999.78 3 5.94400 5.94417 0.7746 1357.77 1063.67 1063.82 3 5.94400 5.94427 0.7747 1357.77 1063.68 1063.82 4 6.14100 6.14148 1.0020 1357.77 1084.79 1084.94 4 6.14100 6.14143 1.0019 1357.77 1084.77 1084.92 5 6.28400 6.28433 1.1966 1357.77 1099.73 1099.89 5 6.28400 6.28438 1.1965 1357.77 1099.73 1099.88 5 6.28400 6.28413 1.1987 1357.77 1099.88 1100.04 5 6.28400 6.28408 1.1987 1357.77 1099.89 1100.04 6 7.29800 7.29853 3.5771 1357.77 1199.80 1199.98 6 7.29800 7.29853 3.5772 1357.77 1199.81 1199.98 8 9.57000 9.56885 21.5297 1357.77 1399.65 1399.88 8 9.57000 9.56890 21.5272 1357.77 1399.64 1399.86 9 10.80500 10.80534 45.4202 1357.77 1499.69 1499.95 9 10.80500 10.80534 45.4204 1357.77 1499.69 1499.95 9 10.80500 10.80534 45.4248 1357.77 1499.71 1499.96 9 10.80500 10.80534 45.4230 1357.77 1499.70 1499.96 9 10.80500 10.80539 45.4220 1357.77 1499.70 1499.96 9 10.80500 10.80539 45.4184 1357.77 1499.69 1499.94

10 12.09900 12.09954 88.4430 1357.77 1599.68 1599.96 10 12.09900 12.09949 88.4438 1357.77 1599.68 1599.97 11 13.44600 13.44780 160.8485 1357.77 1699.53 1699.85 11 13.44600 13.44780 160.8456 1357.77 1699.53 1699.85 1 5.07200 5.07183 0.1972 1357.77 961.63 961.75 1 5.07200 5.07183 0.1972 1357.77 961.60 961.73 2 5.38000 5.38001 0.3368 1357.77 999.64 999.77 2 5.38000 5.38001 0.3370 1357.77 999.67 999.80 3 5.94400 5.94347 0.7745 1357.77 1063.66 1063.80 3 5.94400 5.94347 0.7744 1357.77 1063.65 1063.79 4 6.14100 6.14248 1.0044 1357.77 1084.98 1085.13 4 6.14100 6.14248 1.0043 1357.77 1084.97 1085.12 5 6.28400 6.28528 1.1994 1357.77 1099.93 1100.09 6 7.29800 7.29918 3.5801 1357.77 1199.88 1200.06 6 7.29800 7.29918 3.5804 1357.77 1199.89 1200.07 8 9.57000 9.57115 21.5830 1357.77 1399.96 1400.19 5 6.28400 6.28563 1.1988 1357.77 1099.89 1100.04 5 6.28400 6.28563 1.1989 1357.77 1099.90 1100.05 7 8.39800 8.39831 9.2893 1357.77 1299.71 1299.91 7 8.39800 8.39831 9.2889 1357.77 1299.71 1299.91 9 10.80500 10.80569 45.4303 1357.77 1499.73 1499.98 9 10.80500 10.80589 45.4306 1357.77 1499.73 1499.98

10 12.09900 12.09919 88.3998 1357.77 1599.60 1599.89 10 12.09900 12.09924 88.3909 1357.77 1599.59 1599.87 11 13.44600 13.44755 160.8172 1357.77 1699.50 1699.82 11 13.44600 13.44755 160.8184 1357.77 1699.50 1699.82

Page 51: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 9 rap_comp_inter3_INM.doc

Table B : Lamp C860; lambda = 650 nm wavelength Le T(Le,Tb) for

L860 dTL/dL L860

(Lr-Le) .(dTL/dL) for L860

Tl(Lr,Tb) for L860

Tb_°C for L860

dT/dTb forL860

dT/dTb .(20-Tb) for L860

TLr;20;I(l) for L860

dT/di for L860 dT/di.I(j)-I(l) for L860

L860 temperature TLr;I(j)

N°2 WaveLe1 T(Le,Tb)L860 dTL/dLL860 (Lr-Le).(dTL/dL)L860

Tl(Lr,Tb)L860 Tb_°CL860 dT/dTbL860 dT/dTb.(20-Tb)L860

TLr;20;I(l)L860

grad860 DT_I_860 TE860

1 650 961.67 -0.11 961.67 20.30 0.05 -0.01 961.66 123.4 -0.04 961.701 650 961.65 -0.11 961.65 20.34 0.05 -0.02 961.63 123.4 -0.03 961.672 650 999.80 -0.12 999.80 20.34 0.03 -0.01 999.79 113.5 0.05 999.742 650 999.78 -0.12 999.78 20.34 0.03 -0.01 999.77 113.5 0.05 999.723 650 1063.82 -0.13 1063.82 20.31 0.02 0.00 1063.81 106.6 0.02 1063.793 650 1063.82 -0.13 1063.82 20.40 0.02 -0.01 1063.82 106.6 0.03 1063.794 650 1084.94 -0.14 1084.94 20.43 0.01 -0.01 1084.93 104.9 0.05 1084.884 650 1084.92 -0.14 1084.92 20.33 0.01 0.00 1084.92 104.9 0.05 1084.875 650 1099.89 -0.14 1099.89 20.38 0.01 0.00 1099.88 98.6 0.03 1099.855 650 1099.88 -0.14 1099.88 20.43 0.01 0.00 1099.88 98.6 0.04 1099.845 650 1100.04 -0.14 1100.04 28.03 0.01 -0.09 1099.94 98.6 0.01 1099.935 650 1100.04 -0.14 1100.04 29.04 0.01 -0.10 1099.94 98.6 0.01 1099.936 650 1199.98 -0.16 1199.98 29.77 0.00 0.00 1199.98 90.9 0.05 1199.936 650 1199.98 -0.16 1199.98 30.79 0.00 0.00 1199.98 90.9 0.05 1199.948 650 1399.88 -0.21 1399.88 34.60 0.00 0.00 1399.88 81.0 -0.09 1399.978 650 1399.86 -0.21 1399.86 35.09 0.00 0.00 1399.86 81.0 -0.09 1399.959 650 1499.95 -0.24 1499.95 36.37 0.00 0.00 1499.95 77.3 0.03 1499.929 650 1499.95 -0.24 1499.95 37.18 0.00 0.00 1499.95 77.3 0.03 1499.929 650 1499.96 -0.24 1499.96 37.56 0.00 0.00 1499.96 77.3 0.03 1499.949 650 1499.96 -0.24 1499.96 37.67 0.00 0.00 1499.96 77.3 0.03 1499.939 650 1499.96 -0.24 1499.96 22.00 0.00 0.00 1499.96 77.3 0.03 1499.939 650 1499.94 -0.24 1499.94 21.02 0.00 0.00 1499.94 77.3 0.03 1499.91

10 650 1599.96 -0.27 1599.96 21.20 0.00 0.00 1599.96 74.2 0.04 1599.9210 650 1599.97 -0.27 1599.97 21.21 0.00 0.00 1599.97 74.2 0.04 1599.9311 650 1699.85 -0.31 1699.85 21.43 0.00 0.00 1699.85 71.0 0.13 1699.7211 650 1699.85 -0.31 1699.85 21.43 0.00 0.00 1699.85 71.0 0.13 1699.721 650 961.75 -0.11 961.75 20.51 0.05 -0.02 961.73 123.4 -0.02 961.751 650 961.73 -0.11 961.73 20.53 0.05 -0.03 961.70 123.4 -0.02 961.722 650 999.77 -0.12 999.77 20.62 0.03 -0.02 999.75 113.5 0.00 999.752 650 999.80 -0.12 999.80 20.64 0.03 -0.02 999.78 113.5 0.00 999.783 650 1063.80 -0.13 1063.80 20.70 0.02 -0.01 1063.79 106.6 -0.06 1063.853 650 1063.79 -0.13 1063.79 20.72 0.02 -0.01 1063.78 106.6 -0.06 1063.844 650 1085.13 -0.14 1085.13 20.74 0.01 -0.01 1085.12 104.9 0.16 1084.964 650 1085.12 -0.14 1085.12 20.75 0.01 -0.01 1085.11 104.9 0.16 1084.965 650 1100.09 -0.14 1100.09 20.77 0.01 -0.01 1100.08 98.6 0.13 1099.956 650 1200.06 -0.16 1200.06 20.85 0.00 0.00 1200.06 90.9 0.11 1199.956 650 1200.07 -0.16 1200.07 20.86 0.00 0.00 1200.07 90.9 0.11 1199.968 650 1400.19 -0.21 1400.19 21.15 0.00 0.00 1400.19 81.0 0.09 1400.105 650 1100.04 -0.14 1100.04 20.34 0.01 0.00 1100.04 98.6 0.16 1099.885 650 1100.05 -0.14 1100.05 20.33 0.01 0.00 1100.05 98.6 0.16 1099.897 650 1299.91 -0.19 1299.91 20.53 0.00 0.00 1299.91 85.3 0.03 1299.897 650 1299.91 -0.19 1299.91 20.54 0.00 0.00 1299.91 85.3 0.03 1299.889 650 1499.98 -0.24 1499.98 20.84 0.00 0.00 1499.98 77.3 0.05 1499.939 650 1499.98 -0.24 1499.98 20.84 0.00 0.00 1499.98 77.3 0.07 1499.91

10 650 1599.89 -0.27 1599.89 21.22 0.00 0.00 1599.89 74.2 0.01 1599.8710 650 1599.87 -0.27 1599.87 21.22 0.00 0.00 1599.87 74.2 0.02 1599.8511 650 1699.82 -0.31 1699.82 23.91 0.00 0.00 1699.82 71.0 0.11 1699.7011 650 1699.82 -0.31 1699.82 26.48 0.00 0.00 1699.82 71.0 0.11 1699.71

Page 52: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 10 rap_comp_inter3_INM.doc

Table A : Lamp C864; lambda = 650 nm Number of current

Lamp current as defined in appendix B

Lamp current ratio i(lamp)/i(T[FP]) ref temp of black body T(FP)

Lamp temperature

Lamp temper corrected of source size effect

Corrections due to DetectorNon Linearity

Corrections due to Air Humidity

Nbrmeas2 lampcur2_th Courant 864 ratio_864 temp2_ref TEL864_Finter

TL864SSE T860NL T860RH0

1 5.07200 4.93255 0.1981 1357.77 961.94 962.06 1 5.07200 4.93255 0.1981 1357.77 961.92 962.05 2 5.38000 5.23724 0.3394 1357.77 1000.19 1000.32 2 5.38000 5.23724 0.3393 1357.77 1000.17 1000.30 3 5.94400 5.78821 0.7783 1357.77 1064.05 1064.19 3 5.94400 5.78826 0.7782 1357.77 1064.04 1064.19 4 6.14100 5.98035 1.0058 1357.77 1085.10 1085.25 4 6.14100 5.98030 1.0058 1357.77 1085.10 1085.25 5 6.28400 6.12009 1.2018 1357.77 1100.10 1100.26 5 6.28400 6.12009 1.2018 1357.77 1100.10 1100.26 5 6.28400 6.12029 1.2030 1357.77 1100.19 1100.34 5 6.28400 6.12029 1.2030 1357.77 1100.19 1100.34 6 7.29800 7.10824 3.5917 1357.77 1200.20 1200.38 6 7.29800 7.10824 3.5917 1357.77 1200.20 1200.38 8 9.57000 9.31283 21.6055 1357.77 1400.09 1400.32 8 9.57000 9.31283 21.6041 1357.77 1400.09 1400.32 9 10.80500 10.51237 45.5841 1357.77 1500.21 1500.46 9 10.80500 10.51237 45.5812 1357.77 1500.20 1500.45 9 10.80500 10.51227 45.5572 1357.77 1500.12 1500.38 9 10.80500 10.51227 45.5551 1357.77 1500.12 1500.37 9 10.80500 10.51227 45.5645 1357.77 1500.14 1500.40 9 10.80500 10.51222 45.5616 1357.77 1500.14 1500.39

10 12.09900 11.76726 88.6656 1357.77 1600.08 1600.36 10 12.09900 11.76731 88.6689 1357.77 1600.08 1600.37 11 13.44600 13.07270 161.1807 1357.77 1699.90 1700.21 11 13.44600 13.07270 161.1746 1357.77 1699.89 1700.21 1 5.07200 4.93290 0.1982 1357.77 961.96 962.08 1 5.07200 4.93290 0.1981 1357.77 961.92 962.05 2 5.38000 5.23594 0.3382 1357.77 999.93 1000.06 2 5.38000 5.23594 0.3383 1357.77 999.96 1000.09 3 5.94400 5.78856 0.7781 1357.77 1064.03 1064.18 3 5.94400 5.78856 0.7781 1357.77 1064.03 1064.17 4 6.14100 5.98070 1.0059 1357.77 1085.10 1085.25 4 6.14100 5.98070 1.0059 1357.77 1085.11 1085.26 5 6.28400 6.12194 1.2041 1357.77 1100.27 1100.42 6 7.29800 7.10834 3.5906 1357.77 1200.17 1200.35 6 7.29800 7.10834 3.5906 1357.77 1200.17 1200.35 8 9.57000 9.31518 21.6354 1357.77 1400.27 1400.50 5 6.28400 6.12029 1.2028 1357.77 1100.18 1100.33 5 6.28400 6.12024 1.2028 1357.77 1100.18 1100.33 7 8.39800 8.17674 9.3359 1357.77 1300.27 1300.47 7 8.39800 8.17669 9.3354 1357.77 1300.26 1300.47 9 10.80500 10.51382 45.6510 1357.77 1500.41 1500.67 9 10.80500 10.51367 45.6489 1357.77 1500.41 1500.66

10 12.09900 11.76721 88.8152 1357.77 1600.34 1600.63 10 12.09900 11.76716 88.8073 1357.77 1600.33 1600.62 11 13.44600 13.07420 161.4505 1357.77 1700.19 1700.51 11 13.44600 13.07420 161.4473 1357.77 1700.19 1700.50

Page 53: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 11 rap_comp_inter3_INM.doc

Table B : Lamp C864; lambda = 650 nm N° wavelength Le T(Le,Tb) for

L864 dTL/dLL864 (Lr-Le) .(dTL/dL)

for L864 Tl(Lr,Tb) for L864

Tb_°C for L864

dT/dTb forL864

dT/dTb .(20-Tb) for L864

TLr;20;I(l) for L864

dT/di for L864 dT/di.I(j)-I(l) for L864

L864 temperature : TLr;I(j)

N°3 WaveLe2 T(Le,Tb)L864 dTL/dLL864 (Lr-Le).(dTL/dL)L864

Tl(Lr,Tb)L864 Tb_°CL864 dT/dTbL864 dT/dTb.(20-Tb)L864

TLr;20;I(l)L864

grad864 DT_I_864 TE864

1 650 962.06 -0.11 962.06 20.30 0.04 -0.01 962.05 125.4 -0.06 962.101 650 962.05 -0.11 962.05 20.34 0.04 -0.01 962.03 125.4 -0.06 962.092 650 1000.32 -0.12 1000.32 20.34 0.03 -0.01 1000.31 115.9 0.14 1000.172 650 1000.30 -0.12 1000.30 20.34 0.03 -0.01 1000.29 115.9 0.14 1000.143 650 1064.19 -0.13 1064.19 20.31 0.01 0.00 1064.19 109.4 0.02 1064.173 650 1064.19 -0.13 1064.19 20.40 0.01 0.00 1064.18 109.4 0.03 1064.154 650 1085.25 -0.14 1085.25 20.43 0.01 0.00 1085.25 107.1 0.04 1085.214 650 1085.25 -0.14 1085.25 20.33 0.01 0.00 1085.25 107.1 0.03 1085.225 650 1100.26 -0.14 1100.26 20.38 0.01 0.00 1100.25 101.3 0.01 1100.245 650 1100.26 -0.14 1100.26 20.43 0.01 0.00 1100.25 101.3 0.01 1100.245 650 1100.34 -0.14 1100.34 28.03 0.01 -0.06 1100.28 101.3 0.03 1100.255 650 1100.34 -0.14 1100.34 29.04 0.01 -0.07 1100.27 101.3 0.03 1100.246 650 1200.38 -0.16 1200.38 29.77 0.00 0.00 1200.38 93.5 0.12 1200.266 650 1200.38 -0.16 1200.38 30.79 0.00 0.00 1200.38 93.5 0.12 1200.268 650 1400.32 -0.21 1400.32 34.60 0.00 0.00 1400.32 83.4 -0.10 1400.428 650 1400.32 -0.21 1400.32 35.09 0.00 0.00 1400.32 83.4 -0.10 1400.419 650 1500.46 -0.24 1500.46 36.37 0.00 0.00 1500.46 79.7 -0.05 1500.519 650 1500.45 -0.24 1500.45 37.18 0.00 0.00 1500.45 79.7 -0.05 1500.509 650 1500.38 -0.24 1500.38 37.56 0.00 0.00 1500.38 79.7 -0.06 1500.449 650 1500.37 -0.24 1500.37 37.67 0.00 0.00 1500.37 79.7 -0.06 1500.439 650 1500.40 -0.24 1500.40 22.00 0.00 0.00 1500.40 79.7 -0.06 1500.469 650 1500.39 -0.24 1500.39 21.02 0.00 0.00 1500.39 79.7 -0.06 1500.45

10 650 1600.36 -0.27 1600.36 21.20 0.00 0.00 1600.36 76.5 0.02 1600.3410 650 1600.37 -0.27 1600.37 21.21 0.00 0.00 1600.37 76.5 0.02 1600.3511 650 1700.21 -0.31 1700.21 21.43 0.00 0.00 1700.21 74.0 -0.10 1700.3111 650 1700.21 -0.31 1700.21 21.43 0.00 0.00 1700.21 74.0 -0.10 1700.301 650 962.08 -0.11 962.08 20.51 0.04 -0.02 962.06 125.4 -0.01 962.071 650 962.05 -0.11 962.05 20.53 0.04 -0.02 962.02 125.4 -0.01 962.042 650 1000.06 -0.12 1000.06 20.62 0.03 -0.02 1000.05 115.9 -0.01 1000.052 650 1000.09 -0.12 1000.09 20.64 0.03 -0.02 1000.07 115.9 -0.01 1000.083 650 1064.18 -0.13 1064.18 20.70 0.01 -0.01 1064.17 109.4 0.06 1064.113 650 1064.17 -0.13 1064.17 20.72 0.01 -0.01 1064.17 109.4 0.06 1064.104 650 1085.25 -0.14 1085.25 20.74 0.01 -0.01 1085.25 107.1 0.08 1085.174 650 1085.26 -0.14 1085.26 20.75 0.01 -0.01 1085.25 107.1 0.08 1085.175 650 1100.42 -0.14 1100.42 20.77 0.01 -0.01 1100.42 101.3 0.20 1100.226 650 1200.35 -0.16 1200.35 20.85 0.00 0.00 1200.35 93.5 0.13 1200.226 650 1200.35 -0.16 1200.35 20.86 0.00 0.00 1200.35 93.5 0.13 1200.228 650 1400.50 -0.21 1400.50 21.15 0.00 0.00 1400.50 83.4 0.10 1400.405 650 1100.33 -0.14 1100.33 20.34 0.01 0.00 1100.33 101.3 0.03 1100.305 650 1100.33 -0.14 1100.33 20.33 0.01 0.00 1100.33 101.3 0.02 1100.307 650 1300.47 -0.19 1300.47 20.53 0.00 0.00 1300.47 88.0 -0.02 1300.497 650 1300.47 -0.19 1300.47 20.54 0.00 0.00 1300.47 88.0 -0.03 1300.499 650 1500.67 -0.24 1500.67 20.84 0.00 0.00 1500.67 79.7 0.07 1500.609 650 1500.66 -0.24 1500.66 20.84 0.00 0.00 1500.66 79.7 0.05 1500.61

10 650 1600.63 -0.27 1600.63 21.22 0.00 0.00 1600.63 76.5 0.02 1600.6110 650 1600.62 -0.27 1600.62 21.22 0.00 0.00 1600.62 76.5 0.01 1600.6011 650 1700.51 -0.31 1700.51 23.91 0.00 0.00 1700.51 74.0 0.01 1700.4911 650 1700.50 -0.31 1700.50 26.48 0.00 0.00 1700.50 74.0 0.01 1700.49

Page 54: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 12 rap_comp_inter3_INM.doc

Table A : Lamp C860; lambda = 900 nm Number of current

Lamp current as defined in appendix B

Lamp current ratio i(lamp)/i(T[FP]) ref temp of black body T(FP)

Lamp temperature

Lamp temper corrected of source size effect

Corrections due to DetectorNon Linearity

Corrections due to Air Humidity

Nbrmeas1 lampcur1_th Courant 860 ratio_860 temp1_ref TEL860_Finter TL860SSE T864NL T864RH0 1 5.07200 5.07173 0.2145 1357.77 927.58 927.76 1 5.07200 5.07173 0.2145 1357.77 927.58 927.76 2 5.38000 5.38041 0.3153 1357.77 963.38 963.57 2 5.38000 5.38041 0.3153 1357.77 963.38 963.57 3 5.94400 5.94422 0.5732 1357.77 1023.32 1023.53 3 5.94400 5.94422 0.5732 1357.77 1023.33 1023.54 4 6.14100 6.14143 0.6894 1357.77 1043.03 1043.25 4 6.14100 6.14143 0.6894 1357.77 1043.03 1043.25 5 6.28400 6.28438 0.7831 1357.77 1056.99 1057.21 5 6.28400 6.28438 0.7831 1357.77 1056.99 1057.21 5 6.28400 6.28408 0.7841 1357.77 1057.14 1057.36 5 6.28400 6.28408 0.7841 1357.77 1057.13 1057.36 6 7.29800 7.29853 1.7179 1357.77 1150.04 1150.29 6 7.29800 7.29853 1.7179 1357.77 1150.04 1150.29 8 9.57000 9.56890 6.2236 1357.77 1334.29 1334.62 8 9.57000 9.56890 6.2234 1357.77 1334.29 1334.61 9 10.80500 10.80534 10.6296 1357.77 1425.76 1426.12 9 10.80500 10.80529 10.6296 1357.77 1425.76 1426.12 9 10.80500 10.80534 10.6301 1357.77 1425.77 1426.13 9 10.80500 10.80539 10.6302 1357.77 1425.77 1426.13 9 10.80500 10.80539 10.6301 1357.77 1425.77 1426.13 9 10.80500 10.80539 10.6300 1357.77 1425.77 1426.13 1 5.07200 5.07183 0.2146 1357.77 927.63 927.81 1 5.07200 5.07183 0.2146 1357.77 927.62 927.80 2 5.38000 5.38006 0.3153 1357.77 963.35 963.55 2 5.38000 5.38001 0.3153 1357.77 963.35 963.55 3 5.94400 5.94347 0.5728 1357.77 1023.25 1023.47 3 5.94400 5.94347 0.5728 1357.77 1023.25 1023.46 4 6.14100 6.14248 0.6905 1357.77 1043.20 1043.42 4 6.14100 6.14248 0.6905 1357.77 1043.20 1043.42 5 6.28400 6.28533 0.7841 1357.77 1057.13 1057.35 5 6.28400 6.28563 0.7835 1357.77 1057.05 1057.27 5 6.28400 6.28563 0.7835 1357.77 1057.04 1057.27 7 8.39800 8.39831 3.4025 1357.77 1242.26 1242.55 7 8.39800 8.39831 3.4025 1357.77 1242.26 1242.55 9 10.80500 10.80584 10.6214 1357.77 1425.62 1425.98 9 10.80500 10.80584 10.6213 1357.77 1425.62 1425.98

Page 55: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 13 rap_comp_inter3_INM.doc

Table B : Lamp C860; lambda = 900 nm wavelength Le T(Le,Tb) for

L860 dTL/dLL860 (Lr-Le) .(dTL/dL)

for L860 Tl(Lr,Tb) for L860

Tb_°C for L860

dT/dTb forL860

dT/dTb .(20-Tb) for L860

TLr;20;I(l) for L860

dT/di for L860 dT/di.I(j)-I(l) for L860

L860 temperature : TLr;I(j)

N°2 WaveLe1 T(Le,Tb) L860 dTL/dL L860

(Lr-Le).(dTL/dL) L860

Tl(Lr,Tb) L860 Tb_°C L860 dT/dTbL860 dT/dTb.(20-Tb) L860

TLr;20;I(l)L860

grad860 DT_I_860 TE860

1 900 927.76 -0.16 927.76 20.34 0.05 -0.02 927.74 123.4 -0.03 927.781 900 927.76 -0.16 927.76 20.34 0.05 -0.02 927.75 123.4 -0.03 927.782 900 963.57 -0.17 963.57 20.34 0.03 -0.01 963.56 113.5 0.05 963.512 900 963.57 -0.17 963.57 20.34 0.03 -0.01 963.56 113.5 0.05 963.513 900 1023.53 -0.19 1023.53 20.33 0.02 -0.01 1023.53 106.6 0.02 1023.503 900 1023.54 -0.19 1023.54 20.34 0.02 -0.01 1023.53 106.6 0.02 1023.514 900 1043.25 -0.20 1043.25 20.34 0.01 0.00 1043.25 104.9 0.05 1043.204 900 1043.25 -0.20 1043.25 20.35 0.01 0.00 1043.24 104.9 0.05 1043.205 900 1057.21 -0.20 1057.21 20.40 0.01 0.00 1057.21 98.6 0.04 1057.175 900 1057.21 -0.20 1057.21 20.41 0.01 0.00 1057.21 98.6 0.04 1057.175 900 1057.36 -0.20 1057.36 28.48 0.01 -0.10 1057.26 98.6 0.01 1057.255 900 1057.36 -0.20 1057.36 28.76 0.01 -0.10 1057.26 98.6 0.01 1057.256 900 1150.29 -0.23 1150.29 30.14 0.00 0.00 1150.29 90.9 0.05 1150.246 900 1150.29 -0.23 1150.29 30.42 0.00 0.00 1150.29 90.9 0.05 1150.248 900 1334.62 -0.30 1334.62 34.84 0.00 0.00 1334.62 81.0 -0.09 1334.718 900 1334.61 -0.30 1334.61 34.95 0.00 0.00 1334.61 81.0 -0.09 1334.709 900 1426.12 -0.33 1426.12 36.61 0.00 0.00 1426.12 77.3 0.03 1426.099 900 1426.12 -0.33 1426.12 36.91 0.00 0.00 1426.12 77.3 0.02 1426.109 900 1426.13 -0.33 1426.13 37.55 0.00 0.00 1426.13 77.3 0.03 1426.109 900 1426.13 -0.33 1426.13 37.64 0.00 0.00 1426.13 77.3 0.03 1426.109 900 1426.13 -0.33 1426.13 21.34 0.00 0.00 1426.13 77.3 0.03 1426.109 900 1426.13 -0.33 1426.13 21.06 0.00 0.00 1426.13 77.3 0.03 1426.101 900 927.81 -0.16 927.81 20.50 0.05 -0.02 927.79 123.4 -0.02 927.811 900 927.80 -0.16 927.80 20.51 0.05 -0.02 927.78 123.4 -0.02 927.802 900 963.55 -0.17 963.55 20.62 0.03 -0.02 963.53 113.5 0.01 963.522 900 963.55 -0.17 963.55 20.63 0.03 -0.02 963.53 113.5 0.00 963.523 900 1023.47 -0.19 1023.47 20.70 0.02 -0.01 1023.45 106.6 -0.06 1023.513 900 1023.46 -0.19 1023.46 20.71 0.02 -0.01 1023.45 106.6 -0.06 1023.514 900 1043.42 -0.20 1043.42 20.74 0.01 -0.01 1043.41 104.9 0.16 1043.264 900 1043.42 -0.20 1043.42 20.74 0.01 -0.01 1043.41 104.9 0.16 1043.255 900 1057.35 -0.20 1057.35 20.77 0.01 -0.01 1057.34 98.6 0.13 1057.215 900 1057.27 -0.20 1057.27 20.34 0.01 0.00 1057.26 98.6 0.16 1057.105 900 1057.27 -0.20 1057.27 20.33 0.01 0.00 1057.26 98.6 0.16 1057.107 900 1242.55 -0.26 1242.55 20.53 0.00 0.00 1242.55 85.3 0.03 1242.527 900 1242.55 -0.26 1242.55 20.56 0.00 0.00 1242.55 85.3 0.03 1242.529 900 1425.98 -0.33 1425.98 20.84 0.00 0.00 1425.98 77.3 0.06 1425.929 900 1425.98 -0.33 1425.98 20.84 0.00 0.00 1425.98 77.3 0.06 1425.91

Page 56: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 14 rap_comp_inter3_INM.doc

Table A : Lamp C864; lambda = 900 nm Number of current

Lamp current as defined in appendix B

Lamp current ratio i(lamp)/i(T[FP]) ref temp of black body T(FP)

Lamp temperature

temper corrected of source size effect

Detector Non Linearity

Air Humidity

Nbrmeas2 lampcur2_th Courant 864 ratio_864 temp2_ref TEL864_Finter TL864SSE T860NL T860RH0 1 5.07200 4.93255 0.2145 1357.77 927.56 927.74 1 5.07200 4.93255 0.2145 1357.77 927.57 927.75 2 5.38000 5.23724 0.3156 1357.77 963.47 963.66 2 5.38000 5.23724 0.3156 1357.77 963.47 963.66 3 5.94400 5.78821 0.5729 1357.77 1023.26 1023.47 3 5.94400 5.78826 0.5729 1357.77 1023.26 1023.47 4 6.14100 5.98035 0.6888 1357.77 1042.93 1043.15 4 6.14100 5.98030 0.6887 1357.77 1042.92 1043.14 5 6.28400 6.12004 0.7826 1357.77 1056.92 1057.14 5 6.28400 6.12009 0.7826 1357.77 1056.92 1057.14 5 6.28400 6.12034 0.7830 1357.77 1056.98 1057.20 5 6.28400 6.12029 0.7830 1357.77 1056.97 1057.20 6 7.29800 7.10824 1.7166 1357.77 1149.94 1150.19 6 7.29800 7.10824 1.7165 1357.77 1149.93 1150.19 8 9.57000 9.31288 6.2184 1357.77 1334.16 1334.48 8 9.57000 9.31283 6.2180 1357.77 1334.15 1334.47 9 10.80500 10.51237 10.6211 1357.77 1425.61 1425.98 9 10.80500 10.51237 10.6215 1357.77 1425.62 1425.98 9 10.80500 10.51227 10.6172 1357.77 1425.55 1425.91 9 10.80500 10.51227 10.6176 1357.77 1425.55 1425.92 9 10.80500 10.51222 10.6191 1357.77 1425.58 1425.94 9 10.80500 10.51222 10.6193 1357.77 1425.58 1425.94 1 5.07200 4.93290 0.2145 1357.77 927.58 927.76 1 5.07200 4.93290 0.2145 1357.77 927.56 927.74 2 5.38000 5.23594 0.3148 1357.77 963.23 963.42 2 5.38000 5.23594 0.3148 1357.77 963.23 963.42 3 5.94400 5.78856 0.5726 1357.77 1023.21 1023.42 3 5.94400 5.78851 0.5726 1357.77 1023.20 1023.42 4 6.14100 5.98070 0.6885 1357.77 1042.89 1043.10 4 6.14100 5.98070 0.6885 1357.77 1042.89 1043.10 5 6.28400 6.12194 0.7833 1357.77 1057.02 1057.24 5 6.28400 6.12029 0.7827 1357.77 1056.93 1057.16 5 6.28400 6.12029 0.7827 1357.77 1056.94 1057.16 7 8.39800 8.17674 3.4061 1357.77 1242.41 1242.70 7 8.39800 8.17674 3.4061 1357.77 1242.41 1242.70 9 10.80500 10.51372 10.6323 1357.77 1425.80 1426.16 9 10.80500 10.51372 10.6319 1357.77 1425.80 1426.16

Page 57: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

27/06/2003 15 rap_comp_inter3_INM.doc

Table B : Lamp C864; lambda = 900 nm N° wavelength Le T(Le,Tb) for

L864 dTL/dLL864 (Lr-Le) .(dTL/dL)

for L864 Tl(Lr,Tb) for L864

Tb_°C for L864

dT/dTb forL864

dT/dTb .(20-Tb) for L864

TLr;20;I(l) for L864

dT/di for L864 dT/di.I(j)-I(l) for L864

L864 temperature : TLr;I(j)

N°3 WaveLe2 T(Le,Tb)L864 dTL/dLL864 (Lr-Le).(dTL/dL)L864

Tl(Lr,Tb)L864 Tb_°CL864 dT/dTbL864 dT/dTb.(20-Tb)L864

TLr;20;I(l)L864

grad864 DT_I_864 TE864

1 900 927.74 -0.16 927.74 20.34 0.04 -0.01 927.73 125.4 -0.06 927.791 900 927.75 -0.16 927.75 20.34 0.04 -0.01 927.73 125.4 -0.06 927.792 900 963.66 -0.17 963.66 20.34 0.03 -0.01 963.65 115.9 0.14 963.512 900 963.66 -0.17 963.66 20.34 0.03 -0.01 963.65 115.9 0.14 963.513 900 1023.47 -0.19 1023.47 20.33 0.01 0.00 1023.47 109.4 0.02 1023.443 900 1023.47 -0.19 1023.47 20.34 0.01 0.00 1023.47 109.4 0.03 1023.444 900 1043.15 -0.20 1043.15 20.34 0.01 0.00 1043.15 107.1 0.04 1043.114 900 1043.14 -0.20 1043.14 20.35 0.01 0.00 1043.14 107.1 0.03 1043.115 900 1057.14 -0.20 1057.14 20.40 0.01 0.00 1057.14 101.3 0.00 1057.135 900 1057.14 -0.20 1057.14 20.41 0.01 0.00 1057.14 101.3 0.01 1057.135 900 1057.20 -0.20 1057.20 28.48 0.01 -0.07 1057.13 101.3 0.03 1057.105 900 1057.20 -0.20 1057.20 28.76 0.01 -0.07 1057.13 101.3 0.03 1057.106 900 1150.19 -0.23 1150.19 30.14 0.00 0.00 1150.19 93.5 0.12 1150.086 900 1150.19 -0.23 1150.19 30.42 0.00 0.00 1150.19 93.5 0.12 1150.078 900 1334.48 -0.30 1334.48 34.84 0.00 0.00 1334.48 83.4 -0.09 1334.578 900 1334.47 -0.30 1334.47 34.95 0.00 0.00 1334.47 83.4 -0.10 1334.579 900 1425.98 -0.33 1425.98 36.61 0.00 0.00 1425.98 79.7 -0.05 1426.039 900 1425.98 -0.33 1425.98 36.91 0.00 0.00 1425.98 79.7 -0.05 1426.039 900 1425.91 -0.33 1425.91 37.55 0.00 0.00 1425.91 79.7 -0.06 1425.979 900 1425.92 -0.33 1425.92 37.64 0.00 0.00 1425.92 79.7 -0.06 1425.979 900 1425.94 -0.33 1425.94 21.34 0.00 0.00 1425.94 79.7 -0.06 1426.009 900 1425.94 -0.33 1425.94 21.06 0.00 0.00 1425.94 79.7 -0.06 1426.011 900 927.76 -0.16 927.76 20.50 0.04 -0.02 927.74 125.4 -0.01 927.751 900 927.74 -0.16 927.74 20.51 0.04 -0.02 927.72 125.4 -0.01 927.742 900 963.42 -0.17 963.42 20.62 0.03 -0.02 963.40 115.9 -0.01 963.412 900 963.42 -0.17 963.42 20.63 0.03 -0.02 963.40 115.9 -0.01 963.413 900 1023.42 -0.19 1023.42 20.70 0.01 -0.01 1023.41 109.4 0.06 1023.353 900 1023.42 -0.19 1023.42 20.71 0.01 -0.01 1023.41 109.4 0.06 1023.354 900 1043.10 -0.20 1043.10 20.74 0.01 -0.01 1043.10 107.1 0.08 1043.024 900 1043.10 -0.20 1043.10 20.74 0.01 -0.01 1043.10 107.1 0.08 1043.025 900 1057.24 -0.20 1057.24 20.77 0.01 -0.01 1057.23 101.3 0.20 1057.035 900 1057.16 -0.20 1057.16 20.34 0.01 0.00 1057.15 101.3 0.03 1057.125 900 1057.16 -0.20 1057.16 20.33 0.01 0.00 1057.16 101.3 0.03 1057.137 900 1242.70 -0.26 1242.70 20.53 0.00 0.00 1242.70 88.0 -0.02 1242.727 900 1242.70 -0.26 1242.70 20.56 0.00 0.00 1242.70 88.0 -0.02 1242.729 900 1426.16 -0.33 1426.16 20.84 0.00 0.00 1426.16 79.7 0.06 1426.119 900 1426.16 -0.33 1426.16 20.84 0.00 0.00 1426.16 79.7 0.06 1426.10

Page 58: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 1

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of the Local

Realizations of the ITS-90 between the Silver Point and 1700 °°°°C

Seung Nam Park

Division of Quantum Metrology

Korea Research Institute of Standards and Science

Taedok Science Town, Taejon, 305-600

Republic of Korea

Page 59: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 2

Contents

1. INTRODUCTION............................................................................................ 3

2. REALIZATION OF THE ITS-90...................................................................... 3

2.1. Definition and derivation of the spectral radiance temperature .....................................................3

2.2. Description of equipment....................................................................................................................4

2.3 Experimental procedures.....................................................................................................................7

3. RESULTS....................................................................................................... 8

3.1. Local conditions ...................................................................................................................................8

3.1.1 Reference thermometer....................................................................................................................8

3.1.2. Transfer lamps ................................................................................................................................9

3.1.3. Ambient conditions.........................................................................................................................9

3.2. Measurement results ......................................................................................................................10

4. UNCERTAINTIES......................................................................................... 22

5. CONCLUSIONS........................................................................................... 24

Page 60: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 3

1. Introduction

The CCT decided during its 19th session in September 1996 to undertake an international comparison of

local realizations of the ITS-90 above the silver point using the high-stability vacuum tungsten lamps as

transfer standards. This inter-comparison is very important because it has been qualified to as a key

comparison and it is the first global trial since the ITS-90 has officially announced. According to the

circulation schemes, KRISS has been received two sets of lamp from NML, Australia. This paper

describes the technical aspects for the local realization of the ITS-90 in KRISS and reports results of local

calibrations of the lamps according to the protocol and uncertainty analysis of the calibration.

2. Realization of the ITS-90

2.1. Definition and derivation of the spectral radiance temperature

According to the ITS-90, temperature above the freezing point of silver (961.78 ) is defined by the

Planck’s equation:

( )

( )( )( )( )

( ) 1exp1exp

902

902

90

90

−−=

TCxTC

xTNTN

λλ

λ

λ (1)

where T90(x) refers to one of the freezing point of silver, gold or copper, Nλ (T90) and Nλ (T90(x)) are the

spectral concentrations at a wavelength λ of the radiance of blackbodies at a temperature T90 and T90(x),

respectively, and C2 is the second radiation constant of 0.014388 mK. If the spectral bandwidth of the

reference thermometer is considered in practice, the radiance ratio of the blackbody at a metal freezing

point to that of a blackbody at a certain temperature T90 is given by the equation:

( )( )( ) λτ

λτ

λλλ

λλλ

dSxTN

dSTNR∫∫∞

=

0 90

0 90 (2)

where τλ is the spectral transmittance of the narrow band interference filter in the thermometer, and Sλ

is the spectral response of the transmitting components of the thermometer except the interference filter.

To establish the temperature scale of the ITS-90 from the ratio R in the equation (2), the optical

characteristics, τλ and Sλ , must be measured precisely.

Those were measured by using a double grating monochromator (Jovin-Yovon U-1000) with resolution

less than 0.04 nm and a light source illuminating the entrance slit of the monochromator with a halogen

Page 61: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 4

lamp. The transmittance of the narrow band interference filters, τλ , is measured in step of 0.1 nm around

the peak of the filter, . To eliminate ghost images of the gratings in the monochromator, a long pass filter

(CVI RG590) is placed on the front of the entrance slit. The transmittance at each wavelength is obtained

by measuring the signals with and without the filter, and dark signals. The spectral response of the

remaining components of the thermometer is measured by referring to a silicon detector of which the

relative spectral response has already calibrated. Since the spectral response, Sλ is a slowly varying

function of wavelength, it is measured in step of 10 nm.

The accurate temperature scale at high temperature requires precise measurement of the radiance ratio R

in the equation (2). But the ratio R can be affected by non-linearity of the detecting system that consists of

the detector, the current/voltage converter, and a digital voltmeter (HP3457A). The non-linearity has been

measured by the flux addition method for successive ratios of 2 to be less than 10-4 of the signal in wide

dynamic range. The non-linearity was not corrected but considered as a source of uncertainty in

determining the temperature scale, because those were small enough compared to the measurement

uncertainty (2 x 10-4) of the non-linearity. Data sets of τλ and Sλ are kept in a computer as a data-file.

For a given R of two radiance sources, the integral equation (2) is solved numerically with the data-file, to

yield a radiance temperature. Choice of the reference radiance source depends on the accuracy we want.

Fixed-point blackbodies give the most accurate scale, but for convenience a high-stability tungsten strip

lamp that has been calibrated in reference to the fixed-point at a temperature can be used as the reference.

When the lamp is used as a source for the reference and/or a source under calibration, we have considered

the spectral emissivity of tungsten and the transmittance of the window of the lamp during calculation of

the equation (2). Thereby the radiance temperature due to variation of the effective wavelength has been

corrected automatically. When the sizes of two sources for measurement are different, the reference signal

for the ratios is corrected by considering the size of source effect of the thermometer.

2.2. Description of equipment

Reference fixed-point blackbody

The fixed-point furnace is composed of a tube furnace and a fixed-point cell as shown in Fig. 1. Heating

wire of the furnace was wounded on the alumna tube and then cemented onto the tube together with an

insulating tube of a controlling thermocouple. The heater can deliver 2 kW with operating power full. The

fixed-point cell was located at the central region of a silica tube. Spacers made of graphite and ceramics

were alternatively arranged at the front and the end of the fixed- point cell to reduce temperature gradient

along the cell. All components in the silica tube are handled and stored as an assembled unit for each

fixed point. Inner diameter of the silica tube is 40 mm and inner diameters of the spacers in front of the

cell were determined to maintain maximum cone angle viewed by the reference thermometer. The

Page 62: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 5

blackbody radiator surrounded by pure metal in the crucible has cylindro-conical shape of cavity as

shown in Fig. 2. The cavity has a double aperture of which smaller diameter is 2 mm. Conical angle at the

bottom of the cavity is 120 ° to reduce specular reflection and increase emissivity of the cavity.

Emissivity of the cavity was estimated to 0.99995 ±0.0005 by a model calculation assuming diffuse

reflection. For the reference of the optical pyrometry, KRSS is not equipped only with the copper point

cell but also with sliver and aluminum point cells. The copper point cell contains 370 g of copper with

purity more than 99.999 % (5N).

Fig. 1. Fixed-point blackbody furnace.

Fig. 2. Blackbody radiator of the fixed-point cell.

Page 63: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 6

Reference thermometer

As shown in Fig. 3, an objective lens (O; achromatic, f= 25 cm, 5 cm in diameter) of the thermometer

makes an 1:1 image on the field stop (S1). The diameter of the field stop (0.8 mm) is small enough to

compare the radiance of the fixed-point blackbody radiator to that of the tungsten strip lamps. For rough

alignment of the thermometer and the targets under test, a small lamp is mounted on the front surface of a

mechanical shutter (M). Light from the lamp is collimated by the objective lens and makes a small bright

spot on the target. Fine alignment of the thermometer is accomplished by observing the target through the

relay lens (L1) and eyepiece(L2) after inserting prism beam splitter(B) between the objective lens and the

filed stop.

There are two filter holders in the thermometer. In each filter holder two optical filters are installed and an

additional blank hole is left for measuring the transmittance of the filters. By manually operating the two

filter holders, we can change the spectral response function of the thermometer. Two narrow band

interference filters with peak wavelength at 650 nm (FWHM; 10 nm) and 850 nm (FWHM; 20 nm) are

used interchangeably. A neutral density filter (transmittance 6.7 % at 850 nm) can be inserted into the

optical path to extend the measurable temperature range. When the 650 nm-filter is used, a band

suppression filter (CVI KG5) is additionally inserted to reject even small amount of leakage light at

longer wavelength where silicon detectors is highly sensitive.

With the mechanical shutter we have measured the dark signal of the detector just before and after every

M

B D

F2F1

S2S1

CO

L1 L2

O: Objective Lens; S1, S2: Field Stop; M: Mechanical Shutter; B: Beam Splitter

C: Condenser Lens; F1, F2: Filter holders; D: Silicon Detector; R: Raticle; L1; Relay Lens;

L2: Eyepiece

R

Fig. 3. Optical system of the reference thermometer.

Page 64: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 7

measurement and the normalized signal of the thermometer at a certain temperature is obtained by

subtracting the dark current from the photo-current of the detector (Hamamatsu S1337-1010BQ). The

photo- current of the silicon detector is converted to voltage by an operational amplifier (AD 52K). A

feedback resistor (100 MΩ ) of the current/voltage converter can be switched to 1 MΩ for high

temperature. The signals are measured by a digital multi-meter (HP3457A ). A computer automatically

controls the shutter, collects the normalized signals, and then finally calculates the radiance temperatures

in equation (2).

Lamp current regulation system

To achieve more stable temperature of strip lamps, the lamp current regulation system was additionally

used to a DC power supply (HP6161B, 20 V/50 A). A part of the total electric power driven by the power

supply was bypassed to a resistor and a power transistor, of which emitter and collector were connected to

the resistor. A digital voltmeter (Keithley 182, 5 ppm stability in 300 mV range) provides with an analog

output of which voltage is determined by a preset value of gain and the voltage difference between a

preset voltage and the measured one. The gain acts as the proportional constant in proportional-integral

(PI) controls. The analog output was integrated by an operational amplifier to give integration action in PI

controls and then fed back to the transistor to regulate current through the lamps. By using this current

regulation system, we can obtain stability better than 25 ppm at 20 A. An additional standard resistor

(Tinsley Type 3111, 0.01 Ω, 100 A) was attached to the circuit to monitor currents of the lamp.

Lamp Pin temperature control and measurement system

The pin temperature of the lamp was controlled by a circulating water bath (HAKKE F3, Germany). The

temperature is settable in 0.1 °C step and is more stable than 10 mK. The pin temperature was measured

by a RTD sensor (Pt 100) and a digital thermometer (A1011 multi-probe Precision RTD Thermometer,

AZONIX, U.S.A.) with 1 mK resolution.

2.3 Experimental procedures

For this experiment, we have measured the spectral response of the reference thermometer again and

compared them to the previous results, which gives us some ideas about long term stability of the

thermometer.

Just after the reception of the lamp from NML, we measured resistance of the lamps at ambient

temperature and temperature drift at 1100 °C after an 1 hour- stabilization and then reported the results to

the pilot laboratory, VSL.

Before calibration of the first lamp, a copper point blackbody furnace and the lamp were mounted in front

of the reference thermometer. The reference thermometer was installed on a computer-controlled

Page 65: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 8

translator to view the two sources alternatively. We have carefully aligned the furnace and the lamp, and

registered the horizontal coordinates of the thermometer corresponding to two positions of the sources. To

make the pin temperature of the lamp stable, constant-temperature water was circulated by the water

circulation bath and the RTD sensor was inserted into the thermometer wall of the lamp and then current

approximately corresponding to 1100 °C was applied. After stabilization of the lamp, we measured the

horizontal spatial temperature distribution at the height of the notch and the angular distribution of the

radiance temperature of the lamp, which was to be used for uncertainty analysis arisen from misalignment

of the lamps. Since any peak due to an inter-reflection between the lamps and the reference thermometer

was not observed around the reference orientation, the reference orientation was be maintained during the

measurements.

Next day, to start calibration of the lamp, the fixed-point furnace was powered on. When the fixed-point

cell was ready to be molten, we rechecked alignment of the furnace and then obtain the melting and

freezing curve. If the signal difference between the meting and freezing plateau was acceptable, the signal

was considered as a fixed-point signal and the signal difference as an indicator suggesting purity of metal

and the temperature gradient along the fixed- point cell. During realization of the fixed-point, constant

current was supplied to the lamp and stabilized. In this stage, we need to recheck orientation of the lamp

according to the protocol to compensate misalignment caused by thermal expansion of the strip. If

supplying current makes the pin temperature of the lamp deviated from 20 °C above 1 °C, we have

adjusted the set point of the water bath. During stabilization of the lamp, we have continuously measured

the radiance temperature and the voltage across the lamp to determine when to start to collect data at a

current. After stabilization of the lamp, we measured 15 sets of data. Each set of data was composed of a

pin temperature, current, and voltage of the lamp, and a normalized signal of the thermometer. This

measurement has been proceeded until the lamp has reached to the maximum current, the last step of the

calibration.

The second series of measurement for the other lamp is performed by the same procedure. At the end of

calibration for the second lamp, the copper point has been realized again to yield the reference signal of

radiance ratios.

3. Results 3.1. Local conditions

3.1.1 Reference thermometer

The optical characteristics of the reference thermometer are summarized in Table 1. As shown in Fig.4,

the SOS of the thermometer is measured for circular sources with diameter varying from 1 mm to the

estimated effective diameter (30 mm) of the fixed- point blackbody furnace. The data is fitted to an

empirical equation for easy correction.

Page 66: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 9

Table 1. Optical characteristics of the reference thermometer.

Local reference wavelength 650 nm

Half-width of spectral response function 10 nm

f number f/5

Target Distance 500

Target field dimensions 0.8 mm in diameter

Effective source diameter of the strip 1.9 mm for the strip with 1.2 mm width

2.3 mm for the strip with 1.5 mm width

3.1.2. Transfer lamps

- The reference orientation was maintained during the measurements because any peak due to an inter-

reflection between the lamps and the reference thermometer was not observed around the reference

orientation.

- The nominal base temperature was maintained at 20.0 °°°°C with stability better than ±±±± 0.01 °°°°C

- The total burning time: 19 hours for C564 lamp, 23 hours for C681 lamp

3.1.3. Ambient conditions

Mean Maximum Minimum

Ramb (°C) 23.0 23.8 22.2

RH (%) 35 40 30

0 5 10 15 20 25 30 350.996

0.997

0.998

0.999

1.000

1.001

Diameter of Source

Y=a+bX-exp(-c(X+d))

a=0.99838

b=0.00006

c=1.03024

d=5.13097SO

S

Fig. 4. Size of source effect of the reference thermometer.

Page 67: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 19

3.2. Measurement results

C564

1092

1094

1096

1098

1100

1102

1104

-0.6 -0.4 -0.2 0 0.2 0.4 0.6Displacement from the Center (m)

Tem

p (C

)

1101.9

1101.95

1102

1102.05

1102.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 5. The horizontal distribution of radiance temperature for 650 nm

at the height of the notch for the C564 lamp.

Rotation (C564 Lamp )

1101.851101.901101.951102.001102.051102.101102.151102.20

-1.5 -1 -0.5 0 0.5 1 1.5

Rotation Angle (Deg.)

Tem

p (C

)

Fig. 6. The angular distribution of the radiance temperature of the C564

lamp for 650 nm around the reference orientation.

98 10

Page 68: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December

C681

1097

1098

1099

1100

1101

1102

1103

-0.6 -0.4 -0.2 0 0.2 0.4 0.6Displacement from the Center (mm)

Tem

p (C

)

1101.94

1101.98

1102.02

1102.06

1102.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 7. The horizontal distribution of radiance temperature for

650 nm at the height of the notch for the C681 lamp.

Rotation (C681 Lamp )

1101.85

1101.90

1101.95

1102.00

1102.05

1102.10

1102.15

1102.20

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Rotation Angle (Deg.)

Tem

p (C

)

Fig. 8. The angular distribution of the radiance temperature of the

C681 lamp for 650 nm around the reference orientation.

1998 11

Page 69: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 12

Table 2. The first measurement data and corrected radiance temperatures of the C564 lamp at the

reference conditions with the effective wavelength 650 nm.

No I(j)

(A)

I(l)

(A)

I(j)-I(l)

(A)

R Tλ(λe;Tb)

(°C)

SOS corrected

Tλ(λe;Tb) (°C)

1 4.480 4.4818 -0.0018 0.204305 964.052 964.183

2 4.721 4.7228 -0.0018 0.348317 1002.093 1002.233

3 5.169 5.1708 -0.0018 0.799567 1066.236 1066.390

4 5.322 5.3238 -0.0018 1.02448 1086.638 1086.797

5 5.441 5.4429 -0.0019 1.23011 1102.097 1102.259

6 6.272 6.2741 -0.0021 3.65655 1201.971 1202.158

7 7.194 7.1962 -0.0022 9.47956 1301.996 1302.209

8 8.189 8.1914 -0.0024 21.9853 1402.319 1402.560

9 9.242 9.2446 -0.0026 46.3467 1502.581 1502.852

10 10.347 10.3496 -0.0026 90.2266 1602.859 1603.161

11 11.502 11.5047 -0.0027 164.345 1703.324 1703.659

No Tλ(λr;Tb) Tb(°C) dTλ/dTb dTλ/dTb

.(20-Tb)

Tλr;20;

I(l) dTλ/dI dTλ/dI

.I(j)-I(l)

Tλ(j)

(°C)

1 964.183 19.998 9.10E-02 0.000 964.192 163.30 -0.291 963.901

2 1002.233 20.008 6.55E-02 -0.001 1002.240 151.92 -0.276 1001.963

3 1066.390 20.018 3.66E-02 -0.001 1066.396 135.71 -0.250 1066.146

4 1086.797 20.028 3.04E-02 -0.001 1086.802 131.37 -0.240 1086.561

5 1102.259 20.048 2.65E-02 -0.001 1102.263 128.33 -0.244 1102.019

Page 70: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 13

6 1202.158 20.088 1.15E-02 -0.001 1202.160 113.42 -0.237 1201.923

7 1302.209 20.118 0.000 0.000 1302.208 104.23 -0.228 1301.980

8 1402.560 20.188 0.000 0.000 1402.555 97.68 -0.231 1402.325

9 1502.852 20.248 0.000 0.000 1502.842 92.51 -0.237 1502.606

10 1603.161 20.318 0.000 0.000 1603.146 88.61 -0.229 1602.917

11 1703.659 20.408 0.000 0.000 1703.637 83.52 -0.229 1703.408

Page 71: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 14

Table 3. The second measurement data and corrected radiance temperatures of the C564 lamp at

the reference conditions with the effective wavelength 650 nm.

No I(j)

(A)

I(l)

(A)

I(j)-I(l)

(A)

R Tλ(λe;Tb)

(°C)

SOS corrected

Tλ(λe;Tb) (°C)

1 4.480 4.4818 -0.0018 0.204403 964.086 964.217

2 4.721 4.7228 -0.0018 0.348447 1002.121 1002.261

3 5.169 5.1708 -0.0018 0.799574 1066.237 1066.391

4 5.322 5.3239 -0.0019 1.02458 1086.646 1086.805

5 5.441 5.4430 -0.0020 1.22979 1102.074 1102.236

6 6.272 6.2741 -0.0021 3.65567 1201.948 1202.135

7 7.194 7.1962 -0.0022 9.47931 1301.993 1302.206

8 8.189 8.1914 -0.0024 21.9858 1402.322 1402.563

9 9.242 9.2445 -0.0025 46.3440 1502.573 1502.844

10 10.347 10.3496 -0.0026 90.2154 1602.84 1603.142

11 11.502 11.5047 -0.0027 164.356 1703.336 1703.671

No Tλ(λr;Tb) Tb(°C) dTλ/dTb dTλ/dTb

.(20-Tb)

Tλr;20;

I(l) dTλ/dI dTλ/dI

.I(j)-I(l)

Tλ(j)

(°C)

1 964.226 19.998 9.08E-02 0.000 964.226 163.30 -0.302 963.924

2 1002.268 20.008 6.53E-02 -0.001 1002.268 151.92 -0.280 1001.988

3 1066.397 20.018 3.65E-02 -0.001 1066.397 135.71 -0.250 1066.146

4 1086.811 20.028 3.03E-02 -0.001 1086.810 131.36 -0.251 1086.559

Page 72: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 15

5 1102.242 20.048 2.64E-02 -0.001 1102.240 128.33 -0.257 1101.984

6 1202.138 20.088 1.15E-02 -0.001 1202.137 113.42 -0.241 1201.896

7 1302.205 20.118 0.000 0.000 1302.205 104.23 -0.224 1301.981

8 1402.558 20.188 0.000 0.000 1402.558 97.68 -0.238 1402.320

9 1502.834 20.248 0.000 0.000 1502.834 92.51 -0.234 1502.600

10 1603.127 20.318 0.000 0.000 1603.127 88.61 -0.230 1602.897

11 1703.649 20.408 0.000 0.000 1703.649 83.52 -0.229 1703.420

Page 73: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 16

Table 4. The first measurement data and corrected radiance temperatures of the C681 lamp at the

reference conditions with the effective wavelength 650 nm.

No I(j)

(A)

I(l)

(A)

I(j)-I(l)

(A)

R Tλ(λe;Tb)

(°C)

SOS corrected

Tλ(λe;Tb) (°C)

1 5.508 5.51013 -0.0021 0.203320 963.718 963.835

2 5.822 5.82423 -0.0022 0.347897 1002.005 1002.130

3 6.399 6.40131 -0.0023 0.800671 1066.348 1066.486

4 6.594 6.59641 -0.0024 1.02543 1086.715 1086.857

5 6.745 6.74738 -0.0024 1.22986 1102.079 1102.224

6 7.795 7.79757 -0.0026 3.66495 1202.197 1202.364

7 8.948 8.95068 -0.0027 9.52727 1302.559 1302.750

8 10.183 10.18575 -0.0027 22.0852 1402.894 1403.110

9 11.487 11.48987 -0.0029 46.5443 1503.188 1503.430

10 12.851 12.85394 -0.0029 90.3861 1603.14 1603.410

11 14.273 14.27594 -0.0029 164.321 1703.298 1703.598

No Tλ(λr;Tb) Tb(°C) dTλ/dTb dTλ/dTb

.(20-Tb)

Tλr;20;

I(l) dTλ/dI dTλ/dI

.I(j)-I(l)

Tλ(j)

1 963.844 20.018 6.35E-02 -0.001 963.843 125.85 -0.268 963.575

2 1002.138 20.028 4.34E-02 -0.001 1002.136 117.65 -0.262 1001.874

3 1066.492 20.048 2.10E-02 -0.001 1066.491 106.16 -0.246 1066.245

4 1086.863 20.058 1.62E-02 -0.001 1086.862 103.13 -0.249 1086.613

5 1102.230 20.068 1.31E-02 -0.001 1102.229 101.02 -0.240 1101.988

6 1202.367 20.108 0.000 0.000 1202.367 90.57 -0.233 1202.134

Page 74: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 17

7 1302.749 20.168 0.000 0.000 1302.749 83.91 -0.225 1302.525

8 1403.105 20.238 0.000 0.000 1403.105 78.89 -0.217 1402.888

9 1503.421 20.308 0.000 0.000 1503.421 74.79 -0.215 1503.206

10 1603.395 20.388 0.000 0.000 1603.395 71.73 -0.211 1603.185

11 1703.576 20.468 0.000 0.000 1703.576 68.26 -0.201 1703.375

Page 75: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 18

Table 5. The second measurement data and corrected radiance temperatures of the C681 lamp at

the reference conditions with the effective wavelength 650 nm.

No I(j)

(A)

I(l)

(A)

I(j)-I(l)

(A)

R Tλ(λe;Tb)

(°C)

SOS corrected

Tλ(λe;Tb) (°C)

1 5.508 5.50979 -0.0018 0.203394 963.743 963.860

2 5.822 5.82416 -0.0022 0.347849 1001.994 1002.119

3 6.399 6.40128 -0.0023 0.801041 1066.386 1066.524

4 6.594 6.59645 -0.0025 1.02613 1086.773 1086.915

5 6.745 6.74745 -0.0025 1.23051 1102.124 1102.269

6 7.795 7.79760 -0.0026 3.66641 1202.236 1202.403

7 8.948 8.95075 -0.0028 9.52772 1302.564 1302.755

8 10.183 10.18597 -0.0030 22.0980 1402.968 1403.184

9 11.487 11.49002 -0.0030 46.5507 1503.208 1503.450

10 12.851 12.85395 -0.0029 90.4876 1603.319 1603.589

11 14.273 14.27591 -0.0029 164.321 1703.298 1703.598

No Tλ(λr;Tb) Tb(°C) dTλ/dTb dTλ/dTb

.(20-Tb)

Tλr;20;

I(l) dTλ/dI dTλ/dI

.I(j)-I(l)

Tλ(j)

1 963.869 20.008 6.34E-02 -0.001 963.868 125.90 -0.225 963.643

2 1002.127 20.008 4.34E-02 0.000 1002.126 117.67 -0.254 1001.873

3 1066.530 20.038 2.10E-02 -0.001 1066.529 106.19 -0.242 1066.287

4 1086.921 20.048 1.61E-02 -0.001 1086.920 103.16 -0.253 1086.667

5 1102.275 20.058 1.31E-02 -0.001 1102.274 101.06 -0.248 1102.026

6 1202.406 20.118 0.000 0.000 1202.406 90.67 -0.236 1202.170

Page 76: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 19

7 1302.754 20.168 0.000 0.000 1302.754 84.06 -0.231 1302.523

8 1403.179 20.238 0.000 0.000 1403.179 79.15 -0.235 1402.944

9 1503.441 20.318 0.000 0.000 1503.441 75.29 -0.227 1503.214

10 1603.574 20.398 0.000 0.000 1603.574 72.53 -0.214 1603.361

11 1703.576 20.478 0.000 0.000 1703.576 68.78 -0.200 1703.375

Page 77: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 20

Table 6. Summary of the calibration results of C564 and C681 lamps for the effective wavelength

650 nm.

C564 C681 Data

Νο. Run 1 Run 2 Average Run 1 Run 2 Average

1 963.901 963.924 963.913 963.575 963.643 963.609

2 1001.963 1001.988 1001.976 1001.874 1001.873 1001.874

3 1066.146 1066.146 1066.146 1066.245 1066.287 1066.266

4 1086.561 1086.559 1086.560 1086.613 1086.667 1086.640

5 1102.019 1101.984 1102.002 1101.988 1102.026 1102.007

6 1201.923 1201.896 1201.910 1202.134 1202.170 1202.152

7 1301.980 1301.981 1301.981 1302.525 1302.523 1302.524

8 1402.325 1402.320 1402.323 1402.888 1402.944 1402.916

9 1502.606 1502.600 1502.603 1503.206 1503.214 1503.210

10 1602.917 1602.897 1602.907 1603.185 1603.361 1603.273

11 1703.408 1703.420 1703.414 1703.375 1703.375 1703.375

Page 78: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 21

Table 7. Lamp currents corresponding to the copper point temperature.

Lamp T(FP) I(FP)

without SOS correction

I(FP)

with SOS correction

C564 1084.62 °C 5.30767 A 5.30720 A

C681 1084.62 °C 6.57615 A 6.57472 A

Table 8. Resistance of the lamps before and after the measurements, which were measured by a

ASL F18 Bridge with 50 root 2 mA current, 3 Hz bandwidth and a 1 ΩΩΩΩ reference resistor.

Measurement just after reception of the lamps (1997/10/15),

Resistance Ambient Temp

Lamp 1 (C564) 40.5384 mΩ 24.54 °C

Lamp 2 (C681) 34.7352 mΩ 25.21 °C

Measurement just before transferring lamps to NIM (1997/12/8),

Resistance Ambient Temp

Lamp 1 (C564) 40.4865 mΩ 24.59 °C

Lamp 2 (C681) 34.6972 mΩ 25.39 °C

Page 79: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 22

4. Uncertainties

Table 9. The budgets of uncertainties for the calibration of the lamps.

Type Temperature 964 °C 1066 °C 1086 °C 1703°C

Source of uncertainty Standard deviation

Reference blackbody radiator

B Impurity 0.008 0.010 0.010 0.021

B Temp gradient along cavity wall 0.017 0.019 0.020 0.042

B Emissivity 0.003 0.004 0.004 0.009

B Temp difference across cavity wall 0.001 0.001 0.001 0.002

Reference thermometer

B Ratio of photo current –measurement 0.007 0.008 0.008 0.018

B Ratio of photo current –resolution 0.009 0.003 0.004 0.003

A Non-linearity 0.034 0.040 0.000 0.088

A SSE 0.034 0.040 0.042 0.088

B Spectral response function 0.017 0.003 0.000 0.138

B Blocking at the side band 0.000 0.000 0.000 0.003

B Mean effective wavelength 0.000 0.000 0.000 0.003

Transfer Lamps

A Lamp current, as set 0.002 0.002 0.001 0.000

B Lamp current, as prescribed 0.002 0.002 0.001 0.000

Radiance temperature

B Short term stability 0.002 0.001 0.001 0.000

B Drift 0.017 0.019 0.020 0.042

B Dependence on wavelength 0.001 0.001 0.001 0.002

B Dependence on base temp. 0.006 0.002 0.002 0.000

A Alignment 0.017 0.019 0.020 0.042

B Target field 0.017 0.019 0.020 0.042

B Cleaning of the window 0.004 0.005 0.005 0.011

Lamp-thermometer composite

A Repeatability of radiance temperature 0.019 0.006 0.009 0.007

B Correction for SSE 0.034 0.040 0.042 0.088

B Correction for SSE & non-linearity 0.034 0.040 0.000 0.088

B Conversion to reference wavelength 0.001 0.001 0.001 0.002

B Conversion to reference base temperature 0.000 0.000 0.000 0.000

B Conversion to prescribed lamp current 0.013 0.012 0.012 0.010

Effective standard deviation of type A 0.050 0.061 0.047 0.132

Effective standard deviation of type B 0.060 0.069 0.058 0.202

Page 80: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 23

Overall effective standard deviation 0.085 0.095 0.070 0.245

Page 81: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Report on Calibration of Vacuum Tungsten-Strip Lamps as Transfer Standards for the Inter-comparison of

the Local Realizations of the ITS-90 between the Silver Point and 1700 °C

28 December 1998 24

Table 10. Effective standard deviations of calibrations of the lamps at the specified reference

conditions.

Effective standard

deviation (°C)

Current of C564

Lamp (A)

Current of C681

Lamp (A)

Temp (°C)

0.085 4.480 5.508 964

0.090 4.721 5.822 1002

0.095 5.169 6.399 1066

0.075 5.322 6.594 1086

0.100 5.441 6.745 1102

0.115 6.272 7.795 1201

0.135 7.194 8.948 1301

0.160 8.189 10.183 1402

0.185 9.242 11.487 1502

0.210 10.347 12.851 1602

0.245 11.502 14.273 1703

5. Conclusions

According to the protocol, we have calibrated two sets of high-stability tungsten vacuum lamp (C564 and

C681) supplied by the pilot laboratory, VSL via NML. This experiment includes measurements of lamp

resistance, temperature drift after an 1 hour-stabilization, horizontal temperature distribution and angular

distribution of radiance temperature of the lamps. In this paper, we have reported the experimental and

theoretical procedures for the local realization of the ITS-90 in KRISS, the calibration results of the lamps

which has been corrected to the reference conditions of the protocol, and the uncertainty analysis of the

calibration. The uncertainty of the calibration in terms of the effective standard deviation is varying from

0.085 °C to 0.245 °C as temperature changes from the silver point to 1700 °C.

Page 82: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 1 of 17

CCT Radiance Temperature Intercomparison Report

1. Laboratory designation: National Institute of Standards and Technology (NIST) 2. Address: NIST

Building 221, Room B208 Gaithersburg, MD 20899-0001 USA

3. Contact person: Mr. Charles Gibson Phone: 301 975 2329 Fax: 301 869 5700 E-mail: [email protected]

4. Lamp set # II: C860 & C864 5. Temperature points: 1000 οC to 1700 οC in 100 οC steps and 1064.18 οC 6. The measurement procedures will not be repeated here in this document. NIST followed

the procedures described in the ‘Protocol to the Comparison of Local Realizations of the ITS-90 between the Silver Point and 1700 οC, using Vacuum Tungsten-Strip Lamps as Transfer Standards’ with Appendixes A to D.

7. Realization of the ITS-90

The reference temperature standard, a gold fixed-point blackbody (Au) with a temperature (TAu) of 1064.18 C (1337.33 K), and the Planck radiation law are used to realize and disseminate the 1990 NIST Radiance Temperature Scale. Equation (1) is used to calculate the spectral radiance L8,Au(8, TAu) of the fixed-point blackbody for 8 = 655.3 nm in all the measurements of this calibration facility. Measurements are performed from 800 °C to 2300 °C for lamps, from 800 °C to 2700 °C for radiation thermometers, and extrapolated to 4200 °C for some disappearing filament optical pyrometers.

)1))/((exp( 2

521

−⋅⋅⋅⋅⋅

=Tncn

cL L

λλε

λλ

λλ (1)

Temperature is defined as a function of spectral radiance using the following equation

( ))/()(1ln),( 52

1

2

λλλλλ λελ

λLncn

cLT

L ⋅⋅⋅+⋅⋅= (2)

The NIST photoelectric pyrometer (PEP) is the transfer device used to compare the

spectral radiances of the sources by the direct substitution method. The signals are corrected for size of source, amplifier gain, and linearity. The NIST PEP is a filtered radiometer that uses two interference filters to select the bandpass. The spectral bandwidth is 5 nm with a mean effective wavelength of 655.3 nm. A photomultiplier tube with an S-20 spectral response is used in the DC mode. The measurement spot size is a 0.6 mm by 0.8 mm rectangle.

Page 83: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 2 of 17

A high stability vacuum lamp operated at a single radiance temperature of approximately 1255 °C is the working standard (WS). The spectral radiance ratio is given by Eq. (3).

Au

WS

Au

WS1 )(

)(SS

TLTLr ==

λ

λ (3)

After applying correction factors to the signals in Eq. (3) for amplifier calibration (CA), linearity (CL), and size of source (CS), the spectral radiance of the WS lamp can be written as

( )( )AuSLA

WSSLA1

252

1WS

1expGCCCGCCC

r

Tncn

cL

Au

L

⋅⋅⋅⋅⋅⋅

⋅⋅

⋅⋅

⋅⋅

⋅=

λλ

ε

λλ

λ (4)

where G is the amplifier gain.

8. Transfer of radiance temperature to strip lamps

The values of radiance temperature apply when the lamp has been aligned to a specified orientation while operating at a designated radiance temperature and after the lamp has reached thermal stability at each specified operating current. The WS and Test Lamp (TL) are fully aligned at one temperature. At all other temperatures, the TL is translated vertically and/or horizontally so that the target area viewed by the PEP is always centered on the lamp filament at the height of the notch. No additional rotational alignments were performed.

The initial lamp current that corresponds to 1400 °C was selected from Appendix D of the intercomparison protocol. The TL was turned on and set to approximately 1400 °C and aligned after 30 min. The TL was spectrally compared to the WS to determine its radiance temperature. The spectral radiance ratio of the TL to the WS, r2, was measured three times by alternately translating the WS and the TL to the PEP. If the percent standard deviation of the ratio was less then the control limit, then the next calibration point was measured; otherwise, the point was repeated. The control limits were equal to the relative standard uncertainty (k = 1) of the ratio and were determined from previous calibration data. The control limits were the expected uncertainties for the spectral radiance ratio measurement. Next, the TL was aligned and measured at 1000 C after waiting 30 min. The additional calibration temperatures were aligned and measured in increasing order after waiting 30 min between data points. The measurement was repeated the next day starting at 1000 °C. The calibration log file was generated from each day of measurements and the following data was stored in a summary file for each test lamp: nominal temperature, measured temperature, lamp current, and spectral radiance ratio.

9. Description of gold-point blackbody

In the Radiance Temperature Calibration Laboratory (RTCL), a gold fixed-point blackbody with a calculated emissivity of 0.9999, designed and built by the NIST Optical Technology Division, is the primary standard used to realize the 1990 NIST Radiance Temperature Scale. The blackbody, shown in Fig. 1, consists of a graphite cavity, a crucible of gold, and a cylindrical heat-pipe furnace. The cavity, which is 76 mm in length and 6 mm

Page 84: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 3 of 17

in diameter and has a 60 conical end shown, is made from Ultra “F” grade graphite (spectrographic purities of 10 ppm or less). Surrounding this cavity is a crucible containing 0.99999 pure gold. The cavity, along with graphite rings and silica glass spacers, is placed in an alumina tube. The front rings define a solid angle with a f/6 field of view, while the back rings support the thermocouple. A furnace (see Fig. 1), which consists of a sodium heat-pipe heated by two semi-cylindrical ceramic heater elements inside of a mullite tube, is enclosed in a water-cooled housing (631 mL/min) and is operated in an argon environment (37 mL/min with furnace door closed and 235 mL/min with furnace door open).

The duration of a melt or freeze plateau is approximately 40 min, and the time delay between these observation periods is about 45 min. Measurements during the freeze cycle show a negative slope of 20 mK in 30 min. The blackbody is slowly heated over about 8 h before reaching the melting point and is typically ramped up over night so that it is held just below the melting point the next morning. After the initial heating at 8 A, the melt cycle is begun by increasing the current to 8.5 A until the temperature reaches 1071 C. The freeze cycle is begun by lowering the blackbody current to 7.95 A. Then the blackbody current is raised to 8.5 A at 1050 C to begin the melt cycle again.

Figure 1 . Schematic of gold-point blackbody.

Page 85: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 4 of 17

10. Working standard lamp

A vacuum tungsten ribbon filament lamp of the Quinn-Lee type is used in the temperature scale realization as the secondary temperature standard. This lamp maintains the temperature scale between scale realizations with the gold-point blackbody and as the transfer standard for calibration measurements. The temperature of the working standard lamp (serial number SL20) is determined by spectral comparison with the gold-point blackbody. This lamp is operated at a single current (7.7788 A DC) to produce a spectral radiance about eight times higher than that of the gold-point blackbody at 655.3 nm. The radiance temperature of working standard lamps is about 1255 °C. This lamp is stable to better than 0.1 °C over 100 h when operated under these single current conditions. 11. NIST photoelectric pyrometer

The PEP is a NIST-designed transfer radiometer, which uses refractive optics to image the source onto the detector. The schematic of the NIST PEP is shown in Fig. 2. A drawing of the measurement system is shown in Fig. 3. The measurement system is completely automated and controlled by a personal computer, while the laboratory environment is monitored by temperature and relative humidity sensors. Lamps and blackbodies are positioned onto the optical axis of the PEP using a closed-loop motor controller system that allows positioning to within 0.01 mm.

Figure 2. NIST photoelectric pyrometer

Page 86: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 5 of 17

LEGENDAMP Amplifier

EM Environmental Monitor TC Thermoelectric CoolerGPBB Gold-point Blackbody TL Test LampGPL Gold-point Lamp TS Temperature SensorPC Personal Computer VTBB Variable Temperature BlackbodyPMT Photomultiplier Tube WSL Working Standard Lamp

PS Power SupplyDVM Digital Voltmeter RS Room Humidity Sensor

EM

PC

PS

AMP

DVM

VTBB

TL TLTLGPBB

WSL

GPL

Source Table

RS TS

PMT

TC

Figure 3. NIST radiance temperature laboratory measurement system.

12. Local conditions during measurements

Room temperature (Tamb): 24 °C ± 1 °C Relative humidity (RH): 25 % ± 5 %

13. Reference thermometer

Mean effective wavelength = 655.3 nm as defined below

( )

−⋅=−

2112

2 11/ln21 TTLL

cTTλ (5)

where T1 is the temperature of the WS lamp T2 is the temperature of the TL Half-width of spectral response function 5 nm Target distance 640 mm Target field dimensions 0.6 mm wide by 0.8 mm high rectangle Aperture ratio f/13 Detector S-20 PMT

Page 87: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 6 of 17

Detector measuring mode DC Size of source effect

The magnitude of the size of source correction is determined by measuring the spectral radiance of a large uniform diffuse source with various apertures in front of the source. The large uniform diffuse source designed at NIST is used to measure the size of source effect. A 1 kW frosted quartz-halogen lamp is placed in a 20 cm by 23 cm by 20 cm vented housing. A lens focuses the lamp onto an opening in the housing that is covered by a 25.4 mm diameter circular diffuser. The apertures are on an aperture slide for quick positioning and reproducibility. The aperture sizes measured are a 1.4 mm by 25.4 mm slit, a 3 mm by 25.4 mm slit, and a 15 mm diameter hole which approximate the sizes of the WS filament, the TL filament, and the Au blackbody opening. The ratio r1 is the measurement of the ratio of the WS to the AuBB, see Eq. (3). The size of source correction is determined from the ratio of the measurements of the 15 mm diameter hole to the 1.4 mm by 25.4 mm slit. The correction factor is 1.0009 ± 0.0006 and the temperature correction is 0.10 °C. A negligible difference was observed for the measurements of the 1.4 mm by 25.4 mm slit and the 3 mm by 25.4 mm slit; therefore, the correction factor for ratio of the TL to the WS is 1.

14. Transfer lamps Nominal base temperature: C860 19.9 °C at 1000 °C and 20.7 °C at 1700 °C C864 19.7 °C at 1000 °C and 20.2 °C at 1700 °C Base temperatures repeated better than 0.01 °C Total burning time: Date Lamp Task New hours Total hours 11/14/97 C860 Restabilization

1100°C, 1700°C for 1 h, 1100°C 5 h 25 min 5 h 25 min

11/17/97 C860 Measurements 1400°C, 1000°C to 1700°C

11 h 2 min 16 h 27 min

11/18/97 C860 Measurements 1000 °C to 1700°C

8 h 38 min 25 h 5 min

11/23/97 C860 Fixed point 1064.18 °C

4 h 35 min 29 h 40 min

11/14/97 C864 Restabilization

1100°C, 1700°C for 1 h, 1100°C 5 h 18 min 5 h 18 min

11/17/97 C864 Measurements 1400°C, 1000°C to 1700°C

10 h 58 min 16 h 16 min

11/18/97 C864 Measurements 1000 °C to 1700°C

8 h 38 min 24 h 54 min

11/23/97 C864 Fixed point 1064.18 °C

4 h 33 min 29 h 27 min

Page 88: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 7 of 17

15. Ambient conditions

Room temperature (Tamb): Mean: 24.6 °C Max.: 25.0 °C

Min.: 24.2 °C

Relative humidity (RH): Mean: 22 % Max.: 29 % Min.: 19 %

16. Resistance results C860 11/14/97 Ramb = 39.863 mΩ Tamb = 21.486 °C C860 11/24/97 Ramb = 39.789 mΩ Tamb = 21.077 °C C864 11/14/97 Ramb = 41.574 mΩ Tamb = 21.148 °C C864 11/24/97 Ramb = 41.600 mΩ Tamb = 21.109 °C The lamp resistance was measured on 11/14/97 before removing the lamps from the case. After the electrical connections were made, insulation was placed around the case opening, and the lamps were allowed to reach equilibrium overnight. Calibrated 25 kΩ thermistors were used to measure the base temperature. Bushings and heat sink grease were used to improve thermal contact. 17. Lamp mapping data is in text file: NIST CCT Lamp mapping.txt

-0 .40%

-0.35%

-0.30%

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0.05%

0.10%

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Horizontal distance from target [m m ]

Cha

nge

in R

adia

nce

[%]

C860 #1C860 #2C864 #1C864 #2

(- va lues are on the notch side)

Figure 4. T ranslational m apping of the lam p filam ent a long the horizontal axis with a 0.6 m m x 0.8 m m target area.

Page 89: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 90: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 9 of 17

18. Table A data is in text file: NIST CCT Table A.txt C860 Table A SSE & Non-lin corr. No. Corr. SSE Corr. SSE & Non-lin corr. Meas #. Itab: I(j) Iset: I(l) I(j)-I(l) STL/SAu TAu Tλ Tλ Tλ

A A A oC oC oC oC

1 9.570 9.570 0.000 2.6946E+01 1064.18 1399.90 1400.01 1400.022 5.380 5.380 0.000 4.3578E-01 1064.18 999.74 999.81 999.843 6.284 6.284 0.000 1.5340E+00 1064.18 1099.95 1100.03 1100.054 7.298 7.298 0.000 4.5388E+00 1064.18 1199.91 1200.00 1200.005 8.398 8.398 0.000 1.1697E+01 1064.18 1299.84 1299.94 1299.946 9.570 9.570 0.000 2.6950E+01 1064.18 1399.92 1400.03 1400.047 10.805 10.805 0.000 5.6471E+01 1064.18 1499.88 1500.01 1500.048 12.099 12.099 0.000 1.0946E+02 1064.18 1600.02 1600.16 1600.149 13.446 13.446 0.000 1.9791E+02 1064.18 1699.73 1699.89 1699.87

10 5.380 5.380 0.000 4.3564E-01 1064.18 999.71 999.78 999.8111 6.284 6.284 0.000 1.5332E+00 1064.18 1099.90 1099.98 1100.0012 7.298 7.298 0.000 4.5387E+00 1064.18 1199.90 1199.99 1199.9913 8.398 8.398 0.000 1.1701E+01 1064.18 1299.89 1299.99 1299.9914 9.570 9.570 0.000 2.6952E+01 1064.18 1399.92 1400.03 1400.0415 10.805 10.805 0.000 5.6466E+01 1064.18 1499.86 1499.99 1500.0216 10.805 10.805 0.000 5.6465E+01 1064.18 1499.86 1499.99 1500.0217 12.099 12.099 0.000 1.0947E+02 1064.18 1600.03 1600.17 1600.1518 13.446 13.446 0.000 1.9797E+02 1064.18 1699.78 1699.94 1699.9219 5.944 5.944 0.000 9.9478E-01 1064.18 1063.68 1063.75 1063.7520 5.944 5.944 0.000 9.9479E-01 1064.18 1063.68 1063.75 1063.7521 5.944 5.944 0.000 9.9429E-01 1064.18 1063.64 1063.71 1063.71

Notes: For numbers 1 thru 18, STL/SAu = STL/SWS x SWS/SAu, where the ratios measured were STL/SWS and SWS/SAu.

Page 91: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 10 of 17

For numbers 19 thru 21, ratio STL/SAu was measured directly. C864 Table A SSE & Non-lin corr. No. Corr. SSE Corr. SSE & Non-lin corr. Meas #. Itab: I(j) Iset: I(l) I(j)-I(l) STL/SAu TAu Tλ Tλ Tλ

A A A oC oC oC oC

1 9.314 9.314 0.000 2.6877E+01 1064.18 1399.57 1399.68 1399.692 5.236 5.236 0.000 4.3483E-01 1064.18 999.58 999.65 999.683 6.120 6.120 0.000 1.5304E+00 1064.18 1099.74 1099.82 1099.844 7.107 7.107 0.000 4.5270E+00 1064.18 1199.65 1199.74 1199.745 8.177 8.177 0.000 1.1678E+01 1064.18 1299.66 1299.76 1299.766 9.314 9.314 0.000 2.6880E+01 1064.18 1399.58 1399.69 1399.707 10.513 10.513 0.000 5.6352E+01 1064.18 1499.58 1499.71 1499.748 11.767 11.767 0.000 1.0923E+02 1064.18 1599.68 1599.82 1599.809 13.074 13.074 0.000 1.9763E+02 1064.18 1699.48 1699.64 1699.62

10 5.236 5.236 0.000 4.3483E-01 1064.18 999.57 999.64 999.6711 6.120 6.120 0.000 1.5283E+00 1064.18 1099.62 1099.70 1099.7212 7.107 7.107 0.000 4.5243E+00 1064.18 1199.59 1199.68 1199.6813 8.177 8.177 0.000 1.1674E+01 1064.18 1299.63 1299.73 1299.7314 9.314 9.314 0.000 2.6860E+01 1064.18 1399.49 1399.60 1399.6115 10.513 10.513 0.000 5.6289E+01 1064.18 1499.42 1499.55 1499.5816 10.513 10.513 0.000 5.6292E+01 1064.18 1499.42 1499.55 1499.5817 11.767 11.767 0.000 1.0915E+02 1064.18 1599.56 1599.70 1599.6818 13.074 13.074 0.000 1.9749E+02 1064.18 1699.35 1699.51 1699.4919 5.788 5.788 0.000 9.9437E-01 1064.18 1063.65 1063.72 1063.7220 5.788 5.788 0.000 9.9409E-01 1064.18 1063.63 1063.70 1063.7021 5.788 5.788 0.000 9.9485E-01 1064.18 1063.69 1063.76 1063.76

Notes: For numbers 1 thru 18, STL/SAu = STL/SWS x SWS/SAu, where the ratios measured were STL/SWS and SWS/SAu

For numbers 19 thru 21, ratio STL/SAu was measured directly.

Page 92: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 11 of 17

19. Table B data is in text file: NIST CCT Table B.txt C860 Table B SSE & non-lin corr. dTλ/dλ.(λr - λe) dTλ/dTb.(T20 - Tb)

Meas. # λe Tλe dTλ/dλ Tλr Tb dTλ/dTb T20 - Tb Tλr, 20

nm oC oC oC oC oC oC

1 655.3 1400.02 -0.213 1.13 1401.15 20.233 0.132 -0.233 -0.031 1401.152 655.3 999.84 -0.118 0.63 1000.47 19.916 0.032 0.084 0.003 1000.473 655.3 1100.05 -0.139 0.73 1100.78 19.967 0.011 0.033 0.000 1100.784 655.3 1200.00 -0.161 0.85 1200.85 20.052 0.021 -0.052 -0.001 1200.855 655.3 1299.94 -0.186 0.98 1300.92 20.150 0.061 -0.150 -0.009 1300.926 655.3 1400.04 -0.213 1.13 1401.17 20.260 0.132 -0.259 -0.034 1401.177 655.3 1500.04 -0.242 1.28 1501.32 20.382 0.233 -0.382 -0.089 1501.328 655.3 1600.14 -0.273 1.45 1601.59 20.517 0.364 -0.517 -0.188 1601.599 655.3 1699.87 -0.307 1.63 1701.50 20.654 0.526 -0.654 -0.344 1701.50

10 655.3 999.81 -0.118 0.63 1000.44 19.917 0.032 0.083 0.003 1000.4411 655.3 1100.00 -0.139 0.73 1100.73 19.965 0.011 0.035 0.000 1100.7312 655.3 1199.99 -0.161 0.85 1200.84 20.042 0.021 -0.042 -0.001 1200.8413 655.3 1299.99 -0.186 0.98 1300.97 20.152 0.061 -0.152 -0.009 1300.9714 655.3 1400.04 -0.213 1.13 1401.17 20.256 0.132 -0.256 -0.034 1401.1715 655.3 1500.02 -0.242 1.28 1501.30 20.388 0.233 -0.388 -0.090 1501.3016 655.3 1500.02 -0.242 1.28 1501.30 20.396 0.233 -0.396 -0.092 1501.3017 655.3 1600.15 -0.273 1.45 1601.60 20.524 0.364 -0.524 -0.191 1601.6018 655.3 1699.92 -0.307 1.63 1701.55 20.665 0.526 -0.665 -0.350 1701.5519 655.3 1063.75 -0.131 0.69 1064.45 20.304 0.015 -0.304 -0.005 1064.4420 655.3 1063.75 -0.131 0.69 1064.45 20.319 0.015 -0.319 -0.005 1064.4421 655.3 1063.71 -0.131 0.69 1064.41 20.327 0.015 -0.327 -0.005 1064.40

Page 93: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 12 of 17

Notes: Numbers 19 thru 21 are measurements using the gold point

blackbody C864 Table B SSE & non-lin corr. dTλ/dλ.(λr - λe) dTλ/dTb.(T20 - Tb)

Meas. # λe Tλe dTλ/dλ Tλr Tb dTλ/dTb T20 - Tb Tλr, 20

nm oC oC oC oC oC oC

1 655.3 1399.69 -0.213 1.13 1400.82 19.949 0.111 0.051 0.006 1400.822 655.3 999.68 -0.118 0.63 1000.31 19.742 0.028 0.258 0.007 1000.313 655.3 1099.84 -0.138 0.73 1100.57 19.780 0.009 0.220 0.002 1100.574 655.3 1199.74 -0.161 0.85 1200.59 19.839 0.016 0.161 0.003 1200.595 655.3 1299.76 -0.186 0.98 1300.74 19.903 0.050 0.097 0.005 1300.746 655.3 1399.70 -0.213 1.13 1400.83 19.975 0.111 0.025 0.003 1400.837 655.3 1499.74 -0.242 1.28 1501.02 20.051 0.198 -0.051 -0.010 1501.028 655.3 1599.80 -0.273 1.45 1601.25 20.134 0.312 -0.134 -0.042 1601.259 655.3 1699.62 -0.307 1.62 1701.25 20.221 0.453 -0.221 -0.100 1701.25

10 655.3 999.67 -0.118 0.63 1000.30 19.749 0.028 0.251 0.007 1000.3011 655.3 1099.72 -0.138 0.73 1100.45 19.783 0.009 0.217 0.002 1100.4512 655.3 1199.68 -0.161 0.85 1200.53 19.835 0.016 0.165 0.003 1200.5313 655.3 1299.73 -0.186 0.98 1300.71 19.910 0.050 0.090 0.005 1300.7114 655.3 1399.61 -0.213 1.13 1400.74 19.976 0.111 0.024 0.003 1400.7415 655.3 1499.58 -0.242 1.28 1500.86 20.060 0.198 -0.060 -0.012 1500.8616 655.3 1499.58 -0.242 1.28 1500.86 20.065 0.198 -0.065 -0.013 1500.8617 655.3 1599.68 -0.273 1.45 1601.13 20.145 0.312 -0.145 -0.045 1601.1318 655.3 1699.49 -0.307 1.62 1701.12 20.234 0.453 -0.234 -0.106 1701.1219 655.3 1063.72 -0.131 0.69 1064.42 20.140 0.012 -0.140 -0.002 1064.4220 655.3 1063.70 -0.131 0.69 1064.40 20.151 0.012 -0.151 -0.002 1064.3921 655.3 1063.76 -0.131 0.69 1064.46 20.162 0.012 -0.162 -0.002 1064.45

Page 94: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 13 of 17

Notes: Numbers 19 thru 21 are measurements using the gold point

blackbody

Page 95: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 14 of 17

λr = 650.0 nm λr - λe = -5.3 nm The following temperatures were corrected for base temperature: 1000 oC, 1064.18 oC, and 1100 oC The wavelength coefficients, dTλ/dλ, were taken from the table in Appendix B The temperature coefficients, dTλ/dTb, were calculated using the polynomial in Appendix D

Page 96: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 15 of 17

20. The Uncertainty analysis is summarized in Tables C, D, & E below: Table C: Working Standard lamp Expanded Uncertainties

Expanded Source of Uncertainty Type Uncertainties (oC)

Refractive index B 0.03 Wavelength B 0.37 Freezing temperature of gold B 0.30 Second radiation constant B 0.03 Emissivity of Au B 0.02 First radiation constant B 0.00 Ratio of WS signal to Au signal A 0.03 WS amplifier calibration correction A 0.01 WS linearity correction A 0.11 WS size of source correction A 0.06 WS amplifier gain B 0.00 Au amplifier calibration correction A 0.01 Au linearity correction A 0.11 Au size of source correction A 0.02 Au amplifier gain B 0.00 Digital voltmeter B 0.00 WS current B 0.11 WS stability B 0.11

Expanded uncertainty U = kuc(T), where k = 2 0.53

Page 97: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 16 of 17

Table D: Test lamp vs. Au Expanded Uncertainties

ExpandedSource of Uncertainty Type Uncertainties (oC)

Refractive index B 0.03Wavelength B 0.37Freezing temperature of gold B 0.30Second radiation constant B 0.03Emissivity of Au B 0.02First radiation constant B 0.00Ratio of TL signal to Au signal A 0.09TL amplifier calibration correction A 0.01TL linearity correction A 0.11TL size of source correction A 0.06TL amplifier gain B 0.00Au amplifier calibration correction A 0.01Au linearity correction A 0.11Au size of source correction A 0.02Au amplifier gain B 0.00Digital voltmeter B 0.00TL current B 0.13TL stability B 0.11

Expanded uncertainty U = kuc(T), where k = 2 0.54

Page 98: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NIST_CCT.DOC 8/17/1998 Page 17 of 17

Table E: Test lamp Expanded Uncertainties

Expanded Uncertainties [ oC]

Source of Uncertainty Type Temperature [ oC]

1000 1100 1200 1300 1400 1500 1600 1700

1. Calibration of the reference radiance temperature lamp relative to the 1990 NIST Radiance Temperature Scale A 0.37 0.43 0.49 0.56 0.64 0.71 0.80 0.882. Test lamp temperature determination A 0.07 0.09 0.10 0.11 0.13 0.14 0.16 0.183. Current measurement B 0.14 0.13 0.12 0.11 0.11 0.11 0.11 0.10

4. Mean effective wavelength measurement for the NIST Photoelectric Pyrometer B 0.06 0.04 0.02 0.01 0.05 0.09 0.13 0.185. Test lamp alignment B 0.12 0.14 0.16 0.19 0.21 0.24 0.27 0.30

6. 1990 NIST Radiance Temperature Scale relative to the Thermodynamic Temperature Scale B 0.21 0.24 0.28 0.32 0.36 0.40 0.45 0.50

Expanded uncertainty U = kuc(T), where k = 2 0.47 0.54 0.61 0.69 0.78 0.88 0.98 1.09

Page 99: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

1

Report on the comparison of local realization of the ITS-90 between the silver point and 1700°C using vacuum tungsten-strip lamps as transfer standards

Wang Li

National Measurement Centre, Singapore Productivity and Standards Board

1. Local realization of the ITS-90 1.1. Description of equipment 1.1.1. Reference thermometer The optical arrangement of the thermometer is shown in Figure 1. The thermometer works at a fixed target distance of 500 mm from the objective lens L1 (focal length 250 mm) with unit magnification. The nominal target size is determined by a field stop of 0.85 mm in diameter. The objective lens L1 acts as the aperture stop which determines an aperture ratio of 10.4:1, whilst lens L2 acts as a collimator. Two interference filters with nominal centre wavelength of 649 nm are used. The half-height bandwidth of two filters is 5nm and 10 nm respectively. A silicon detector (Hamamatsu, Type No. 1337-1010 BR) operated in the photovoltaic mode is used. The photocurrent from the detector is converted to voltage by an operational amplifier (Burr-Brown OPA128 LM) with one feedback resistor of 107 Ω. The thermometer operates from the silver point to 1700°C without introducing any neutral filter. The interference filter and the detector are housed in a detachable module which is removed for insertion of a telescope during alignment. The detector and the interference filters are not under temperature control. 1.1.2. Fixed point The silver point is used for the fixed point calibration. A schematic view of the arrangement for realising the Ag freezing point is shown in Figure 2. The design of the crucible and blackbody assembly is the same as IMGC’s blackbody fixed point. The metal ingot is held in pure graphite (5 ppm impurity) crucible. Its available volume is about 48 cm3. The silver sample is from Johnson Matthey with nominal purity better than 99.9999%. The blackbody cavity is a cylinder 9.5 mm in diameter and 66 mm in depth terminated with a conical bottom. The cavity aperture is delimited by a graphite diaphragm 3 mm in diameter. The effective emissivity of the cavity is estimated to be 0.999938. The crucible is mounted in a quartz tube (50 mm in diameter) with a protection cone in front. The quartz tube is then inserted into a three-zone furnace. Argon gas is used to protect the graphite parts from oxidation during the realisation. The temperature distribution of the circular area around the blackbody aperture is measured during the realization of the Ag for SSE correction. 1.1.3. Measurement of relative spectral responsivity and non-linearity The relative spectral responsivity and the non-linearity were measured by NML, Australia, two months before the comparison. The relative spectral responsivity of the thermometer was measured in situ by reference to 3 element (5 reflection) trap detector, the quantum efficiency of which was uniform to better than 99.9% over 500-850 nm. Outside this region the characterised trap response function was used. In the pass-band region of the interference filters, the measurement was done in an interval of 0.5 nm with a monochromator half bandwidth of 0.1 nm. An interval of 4 nm was used with the monochromator half bandwidth of 1 nm outside the pass-band of the filters. The effective wavelength is then calculated at different temperatures according to its definition. The non-linearity measurement was done for a range of input fluxes by a flux addition method using a beam splitter. Detector voltages were incremented in ratios of 2 until the voltage signal equivalent to a temperature of approximately 1800°C was reached. It was found that the error that would be incurred by ignoring the linearity correction is 0.012°C at 1700°C.

Page 100: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

2

1.2. The ITS-90 above the silver point The ITS-90 is kept in the reference thermometer itself. No strip lamps are used. The thermometer is calibrated at the Ag point before every usage. The temperatures corresponding to different voltage signals are then calculated according to the ITS-90 definition. Non non-linearity correction is applied. The non-linearity is considered as a part of the uncertainty. The SSE correction is applied to every calculated temperatures. 1.3. Measurement steps of the comparison a. Measurement of positioning effects (spatial and rotational) b. Restabilization of the transfer lamp c. Calibration of the thermometer at the Ag point then calibration of the transfer lamp from I(1) to I(11).

The whole cycle was finished within one day. d. Repetition of step c for 3 times. Three runs of measurement results were thus obtained for each transfer

lamp. 2. Presentation of results 2.1. Local conditions 2.1.1. Reference thermometer - Effective wavelength: 649.175 nm (in vacuum) at the Ag point. - Half-width of spectral response function: 5 nm - Aperture ratio: 10.4:1 - Target distance: 500 mm - Target field dimensions: 0.85 mm - SSE: see Figure 3 2.1.2. Transfer lamps - Orientation of the lamps: reference orientation, rotational effect see Figure 4 - Nominal base temperature: 20°C ± 0.05°C (1 σ level) - Total burning time: lamp 1 = 30 h; lamp 2 = 30 h 20 minutes 2.1.3. Ambient conditions - Tamb: 23 ± 1°C - RH: 55% ± 5% 2.2. Measurement result 2.2.1. Data tabulation Lamp 1 (C564) The measurement results of lamp 1 are listed in Table A1 and Table B1 as required. Due to the total burning time constrain, I(3) and I(4) were not measured in the third run. The final Tλ[λr;I(j)] are listed in the last column of Table B1. They are obtained by taking the means of three run results except at I(3) and I(4). For these two currents, the final Tλ[λr;I(j)] are obtained by taking the means of first two run results. The parameters ∂Tλ/∂I are obtained from a best fit of the final Tλ[λr;I(j)] and I(j) using a 6 order polynomial. Lamp 2 (C681) The measurement results of lamp 2 are listed in Table A2 and Table B2 as required. Due to some alignment problem, the first run results and the results of I(1) and I(9) of the second run have some significant errors and

Page 101: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

3

are eliminated. As in lamp 1 case, due to the total burning time constrain, only some currents were measured in the third run. The final Tλ[λr;I(j)] are listed in the last column of Table B2. They are obtained by taking the means of two run results for those currents which have data in both runs. For the rest of the currents, the final Tλ[λr;I(j)] are from single run (either from 2nd run or 3rd run). The parameters ∂Tλ/∂I are obtained from a best fit of the final Tλ[λr;I(j)] and I(j) using a 6 order polynomial. 2.2.2. Currents at fixed point temperatures As described in 1.3, the Ag point was realised every time before measurements on the transfer lamps were taken. The Ag point was not transferred to the transfer lamps. However, the T(FP) vs. I[T(FP)] can be obtained by using ∂Tλ/∂I if required. 2.2.3. Ramb and Tamb Some difficulties were encountered in following the recommended method of measurement due to the instability of the room temperature. To solve this problem, each of the lamps was kept inside a temperature controlled air-bath at 23°C during the measurement. Before After Ramb (Ω) Tamb (°C) Ramb (Ω) Tamb (°C) Lamp 1 0.0402676 22.975 0.0402218 22.937 Lamp 2 0.0343305 22.968 0.0343450 22.970 2.3. Uncertainties 2.3.1. Uncertainty at the Ag temperature The uncertainty components at the Ag temperature (Tag) and their values are listed in Table C. Table C. Uncertainties at Tag. Uncertainty components Standard

uncertainty (mK)

Combined standard uncertainty

s(TAg)(mK) Impurities in Ag sample Emissivity of cavity Temperature drop across cavity bottom Random uncertainty including the noise and the repeatability of plateaus Short term stability of the thermometer Differential sse correction between blackbody and lamp *

5.0

4.3

1.3

52.0

19.0

10

57 * Note: 1. The temperature along the strip is considered as uniform. 2. The 1.5mm strip sse curve (see Figure 3) is used for both lamps although their strips have different width. 3. The errors due to these operations are considered as parts of the uncertainties. 2.3.2. Uncertainties in Tλ [I(j)]

Page 102: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

4

The uncertainty components at Tλ [I(j)] and their values are listed in Table D1 and Table D2 for lamp1 and lamp2 respectively. In the Tables, the following terms are used: s(λe): standard uncertainty of the effective wavelength measurement. s(λr): standard uncertainty of reference wavelength due to uncertainty in ∂Tλ/∂λ and uncertainty in

effective wavelength measurement. s(I): standard uncertainty of the current measurement. s(Tb): standard uncertainty of base temperature due to uncertainty in ∂Tλ/∂Tb and uncertainty in Tb

measurement. s(random): random standard uncertainty including the noise and the repeatability of the lamp readings. s(position): standard uncertainty of positioning (spatial and rotational). s(drift of signal): standard uncertainty due to drift of the reference thermometer during measurement. s(drift of lamp): standard uncertainty due to drift of the lamps during measurement. s(Tamb): standard uncertainty due to ambient temperature variation during the measurement. s(non-linearity): standard uncertainty of non-linearity of the photodetector.

Page 103: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

5

Page 104: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

5

Table A1. Measurement results of lamp 1 (C564).

Number of measurement

I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb) (°C)

Tλ(λe;Tb) (°C) corrected for SSE

Tλ(λe;Tb) (°C) corrected for SSE and non-linearity*

First run 1 2 3 4 5 6 7 8 9

10 11

Second run 1 2 3 4 5 6 7 8 9

10 11

Third run 1 2

5 6 7 8 9

10 11

4.480 4.721 5.169 5.322 5.441 6.272 7.194 8.189 9.242

10.347 11.502

4.480 4.721 5.169 5.322 5.441 6.272 7.194 8.189 9.242

10.347 11.502

4.480 4.721

5.441 6.272 7.194 8.189 9.242

10.347 11.502

4.48027 4.72127 5.16931 5.32232 5.44133 6.27237 7.19443 8.18950 9.24254

10.34760 11.50253

4.48027 4.72128 5.16930 5.32232 5.44135 6.27237 7.19442 8.18949 9.24255

10.34767 11.50269

4.48026 4.72129

5.44133 6.27238 7.19442 8.18950 9.24255

10.34766 11.50275

-0.00027 -0.00027 -0.00031 -0.00032 -0.00033 -0.00037 -0.00043 -0.00050 -0.00054 -0.00060 -0.00053

-0.00027 -0.00028 -0.00030 -0.00032 -0.00035 -0.00037 -0.00042 -0.00049 -0.00055 -0.00067 -0.00069

-0.00026 -0.00029

-0.00033 -0.00038 -0.00042 -0.00050 -0.00055 -0.00066 -0.00075

1.029074 1.755473 4.037317 5.172078 6.211086

18.504215 48.032444

111.552089 235.443421 458.761217 836.369318

1.029254 1.755699 4.036259 5.171112 6.213628

18.502951 48.076536

111.627313 235.561291 458.933486 836.676210

1.028582 1.753984

6.204276 18.472166 47.992135

111.512017 235.317759 458.563737 835.851966

963.7552

1001.7547 1065.9041 1086.2469 1101.6831 1201.5410 1301.4733 1401.7310 1501.9222 1602.0958 1702.4675

963.7672

1001.7642 1065.8829 1086.2313 1101.7180 1201.5343 1301.5759 1401.8163 1501.9933 1602.1554 1702.5321

963.7222

1001.6925

1101.5895 1201.3709 1301.3794 1401.6855 1501.8463 1602.0275 1702.3585

963.8347

1001.8392 1065.9973 1086.3430 1101.7814 1201.6541 1301.6022 1401.8768 1502.0860 1602.2786 1702.6704

963.8467

1001.8487 1065.9761 1086.3274 1101.8163 1201.6474 1301.7048 1401.9621 1502.1571 1602.3382 1702.7350

963.8017

1001.7770

1101.6877 1201.4839 1301.5083 1401.8313 1502.0101 1602.2103 1702.5614

963.8347

1001.8392 1065.9973 1086.3430 1101.7814 1201.6541 1301.6022 1401.8768 1502.0860 1602.2786 1702.6704

963.8467

1001.8487 1065.9761 1086.3274 1101.8163 1201.6474 1301.7048 1401.9621 1502.1571 1602.3382 1702.7350

963.8017

1001.7770

1101.6877 1201.4839 1301.5083 1401.8313 1502.0101 1602.2103 1702.5614

Page 105: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

6

* Note: Non correction is made. The non linearity is considered as a part of uncertainty.

Page 106: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

7

Table B1. Measurement results of lamp 1 (C564) (continued).

Number of measurement

λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb) (°C)

Tb (°C)

∂Tλ/∂Tb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[λr;I(l)] (°C)

∂Tλ/∂I (°C/A)

∆Tλ(I) (°C)

Tλ[λr;I(j)] (°C)

Tλ final (°C)

First run 1 2 3 4 5 6 7 8 9

10 11

Second run 1 2 3 4 5 6 7 8 9

10 11

Third run 1 2

5 6 7 8 9

10 11

649.1747 649.1685 649.1591 649.1561 649.1541 649.1417 649.1307 649.1211 649.1125 649.1049 649.0981 649.1747 649.1685 649.1591 649.1561 649.1541 649.1417 649.1307 649.1211 649.1125 649.1049 649.0981 649.1747 649.1685 649.1541 649.1417 649.1307 649.1211 649.1125 649.1049 649.0981

963.8347

1001.8392 1065.9973 1086.3430 1101.7814 1201.6541 1301.6022 1401.8768 1502.0860 1602.2786 1702.6704

963.8467

1001.8487 1065.9761 1086.3274 1101.8163 1201.6474 1301.7048 1401.9621 1502.1571 1602.3382 1702.7350

963.8017

1001.7770

1101.6877 1201.4839 1301.5083 1401.8313 1502.0101 1602.2103 1702.5614

-0.111 -0.119 -0.131 -0.136 -0.139 -0.161 -0.186 -0.213 -0.243 -0.274 -0.308

-0.111 -0.119 -0.131 -0.136 -0.139 -0.161 -0.186 -0.213 -0.243 -0.274 -0.308

-0.111 -0.118

-0.139 -0.161 -0.186 -0.213 -0.242 -0.274 -0.308

-0.0919 -0.0985 -0.1104 -0.1144 -0.1175 -0.1386 -0.1619 -0.1874 -0.2152 -0.2452 -0.2775

-0.0919 -0.0985 -0.1104 -0.1144 -0.1175 -0.1386 -0.1619 -0.1875 -0.2152 -0.2452 -0.2775

-0.0919 -0.0985

-0.1175 -0.1385 -0.1619 -0.1874 -0.2152 -0.2452 -0.2774

963.7429

1001.7407 1065.8869 1086.2285 1101.6639 1201.5155 1301.4403 1401.6894 1501.8708 1602.0334 1702.3929

963.7549

1001.7502 1065.8657 1086.2129 1101.6988 1201.5088 1301.5429 1401.7747 1501.9419 1602.0930 1702.4575

963.7099

1001.6785

1101.5703 1201.3454 1301.3464 1401.6439 1501.7949 1601.9651 1702.2839

19.96 19.96 19.99 19.99 19.95 19.97 20.01 20.08 20.11 20.02 20.02

20.02 20.03 20.04 20.04 20.05 20.07 20.14 20.15 20.00 19.93 19.99

20.14 20.14

20.17 20.19 20.08 20.06 20.09 20.16 20.22

0.0911 0.0656 0.0367 0.0305 0.0265 0.0115

0.0911 0.0656 0.0367 0.0305 0.0265 0.0115

0.0912 0.0656

0.0265 0.0115

0.0036 0.0026 0.0004 0.0003 0.0013 0.0003

-0.0018 -0.0020 -0.0015 -0.0012 -0.0013 -0.0008

-0.0128 -0.0092

-0.0045 -0.0022

963.7465

1001.7433 1065.8872 1086.2288 1101.6652 1201.5158 1301.4403 1401.6894 1501.8708 1602.0334 1702.3929

963.7530

1001.7482 1065.8642 1086.2117 1101.6975 1201.5080 1301.5429 1401.7747 1501.9419 1602.0930 1702.4575

963.6971

1001.6693

1101.5658 1201.3432 1301.3464 1401.6439 1501.7949 1601.9651 1702.2839

163.2 151.8 135.6 131.3 128.2 113.4 104.3

97.8 92.6 88.9 84.2

163.2 151.8 135.6 131.3 128.2 113.4 104.3

97.8 92.6 88.9 84.2

163.2 151.8

128.2 113.4 104.3

97.8 92.6 88.9 84.2

-0.0439 -0.0415 -0.0421 -0.0419 -0.0419 -0.0415 -0.0450 -0.0490 -0.0504 -0.0534 -0.0446

-0.0439 -0.0430 -0.0407 -0.0419 -0.0444 -0.0415 -0.0440 -0.0480 -0.0514 -0.0597 -0.0581

-0.0422 -0.0445

-0.0419 -0.0427 -0.0440 -0.0490 -0.0514 -0.0588 -0.0632

963.7026

1001.7018 1065.8452 1086.1869 1101.6233 1201.4743 1301.3953 1401.6404 1501.8203 1601.9800 1702.3483

963.7092

1001.7052 1065.8235 1086.1698 1101.6530 1201.4664 1301.4990 1401.7267 1501.8905 1602.0333 1702.3994

963.6549

1001.6247

1101.5239 1201.3005 1301.3025 1401.5949 1501.7435 1601.9064 1702.2208

963.689

1001.677 1065.834 1086.178 1101.600 1201.414 1301.399 1401.654 1501.818 1601.973 1702.323

Page 107: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

8

Table A2. Measurement results of lamp 2 (C681).

Number of measurement

I(j) (A)

I(l) (A)

I(j)-I(l) (A)

R Tλ(λe;Tb) (°C)

Tλ(λe;Tb) (°C) corrected for SSE

Tλ(λe;Tb) (°C) corrected for SSE and non-linearity*

Second run

2 3 4 5 6 7 8

10 11

Third run 1

3 4

6

9

11

5.822 6.399 6.594 6.745 7.795 8.948

10.183

12.851 14.273

5.508

6.399 6.594

7.795

11.487

14.273

5.82234 6.39934 6.59441 6.74542 7.79548 8.94855

10.18360

12.85180 14.27384

5.50834

6.39938 6.59441

7.79546

11.48766

14.27378

-0.00034 -0.00034 -0.00041 -0.00042 -0.00048 -0.00055 -0.00060 -0.00080 -0.00084 -0.00034 -0.00038 -0.00041 -0.00046 -0.00066 -0.00078

1.743942 4.020628 5.151107 6.183845

18.462953 48.066357

111.616776

458.536902 833.186356

1.018375

4.019924 5.150399

18.457822

235.465610

833.477570

1001.2717 1065.5691 1085.9082 1101.3083 1201.3220 1301.5522 1401.8044

1602.0182 1701.7963

963.0342

1065.5549 1085.8967

1201.2947

1501.9356

1701.8578

1001.3528 1065.6586 1086.0005 1101.4027 1201.4306 1301.6761 1401.9446

1602.1939 1701.9912

963.1105

1065.6444 1085.9890

1201.4033

1502.0930

1702.0527

1001.3528 1065.6586 1086.0005 1101.4027 1201.4306 1301.6761 1401.9446

1602.1939 1701.9912

963.1105

1065.6444 1085.9890

1201.4033

1502.0930

1702.0527

* Note: Non correction is made. The non linearity is considered as a part of uncertainty.

Page 108: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

9

Table B2. Measurement results of lamp 2 (C681) (continued).

Number of measurement

λe (nm)

Tλ(λe;Tb) (°C)

∂Tλ/∂λ (°C/nm)

∆Tλ(λ) (°C)

Tλ(λr;Tb) (°C)

Tb (°C)

∂Tλ/∂Tb (°C/°C)

∆Tλ(Tb) (°C)

Tλ[λr;I(l)] (°C)

∂Tλ/∂I (°C/A)

∆Tλ(I) (°C)

Tλ[λr;I(j)] (°C)

Tλ final (°C)

Second run

2 3 4 5 6 7 8

10 11

Third run 1

3 4

6

9

11

649.1687 649.1591 649.1563 649.1541 649.1417 649.1307 649.1211

649.1049 649.0981

649.1747

649.1591 649.1563

649.1417

649.1125

649.0981

1001.3528 1065.6586 1086.0005 1101.4027 1201.4306 1301.6761 1401.9446

1602.1939 1701.9912

963.1105

1065.6444 1085.9890

1201.4033

1502.0930

1702.0527

-0.118 -0.131 -0.136 -0.139 -0.161 -0.186 -0.213

-0.274 -0.307

-0.111

-0.131 -0.136

-0.161

-0.243

-0.307

-0.0984 -0.1104 -0.1143 -0.1174 -0.1385 -0.1619 -0.1875

-0.2452 -0.2773

-0.0918

-0.1104 -0.1143

-0.1385

-0.2152

-0.2773

1001.2544 1065.5482 1085.8861 1101.2853 1201.2921 1301.5142 1401.7571

1601.9487 1701.7139

963.0188

1065.5340 1085.8746

1201.2648

1501.8778

1701.7754

20.14 20.16 20.16 20.17 19.97 20.01 20.08

20.00 20.16

20.14

20.17 20.18

20.22

20.05

20.04

0.0438 0.0212 0.0164 0.0133

0.0640

0.0212 0.0164

-0.0061 -0.0034 -0.0026 -0.0023

-0.0090

-0.0036 -0.0029

1001.2483 1065.5449 1085.8835 1101.2830 1201.2921 1301.5142 1401.7571

1601.9487 1701.7139

963.0098

1065.5304 1085.8717

1201.2648

1501.8778

1701.7754

117.6 106.1 103.0 100.9

90.5 83.8 78.8

72.0 67.7

125.8

106.1 103.0

90.5

74.9

67.7

-0.0399 -0.0365 -0.0418 -0.0429 -0.0432 -0.0459 -0.0474

-0.0577 -0.0566

-0.0428

-0.0407 -0.0418

-0.0414

-0.0494

-0.0525

1001.2084 1065.5084 1085.8417 1101.2401 1201.2488 1301.4683 1401.7097

1601.8910 1701.6573

962.9670

1065.4897 1085.8299

1201.2234

1501.8284

1701.7228

962.967

1001.208 1065.499 1085.836 1101.240 1201.236 1301.468 1401.710 1501.828 1601.891 1701.690

Page 109: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

10

Table D1. Uncertainty budget of lamp 1 (C564) (all the uncertainties are in °C).

I(j) (A)

Tλ final (°C)

Propagation of s(Tag)

Propagation of s(λe)

s(λr) s(I) s(Tb) s(random) s(position) s(drift of signal)

s(drift of lamp)

s(Tamb) s(non-linearity)

Combined standard

uncertainty

Expanded uncertainty (k=2, 95%)

4.480 4.721 5.169 5.322 5.441 6.272 7.194 8.189 9.242

10.347 11.502

963.689 1001.677 1065.834 1086.178 1101.600 1201.414 1301.399 1401.654 1501.818 1601.973 1702.323

0.057 0.061 0.067 0.069 0.071 0.081 0.093 0.105 0.118 0.131 0.146

0.000 0.006 0.017 0.021 0.024 0.044 0.067 0.092 0.120 0.150 0.183

0.014 0.015 0.017 0.018 0.018 0.021 0.025 0.028 0.032 0.037 0.041

0.031 0.029 0.026 0.025 0.024 0.022 0.020 0.019 0.018 0.017 0.016

0.005 0.003 0.002 0.002 0.001 0.001

0.050 0.046 0.046 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

0.045 0.048 0.053 0.055 0.056 0.064 0.073 0.083 0.093 0.104 0.116

0.019 0.020 0.022 0.023 0.023 0.027 0.031 0.035 0.039 0.043 0.048

0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090

0.069 0.073 0.081 0.083 0.085 0.098 0.112 0.127 0.142 0.159 0.176

0.005 0.005 0.006 0.006 0.006 0.007 0.008 0.009 0.010 0.011 0.012

0.149 0.152 0.161 0.164 0.166 0.185 0.208 0.234 0.265 0.299 0.337

0.30 0.30 0.32 0.33 0.33 0.37 0.42 0.47 0.53 0.60 0.67

Table D2. Uncertainty budget of lamp 2 (C681) (all the uncertainties are in °C).

I(j) (A)

Tλ final (°C)

Propagation of s(Tag)

Propagation of s(λe)

s(λr) s(I) s(Tb) s(random) s(position) s(drift of signal)

s(drift of lamp)

s(Tamb) s(non-linearity)

Combined standard

uncertainty

Expanded uncertainty (k=2, 95%)

5.508 5.822 6.399 6.594 6.745 7.795 8.948

10.183 11.487 12.851 14.273

962.967 1001.208 1065.499 1085.836 1101.240 1201.236 1301.468 1401.710 1501.828 1601.891 1701.690

0.057 0.061 0.067 0.069 0.071 0.081 0.093 0.105 0.118 0.131 0.146

0.000 0.006 0.017 0.021 0.024 0.044 0.067 0.092 0.120 0.150 0.182

0.014 0.015 0.017 0.018 0.018 0.021 0.025 0.028 0.032 0.037 0.041

0.024 0.022 0.020 0.020 0.019 0.017 0.016 0.015 0.014 0.014 0.013

0.003 0.002 0.001 0.001 0.001

0.048 0.044 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042

0.046 0.048 0.053 0.055 0.056 0.065 0.074 0.084 0.094 0.105 0.116

0.019 0.020 0.022 0.023 0.023 0.027 0.031 0.035 0.039 0.043 0.048

0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

0.069 0.073 0.081 0.083 0.085 0.098 0.112 0.127 0.142 0.159 0.176

0.005 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.010 0.011 0.012

0.118 0.122 0.132 0.136 0.139 0.161 0.187 0.217 0.249 0.285 0.325

0.24 0.24 0.26 0.27 0.28 0.32 0.37 0.43 0.50 0.57 0.65

Page 110: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

CCT Key Comparison: ITS-90 from 962 °°°°C to 1700 °°°°C, NPL Measurements, July to August 1997 H C McEvoy and K M Raven

Page 111: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

CONTENTS Page 1 DESCRIPTION OF THE PYROMETER ....................................................... 1 1.1 THE OPTICAL SYSTEM......................................................................... 1 1.2 THE DETECTOR...................................................................................... 2 1.3 THE FIXED POINT BLACKBODY SOURCES .................................... 2 1.4 REALISING THE TEMPERATURE SCALE USING THE

PYROMETER............................................................................................ 2 2 MEASUREMENTS PERFORMED ON THE LAMPS ................................. 3 2.1 AGEING AND STABILISATION ........................................................... 3 2.2 MEASUREMENT OF Ramb, THE ROOM TEMPERATURE

RESISTANCE OF THE LAMP FILAMENT .......................................... 3 2.3 SETTING UP THE LAMPS ..................................................................... 3 2.4 POSITIONAL EFFECT CHECKS ........................................................... 4 2.5 MEASUREMENT OF THE BASE TEMPERATURE

COEFFICIENTS........................................................................................ 4 2.6 CALIBRATION OF THE LAMPS........................................................... 4 2.7 RE-MEASUREMENT OF Ramb ................................................................ 5 2.8 SIZE-OF-SOURCE EFFECT MEASUREMENTS ................................. 5 3. RESULTS ............................................................................................................. 6 3.1 DRIFT RATE OF THE LAMPS............................................................... 6 3.2 RESULTS OF THE MEASUREMENTS OF Ramb .................................. 6 3.3 RESULTS OF THE POSITIONAL EFFECT CHECKS ......................... 6 3.4 BASE TEMPERATURE COEFFICIENTS.............................................. 7 3.5 RESULTS OF THE SSE MEASUREMENTS......................................... 7 3.6 RESULTS OF THE CALIBRATIONS OF THE LAMPS....................... 8 3.7 RESULTS OF THE MEASUREMENTS AGAINST THE FIXED

POINTS..................................................................................................... 11 3.8 POLYNOMIAL FITTING OF THE CALIBRATION DATA ............... 13 4. UNCERTAINTIES............................................................................................. 14 5. REFERENCES ................................................................................................... 16 FIGURES ........................................................................................................................ 17

Page 112: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

1

CCT key comparison: ITS-90 from 962 °°°°C to 1700 °°°°C NPL measurements, July-August 1997 The following is a description of the equipment and procedure used at NPL for the initial calibration of the three high-stability lamps for the CCT project 'Comparison of Local Realisations of the ITS-90 between the Silver Point and 1700 °C using Vacuum Tungsten-Strip Lamps as Transfer Standards'. 1 DESCRIPTION OF THE PYROMETER The NPL primary pyrometer, originally built by Quinn and modified by Coates, was used to calibrate the three lamps. This has been described previously [1,2,3] and a description is also given below. The pyrometer has an f/11 aperture ratio. For a source to be correctly focused it must be place approximately 120 cm from the off-axis ellipsoidal mirror. A schematic diagram of the pyrometer is shown in Figure 1. 1.1 THE OPTICAL SYSTEM The radiation from the source is limited by a circular aperture stop, then focused by an off-axis ellipsoidal mirror. The beam is then reflected by a plane mirror to produce an image, of unit magnification, on a 0.75 mm diameter field stop. After passing through the field-stop aperture, the radiation is collimated into a beam approximately 1 cm in diameter by a small plano-convex lens, and then passes through a combination of four neutral-density filters. One or more of these filters can be put into the beam to attenuate the signal to bring it within the dynamic range of the system. The beam then passes through one of a number of interference filters. Those currently in the pyrometer have peak transmission wavelengths of nominally 665, 800 and 906 nm. The full width at half maximum transmission (FWHM) of each of the filters is 22 nm, 24 nm and 8 nm respectively. The 665 and 906 nm filters are each placed in combination with a broad-band filter (FWHM = 100 nm and 32 nm respectively) centred at approximately the same wavelength as the corresponding narrow band filter. This was done to improve the out-of-band blocking, especially above 1150 nm where there was found to be significant transmission. For the work reported here only the 665 nm filter combination was used. The filter/filter combinations are calibrated in-situ using a scanning monochromator and line sources. A small platinum resistance thermometer placed beside the filter wheel monitors the temperature of the filters. The change in transmission wavelength with temperature (temperature coefficient) of each filter is also measured; thus a correction can be applied to allow for changes in filter temperature. The optical alignment of the pyrometer on the source is achieved by moving a small plane mirror into the beam, as shown in Figure 1, and then observing the image produced on a circular graticule using the viewing telescope. With the mirror in this position, the optical path to the detector is blocked, preventing radiation from the source from reaching the detector. This enables the background radiance signal to be determined. 1.2 THE DETECTOR

Page 113: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

2

The detector is a Hamamatsu type S1337 - 1010BQ silicon photodiode. It is mounted approximately 25 mm from the interference filter wheel on a number of optical positioning stages. The mounting incorporates a heating element with associated temperature controller to maintain the detector at 25 °C. The detector is connected to a digital voltmeter (DVM) via an amplifier, from which the output of the detector can be read in terms of a voltage. The DVM is connected, via an IEEE interface, to a computer which is used for data acquisition and processing. The linearity of the detector has been verified using both a radiance halving (double aperture) technique and a, slightly different, radiance doubling technique. 1.3 THE FIXED POINT BLACKBODY SOURCES The NPL Ag and Au fixed point blackbody sources were used for this work. These have been described previously [1,4]. They are comprised of a graphite crucible containing an ingot of 99.9999% pure metal within an electrically heated furnace. Each source has a 3.0 mm diameter aperture, defined by a Rh disc placed immediately in front of the blackbody aperture. 1.4 REALISING THE TEMPERATURE SCALE USING THE PYROMETER The NPL primary pyrometer is used as a comparator of radiance temperatures. The radiance from a source at a known temperature, normally a fixed point blackbody at the Ag or Au freezing point or a high-stability lamp, is compared with that of the test source at the chosen wavelength. The temperature of the test source is then determined from Planck's Law (Equation 1) using the effective wavelength method described by Kostkowski and Lee (Equation 2) [5,6,7,8].

where T90(X) corresponds to the kelvin temperature of the Ag, Au (or Cu) freezing point, Lλ[T90] and Lλ[T90(X)] are the spectral radiances of the blackbodies at temperatures T90 and T90(X) respectively, λ is the wavelength in vacuo, c2 is the second radiation constant, 0.014388 m.K and λe is the effective wavelength.

1) -] Tc[ ( / 1) -]

(X)Tc[ ( = (X))T(L / )T(L

90

2

90

29090 λλλλ expexp 1

TB + A = 1

90eλ 2

Page 114: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

3

2 MEASUREMENTS PERFORMED ON THE LAMPS 2.1 AGEING AND STABILISATION Three high-stability evacuated tungsten ribbon lamps, manufactured by Polaron Special Lamps Division, UK, were used for the calibration. Each was a type 10/V lamp and had a 1.5 mm wide filament. The lamp numbers were C840, C864 and C860. C864 and C860 were to be circulated as part of the intercomparison; C840 was to be kept in reserve in case of breakage of either of the other lamps. The lamps were aged at 1800 °C, in order to improve their stability, then pre-stabilised and stabilised for 100 hours at 1700 °C prior to the calibration [9]. The drift rate for each lamp was determined during the stabilisation process; the values obtained are shown in Section 3.1. 2.2 MEASUREMENT OF Ramb, THE ROOM TEMPERATURE RESISTANCE OF THE

LAMP FILAMENT Before any measurements were made on the lamps, Ramb was measured. An ASL F18 bridge was used, in conjunction with a 1Ω standard resistor. The latter was held in a bath of stirred oil at 20.5 (±0.3) °C. The temperature of the resistor was measured using a calibrated PRT probe. Leads from the current terminal of the bridge were connected to the current terminals of the lamp; leads from the voltage terminal of the bridge were connected to the water tubes on the lamp base, using crocodile clips. A calibrated type T thermocouple was used to measure tamb, the temperature of the lamp base. The following bridge settings were used: source impedance = 10 Ω; carrier = 20 mA and 20√2 mA; low frequency (25 Hz); gain = 103; bandwidth = 0.5 Hz. Measurements were made with the lamps in their carrying case, the case grounded, and the lid closed as much as possible. The results are shown in Section 3.2 Table 1. 2.3 SETTING UP THE LAMPS Once Ramb had been measured the lamps were set up in front of the primary pyrometer. They were mounted on bases which allowed movement in all three planes, plus angular and tilt adjustment. Each lamp was aligned using a plumbline so that the filament was vertical when viewed from the side and the rear. The angular position was set so that the spot on the rear envelope was positioned directly behind the filament along the optical axis of the pyrometer. The height and horizontal position of the filament were adjusted so that the pyrometer was viewing a circular area of the filament, 0.75 mm in diameter, at the height of the notch and midway between the mouth of the notch and the opposite side of the filament. The lamp current was provided by three power supplies (one for each lamp); two were manufactured by Vinculum Ltd, the other by Hewlett Packard. For each lamp the current was determined by measuring the voltage across a 0.01 Ω standard resistor incorporated into the circuit. The voltage was measured using a calibrated digital voltmeter (DVM). The three standard resistors were held in a stirred oil bath maintained at 25 °C. The temperature was monitored using three calibrated mercury-in-glass thermometers, one placed in the central well of each resistor. The temperature of the lamp bases was controlled at 20.0 (± 0.3) °C using cooled circulating water. The temperature was measured using a calibrated type T thermocouple placed in the hole in each base. Good thermal contact was obtained by packing the hole with thermal conducting paste. A second calibrated DVM was used to measure the output from each thermocouple.

Page 115: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

4

Throughout both calibration runs the room temperature was measured using a calibrated thermometer placed close to the pyrometer. The temperature of the interference filter was also measured so a correction could be applied to the wavelength to allow for any drift in the filter temperature. During the second run, the relative humidity was measured using a calibrated meter. 2.4 POSITIONAL EFFECT CHECKS The front window of each lamp was cleaned. The lamps were run for one hour at approximately 1500 °C to relieve strain in the filament caused by moving them. Then, with them still at about 1500 °C, the following checks were performed: i) The filament was rotated about the vertical axis in 1° steps up to ± 10° from the normal

alignment position; ii) The filament was rotated about the horizontal axis perpendicular to the optical axis of

the pyrometer in 0.5° steps over ± 3° from the normal (vertical) position; iii) The pyrometer was scanned across the filament, at the height of the notch, in steps of

0.125 mm to each edge of the filament. This was done to assess the horizontal radiance distribution.

The results of all these checks can be found in Section 3.3. 2.5 MEASUREMENT OF THE BASE TEMPERATURE COEFFICIENTS Base temperature coefficients (BTCs) (i.e. the change in radiance temperature of the lamp filament per °C change in the base temperature) were determined for all three lamps at 900 °C, 1000 °C and 1100 °C. This was done by altering the base temperature from 8 °C to 35 °C and measuring the change in radiance temperature. The coefficients were fitted using a second order polynomial equation: BTC = a + bt +ct2, where BTC is the base temperature coefficient, and t is the radiance temperature in °C. The base temperature coefficients and the polynomial expressions are given in Section 3.4, Tables 2 to 4. 2.6 CALIBRATION OF THE LAMPS The front window of each lamp was cleaned using ethanol and a lens tissue. The lamps were then calibrated over the range 962 °C to 1700 °C. At 962, 1000, 1064 and 1084 °C they were calibrated by direct comparison with either the Ag or Au fixed point blackbody source. Several melts and freezes were performed for each lamp temperature, and the average result was obtained for each lamp. Above 1084 °C, the calibration was carried out using a radiance doubling technique, using the measurements against the gold point as the reference. The front window of each lamp was cleaned again, then the calibration was repeated as above. At each temperature, the measurements for each lamp were corrected to a particular current using a typical current/temperature relationship for this type of lamp. As the current corrections were small, this would not have introduced any significant error. At and below 1100 °C the results were also corrected to a base temperature of 20 °C using the derived polynomial

Page 116: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

5

expression. The measurements were made at a wavelength of approximately 664.64 nm. The results were corrected to 650 nm using the polynomial equation provided in the protocol. Throughout both calibrations, the maximum rate of increase or decrease of current was 1 A/minute. Overnight the current to all lamps was turned off. The total burning time of the lamps was 52 hours for the first run and 47 hours for the second run. The results of the measurements are given in Tables 5 to 10. The results of all the measurements made against the Ag and Au fixed-point blackbodies are given in Tables 11 to 16. 2.7 RE-MEASUREMENT OF Ramb Before the lamps were transported to their next destination Ramb was remeasured as before. The results are given in Table 1. 2.8 SIZE-OF-SOURCE EFFECT MEASUREMENTS The size-of-source effect (SSE) of the pyrometer was measured before and after both calibration runs in order to assess the correction to be applied to the results. This was done using a large area heat-pipe blackbody source in conjunction with a set of black aperture plates. The apertures ranged from 0.75 mm to 25 mm diameter and were placed, in turn, onto a water-cooled plate positioned immediately in front of the blackbody source. A thermocouple in the rear of the blackbody allowed the temperature to be monitored so that a correction could be made for any drift during the measurements. In addition, the pyrometer was scanned across the front of both the Ag and Au blackbodies during a melt and freeze in order to assess the thermal profile and to enable the effective source diameter to be determined (see [10]). The SSE versus aperture diameter was fitted using the expression:

where y is the SSE (relative to the 25 mm diameter aperture), x is the aperture diameter (in mm), and a = 9.996985x10-1, b = -3.488035x10-3, c = -3.898927x10-1 This expression was used to calculate the SSE for the fixed points and lamp using the thermal profiles of the furnaces and allowing for the effect of the strip-shaped lamp filament. Hence the effective diameters of all the sources could be calculated. A correction was then applied to the lamp radiance temperature to allow for the SSE, as described in [10]. The results are given in Section 3.5. 3. RESULTS 3.1 DRIFT RATE OF THE LAMPS The drift rates of the lamps during the stability tests were as follows: Lamp C860: -0.03 °C/100 hours at 1700 °C Lamp C864: -0.29 °C/100 hours at 1700 °C

(cx)]b[ + a =y exp 3

Page 117: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

6

Lamp C840: -0.08 °C/100 hours at 1700 °C. The uncertainty in measuring the stability, evaluated at an uncertainty of approximately 95% confidence, is 0.6 °C. All the drift rates were therefore within one standard measurement uncertainty, and within the limit of 0.3 °C/100 hours required by the Comparison protocol. 3.2 RESULTS OF THE MEASUREMENTS OF Ramb Table 1.

Lamp number

Pre-calibration Post calibration

Ramb Ω Self-heating

Ω tamb

°C Ramb Ω

Self-heating Ω

tamb

°C

C864 0.041684 -2x10-6 22.0 0.042805 +1x10-6 28.5

C860 0.039923 -3x10-6 21.9 0.040234 +2x10-6 24.5

C840 0.040426 +8x10-6 21.2 0.041520 -1x10-7 28.1 All the self-heating effect values are insignificant (< 10-5 Ω). 3.3 RESULTS OF THE POSITIONAL EFFECT CHECKS i) The results of the rotation of the lamps about a vertical axis are shown in Figures 2 to 4. ii) Rotation of the lamps about the horizontal axis perpendicular to the optical axis of the

pyrometer showed negligible variance in the radiance temperature (<0.04 °C) within ± 3° of the vertical position.

ii) Scanning the pyrometer horizontally across the filament showed a region of ± 0.25 mm

around the normal alignment position where the radiance temperature varied by ≤ 0.2 °C. Thus, the target size of the source is sufficient to fill the field-of-view of the pyrometer.

3.4 BASE TEMPERATURE COEFFICIENTS The results of the measurements of the base temperature coefficients are given in the following tables; a,b and c are the polynomial coefficients derived from the data. Table 2 - Lamp number C864

t(°C) at 650 nm Base temperature coefficient

907.30 0.0697

999.84 0.0280

1103.12 0.0084

Page 118: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

7

a = 1.68557; b = -2.98818x10-3; c = 1.33056x10-6 Table 3 - Lamp number C860

t(°C) at 650 nm Base temperature coefficient

907.52 0.0781

1001.61 0.0315

1104.19 0.0112

a = 1.90290; b = -3.38388x10-3; c = 1.51305x10-6 Table 4 - Lamp number C840

t(°C) at 650 nm Base temperature coefficient

905.80 0.0800

1001.56 0.0306

1102.23 0.0099

a = 1.98017; b = -3.52845x10-3; c = 1.57945x10-6 3.5 RESULTS OF THE SSE MEASUREMENTS The effective diameters of the Ag and Au fixed point blackbody sources were found to be 11.10 and 13.59 mm respectively. The effective width of the lamp filament was 2.96 mm. This leads to a correction of +0.11 °C and +0.14 °C for the lamps at the Ag and Au point respectively. The SSE correction at higher temperatures may be found by extrapolation.

Page 119: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

8

3.6 RESULTS OF THE CALIBRATIONS OF THE LAMPS Tables 5 to 10 show the results of both calibration runs. Corrections were applied to convert the results to a wavelength of 650 nm (6th column) and to allow for the pyrometer's SSE (7th column). The last column in the Tables gives the final corrected radiance temperatures for each lamp current. These were fitted using a 6th order polynomial equation, to give the current/temperature relationship for each lamp, and the results tabulated. Note that, in the tables, λ is the reference wavelength of the pyrometer from the filter calibration; it is not the effective wavelength λe. The room temperature during both calibration runs was 22.0 (± 1.0) °C. Maximum and minimum values were 24.2 °C and 20.7 °C respectively for the first run, and 24.3 °C and 20.3 °C respectively for the second run. During the second run the relative humidity was 33.0 (± 4.0)%, with maximum and minimum values of 42.6% and 26.4% respectively. Table 5 - Lamp C864, 1st calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

4.9474 664.649 962.217 -0.1110 1.627 963.84 0.11 963.95

5.2805 664.647 1003.657 -0.1189 1.741 1005.40 0.12 1005.52

5.8076 664.655 1064.206 -0.1310 1.919 1066.13 0.14 1066.27

5.9967 664.629 1084.754 -0.1353 1.979 1086.73 0.14 1086.87

6.6040 664.635 1147.937 -0.1490 2.181 1150.12 0.16 1150.28

7.2849 664.638 1214.591 -0.1645 2.408 1217.00 0.17 1217.17

8.0847 664.637 1288.878 -0.1829 2.678 1291.56 0.19 1291.75

9.0208 664.646 1371.563 -0.2049 3.000 1374.56 0.21 1374.77

10.1062 664.629 1463.135 -0.2309 3.377 1466.51 0.24 1466.75

11.3790 664.636 1565.534 -0.2622 3.837 1569.37 0.26 1569.63

12.8113 664.647 1675.727 -0.2984 4.371 1680.10 0.30 1680.40

13.1446 664.642 1700.711 -0.3070 4.495 1705.21 0.30 1705.51

Page 120: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

9

Table 6 - Lamp C860, 1st calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

5.0809 664.649 961.641 -0.1109 1.625 963.27 0.11 963.38

5.4294 664.647 1004.257 -0.1190 1.743 1006.00 0.12 1006.12

5.9615 664.655 1064.130 -0.1310 1.919 1066.05 0.14 1066.19

6.1586 664.629 1085.046 -0.1353 1.980 1087.03 0.14 1087.17

6.7778 664.636 1147.844 -0.1490 2.181 1150.03 0.16 1150.19

7.4810 664.637 1214.816 -0.1646 2.409 1217.23 0.17 1217.40

8.3047 664.637 1289.165 -0.1830 2.679 1291.84 0.19 1292.03

9.2623 664.649 1371.361 -0.2048 3.000 1374.36 0.21 1374.57

10.3791 664.623 1462.871 -0.2308 3.375 1466.25 0.24 1466.49

11.6898 664.640 1565.216 -0.2621 3.836 1569.05 0.26 1569.31

13.1694 664.647 1675.645 -0.2984 4.370 1680.02 0.30 1680.32

13.5146 664.642 1700.710 -0.3070 4.495 1705.21 0.30 1705.51

Table 7 - Lamp C840, 1st calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

5.0149 664.653 962.308 -0.1111 1.627 963.94 0.11 964.05

5.3227 664.647 1000.315 -0.1182 1.731 1002.05 0.12 1002.17

5.8825 664.655 1063.998 -0.1309 1.919 1065.92 0.14 1066.06

6.0753 664.629 1084.685 -0.1352 1.979 1086.66 0.14 1086.80

6.6886 664.632 1147.551 -0.1490 2.179 1149.73 0.16 1149.89

7.3834 664.638 1214.512 -0.1645 2.408 1216.92 0.17 1217.09

8.2065 664.636 1289.631 -0.1831 2.680 1292.31 0.19 1292.50

9.1583 664.636 1372.204 -0.2050 3.001 1375.21 0.21 1375.42

10.2567 664.640 1463.171 -0.2309 3.380 1466.55 0.24 1466.79

11.5499 664.629 1565.328 -0.2621 3.834 1569.16 0.26 1569.42

13.0108 664.627 1675.714 -0.2984 4.370 1680.08 0.30 1680.38

13.3508 664.641 1700.739 -0.3070 4.495 1705.23 0.30 1705.53

Page 121: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

11

Table 8 - Lamp C864, 2nd calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

4.9474 664.646 962.259 -0.1110 1.626 963.89 0.11 964.00

5.2805 664.641 1003.668 -0.1189 1.740 1005.41 0.12 1005.53

5.8076 664.633 1064.234 -0.1310 1.917 1066.15 0.14 1066.29

5.9967 664.643 1084.787 -0.1353 1.981 1086.77 0.14 1086.91

6.6040 664.636 1147.975 -0.1490 2.181 1150.16 0.16 1150.32

7.2849 664.636 1214.682 -0.1645 2.408 1217.09 0.17 1217.26

8.0847 664.642 1288.994 -0.1830 2.679 1291.67 0.19 1291.86

9.0208 664.632 1371.689 -0.2049 2.998 1374.69 0.21 1374.90

10.1062 664.633 1463.273 -0.2309 3.379 1466.65 0.24 1466.89

11.3790 664.628 1565.648 -0.2622 3.835 1569.48 0.26 1569.74

12.8113 664.647 1675.846 -0.2984 4.371 1680.22 0.30 1680.52

13.1446 664.651 1700.798 -0.3070 4.498 1705.30 0.30 1705.60

Table 9 - Lamp C860, 2nd calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

5.0809 664.646 961.480 -0.1109 1.624 963.10 0.11 963.21

5.4294 664.641 1004.084 -0.1189 1.741 1005.83 0.12 1005.95

5.9615 664.633 1063.984 -0.1309 1.916 1065.90 0.14 1066.04

6.1586 664.643 1084.901 -0.1353 1.981 1086.88 0.14 1087.02

6.7778 664.635 1147.692 -0.1490 2.180 1149.87 0.16 1150.03

7.4810 664.636 1214.715 -0.1646 2.408 1217.12 0.17 1217.29

8.3047 664.641 1289.068 -0.1830 2.679 1291.75 0.19 1291.94

9.2623 664.633 1371.260 -0.2048 2.996 1374.26 0.21 1374.47

10.3791 664.633 1462.728 -0.2308 3.377 1466.11 0.24 1466.35

11.6898 663.633 1565.014 -0.2620 3.834 1568.85 0.26 1569.11

13.1694 664.648 1675.414 -0.2983 4.369 1679.78 0.30 1680.08

13.5146 664.651 1700.494 -0.3069 4.496 1704.99 0.30 1705.29

Page 122: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

13

Table 10 - Lamp C840, 2nd calibration run

I (A)

λ (reference)

(nm)

t uncorrected

(°C)

dtλ/dλ ∆tλ correction

(°C)

tλ corrected to

650 nm (°C)

SSE correction

(°C)

t90 (°C)

5.0149 664.646 961.992 -0.1110 1.626 963.62 0.11 963.73

5.3227 664.641 1000.062 -0.1182 1.730 1001.79 0.12 1001.91

5.8825 664.633 1063.872 -0.1309 1.915 1065.79 0.14 1065.93

6.0753 664.644 1084.563 -0.1352 1.980 1086.54 0.14 1086.68

6.6886 664.637 1147.492 -0.1489 2.180 1149.67 0.16 1149.83

7.3834 664.635 1214.500 -0.1645 2.408 1216.91 0.17 1217.08

8.2065 664.642 1289.643 -0.1831 2.681 1292.32 0.19 1292.51

9.1583 664.632 1372.190 -0.2050 3.000 1375.19 0.21 1375.40

10.2567 664.634 1463.170 -0.2309 3.379 1466.55 0.24 1466.79

11.5499 664.622 1565.281 -0.2621 3.832 1569.11 0.26 1569.37

13.0108 664.645 1675.650 -0.2984 4.370 1680.02 0.30 1680.32

13.3508 664.650 1700.654 -0.3070 4.497 1705.15 0.30 1705.45

3.7 RESULTS OF THE MEASUREMENTS AGAINST THE FIXED POINTS Tables 11-16 show all the results of the measurements against the fixed point blackbody sources. Table 11 - Lamp C864, 1st calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 4.9474 962.227 664.650 963.854 963.964

Ag 4.9474 962.222 664.656 963.849 963.959

Au 5.2805 1003.657 664.647 1005.398 1005.518

Au 5.8076 1064.201 664.652 1066.120 1066.260

Au 5.8076 1064.212 664.658 1066.132 1066.272

Au 5.9967 1084.754 664.629 1086.733 1086.873

Page 123: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

14

Table 12 - Lamp C860, 1st calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (reference)

(nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 5.0809 961.666 664.650 963.291 963.401

Ag 5.0809 961.674 664.656 963.300 963.410

Au 5.4294 1004.257 664.647 1006.000 1006.120

Au 5.9615 1064.129 664.652 1066.048 1066.188

Au 5.9615 1064.131 664.658 1066.051 1066.191

Au 6.1586 1085.046 664.629 1087.026 1087.166

Table 13 - Lamp C840, 1st calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (reference)

(nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 5.0149 962.311 664.650 963.938 964.048

Ag 5.0149 962.305 664.656 963.933 964.043

Au 5.3227 1000.315 664.647 1002.046 1002.166

Au 5.8825 1063.999 664.652 1065.917 1066.057

Au 5.8825 1063.998 664.658 1065.917 1066.057

Au 6.0753 1084.685 664.629 1086.664 1086.804

Table 14 - Lamp C864, 2nd calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (reference)

(nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 4.9490 962.477 664.648 964.104 964.214

Ag 4.9490 962.471 664.643 964.098 964.208

Ag 5.2827 1003.941 664.641 1005.682 1005.802

Au 5.8091 1064.403 664.633 1066.320 1066.460

Au 5.9959 1084.705 664.639 1086.685 1086.825

Page 124: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

15

Au 5.9959 1084.710 664.648 1086.691 1086.831

Page 125: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

16

Table 15 - Lamp C860, 2nd calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (reference)

(nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 5.0824 961.690 664.648 963.315 963.425

Ag 5.0824 961.661 664.643 963.285 963.395

Ag 5.4308 1004.252 664.641 1005.994 1006.114

Au 5.9631 1064.160 664.633 1066.076 1066.216

Au 6.1585 1084.900 664.639 1086.881 1087.021

Au 6.1585 1084.895 664.648 1086.877 1087.017

Table 16 - Lamp C840, 2nd calibration run

Fixed point used

Measured lamp current

(A)

Lamp temperature (°C)

λ (reference)

(nm)

Lamp temperature corrected to

650 nm (°C)

Lamp temperature SSE corrected (°C)

Ag 5.0152 962.037 664.648 963.663 963.773

Ag 5.0152 962.024 664.643 963.649 963.759

Ag 5.3228 1000.074 664.641 1001.804 1001.924

Au 5.8828 1063.905 664.633 1065.821 1065.961

Au 6.0748 1084.511 664.639 1086.490 1086.631

Au 6.0748 1084.508 664.648 1086.489 1086.629

3.8 POLYNOMIAL FITTING OF THE CALIBRATION DATA The Chebyshev polynomial coefficients for the current/temperature relationship of the second calibration run for each lamp are given in Table 17. The fits for all three sets of data were good, the largest residuals being equivalent to a temperature uncertainty of 0.05 °C.

Page 126: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

17

Table 17 - Chebyshev coefficients for the fit of the second calibration run

Chebyshev polynomial coefficient

Lamp number

C864 C860 C840

a0 0.1760894048x102 0.1810088369x102 0.1787257598x102

a1 0.4524367453x101 0.4653783457x101 0.4601178636x101

a2 0.3025807435x100 0.3179637372x100 0.3125735657x100

a3 -0.3143103200x10-1 -0.3460253883x10-1 -0.3388604338x10-1

a4 0.7070762429x10-2 0.7834856699x10-2 0.7327420404x10-2

a5 -0.1522275664x10-2 -0.1997680342x10-2 -0.1527806295x10-2

a6 -0.1412144502x10-4 -0.2038448548x10-3 -0.1119560094x10-3

4. UNCERTAINTIES The measurement uncertainties, evaluated at a level of approximately 95% confidence, are given in Tables 18 and 19. Table 18 - Uncertainty in the realisation of the fixed points

Source of uncertainty Type Uncertainty (°C)

Ag Au

Statistical Reproducibility Realisation (impurities, emissivity) DVM resolution

A

B B B

0.005

0.009 0.010 0.001

0.005

0.012 0.010 0.001

Total for fixed point 1σ 0.014 0.016

Page 127: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

18

Table 19 - Uncertainty in the calibration of the lamps starting from the fixed points

Source of uncertainty Type Uncertainty (°C)

962°C 1064°C 1300°C 1500°C 1700°C

Realisation of fixed point B 0.014 0.016 - - -

Uncertainty from previous measurements (propagated)

- - 0.13 0.20 0.27

Lamp radiance temperature: statistical reproducibility resolution of DVM drift in reference lamp during comparison

A A B B

0.010 0.030 0.001 0.050

0.005 0.010 0.001 0.050

0.005 0.010 0.001 0.050

0.005 0.020 0.001 0.050

0.005 0.020 0.001 0.050

Current measurements: reproducibility current stability calibration of DVM resolution of DVM calibration of standard resistor current correction

A A B B B B

N/A 0.030 0.060 0.010 0.004 0.005

N/A 0.030 0.060 0.010 0.003 0.005

N/A 0.020 0.050 0.010 0.003 0.000

N/A 0.010 0.040 0.010 0.004 0.000

N/A 0.010 0.040 0.010 0.005 0.000

Base temperature: calibration of DVM resolution of DVM calibration of thermocouple measurement of BTC (10%)

B B B B

0.007 0.001 0.007 0.001

0.003 0.001 0.003 0.000

- - - -

- - - -

- - - -

Interference filter/wavelength: calibration of filter temperature coefficient of filter

B B

- -

- -

0.007 0.003

0.010 0.003

0.012 0.003

Alignment of sources B 0.020 0.020 0.020 0.020 0.020

Size-of-source effect Detector linearity

B B

0.03 N/A

0.03 N/A

0.04 N/A

0.05 N/A

0.07 N/A

Quality of polynomial fit A 0.050 0.050 0.050 0.050 0.050

Total 1σ (excluding wavelength conversion)

0.11 0.10 0.17 0.23 0.29

Conversion to 650 nm due to equation B 0.09 0.11 0.15 0.21 0.26

Total 1σ 0.14 0.15 0.22 0.31 0.39

Total 2σ 0.29 0.30 0.45 0.62 0.79

Page 128: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Restricted-Commercial NPL Report CBTM S7

19

5. REFERENCES [1] McEvoy H.C., Chattle M.V., Butler J., Metrologia, 1996, 33, 353-362 [2] Coates P.B., Inst. Phys. Conf. Ser. No. 26, 1975, 238-243 [3] Coates P. B., Andrews J. W., In Temperature: Its Measurement and Control in

Science and Industry, Vol. 5 (Edited by J. F. Schooley), New York, American Institute of Physics, 1982, 109-114

[4] Chu B., McEvoy H. C., Andrews J. W., Meas. Sci. Technol., 1994, 5, 12-19 [5] Kostkowski H. J., Lee R. D., In Temperature: Its Measurement and Control in

Science and Industry, Vol. 3 (Edited by C. M. Herzfeld), New York, Reinhold, 1962, 449-481

[6] Kostkowski H. J., Lee R. D., US Nat. Bur. Stand. (US) Monograph. 41, 1962, [7] Coates P. B., High Temp.-High Press., 1979, 11, 289-300 [8] Coates P. B., Metrologia, 1977, 13, 1-5 [9] Coates P. B., NPL Report QU 62, March 1981 [10] Bloembergen P., Duan Y., Bosma R., Yuan Z., "The characterization of Radiation

Thermometers subject to the size-of-source effect", In Proceedings of TEMPMEKO '96 (Edited by Piero Marcarino), Levrotto & Bella, 1997 IMEKO TC 12, 261-266

Page 129: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

CONTENTS

Page

1. DESCRIPTION OF THE PYROMETER..................................................................................... 1

2. MEASUREMENTS PERFORMED ON THE LAMPS.............................................................. 1 2.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE

OF THE LAMP FILAMENT..................................................................................... 1 2.2 MEASUREMENTS PERFORMED ON THE LAMPS .................................................. 1 2.3 CHECK OF LAMP CALIBRATION AT THE SILVER POINT .................................. 2 2.4 CHECK OF LAMP C840 AT THE GOLD POINT........................................................ 2 2.5 RE-MEASUREMENT OF RAMB ....................................................................................... 2

3. RESULTS OF THE MEASUREMENTS...................................................................................... 2 3.1 RESULTS OF THE MEASUREMENTS OF RAMB .......................................................... 2 3.2 RESTABILISATION OF THE LAMPS ........................................................................... 3 3.3 RESULTS OF THE CALIBRATION CHECKS ON C860 AND C864 ........................ 3 3.4 RESULTS OF THE FIXED POINT CHECKS WITH THE LAMPS............................. 6 3.5 POLYNOMIAL FITTING OF THE CALIBRATION DATA....................................... 6

4. MEASUREMENT UNCERTAINTIES ........................................................................................ 6

5. CONCLUSION................................................................................................................................ 9

Page 130: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

1

CCT key comparison: ITS-90 from 962 °°°°C to 1700 °°°°C NPL measurements, June 1998

by

H C McEvoy and K M Raven

1. DESCRIPTION OF THE PYROMETER Since the initial calibration of the lamps during July-August 1997, there have been two changes to the NPL Primary Pyrometer. Firstly, following a leakage of water into the laboratory, the silver coating on the mirrors was found to be badly tarnished. Two new mirrors, one off-axis ellipsoid and one plane mirror, were coated with a protected gold coating, then placed in the pyrometer. Secondly, the interference filters in the pyrometer were re-calibrated in-situ, using a monochromator and line sources. The transmission wavelength of the 665 nm filter was found to have shifted downwards by approximately 0.3 nm from the previous calibration, more than likely due to the filter having been re-angled prior to its calibration to avoid inter-reflections. 2. MEASUREMENTS PERFORMED ON THE LAMPS 2.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE OF THE

LAMP FILAMENT Before any measurements were performed on the lamps, Ramb was measured with the lamps still in the box and the lid closed as much as possible. The measurements were performed using an ASL F18 bridge (see NPL report CBTM S7 for details; however, for these measurements the gain was set to x104). The results are given in Section 3.1 Table 1.

2.2 MEASUREMENTS PERFORMED ON THE LAMPS The lamps were set up in front of the NPL Primary Pyrometer as before. Details can be found in NPL report CBTM S7. The front window of each lamp was cleaned with a dry lens tissue before the first and second measurement runs. They were also cleaned of dust particles regularly throughout both measurement runs. The measurements were performed using lamp C840 as the reference. This had been calibrated at the same time as the other two lamps (during July/August 1997), but had been kept on the shelf as a reserve in case of breakage of C860 or C864 during the intercomparison. Its calibration was assumed not to have drifted. Firstly, C860 and C864 were re-stabilised as described in the protocol. They were measured at 1100 °C using C840 as the reference, re-stabilised at 1700 °C for one hour, then re-measured at 1100 °C. The results of the re-stabilisation are shown in Table 2. The calibrations of lamps C860 and C864 were checked at each of the temperatures specified in the protocol. At each temperature, the lamps were set at the required current taken from the current/temperature table derived from the curve fit of the second calibration run performed during July-August 1997. Using C840 as the reference the radiance temperature of each of the other two lamps was determined. Two complete calibration checks were performed from 962 °C to 1700 °C. The wavelength at which the measurements were made was approximately 664.30 nm. The results of the measurements are shown in Section 3.3 Tables 3 to 6.

Page 131: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

2

2.3 CHECK OF LAMP CALIBRATION AT THE SILVER POINT Additionally, the calibration of all three lamps was checked at 962 °C using the NPL silver point blackbody as the reference source. The size-of-source effect (SSE) of the pyrometer was measured immediately after the lamp measurements using a large area heat-pipe blackbody and a set of apertures, as described in NPL report CBTM S7. The SSE versus aperture diameter was fitted using the expression: y = a + b[exp(cx)] (1) where y is the SSE relative to a 25 mm diameter aperture, x is the aperture diameter in mm, and a = 99.956108, b= -6.694180 x10-1, c = -6.017013 x10-1. This expression was used to calculate the effective diameters for the silver point and lamps in the same way as before, i.e. allowing for the thermal profile of the furnace and the effect of the strip-shaped lamp filament. They were found to be 8.09 mm and 2.71 mm respectively for the silver point and lamp. This leads to a correction in the lamp radiance of +0.17 °C at 962 °C. The results were then corrected to a radiance temperature of 650 nm using the expression provided in the protocol. Table 7details these results.

2.4 CHECK OF LAMP C840 AT THE GOLD POINT As an additional check of the calibration of lamp C840, it was compared with the NPL gold point blackbody source. The other lamps were not checked as they had already been transported to the next laboratory in the circulation. Eight measurements of the lamp were made. The average results are given in Table 7. The effective diameter of the gold point was calculated using Equation (1) above and was found to be 10.58 mm. This leads to a correction in the lamp radiance of +0.22 °C at 1064 °C. 2.5 RE-MEASUREMENT OF RAMB Before the lamps were transported to their next destination, Ramb was measured as before. The results of these measurements are shown in Section 3.1, Table 1. 3. RESULTS OF THE MEASUREMENTS 3.1 RESULTS OF THE MEASUREMENTS OF RAMB Table 1

Lamp Number Pre-calibration Post-calibration

Ramb (Ω) Self-heating

(Ω)

tamb (°C) Ramb (Ω) Self-heating

(Ω)

tamb (°C)

C840 0.040518 +1.3x10-6 21.7 0.040698 +9x10-7 22.8

C860 0.039966 +3x10-7 22.0 0.040130 +1x10-7 23.0

C864 0.041780 +1x10-7 22.2 0.041843 +3x10-7 22.8

All the self-heating effect values are insignificant (< 10-5 Ω).

Page 132: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

3

3.2 RESTABILISATION OF THE LAMPS Table 2

Lamp Number Current (A) Radiance temperature before

restabilisation (°C)

Radiance temperature after

restabilisation (°C)

Difference (°C)

C860 6.2845 1097.871 1098.124 0.253*

C864 6.1215 1100.020 1100.011 0.009 *Note: a small mark was seen on the front window of C860, just within the field of view of the pyrometer, when the lamp was turned up to 1700 °C. This was not cleaned off until after the stabilisation as relative measurements were required. It is likely that this mark influenced the repeatability of the measurements because, after cleaning the lamp, its radiance temperature was re-measured and found to be 1099.957 °C. Therefore, the stability of C860 wasn’t demonstrated by these results. The front windows of both lamps were cleaned thoroughly before any further measurements were performed.

3.3 RESULTS OF THE CALIBRATION CHECKS ON C860 AND C864 Tables 3 to 6 give the results of the calibration checks of the lamps using C840 as the reference. For each current, the radiance temperature from the curve fit of the second calibration run performed during 1997 is compared to that determined in June 1998. All radiance temperatures in the second and third columns of the Tables have been corrected to a wavelength of 650 nm. The differences in the two calibrations are given in the last column. The temperature and relative humidity during the first measurement run were 21.4 (± 0.4) °C and 31.1 (± 2.8) % respectively; the values for the second run were 22.0 (± 2.3) °C and 39.0 (± 3.4) % respectively. The total burning time for the lamps, including the restabilisation and silver point measurements, was 48 hours. The burning time during the gold point measurements with C840 was approximately 15 hours.

Page 133: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

4

Table 3 - C860, 1st measurement run

I (A)

Temperature from 1997 2nd calibration run

(°C)

Temperature using C840 as reference (1998)

(°C)

Difference 1998-1997

(°C)

5.0711 961.910 961.435 -0.475

5.3803 1000.155 999.698 -0.457

5.9465 1064.380 1064.162 -0.218

6.1381 1084.853 1084.653 -0.200

6.2847 1100.177 1100.061 -0.116

7.2977 1200.160 1200.082 -0.078

7.2977(rpt) 1200.160 1200.063 -0.097

8.3979 1300.167 1300.140 -0.027

9.5690 1400.167 1400.153 -0.014

10.8046 1500.206 1500.247 +0.041

12.0977 1600.205 1600.171 -0.034

13.4452 1700.234 1700.230 -0.004

Table 4 - C860, 2nd measurement run

I (A)

Temperature from 1997 2nd calibration run

(°C)

Temperature using C840 as reference (1998)

(°C)

Difference 1998-1997

(°C)

5.0707 961.859 961.686 -0.173

5.3803 1000.155 999.965 -0.190

5.3810(rpt) 1000.238 999.971 -0.267

5.9464 1064.370 1064.310 -0.060

6.1379 1084.832 1084.810 -0.022

6.2845 1100.156 1100.168 +0.012

7.2976 1200.151 1200.129 -0.022

8.3983 1300.202 1300.204 +0.002

8.3985(rpt) 1300.219 1300.243 +0.024

9.5692 1400.183 1400.193 +0.010

10.8047 1500.214 1500.356 +0.142

12.0976 1600.197 1600.273 +0.076

13.4451 1700.226 1700.296 +0.070

Page 134: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

5

Table 5 - C864, 1st measurement run

I (A)

Temperature from 1997 2nd calibration run

(°C)

Temperature using C840 as reference (1998)

(°C)

Difference 1998-1997

(°C)

4.9318 961.974 961.335 -0.639

5.2374 1000.293 999.810 -0.483

5.7911 1064.456 1064.156 -0.300

5.9787 1084.946 1084.710 -0.236

6.1216 1100.277 1100.089 -0.188

7.1089 1200.282 1200.224 -0.058

7.1089(rpt) 1200.282 1200.204 -0.078

8.1786 1300.324 1300.284 -0.040

9.3157 1400.316 1400.279 -0.037

10.5145 1500.366 1500.333 -0.033

11.7688 1600.375 1600.266 -0.109

13.0753 1700.398 1700.295 -0.103

Table 6 - C864, 2nd measurement run

I (A)

Temperature from 1997 2nd calibration run

(°C)

Temperature using C840 as reference (1998)

(°C)

Difference 1998-1997

(°C)

4.9314 961.961 961.483 -0.478

5.2373 1000.280 999.964 -0.316

5.2370(rpt) 1000.244 999.982 -0.262

5.7909 1064.433 1064.218 -0.215

5.9787 1084.946 1084.808 -0.138

6.1216 1100.277 1100.149 -0.128

7.1086 1200.252 1200.169 -0.083

8.1786 1300.324 1300.221 -0.103

8.1785(rpt) 1300.315 1300.226 -0.089

9.3156 1400.308 1400.148 -0.160

10.5144 1500.358 1500.308 -0.050

11.7688 1600.375 1600.253 -0.122

13.0752 1700.391 1700.295 -0.096

Page 135: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

6

3.4 RESULTS OF THE FIXED POINT CHECKS WITH THE LAMPS Table 7 gives the average results of the measurements made with all three lamps using the silver point blackbody source as the reference, and the average result of the measurements of C840 using the gold point blackbody source. In the Table, the third column gives the radiance temperature at a pyrometer reference wavelength 664.35 nm; the fourth, the radiance temperature corrected to 650 nm. The sixth column gives the radiance temperature corrected for SSE. The radiance temperature from the curve fit of the second calibration performed in 1997, and the difference between this and the 1998 determination, are given in the last two columns.

Table 7 - Calibration checks using the Ag and Au point blackbody sources

Lamp No.

I (A)

t (664.35nm)

(°C)

tλ corrected to 650 nm

(°C)

SSE correction

(°C)

t90 (°C)

1997 calibration using 2nd calibration

curve (°C)

Difference (1998-1997)

(°C)

C840 5.0012 960.481 962.070 +0.17 962.241 961.935 +0.306

C860 5.0706 960.216 961.805 +0.17 961.975 961.846 +0.129

C864 4.9316 960.067 961.655 +0.17 961.825 961.987 -0.162

C840 5.8675 1062.394 1064.274 +0.22 1064.494 1064.275 +0.219

The difference between the 1998 and 1997 calibrations of C840 at the Ag point is consistent with the value obtained at the Au point within the measurement uncertainty. For ease of comparison, the differences between the 1997 and 1998 measurements for each lamp are shown in Figures 1 to 3. These Figures show the differences between (i) the 1997 raw calibration data and the 1997 curve fit; (ii) the 1998 first measurement run and the 1997 curve fit; (iii) the 1998 second measurement run and the 1997 curve fit; and (iv) the 1998 measurements using the fixed point(s) and the 1997 curve fit. Figure 4 shows the difference between the calibration ‘shift’ of C864 and that of C860 for both 1998 measurement runs.

3.5 POLYNOMIAL FITTING OF THE CALIBRATION DATA This was not performed for these measurements, as the aim was to measure the drift in the calibration of the lamps since July/August 1998 rather than to provide a re-calibration.

4. MEASUREMENT UNCERTAINTIES The uncertainties of the measurements are given in tables 8 and 9. They include the calibration uncertainty of the reference lamp, which includes a component to allow for possible drift of the calibration since August 1997. The uncertainties of the correction to 650 nm and the SSE can be ignored for all measurements using the reference lamp: for the former, relative measurements are being made; for the latter the sources being compared are very similar. The uncertainty in the 1997 calibration of C860 and C864 is also given, along with the total 2s combined uncertainty of the 1997 and 1998 measurements.

Page 136: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

7

Table 8 - Uncertainty in the realisation of the silver/gold point

Source of uncertainty Type Uncertainty (°C)

Statistical Reproducibility Realisation (impurities, emissivity) DVM resolution

A

B B B

0.005

0.020 0.010 0.001

Total for fixed point 1σ 0.023

Page 137: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

8

Table 9 - Uncertainty in the 1998 lamp measurements, C840 as reference

Source of uncertainty Uncertainty (°C)

962°C* 962°C 1064°C 1300°C 1500°C 1700°C

Realisation of fixed point 0.023 - (0.023) 4 - - -

Calibration of C840 at 664nm 1 - 0.15 0.15 0.18 0.24 0.30

Lamp radiance temperature: statistical reproducibility resolution of DVM drift in reference lamp during comparison

0.010 0.030 0.001 0.010

0.010 0.030 0.001 0.010

0.005 0.010 0.001 0.010

0.005 0.010 0.001 0.010

0.005 0.020 0.001 0.010

0.005 0.020 0.001 0.010

Reproducibility between the two measurement runs2

0.090 0.090 0.050 - - -

Current measurements: reproducibility current stability calibration of DVM resolution of DVM calibration of standard resistor current interpolation

N/A 0.030 0.060 0.010 0.004 0.010

N/A 0.030 0.060 0.010 0.004 0.010

N/A 0.030 0.060 0.010 0.003 0.010

N/A 0.020 0.050 0.010 0.003 0.010

N/A 0.010 0.040 0.010 0.004 0.010

N/A 0.010 0.040 0.010 0.005 0.010

Base temperature: calibration of DVM resolution of DVM calibration of thermocouple measurement of BTC (10%)

0.007 0.001 0.007 0.001

0.007 0.001 0.007 0.001

0.003 0.001 0.003 0.000

- - - -

- - - -

- - - -

Filter wavelength: calibration of filter temperature coefficient of filter

0.010 0.010

0.010 0.010

0.010 0.010

0.010 0.015

0.015 0.020

0.020 0.025

Alignment of sources 0.020 0.020 0.020 0.020 0.020 0.020

Quality of polynomial fit N/A N/A N/A N/A N/A N/A

Size-of-source effect Detector linearity

0.030 N/A

N/A N/A

(0.030) 4 N/A

N/A N/A

N/A N/A

N/A N/A

Total 1s uncertainty 0.13 0.19 0.17

(0.10)4

0.19 0.25 0.31

1s uncertainty of 1997 calibration of C860 and C864 at 650 nm3

0.14 0.14 0.15 0.22 0.31 0.39

Combined 2s uncertainty of 1997 and 1998 measurements

0.38 0.47 0.45

(0.36) 4

0.58 0.80 0.99

Page 138: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED - COMMERCIAL NPL Report CBTM S13

9

Notes for Table of Uncertainties, Table 9: * Using the NPL silver point blackbody source as the reference;

1 Includes an allowance for drift in the calibration since August 1997. Also note that this is the calibration uncertainty at 664 nm: the uncertainty of the conversion to 650 nm is not included;

2 To allow for the differences between the two 1998 runs at the lower temperatures. Above the gold point, the differences are well within the measurement uncertainties;

3 From Table 19 in NPL Report CBTM S7; 4 Using the NPL gold point blackbody source as the reference.

5. CONCLUSION The results of the calibration check (Tables 3 to 7) show that the calibrations of lamps C860 and C864 have changed since the original calibrations in July/August 1997. The changes are within the 2s total combined uncertainty of the measurements at 1064 °C and above, but well outside the combined uncertainties at 962 °C. The measurements against the Ag point confirm these changes. The Ag and Au point measurements also show that the calibration of lamp C840 has drifted by a relatively large amount at these temperatures, despite it not having been used since it was calibrated. The reason for this is not clear. For C860 and C864, the changes are likely to be due to drift in the calibration of the lamps after a number of hours of use and transport between several laboratories. Calibration drift is usually larger at the higher temperatures, which is not observed here. However, the measurements were performed using C840 as the reference, and, as this appears to have drifted, this would naturally influence the measurement results. When the lamps are returned to NPL following the next stage of the circulation, they will be fully re-calibrated using the radiance doubling technique. Until then it is recommended that the 1997 calibration of the lamps is used as the reference, and all measurements are compared with that.

Page 139: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 140: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 141: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 142: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 143: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NPL Report CBTM S31

CCT Key Comparison: ITS-90

from 962 °°°°C to 1700 °°°°C,

NPL Measurements with VSL

Lamps, October 1998

H C McEvoy & K M Raven

December 1998

RESTRICTED COMMERCIAL

Page 144: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

CCT Key Comparison: ITS-90 from 962 °°°°C to 1700 °°°°C,

NPL Measurements with VSL Lamps, October 1998

H C McEvoy and K M Raven

ABSTRACT

This report describes the measurements performed at NPL with the VSL high-stability lamps, numbers C564 and C681. The work was carried out during October 1998. For a detailed description of the NPL Primary Pyrometer, and for further details of the measurement techniques, refer to NPL Reports numbered CBTM S7 and CBTM S13.

Page 145: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NPL Report CBTM S31 RESTRICTED-COMMERCIAL

© Crown Copyright 1998 Reproduced by permission of the Controller of HMSO

National Physical Laboratory Queens Road, Teddington, Middlesex, TW11 0LW

This Report is supplied restricted commercial Extracts from this report may be reproduced provided the source is acknowledged

Approved on behalf of the Managing Director, NPL by Dr D W Robinson, Centre for Basic and Thermal Metrology

Page 146: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

CONTENTS

Page 1. MEASUREMENTS PERFORMED ON THE LAMPS ........................................... 1

1.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE OF THE LAMP FILAMENT............................................................................. 1

1.2 SETTING UP THE LAMPS.............................................................................. 1 1.3 POSITIONAL EFFECT CHECKS .................................................................... 1 1.4 RESTABILISATION OF LAMPS .................................................................... 2 1.5 CALIBRATION OF THE LAMPS.................................................................... 2 1.6 SIZE-OF-SOURCE EFFECT MEASUREMENTS........................................... 3 1.7 RE-MEASUREMENT OF RAMB....................................................................... 3

2. RESULTS OF THE MEASUREMENTS.................................................................. 3

2.1 RESULTS OF THE MEASUREMENTS OF RAMB.......................................... 3 2.2 RESULTS OF THE POSITIONAL EFFECT CHECKS................................... 3 2.3 RESTABILISATION OF THE LAMPS............................................................ 4 2.4 CALIBRATION RESULTS FOR C681 AND C564......................................... 4 2.5 RESULTS OF THE FIXED POINT MEASUREMENTS ................................ 5 2.6 POLYNOMIAL FITTING OF THE CALIBRATION DATA .......................... 5

3. MEASUREMENT UNCERTAINTIES ..................................................................... 5 4. CONCLUSION ............................................................................................................ 5

Page 147: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

1

CCT key comparison: ITS-90 from 962 °C to 1700 °C NPL measurements with VSL lamps, October 1998

by

H C McEvoy and K M Raven

The following describes the measurements performed at NPL with the VSL high-stability lamps, numbers C564 and C681. The work was carried out during October 1998. For a detailed description of the NPL Primary Pyrometer, and for further details of the measurement techniques, refer to NPL Reports numbered CBTM S7 and CBTM S13. 1. MEASUREMENTS PERFORMED ON THE LAMPS 1.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE OF

THE LAMP FILAMENT Before any measurements were performed on the lamps, Ramb was measured with the lamps still in the box and the lid closed as much as possible. The measurements were performed using an ASL F18 bridge (see NPL report CBTM S13 for details), and using the leads supplied with the lamps. The results are given in Section 2.1 Table 1. 1.2 SETTING UP THE LAMPS The lamps were set up in front of the NPL Primary Pyrometer as before (see NPL report CBTM S7, Section 2.3). Before the first and second measurement runs the front window of each lamp was cleaned with a few drops of ethanol, then polished thoroughly with a dry lens tissue. The front windows were cleaned of dust particles regularly throughout both measurement runs. The lamps were calibrated using a radiance doubling technique, as described in Report CBTM S7, using the NPL Ag and Au fixed point blackbody sources. Firstly, though, the following initial measurements were made. 1.3 POSITIONAL EFFECT CHECKS With the lamps at approximately 1100 °C the following positional checks were performed: i) The pyrometer was scanned across the filament, at the height of the notch, in steps of

0.125 mm to each edge of the filament. This was done to assess the horizontal radiance distribution.

ii) The filament was rotated about the vertical axis in 1° steps up to ± 10° from the normal

alignment position. The results of these checks can be found in Section 2.2.

Page 148: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

2

1.4 RESTABILISATION OF LAMPS The lamps were re-stabilised as described in the protocol, by measuring the radiance temperature at approximately 1100 °C, turning them up to 1700 °C for one hour, then re-measuring the radiance temperature at 1100 °C. The results of the measurements can be found in Section 2.3. 1.5 CALIBRATION OF THE LAMPS The lamps were calibrated over the range 962 °C to 1700 °C. At 962 °C, 1000 °C, and 1064 °C they were calibrated by direct comparison with either the Ag or Au fixed point blackbody source. Several melts and freezes were performed for each lamp temperature, and the average result was obtained for each lamp. Above 1064 °C, the calibration was carried out using a radiance doubling technique, using the measurements at the gold point as the reference. However, additional points were included so that measurements were made at all the temperatures defined in the protocol. The calibration was carried out twice. At each temperature, the measurements for each lamp were corrected to a particular current using typical current/temperature relationships for high-stability lamps with, respectively, 1.5 mm and 1.3 mm wide filaments. As the current corrections were small, this did not introduce any significant error. Once the first calibration had been performed, the results were curve-fitted using a sixth order Chebyshev polynomial to provide more accurate current/temperature relationships for the lamps. At and below 1200 °C for lamp number C681, and 1300 °C for lamp number C564, the results were corrected to a base temperature of 20 °C using the supplied polynomial expressions. The measurements were made at a wavelength of approximately 664.3 nm and corrected to 650 nm using the polynomial equation provided in the protocol. An additional measurement at the gold point was performed using a new filter combination with a transmission wavelength centred at approximately 657 nm. This filter combination had been calibrated in-situ as per NPL Report CBTM S7. It was used to measure the radiance temperature of the lamps at a wavelength closer to 650 nm, thus reducing the correction required. This filter was not used for the full calibration of the lamps as it was thought more important to use the same filter for all the measurements made during this CCT intercomparison. Throughout both calibrations, the maximum rate of increase or decrease of current was 1 A per minute. Overnight, the current to both lamps was turned off. The total burning time of the lamps was 48.6 hours for the first run, including the positional and stability checks, and 32.9 hours for the second run. The results of the measurements are given in Tables 3 to 6. The results of all the measurements made against the Ag and Au fixed-point blackbodies are given in Tables 7 to 10.

Page 149: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

3

1.6 SIZE-OF-SOURCE EFFECT MEASUREMENTS The size-of-source effect (SSE) of the pyrometer was measured in the same way as before (see NPL Reports CBTM S7 and S13). The SSE versus aperture diameter data was fitted using the expression: y = a + b[exp(cx)] (1) where y is the SSE relative to a 25 mm diameter aperture, x is the aperture diameter in mm, and a = 99.9561, b= -0.6694, c = -0.6017. This expression was used to calculate the effective diameters for the silver point, gold point and lamps in the same way as before, i.e. allowing for the thermal profile of the furnace and the effect of the strip-shaped lamp filament. The effective diameters were found to be 10.57 mm and 8.09 mm respectively for the gold point and silver point, and 2.71 mm and 2.40 mm respectively for lamp C681 and lamp C564. This leads to a correction in the lamp radiance of +0.17 °C at 962 °C and +0.22 °C at 1064 °C for lamp C681, and +0.19 °C at 962 °C and +0.25 °C at 1064 °C for lamp C564. The SSE correction at higher temperatures may be found by extrapolation. 1.7 RE-MEASUREMENT OF RAMB Before the lamps were transported to their next destination, Ramb was measured again. The results of these measurements are shown in Section 2.1, Table 1. 2. RESULTS OF THE MEASUREMENTS 2.1 RESULTS OF THE MEASUREMENTS OF RAMB Table 1

Pre-calibration Post-calibration

Lamp number Ramb (Ω) Self-heating

(Ω)

tamb (°C)

Ramb (Ω) Self-heating

(Ω)

tamb (°C)

C681 0.034010 6x10-7 20.58 0.034044 7x10-7 21.04

C564 0.039841 1.2x10-6 20.52 0.039833 1.4x10-6 20.67

All the self-heating effect values are insignificant (< 10-5 Ω). 2.2 RESULTS OF THE POSITIONAL EFFECT CHECKS i) Scanning the pyrometer horizontally across the filament of C681 showed a region of

±0.125 mm around the normal alignment position where the radiance temperature varied by < 0.05 °C, and a region of ±0.25 mm where the radiance temperature varied by < 0.4 °C. The target size of lamp C681 was considered sufficient to fill the field-of-view of the pyrometer. For lamp C564, the radiance temperature varied by < 0.05 °C over a region of ±0.125 mm, but by > 2 °C over a region of ±0.25 mm from the normal

Page 150: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

4

alignment position. This was due to the lamp having a narrower filament: at a distance of 0.25 mm from the normal alignment position, the edge of the filament is very close to the edge of the 0.75 mm field-of-view of the pyrometer.

ii) The results of the rotation of each lamp about the vertical axis are shown in Figures 1

and 2. The angular alignment position of C564 is close to the observed radiance peak and hence is critical. The angular alignment of both lamps was checked before each measurement at the lower temperatures, and regularly at the highest temperature where the brightness of the filament made the check more difficult. This would have minimised the errors due to mis-alignment.

Since the width of the filament of C564 is less than twice the nominal field-of-view of the pyrometer this will result in higher correction due to the SSE (see Section 1.6 above), and also make the measurements more susceptible to alignment errors. Additionally, errors will occur due to the angular alignment position being very close to the observed radiance peak ((ii) above). These factors have been taken into account when assessing the alignment uncertainty in Table 13. 2.3 RESTABILISATION OF THE LAMPS The results of the restabilisation measurements are given in the following Table. Table 2

Lamp Number Current (A) Radiance temperature before

restabilisation (°C)

Radiance temperature after

restabilisation (°C)

Difference (°C)

C681 6.7486 1099.857 1099.859 0.002

C564 5.4446 1100.012 1099.871 0.141 The difference in radiance temperature of lamp C681 is insignificant. That of C564 is significant and greater than the 0.05 °C specified in the protocol. This difference could be due to a genuine drift, or it could partly be a result of the lamp’s greater sensitivity to angular alignment. 2.4 CALIBRATION RESULTS FOR C681 AND C564 Tables 3 to 6 show the results of both calibration runs. The third column gives the base temperature coefficient applied at each temperature, while the fourth gives the measured lamp radiance temperature corrected to a base temperature of 20 °C. Corrections were applied to allow for the pyrometer’s SSE (6th column) and to convert the results to a wavelength of 650 nm (9th column). The 10th column gives the reference current as defined in the instructions sent with the lamps. The 11th column gives the change in lamp current per °C change in radiance temperature, used to correct the results in column 9 to the reference current. The last column in the Tables gives the final corrected radiance temperature for each lamp current. Note that, in the Tables, λ is the reference wavelength of the pyrometer from the filter calibration; it is not the effective wavelength λe.

Page 151: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

5

The room temperature and humidity during the first calibration run were (21.2 ± 1.8) °C and (34.7 ± 4.5) % respectively; during the second calibration run they were (21.1 ± 1.1) °C and (39.1 ± 4.5) % respectively. The maximum and minimum room temperature values were 22.9 °C and 18.4 °C respectively for the first calibration run and 23.7 °C and 18.6 °C respectively for the second calibration run. The maximum and minimum relative humidity values were 43.0 % and 26.8 % respectively for the first run and 49.3 % and 27.2 % respectively for the second calibration run. 2.5 RESULTS OF THE FIXED POINT MEASUREMENTS Tables 7 to 10 give the results of the measurements made with the lamps using the silver and gold point blackbody sources as the reference. In the Tables, the fourth column gives the measured radiance temperature, corrected to a base temperature of 20 °C, at a pyrometer reference wavelength of approximately 664.3 nm. The seventh column gives the radiance temperature corrected for SSE, and the eighth gives the radiance temperature corrected to 650 nm. The last column gives the corrected radiance temperature of the lamp at the reference current. The average of the fixed point values have been included in Tables 3 to 6. 2.6 POLYNOMIAL FITTING OF THE CALIBRATION DATA For both lamps, the final corrected radiance temperature at each lamp current (last column in Tables 3 to 6 were fitted using a 6th order Chebyshev polynomial equation. This was used to derive the current temperature relationship for the lamps. The Chebyshev polynomial coefficients for the first calibration run are given in Table 11. The fits for both sets of data were good, with the largest residuals being equivalent to a temperature uncertainty of 0.08 °C.

3. MEASUREMENT UNCERTAINTIES The measurement uncertainties, evaluated at a level of confidence of approximately 95%, are given in Tables 12 and 13.

4. CONCLUSION The results of the two calibration runs for each lamp agreed to well within the measurement uncertainties. The differences between the first and second runs are plotted in Figures 3 and 4. For the first calibration run, the measurements made at the gold point at 657 nm agreed with those made at 664.3 nm to within 0.1 °C. This gives us confidence that the wavelength correction used is valid for these lamps to within 10%. The measurements for lamp C564 showed more scatter/non-repeatability then those for C681. This is more than likely due to it having a narrower filament making it more sensitive to small alignment errors. The non-repeatability impacts on the calibration of both lamps and has been included in the uncertainty budget. It is, in any case, a relatively small component in the uncertainty.

Page 152: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

10

Table 7 - Measurements of C564 using fixed points, first calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 4.4829 0.99 962.587 664.277 0.19 962.777 964.364 4.480 963.89

Ag 4.4829 0.99 962.629 664.287 0.19 962.819 964.407 4.480 963.93

Ag 4.7240 0.59 1000.456 664.318 0.20 1000.656 1002.350 4.721 1001.90

Au 5.1723 1.00 1064.409 664.335 0.25 1064.659 1066.538 5.169 1066.09

Au 5.1723 1.00 1064.425 664.338 0.25 1064.675 1066.554 5.169 1066.11

Au 5.1723 0.98 1065.427 657.277 0.25 1065.677 1066.632 5.169 1066.19

Table 8 - Measurements of C564 using fixed points, second calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 4.4830 0.99 962.528 664.298 0.19 962.718 964.307 4.480 963.82

Ag 4.4830 0.99 962.595 664.304 0.19 962.785 964.375 4.480 963.88

Ag 4.7240 0.59 1000.424 664.308 0.20 1000.624 1002.316 4.721 1001.86

Au 5.1727 1.00 1064.483 664.339 0.25 1064.733 1066.613 5.169 1066.11

Au 5.1727 1.00 1064.499 664.348 0.25 1064.749 1066.630 5.169 1066.13

Table 9 - Measurements of C681 using fixed points, first calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 5.5104 1.00 961.819 664.277 0.17 961.989 963.574 5.508 963.27

Ag 5.5104 1.00 961.802 664.287 0.17 961.972 963.558 5.508 963.25

Ag 5.8250 0.59 1000.031 664.318 0.18 1000.211 1001.903 5.822 1001.55

Au 6.4024 1.00 1064.254 664.335 0.22 1064.474 1066.352 6.399 1065.99

Au 6.4024 1.00 1064.277 664.338 0.22 1064.497 1066.376 6.399 1066.02

Au 6.4024 0.99 1065.288 657.277 0.22 1065.508 1066.463 6.399 1066.11

Page 153: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

11

Table 10 - Measurements of C681 using fixed points, second calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 5.5103 1.00 961.804 664.298 0.17 961.974 963.561 5.508 963.27

Ag 5.5103 1.00 961.789 664.304 0.17 961.959 963.547 5.508 963.26

Ag 5.8248 0.59 999.976 664.308 0.18 1000.156 1001.847 5.822 1001.52

Au 6.4024 1.00 1064.243 664.339 0.22 1064.463 1066.342 6.399 1065.98

Au 6.4024 1.00 1064.225 664.348 0.22 1064.445 1066.325 6.399 1065.97

Table 11 - Chebyshev coefficients for the fit of the first calibration run

Lamp number Chebyshev polynomial coefficient

C681

C564

a0 0.1916276548x102 0.1544864009x102 a1 0.4519167527x101 0.3624776229x101 a2 0.3034856589x100 0.2619811347x100 a3 -0.3255046591x10-1 -0.3017556967x10-1 a4 0.7087334719x10-2 0.5956070493x10-2 a5 -0.5629702586x10-3 0.9623984725x10-4 a6 -0.6703852177x10-3 -0.1058933628x10-2

Table 12 - Uncertainty in the realisation of the silver/gold point

Uncertainty (°C)

Source of uncertainty Type Ag point Au point

Statistical Reproducibility Realisation (impurities, emissivity) DVM resolution

A

B B B

0.005

0.015 0.010 0.001

0.005

0.020 0.010 0.001

Total for fixed point (1s) 0.019 0.023

Page 154: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTM S31

12

Table 13 - Uncertainty in the 1998 lamp measurements

Source of uncertainty Type Uncertainty (°C)

962°C 1064°C 1300°C 1500°C 1700°C

Realisation of fixed point B 0.019 0.023 - - -

Uncertainty from previous measurements (propagated)

- - 0.17 0.25 0.33

Lamp radiance temperature: statistical reproducibility resolution of DVM drift in reference lamp during comparison

A A B B

0.010 0.040 0.001 0.050

0.010 0.030 0.001 0.050

0.010 0.030 0.001 0.050

0.010 0.030 0.001 0.050

0.010 0.060 0.001 0.050

Current measurements: reproducibility current stability calibration of DVM resolution of DVM calibration of standard resistor current correction

A A B B B B

N/A 0.030 0.080 0.010 0.005 0.005

N/A 0.030 0.070 0.010 0.005 0.005

N/A 0.020 0.050 0.010 0.005 0.005

N/A 0.010 0.050 0.010 0.005 0.005

N/A 0.010 0.050 0.010 0.005 0.005

Base temperature: calibration of DVM resolution of DVM calibration of thermocouple measurement of BTC (10%)

B B B B

0.014 0.003 0.014 0.003

0.006 0.001 0.006 0.001

0.001 0.001 0.001 0.000

- - - -

- - - -

Interference filter/wavelength: calibration of filter temperature coefficient of filter

B B

- -

- -

0.007 0.015

0.010 0.020

0.012 0.025

Alignment of sources B 0.050 0.050 0.050 0.050 0.050

Size-of-source effect Detector linearity

B B

0.030 N/A

0.030 N/A

0.040 N/A

0.050 N/A

0.070 N/A

Quality of polynomial fit A 0.010 0.010 0.010 0.010 0.010

Total standard uncertainty 1u (excluding wavelength conversion)

0.13 0.12 0.20 0.27 0.36

Conversion to 650 nm due to equation

B 0.09 0.11 0.15 0.21 0.26

Total combined standard uncertainty, 1u

0.15 0.16 0.25 0.34 0.44

Expanded uncertainty U (k=2) 0.31 0.32 0.50 0.68 0.88

Page 155: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 3 - Lamp C564, 1st calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE correction

(°C)

t corrected for SSE

(°C)

dtλ/dλ ∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A/°C)

t90 at specified

current (°C)

4.4829 664.282 0.091 962.608 0.19 962.798 -0.1111 1.587 964.385 4.480 0.0061 963.91

4.7240 664.318 0.067 1000.456 0.20 1000.656 -0.1183 1.694 1002.350 4.721 0.0066 1001.90

5.1723 664.337 0.037 1064.415 0.25 1064.665 -0.1311 1.879 1066.544 5.169 0.0074 1066.10

5.3251 664.321 0.031 1084.652 0.26 1084.912 -0.1353 1.938 1086.850 5.322 0.0076 1086.44

5.4442 664.318 0.027 1100.004 0.26 1100.264 -0.1386 1.984 1102.248 5.441 0.0078 1101.84

5.9606 664.316 0.015 1163.165 0.29 1163.455 -0.1526 2.184 1165.639 - 0.0085 -

6.2756 664.311 0.009 1199.391 0.30 1199.691 -0.1610 2.304 1201.995 6.272 0.0088 1201.59

6.9449 664.310 -0.004 1272.476 0.33 1272.806 -0.1788 2.559 1275.365 - 0.0094 -

7.1985 664.267 -0.009 1299.015 0.35 1299.365 -0.1856 2.648 1302.013 7.194 0.0096 1301.54

8.1932 664.295 - 1399.008 0.39 1399.398 -0.2126 3.039 1402.437 8.189 0.0102 1402.03

9.2469 664.303 - 1498.960 0.44 1499.400 -0.2417 3.457 1502.857 9.242 0.0108 1502.40

10.3527 664.304 - 1598.743 0.49 1599.233 -0.2730 3.904 1603.137 10.347 0.0113 1602.63

11.5084 664.304 - 1698.469 0.54 1699.009 -0.3064 4.383 1703.392 11.502 0.0118 1702.85

5.1723 657.277 0.037 1065.427 0.25 1065.677 -0.1313 0.955 1066.632 5.169 0.0074 1066.19

Page 156: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 4 - Lamp C564, 2nd calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

dtλ/dλ ∆tl (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A / °C)

t90 at specified

current (°C)

4.4830 664.301 0.091 962.562 0.19 962.752 -0.1111 1.589 964.341 4.480 0.0061 963.85

4.7240 664.308 0.067 1000.424 0.20 1000.624 -0.1183 1.692 1002.316 4.721 0.0066 1001.86

5.1727 664.344 0.037 1064.491 0.25 1064.741 -0.1311 1.880 1066.621 5.169 0.0074 1066.12

5.3252 664.339 0.031 1084.712 0.26 1084.972 -0.1353 1.940 1086.912 5.322 0.0076 1086.49

5.4441 664.330 0.027 1099.998 0.26 1100.258 -0.1386 1.986 1102.244 5.441 0.0078 1101.85

5.9604 664.345 0.015 1163.148 0.29 1163.438 -0.1526 2.188 1165.626 - 0.0085 -

6.2755 664.342 0.009 1199.460 0.30 1199.760 -0.1610 2.309 1202.069 6.272 0.0088 1201.67

6.9447 664.342 0.004 1272.472 0.33 1272.802 -0.1788 2.565 1275.367 - 0.0094 -

7.1985 664.284 -0.009 1299.074 0.35 1299.424 -0.1856 2.652 1302.076 7.194 0.0096 1301.61

8.1931 664.302 - 1398.906 0.39 1399.296 -0.2125 3.040 1402.336 8.189 0.0102 1401.93

9.2471 664.296 - 1498.837 0.44 1499.277 -0.2417 3.455 1502.732 9.242 0.0108 1502.26

10.3526 664.314 - 1598.697 0.49 1599.187 -0.2729 3.907 1603.094 10.347 0.0113 1602.60

11.5083 664.304 - 1698.795 0.54 1699.335 -0.3065 4.384 1703.719 11.502 0.0118 1703.19

Page 157: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 5 - Lamp C681, 1st calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

dtλ/dλ ∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A / °C)

t90 at specified current

(°C)

5.5104 664.282 0.062 961.810 0.17 961.980 -0.1110 1.585 963.565 5.508 0.0079 963.26

5.8250 664.318 0.042 1000.031 0.18 1000.211 -0.1182 1.692 1001.903 5.822 0.0085 1001.55

6.4024 664.337 0.021 1064.266 0.22 1064.486 -0.1310 1.879 1066.365 6.399 0.0095 1066.01

6.5972 664.321 0.017 1084.518 0.23 1084.748 -0.1353 1.937 1086.685 6.594 0.0097 1086.36

6.7485 664.320 0.015 1099.790 0.23 1100.020 -0.1385 1.983 1102.003 6.745 0.0100 1101.65

7.4006 664.316 0.012 1162.946 0.25 1163.196 -0.1525 2.183 1165.379 - 0.0107 -

7.7989 664.314 0.012 1199.455 0.27 1199.725 -0.1610 2.304 1202.029 7.795 0.0111 1201.68

8.6319 664.311 - 1272.364 0.29 1272.654 -0.1788 2.559 1275.213 - 0.0117 -

8.9522 664.276 - 1299.369 0.30 1299.669 -0.1857 2.651 1302.320 8.948 0.0120 1301.97

10.1879 664.292 - 1399.350 0.34 1399.690 -0.2126 3.039 1402.729 10.183 0.0127 1402.34

11.4923 664.302 - 1499.325 0.39 1499.715 -0.2418 3.458 1503.173 11.487 0.0133 1502.78

12.8558 664.302 - 1598.858 0.43 1599.288 -0.2730 3.904 1603.192 12.851 0.0140 1602.85

14.2785 664.311 - 1698.319 0.48 1698.799 -0.3063 4.384 1703.183 14.273 0.0145 1702.80

6.4024 657.277 0.021 1065.288 0.22 1065.508 -0.1312 0.955 1066.463 6.399 0.0095 1066.11

Page 158: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 6 - Lamp C681, 2nd calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

dtλ/dλ ∆tλ (°C)

tλ corrected to 650 nm

(°C)

Specified current (A)

dI/dtλ (A / °C)

t90 at specified current

(°C)

5.5103 664.301 0.062 961.796 0.17 961.966 -0.1110 1.587 963.553 5.508 0.0079 963.26

5.8248 664.308 0.042 999.976 0.18 1000.156 -0.1182 1.691 1001.847 5.822 0.0085 1001.52

6.4024 664.344 0.021 1064.234 0.22 1064.454 -0.1310 1.879 1066.333 6.399 0.0095 1065.98

6.5972 664.341 0.017 1084.484 0.23 1084.714 -0.1353 1.940 1086.654 6.594 0.0097 1086.32

6.7485 664.336 0.015 1099.824 0.23 1100.054 -0.1385 1.986 1102.040 6.745 0.0100 1101.69

7.4006 664.345 0.012 1163.001 0.25 1163.251 -0.1525 2.188 1165.439 - 0.0107 -

7.7988 664.342 0.012 1199.545 0.27 1199.815 -0.1610 2.309 1202.124 7.795 0.0111 1201.78

8.6318 664.340 - 1272.351 0.29 1272.641 -0.1788 2.564 1275.205 - 0.0117 -

8.9522 664.292 - 1299.179 0.30 1299.479 -0.1857 2.653 1302.132 8.948 0.0120 1301.78

10.1878 664.301 - 1399.171 0.34 1399.511 -0.2126 3.040 1402.551 10.183 0.0127 1402.17

11.4922 664.292 - 1499.134 0.39 1499.524 -0.2417 3.455 1502.979 11.487 0.0133 1502.59

12.8562 664.307 - 1598.671 0.43 1599.101 -0.2729 3.905 1603.006 12.851 0.0140 1602.64

14.2781 664.302 - 1698.216 0.48 1698.696 -0.3063 4.380 1703.076 14.273 0.0145 1702.72

Page 159: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 160: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 161: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 162: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 163: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 164: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 165: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NPL Report CBTLM S2

CCT Key Comparison: ITS-90

from 962 °°°°C to 1700 °°°°C,

NPL Measurements

April to May 1999

H C McEvoy

June 1999

RESTRICTED COMMERCIAL

Page 166: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

CCT Key Comparison: ITS-90 from 962 °°°°C to 1700 °°°°C,

NPL Measurements, April to May 1999

H C McEvoy

ABSTRACT

This report describes the measurements performed at NPL with lamps numbered C860, C864 and C840 at the end of the second circulation of the CCT key comparison. The work was carried out during April and May 1999 under the United Kingdom’s Department of Trade and Industry Programme for Thermal Metrology, Milestone PT981.2.A.03. For a detailed description of the NPL Primary Pyrometer, and for further details of the measurement techniques, refer to NPL Reports numbered CBTM S7, CBTM S13 and CBTM S31.

Page 167: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

NPL Report CBTLM S2 RESTRICTED-COMMERCIAL

© Crown Copyright 1999 Reproduced by permission of the Controller of HMSO

National Physical Laboratory Queens Road, Teddington, Middlesex, TW11 0LW

This Report is supplied restricted commercial Extracts from this report may be reproduced provided the source is acknowledged

Approved on behalf of the Managing Director, NPL by Dr D W Robinson, Centre for Basic, Thermal & Length Metrology

Page 168: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

CONTENTS

Page 1. MEASUREMENTS PERFORMED ON THE LAMPS ........................................... 1

1.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE OF THE LAMP FILAMENT............................................................................. 1

1.2 SETTING UP THE LAMPS.............................................................................. 1 1.3 RESTABILISATION OF THE LAMPS............................................................ 1 1.4 CALIBRATION OF THE LAMPS.................................................................... 1 1.5 SIZE-OF-SOURCE EFFECT MEASUREMENTS........................................... 2 1.6 RE-MEASUREMENT OF RAMB....................................................................... 3

2. RESULTS OF THE MEASUREMENTS.................................................................. 3

2.1 RESULTS OF THE MEASUREMENTS OF RAMB.......................................... 3 2.2 RESTABILISATION OF THE LAMPS............................................................ 3 2.3 CALIBRATION RESULTS FOR THE LAMPS............................................... 4 2.4 RESULTS OF THE FIXED POINT MEASUREMENTS ................................ 4 2.5 POLYNOMIAL FITTING OF THE CALIBRATION DATA .......................... 5

3. MEASUREMENT UNCERTAINTIES ..................................................................... 5 4. CONCLUSION ............................................................................................................ 5

Page 169: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

1

CCT key comparison: ITS-90 from 962 °C to 1700 °C NPL measurements, April to May 1999

by

H C McEvoy

The following describes the measurements performed at NPL with lamps numbered C860, C864 and C840 at the end of the second circulation of the CCT key comparison. The work was carried out during April and May 1999. For a detailed description of the NPL Primary Pyrometer, and for further details of the measurement techniques, refer to NPL Reports numbered CBTM S7, CBTM S13 and CBTM S31. 1. MEASUREMENTS PERFORMED ON THE LAMPS 1.1 MEASUREMENT OF RAMB , THE ROOM TEMPERATURE RESISTANCE OF

THE LAMP FILAMENT Before any measurements were performed, Ramb was measured at 20 mA with the lamps in the case and the lid closed as much as possible. The measurements were performed using an ASL F18 bridge (see NPL report CBTM S13 for details). The results are given in Section 2.1 Table 1. 1.2 SETTING UP THE LAMPS The lamps numbered C860 and C864 were set up in front of the NPL Primary Pyrometer as before (see NPL report CBTM S7, Section 2.3). Before the first and second measurement runs the front window of each lamp was cleaned with a few drops of ethanol, then polished thoroughly with a dry lens tissue. The front windows were cleaned of dust particles regularly throughout both measurement runs. 1.3 RESTABILISATION OF THE LAMPS The lamps were re-stabilised as described in the protocol, by measuring the radiance temperature at approximately 1100 °C, turning them up to 1700 °C for one hour, then re-measuring the radiance temperature at 1100 °C. The results of the measurements can be found in Section 2.2. 1.4 CALIBRATION OF THE LAMPS a) Lamps C860 and C864 The lamps were calibrated over the range 962 °C to 1700 °C. At 962 °C, 1000 °C, and 1064 °C they were calibrated by direct comparison with either the Ag or Au fixed-point blackbody source. Several melts and freezes were performed for each lamp temperature, and the average result was obtained for each lamp. Above 1064 °C, the calibration was carried out using a radiance doubling technique, using the measurements at the gold point as the reference, as described in NPL Report CBTM S7. However, additional points were included so that measurements were made at all the temperatures defined in the protocol. The calibration was carried out twice.

Page 170: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

2

At each temperature, the currents were set close to the reference values specified in the documentation sent with the lamps on the circulation. The measurements were corrected to the exact specified current using the current/temperature tables derived from the curve fits of the second calibration run performed during July-August 1997. b) Lamp C840 The purpose of lamp number C840 was to provide a back-up in case of breakage or failure of C860 or C864. It was not used in the circulation, except for the checks made on C860 and C864 during June 1998 (see NPL Report CBTM S13). However, in view of the results of these checks it was felt important to re-calibrate it. C840 was set up and restabilised as described in Sections 1.2 and 1.3 above. The results of the restabilisation checks can be found in Section 2.2. C840 was recalibrated during the second calibration of C860 and C864, at all temperatures up to 1200 °C, then at various temperatures up to 1700 °C. At 962°C, 1000 °C and 1064 °C, the calibration was performed by direct comparison with either the NPL Ag or Au fixed-point blackbody source. Above 1064 °C, C840 was calibrated by comparing it with either C860 or C864. In this way, a calibration could be performed without the lamp being directly involved in the bootstrap procedure. At each temperature the current was set close to a suitable value determined from the July-August 1997 calibration. The current/temperature relationship for the lamp was used to correct the radiance temperature to the exact chosen current so that the 1997 and 1999 calibrations could be easily compared. C840 was not calibrated a second time. c) Corrections to the lamp results At and below 1100 °C the results were corrected to a base temperature of 20 °C using the polynomial expressions derived during the July-August 1997 calibration. The measurements were made at a wavelength of approximately 664.3 nm and corrected to 650 nm using the polynomial equation provided in the protocol. Throughout both calibrations, the maximum rate of increase or decrease of current was 1 A per minute. Overnight, the current to both lamps was turned off. The total burning time of C860 and C864 for the first run, including the stability checks, was 40 hours. During the second calibration run, the total burning time was 38.5 hours for C860 and 34.5 hours for C864. The total burning time of lamp C840 including the stability checks was 32 hours. The results of the measurements are given in Tables 3 to 7. The results of all the measurements made against the Ag and Au fixed-point blackbodies are given in Tables 8 to 12. 1.5 SIZE-OF-SOURCE EFFECT MEASUREMENTS The size-of-source effect (SSE) of the pyrometer was measured in the same way as before using the NPL large area heat-pipe blackbody source, and set of apertures (see NPL Reports CBTM S7 and S13). The SSE versus aperture diameter data was fitted using the expression: y = a + b[exp(cx)] (1)

Page 171: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

3

where y is the SSE relative to a 25 mm diameter aperture, x is the aperture diameter in mm, and a = 99.9633, b= -0.7607, c = -0.7613. This expression was used to calculate the effective diameters for the silver point, gold point and lamps in the same way as before, i.e. allowing for the thermal profile of the furnace and the effect of the strip-shaped lamp filament. The effective diameters were found to be 9.04 mm and 6.79 mm respectively for the gold point and silver point, and 2.59 mm for lamps. This leads to a correction in the lamp radiance of +0.18 °C at 962 °C and +0.23 °C at 1064 °C. The SSE correction at higher temperatures may be found by extrapolation. 1.6 RE-MEASUREMENT OF RAMB After the calibration had been completed, Ramb was measured again. The results of these measurements are shown in Section 2.1, Table 1. 2. RESULTS OF THE MEASUREMENTS 2.1 RESULTS OF THE MEASUREMENTS OF RAMB Table 1

Pre-calibration Post-calibration

Lamp number Ramb (Ω) Self-heating

(Ω)

tamb (°C)

Ramb (Ω) Self-heating

(Ω)

tamb (°C)

C860 0.039736 1.0x10-6 21.0 0.039969 1.0x10-6 22.3

C864 0.041513 1.1x10-6 20.9 0.041671 0.9x10-6 22.0

C840 0.040359 1.1x10-6 20.8 0.040548 0.8x10-6 22.0

All the self-heating effect values are insignificant (< 10-5 Ω). The differences between the pre- and post-calibration values of Ramb are likely to be due to the effect of the temperature coefficient of the filaments. 2.2 RESTABILISATION OF THE LAMPS The results of the restabilisation measurements are given in the following Table.

Page 172: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

4

Table 2

Lamp Number Current (A) Radiance temperature before

restabilisation (°C)

Radiance temperature after

restabilisation (°C)

Difference (°C)

C860 6.1116 1082.237 1082.230 0.007

C864 6.1209 1100.038 1100.023 0.015

C840 6.2040 1100.549 1100.319 0.230 The differences in radiance temperature of lamps C860 and C864 are well within the stabilisation limits set by the protocol. That of lamp C840 is significant and greater than the 0.05 °C specified in the protocol. It is not clear why the lamp should have drifted by this amount. 2.3 CALIBRATION RESULTS FOR THE LAMPS Tables 3 to 7 show the results of both calibration runs. The third column gives the base temperature coefficient applied at each temperature below 1100 °C, while the fourth gives the measured lamp radiance temperature corrected to a base temperature of 20 °C. Corrections were applied to allow for the pyrometer’s SSE (fifth and sixth columns) and to convert the results to a wavelength of 650 nm (seventh and eighth columns). The ninth column gives the reference current: for C860 and C864 this was the value defined in the instructions sent with the lamps and for C840 it was the chosen current. The tenth column gives the change in lamp current per °C change in radiance temperature, used to correct the results in column eight to the reference current. The last column in the Tables gives the final corrected radiance temperature for each lamp current. Note that, in the Tables, λ is the reference wavelength of the pyrometer from the filter calibration; it is not the effective wavelength λe. For ease of comparison, Figures 1 to 2 show the differences between the first 1999 calibration and the second (reference) 1997 calibration for all three lamps, and the differences between the first and second 1999 calibrations for C860 and C864. The average room temperature and humidity during the first calibration run were 21.2 (±0.7) °C and 34.8 (±5.9) % respectively; during the second calibration run they were 21.9 (±0.8) °C and 29.9 (±4.7) % respectively. The maximum and minimum room temperature values were 22.8 °C and 20.1 C respectively for the first calibration run and 23.2 °C and 20.5 °C respectively for the second calibration run. The maximum and minimum relative humidity values were 46.6 % and 26.3 % respectively for the first run and 46.8 % and 22.9 % respectively for the second calibration run. 2.4 RESULTS OF THE FIXED POINT MEASUREMENTS Tables 8 to 12 give the results of the measurements made with the lamps using the Ag and Au point blackbody sources as the reference. In the Tables, the fourth column gives the measured radiance temperature, corrected to a base temperature of 20 °C, at the pyrometer reference wavelength shown in the fifth column. The seventh column gives the radiance temperature

Page 173: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

5

corrected for SSE, and the eighth gives the radiance temperature corrected to 650 nm. The last column gives the corrected radiance temperature of the lamp at the reference current. The averages of the fixed point results have been included in Tables 3 to 7. 2.5 POLYNOMIAL FITTING OF THE CALIBRATION DATA For lamps C860 and C864, the final corrected radiance temperature at each lamp current (last column in Tables 3 to 6 were fitted using a 6th order Chebyshev polynomial equation. The Chebyshev polynomial coefficients for the first calibration run are given in Table 13. The fits for both sets of data were good, with the largest residuals being equivalent to a temperature uncertainty of 0.07 °C. The results for lamp C840 were not fitted since the calibration had not been carried out at all temperatures.

3. MEASUREMENT UNCERTAINTIES The measurement uncertainties, evaluated at a level of confidence of approximately 95%, are given in Tables 14 and 15.

4. CONCLUSION The results show that the calibration results of lamps C860 and C864 are in very good agreement with those obtained in 1997 before the start of the intercomparison. This is despite them having been transported between a number laboratories during that time, and being subjected to many hours of burning. Furthermore, the two 1999 calibrations are in excellent agreement. It can be concluded that, within the measurement uncertainties, the lamps have not drifted significantly since their initial calibration. In the event, the back-up lamp C840 was not required in the circulation. In these measurements its calibration agrees reasonably well with that performed in 1997.

Page 174: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

11

Table 8 - Measurements of C860 using fixed points, first calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 5.0732 0.98 960.357 664.304 0.18 960.537 962.121 5.072 961.97

Ag 5.0732 0.98 960.357 664.307 0.18 960.537 962.121 5.072 961.97

Ag 5.3798 1.65 998.110 664.310 0.19 998.300 999.986 5.380 1000.01

Au 5.9454 0.98 1062.288 664.307 0.23 1062.518 1064.387 5.944 1064.23

Au 5.9454 0.98 1062.282 664.311 0.23 1062.512 1064.381 5.944 1064.23

Table 9 - Measurements of C860 using fixed points, second calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 5.0732 0.98 960.364 664.305 0.18 960.544 962.128 5.072 961.97

Ag 5.0732 0.98 960.361 664.318 0.18 960.541 962.126 5.072 961.97

Ag 5.3798 1.65 998.078 664.325 0.19 998.268 999.956 5.380 999.98

Au 5.9455 0.98 1062.264 664.317 0.23 1062.494 1064.364 5.944 1064.20

Au 5.9455 0.98 1062.268 664.326 0.23 1062.498 1064.369 5.944 1064.21

Table 10 - Measurements of C864 using fixed points, first calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 4.9338 0.98 960.177 664.304 0.18 960.357 961.940 4.933 961.84

Ag 4.9338 0.98 960.146 664.307 0.18 960.326 961.910 4.933 961.81

Ag 5.2367 1.65 998.065 664.310 0.19 998.255 999.941 5.236 999.86

Au 5.7890 0.97 1062.037 664.307 0.23 1062.267 1064.135 5.788 1064.02

Au 5.7890 0.97 1062.039 664.311 0.23 1062.269 1064.138 5.788 1064.03

Page 175: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

12

Table 11 - Measurements of C864 using fixed points, second calibration run

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 4.9336 0.98 960.029 664.305 0.18 960.209 961.792 4.933 961.71

Ag 4.9336 0.98 960.037 664.318 0.18 960.217 961.802 4.933 961.72

Ag 5.2367 1.65 997.979 664.325 0.19 998.169 999.857 5.236 999.77

Au 5.7890 0.97 1061.976 664.317 0.23 1062.206 1064.075 5.788 1063.96

Au 5.7890 0.97 1061.995 664.326 0.23 1062.225 1064.095 5.788 1063.98

Table 12 - Measurements of C840 using fixed points

Fixed point used

I (A)

Ratio of photo-

currents

Measured t (°C)

λ (nm) SSE correction

(°C)

t corrected for SSE

(°C)

t corrected to 650nm

(°C)

Reference current

(A)

t90 at reference current

(°C)

Ag 5.0031 0.99 960.764 664.305 0.18 960.944 962.529 5.002 962.39

Ag 5.0031 0.99 960.736 664.318 0.18 960.916 962.502 5.002 962.36

Ag 5.3087 1.66 998.525 664.325 0.19 998.715 1000.404 5.307 1000.20

Au 5.8658 0.98 1062.293 664.317 0.23 1062.523 1064.393 5.865 1064.31

Au 5.8658 0.98 1062.281 664.326 0.23 1062.511 1064.382 5.865 1064.29

Table 13 - Chebyshev coefficients for the fit of the first calibration run

Lamp number Chebyshev polynomial coefficient

C860

C864

a0 0.1809638x102 0.1760867x102 a1 0.4650689x101 0.4522100x101 a2 0.3183379x100 0.3026255x100 a3 -0.3423168x10-1 -0.3144917x10-1 a4 0.8540926x10-2 0.7237679x10-2 a5 -0.1966629x10-2 -0.1574649x10-2 a6 -0.6724428x10-3 -0.7615090x10-3

Page 176: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

13

Table 14 - Uncertainty in the realisation of the silver/gold point

Uncertainty (°C)

Source of uncertainty Type Ag point Au point

Statistical Reproducibility of melts and freezes Realisation (impurities, emissivity) DVM resolution

A

B B B

0.009

0.020 0.010 0.001

0.008

0.013 0.010 0.001

Total for fixed point (u) 0.024 0.018

Total for fixed point (U) 0.048 0.036

Page 177: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

RESTRICTED-COMMERCIAL NPL Report CBTLM S2

14

Table 15 - Uncertainty in the 1999 lamp measurements

Source of uncertainty Type Uncertainty (°C)

962 °C 1064 °C 1300 °C 1500 °C 1700 °C

Realisation of fixed point B 0.024 0.018 - - -

Uncertainty from previous measurements (propagated)

- - 0.14 0.22 0.30

Lamp radiance temperature: statistical reproducibility resolution of DVM drift in reference lamp during comparison

A A B B

0.010 0.020 0.001 0.050

0.010 0.010 0.001 0.050

0.010 0.050 0.001 0.050

0.010 0.020 0.001 0.050

0.010 0.030 0.001 0.050

Current measurements: reproducibility current stability calibration of DVM resolution of DVM calibration of standard resistor current correction

A A B B B B

N/A 0.030 0.060 0.010 0.005 0.001

N/A 0.030 0.060 0.010 0.005 0.001

N/A 0.020 0.050 0.010 0.005 0.001

N/A 0.030 0.040 0.010 0.005 0.001

N/A 0.030 0.040 0.010 0.005 0.001

Base temperature: stability calibration of DVM resolution of DVM calibration of thermocouple measurement of BTC (10%)

B B B B B

0.005 0.007 0.001 0.007 0.001

0.005 0.003 0.001 0.003 0.000

- - - - -

- - - - -

- - - - -

Interference filter/wavelength: calibration of filter temperature coefficient of filter

B B

- -

- -

0.007 0.010

0.010 0.010

0.012 0.010

Alignment of sources B 0.020 0.020 0.020 0.020 0.020

Size-of-source effect Detector linearity

B B

0.030 -

0.030 -

0.040 -

0.050 -

0.070

Quality of polynomial fit A 0.020 0.020 0.020 0.020 0.020

Total standard uncertainty u (excluding wavelength conversion)

0.10 0.10 0.17 0.24 0.32

Conversion to 650 nm due to equation

B 0.09 0.11 0.15 0.21 0.26

Total combined standard uncertainty u

0.13 0.15 0.23 0.32 0.41

Expanded uncertainty U (k=2) 0.27 0.29 0.46 0.64 0.82

Page 178: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 3 - Lamp C860, 1st calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE correction

(°C)

t corrected for SSE

(°C)

∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A/°C)

t90 at specified

current (°C)

5.0732 664.306 0.0478 960.357 0.18 960.537 1.584 962.121 5.072 0.0078 961.97

5.3798 664.310 0.0323 998.110 0.19 998.300 1.686 999.986 5.380 0.0084 1000.01

5.9454 664.309 0.0170 1062.285 0.23 1062.515 1.869 1064.384 5.944 0.0092 1064.23

6.1406 664.316 0.0137 1083.106 0.24 1083.346 1.932 1085.278 6.141 0.0095 1085.32

6.2787 664.318 0.0117 1097.515 0.25 1097.765 1.976 1099.741 6.284 0.0096 1100.29

6.8785 664.287 - 1157.582 0.27 1157.852 2.161 1160.013 - - -

7.2980 664.282 - 1197.677 0.28 1197.957 2.293 1200.250 7.298 0.0106 1200.25

8.0570 664.280 - 1267.145 0.31 1267.455 2.535 1269.990 - - -

8.3968 664.280 - 1297.196 0.32 1297.516 2.644 1300.160 8.398 0.0114 1300.27

9.5687 664.274 - 1396.967 0.36 1397.327 3.026 1400.353 9.570 0.0120 1400.46

10.8049 664.278 - 1496.745 0.41 1497.155 3.441 1500.596 10.805 0.0126 1500.60

12.0992 664.282 - 1596.408 0.45 1596.858 3.887 1600.745 12.099 0.0132 1600.73

13.4464 664.285 - 1695.793 0.50 1696.293 4.363 1700.656 13.446 0.0137 1700.63

Page 179: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 4 - Lamp C860, 2nd calibration run

I

(A) λ

(reference) (nm)

dtλ/dtbase Measured t (°C)

∆t SSE correction

(°C)

t corrected for SSE

(°C)

∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A/°C)

t90 at specified

current (°C)

5.0732 664.312 0.0478 960.363 0.18 960.543 1.585 962.128 5.072 0.0078 961.97

5.3798 664.325 0.0323 998.078 0.19 998.268 1.688 999.956 5.380 0.0084 999.98

5.9455 664.322 0.0170 1062.266 0.23 1062.496 1.871 1064.367 5.944 0.0092 1064.20

6.1405 664.335 0.0137 1083.066 0.24 1083.306 1.935 1085.241 6.141 0.0095 1085.29

6.2789 664.333 0.0117 1097.522 0.25 1097.772 1.978 1099.750 6.284 0.0096 1100.28

6.8784 664.293 - 1157.578 0.27 1157.848 2.162 1160.010 - - -

7.2979 664.294 - 1197.656 0.28 1197.936 2.295 1200.231 7.298 0.0106 1200.24

8.0570 664.292 - 1267.124 0.31 1267.434 2.537 1269.971 - - -

8.3968 664.286 - 1297.158 0.32 1297.478 2.645 1300.123 8.398 0.0114 1300.23

9.5686 664.275 - 1396.903 0.36 1397.263 3.026 1400.289 9.570 0.0120 1400.41

10.8055 664.287 - 1496.710 0.41 1497.120 3.443 1500.563 10.805 0.0126 1500.52

12.0995 664.297 - 1596.294 0.45 1596.744 3.891 1600.635 12.099 0.0132 1600.60

13.4466 664.307 - 1695.704 0.50 1696.204 4.370 1700.574 13.446 0.0137 1700.53

Page 180: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 5 - Lamp C864, 1st calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A / °C)

t90 at specified current

(°C)

4.9338 664.306 0.0432 960.158 0.18 960.338 1.584 961.922 4.933 0.0077 961.82

5.2367 664.310 0.0280 998.065 0.19 998.255 1.686 999.941 5.236 0.0082 999.86

5.7890 664.309 0.0134 1062.038 0.23 1062.268 1.868 1064.136 5.788 0.0090 1064.02

5.9790 664.316 0.0105 1082.814 0.24 1083.054 1.931 1084.985 5.980 0.0092 1085.09

6.1202 664.318 0.0085 1097.917 0.25 1098.167 1.977 1100.144 6.120 0.0094 1100.12

6.7008 664.286 - 1157.601 0.27 1157.871 2.161 1160.032 - - -

7.1069 664.282 - 1197.484 0.28 1197.764 2.293 1200.057 7.107 0.0103 1200.07

7.8462 664.280 - 1267.092 0.31 1267.402 2.535 1269.937 - - -

8.1769 664.278 - 1297.160 0.32 1297.480 2.644 1300.124 8.177 0.0111 1300.13

9.3140 664.270 - 1396.835 0.36 1397.195 3.025 1400.220 9.314 0.0117 1400.22

10.5135 664.275 - 1496.581 0.41 1496.991 3.440 1500.431 10.513 0.0123 1500.39

11.7677 664.280 - 1596.135 0.45 1596.585 3.886 1600.471 11.767 0.0128 1600.42

13.0751 664.284 - 1695.644 0.50 1696.144 4.362 1700.506 13.074 0.0133 1700.42

Page 181: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 6 - Lamp C864, 2nd calibration run

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

∆tλ (°C)

tλ corrected to

650 nm (°C)

Specified current

(A)

dI/dtλ (A / °C)

t90 at specified current

(°C)

4.9336 664.312 0.0432 960.033 0.18 960.213 1.584 961.797 4.933 0.0077 961.72

5.2367 664.325 0.0280 997.979 0.19 998.169 1.688 999.857 5.236 0.0082 999.77

5.7890 664.322 0.0134 1061.985 0.23 1062.215 1.870 1064.085 5.788 0.0090 1063.97

5.9788 664.333 0.0105 1082.732 0.24 1082.972 1.933 1084.905 5.980 0.0092 1085.04

6.1201 664.335 0.0085 1097.854 0.25 1098.104 1.980 1100.084 6.120 0.0094 1100.07

6.7007 664.292 - 1157.553 0.27 1157.823 2.162 1159.985 - - -

7.1069 664.294 - 1197.439 0.28 1197.719 2.294 1200.013 7.107 0.0103 1200.02

7.8461 664.293 - 1267.025 0.31 1267.335 2.537 1269.872 - - -

8.1768 664.289 - 1296.993 0.32 1297.313 2.645 1299.958 8.177 0.0111 1299.98

9.3140 664.282 - 1396.760 0.36 1397.120 3.027 1400.147 9.314 0.0117 1400.15

10.5133 664.291 - 1496.447 0.41 1496.857 3.443 1500.300 10.513 0.0123 1500.28

11.7681 664.304 - 1595.996 0.45 1596.446 3.891 1600.337 11.767 0.0128 1600.25

13.0754 664.310 - 1695.500 0.50 1696.000 4.370 1700.370 13.074 0.0133 1700.26

Page 182: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

Table 7 - Lamp C840 calibration

I (A)

λ (reference)

(nm)

dtλ/dtbase Measured t (°C)

∆t SSE

(°C)

t corrected for SSE

(°C)

∆tλ (°C)

tλ corrected to 650 nm

(°C)

Specified current (A)

dI/dtλ (A / °C)

t90 at specified current

(°C)

t90 at specified current

(°C) 1997 calibration

Difference (1999 - 1997

5.0031 664.312 0.0460 960.750 0.18 960.930 1.586 962.516 5.002 0.0078 962.37 962.00 +0.37

5.3087 664.325 0.0325 998.525 0.19 998.715 1.689 1000.404 5.307 0.0083 1000.20 1000.00 +0.20

5.8658 664.322 0.0160 1062.287 0.23 1062.517 1.871 1064.388 5.865 0.0091 1064.30 1064.00 +0.30

6.0504 664.335 0.0125 1082.177 0.24 1082.417 1.932 1084.349 6.059 0.0094 1085.26 1085.00 +0.26

6.2035 664.333 0.0110 1098.344 0.25 1098.594 1.981 1100.575 6.201 0.0095 1100.31 1100.00 +0.31

7.2050 664.294 - 1197.787 0.28 1198.067 2.296 1200.363 7.203 0.0105 1200.17 1200.00 +0.17

9.4492 664.275 - 1396.857 0.36 1397.217 3.026 1400.243 9.449 0.0119 1400.23 1400.00 +0.23

11.9485 664.297 - 1596.025 0.45 1596.475 3.890 1600.365 11.947 0.0131 1600.25 1600.00 +0.25

13.2795 664.307 - 1695.464 0.50 1695.964 4.368 1700.332 13.277 0.0135 1700.15 1700.00 +0.15

Page 183: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 184: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 185: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

July 1999

Report on the calibration of the tungsten strip lamps C860 and C864 within the CCT key-comparison “Local realizations of the IST-90 between the Silver point and 1700 °C using vacuum Tungsten-strip lamps as transfer standards” By J. Hartmann

I. Experimental and theoretical procedure

The realisation of the ITS- 90, the description of the equipment and the experimental procedure are described in the following references:

1. J. Fischer, H.J. Jung, R. Friedrich, “A new determination of the freezing temperature of gold relative to that of silver by radiation thermometry“, Temperature 6, 53-57 (1992);

2. J. Fischer, H.J. Jung, "Determination of the thermodynamic temperatures of the freezing points of silver and gold by near-infrared pyrometry", Metrologia 26, 245-252 (1989);

The formal definition and derivation of the spectral radiance temperature with explicit reference to corrections applied together with the transfer of the radiance temperature to strip lamp is described in

3. J. Fischer, J. Hartmann, “Calibration of tungsten strip lamps as transfer standards for temperature” Proceedings of Tempmeko´99;

4. H.-J. Jung, J. Verch; “Ein Rechenverfahren zur Auswertung pyrometrischer Messungen“, Optik 38, 95-109 (1973)

In this report only a short description of the reference thermometer characteristics is given.

The limiting effective wavelength λe is calculated for every lamp at every current separately according Ref. 3 and 4 and is given in the final Tables 5 to 8 in the column λe. The measured beam is limited to a diameter of 20 mm. The reference pyrometer has a focus length of 300 mm yielding a f-number of 20/300=1/15. The target distance is 1220 mm and the target field is circular, with a diameter of 0.5 mm.

The size-of source-effect (SSE) with respect to a gold fixed-point blackbody with an aperture of 3 mm diameter (effective source diameter 30 mm) was measured for the two wavelengths (650 nm and 950 nm) for two different strip widths. The results are given in Table 1.

Wavelength / nm SSE for the 1.5 mm strip SSE for the 3 mm strip

650 6.89x10-4 5.26x10-4

950 7.13x10-4 4.24x10-4

Table 1: Size-of-source effect measured with respect to a gold fixed point with an aperture of 3 mm diameter (effective source diameter 30 mm) for two strip widths.

Page 186: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

The transfer lamps C860 and C864 The transfer lamps arrived at PTB on January 27th and left PTB on March 30th 1999. The conditions of the measurements together with the total burning times for both lamps are given in Table 2.

Lamp C860 Lamp C864 Orientation as prescribed in the protocol as prescribed in the protocol Base temperature TB 20 °C ± 0.1 °C 20 °C ± 0.1 °C Total burning time 65 h 64 h Ambient temperature (min) 22 °C 21 °C Ambient temperature (max) 23 °C 23 °C Ambient temperature (aver.) 22 °C 22 °C Relative humidity (min) 33% 35% Relative humidity (max) 38% 40% Relative humidity (average) 35% 37% Lamp resistor Rambient(begin) 0.04020985 Ω 0.04183677 Ω Temperature Tambient(begin) 23.6 °C 23.4 °C Lamp resistor Rambient(end) 0.04016385 Ω 0.04190437 Ω Temperature Tambient(end) 22.75 °C 22.55 °C

Table 2: Measurements conditions for the two lamps C860 and C864.

The measured horizontal and angular distributions of the strip radiance temperatures are presented in Fig. 1-2.

0.9975

0.9985

0.9995

1.0005

1.0015

1.0025

-1.00 -0.50 0.00 0.50 1.00distance / mm

norm

. Sig

nal

5.072A7.298A

0.9975

0.9985

0.9995

1.0005

1.0015

1.0025

-1.00 -0.50 0.00 0.50 1.00distance / mm

norm

. Sig

nal

4.933A5.788A9.314A11.767A

Figure 1: Horizontal distribution of the signal along the strip obtained at the lamp C860 (left) and C864 (right). The signals have been normalized to the signal in the middle of the strip. The nodge is located on the right side, i.e. in direction of positive x.

0.9970

0.9980

0.9990

1.0000

1.0010

1.0020

1.0030

1.0040

-20.00 -15.00 -10.00 -5.00 0.00 5.00 10.00 15.00angle / degree

norm

. Sig

nal

0.9970

0.9980

0.9990

1.0000

1.0010

1.0020

1.0030

1.0040

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00angle / degree

norm

. Sig

nal

Page 187: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

Figure 2: Angular distribution of the signal when rotating the lamps (C860 on the left, C864 on the right) on an axis perpendicular to the optical axis and to the floor. The signals have been normalized with respect to the signal at zero angle.

Page 188: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

II. Uncertainties-Identification of uncertainty components The calibration scheme performed includes three steps (see Ref. 3): At first, two first order working standards (WS) were calibrated with reference to the gold fixed point blackbody. These two first order WS (C514 and C520) were operated at only one radiance temperature (C514 at 1800 K, C520 at 1337 K).

In a second step, a second order WS (P95) is calibrated with reference to the two first order WS at different radiance temperatures. In the last step, the lamps C860 and C864 are calibrated with reference to the second order WS at nearly the same radiance temperatures.

In the following the contributions to the overall uncertainty are given separately for every calibration step. The uncertainties ui are given at an coverage factor k=1.

a) Calibration of the first order WS with reference to the gold fixed point blackbody

1. Realization of the reference temperature of the gold fixed point. This uncertainty is caused by the impurity of the gold metal inlet (5N, i.e. 0.99999), the emissivity of the cavity (0.99996±0.00001) and the temperature difference ∆T across the bottom of the cavity (<1 mK). The realization of the reference temperature Tr=1337.33 K is within ±0.01 K resulting in a standard uncertainty for the radiance temperature of

2

2 3K01.0

=

rTTu

2. Long term stability of the interference filters used (includes the mean effective wavelength, the spectral transmission of the interference filter, the spectral responsivity of the detector): ±0.05 nm resulting in a standard uncertainty for the radiance temperature of

3nm05.013 λ

−=

rTTTu

3. Uncertainty in radiance comparison including a lamp (spatial and angular distribution of the spectral readiance, cleaning of the window, alignment, ratio of feed back resistors, non-linearity, SSE) ∆L/L=1.5x10-3. This results in a standard uncertainty of radiance temperature of (with c2 being Planck’s second radiation constant)

2

23

4 3105.1

cTu λ−⋅=

4. Uncertainty due to the measurement of the lamp current. With a relative uncertainty u=2.4x10-5 for the voltage measurement and u=1x10-5 for the standard resistor we obtain a resulting standard uncertainty in radiance temperature (with dT/di being the slope of the lamp characteristic T=T(i))

( ) ( )25255 104.210 −− ⋅+⋅

=

didTiu

5. Short term stability of a vacuum tungsten strip lamp of 0.1 K resulting in a standard uncertainty of radiance temperature

3K1.0

9 =u

Page 189: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

6. Absorption of water vapor (at 950 nm). This may cause a shift in wavelength of 0.065 nm resulting in a standard uncertainty of radiance temperature:

3nm950

nm065.0110

−=

rTTTu

b) Calibration of lamp P95 with reference to Lamps C514 and C520

1. When comparing two sources with different radiance temperatures an uncertainty due to poor blocking of the interference filter caused by parasitic transmission at long wavelengths arises. Using “edge filters” as RG780, RG715 and RG9 a rough estimate of the standard uncertainty in radiance temperature can be made, which is presented in Table 3.

T / K u1 / K T / K u1 / K

900 0,16 1500 0,01

1100 0,03 1700 0,02

1300 0,00 1900 0,02 Table 3: Standard uncertainty in radiance temperature due to blocking error with reference to a blackbody at 1337 K.

2. Realization of the reference temperature u2=u2(first order WS)(T/Tr)2

3. Long term stability of the interference filter u3

4. Uncertainty in radiance comparison including a lamp u4

5. Measurement of the lamp current u5

6. Influence of the temperature of the base. The standard deviation for maximum changes of the base temperature Tb of ±0.1 K is (with dTS/dTB being the change in radiance temperature when changing the base temperature by 1 K)

3K1.0

6B

S

dTdT

u =

7. Resolution of the IR-pyrometer in terms of the photocurrents equals ±2x10-15 A. The photocurrent at 650 nm and 1337 K is 5,4x10-10 A. At 950 nm and 1285 K the photocurrent is 2,6x10-9A. The standard deviation for resolution in radiance temperature is then

for 650 nm 3

nm650

nm650exp

33.1337nm650exp

104.5102 2

2

2

2

10

15

7

⋅⋅

⋅= −

− cT

Tc

Kc

u

Page 190: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

and for 950 nm 3

nm950

nm950exp

1285nm950exp

106.2102 2

2

2

2

10

15

7

⋅⋅

⋅= −

− cT

Tc

Kc

u

8. Short term stability of the vacuum tungsten strip lamps u9 9. Absorption of water vapour at 950 nm u10

c) Calibration of lamps C860 and C864 with reference to Lamp P95 1. Realization of the reference temperature

u2=u2(second order WS)(T/Tr)2 2. Long term stability of the interference filter u3 3. Uncertainty in radiance comparison including a lamp: in contrast to the first two

calibration steps an uncertainty in radiance of ∆L/L=2.0x10-3 is considered for u4 as the lamps C860 and C864 have not been investigated as thoroughly as the lamps C514, C520 and P95

4. Measurement of the lamp current u5 5. Influence of the temperature of the base u6 6. Resolution of the IR-pyrometer in terms of the photocurrents u7 7. Short term stability of the vacuum tungsten strip lamps u9 8. Absorption of water vapour at 950 nm u10 Collecting all the uncertainties mentioned above the final overall uncertainty at the coverage factor k=1 presented in Table 4 is obtained. Table 4 a) Table 4 b)T (650 nm)/K Uncertainty (k=1, 650 nm) / K T (950 nm)/K Uncertainty (k=1, 950 nm) / K

1235.15 0.15 1192.63 0.191273.15 0.16 1227.82 0.191337.15 0.17 1286.82 0.211358.15 0.17 1306.18 0.221373.15 0.18 1320.09 0.221473.15 0.19 1411.67 0.241573.15 0.21 1502.63 0.271673.15 0.24 1592.85 0.301773.15 0.26 1682.42 0.341873.15 0.29 1771.34 0.371973.15 0.32 1859.75 0.41

Table 4: Overall uncertainty as a function of radiance temperature for 650 nm wavelength ( a) and for 950 nm wavelength ( b)

III Calibration results The calibration results of the lamp C860 are shown in Tables 5 a) to d) for the 650 nm wavelength and in Tables 6 a) to d) for the 950 nm measurement. The calibration results of the lamp C864 are shown in Tables 7 a) to d) for the 650 nm wavelength and in Tables 8 a) to d) for the 950 nm wavelength measurement. The tables are slightly modified compared to the tables prescribed in the protocol as we left out some corrections. First no corrections due to non-linearity and water absorption have been

Page 191: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

report_f.doc 27/06/2003 JH

made. These two effects have been considered with in the uncertainty budget. Second no correction due to the base temperature were made as our temperature stabilization is sufficient accurate and stable. A possible effect due to a slight variation has been considered in the uncertainty budget. Third the controlling of the strip current is accurate and stable, so no correction to this has been applied (see columns 2-4). However, as we perform a Spline interpolation to the measured radiance temperatures for identifying measurement errors ( see Ref. 3) we applied an additional correction shown in the column named “Spline correction “in Tables 5 to 8.

Page 192: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

1

VNIIM. TO THE PROTOCOL ON THE INTERCOMPARISON OF LOCAL REALIZATIONS OF THE ITS-90 BETWEEN THE SILVER POINT AND 1700°C, USING VACUUM TUNGSTEN-STRIP LAMPS AS TRANSFER STANDARDS. REPORTING 1. Experimental and theoretical procedures. 1.1. Realization of the ITS-90. ITS-90 is realized in accordance to its definition by measurement of a ratio of radiances for a standard source as a model of blackbody at the temperatures of the fixed points of a pure metal: Ag, Au and Cu. The models are executed as cylindrical graphite cavity with geometry ensuring an emissivity about 0.9994. A size of the emanating hole is about 1.7 mm. To generate a uniform spatial temperature field a horizontal tubular electric furnace provided by four heaters and PID regulating controllers is used. Construction of the furnace and the crucible form ensure a homogeneity of a temperature field for melting and freezing of metal about 0.07 °C at a time from 20 about 40 minutes. The transfer of the radiance values in fixed points to the secondary measurement standards is carried out with the spectrocomparator - a monochromatic pyrometer that ensures indication of equality of monochromatic radiances of two emitters. The operating principle of the spectrocomparator is based on modulation of two optical radiations and on determination of their spectral luminance equality at a specified wavelength. The device has two symmetric optical channels. Images of radiators under comparison by objectives in the planes of diaphragms, where radiation from periphery radiating surface is preliminary delayed. Selected radiations are directed by means of objectives and prism to mirror of modulator from which they are in turn projected onto the input slit of double monochromator at a modulating frequency of 1070 Hz. Position of images of the sources being compared can be observed with microscope. Substitution of one radiant flux another is carried out by the modulator mirror in such a way that the total illumination of radiation detector remains constant when luminances of the source images are equal, and when they aren't equal - the total flux contains a variable component having the modulation frequency. When the equality of luminances is achieved, the photocurrent variable component is a minimum at the modulation frequency, and it is determined by null-indicator, connected to synchronous detector and selective amplifier. A photomultiplier with a multialcaline cathode or silicon diode were used as a detector of radiation. A vacuum tungsten ribbon lamp with a water-cooled socket is used as a lamp-container. The temperature of the socket is checked by a thermoresistor and its variations had to be less than 0,3 °C. The standard resistors and standard cell used as reference means for absolute measurements of currents and voltages are also thermosetted and checked. The blackbody models in the form of graphite cavities (45 mm length, 6 mm diameter with an aperture 2 mm diameter), being submerged into a crucible filled with metal, were used as standard radiators. The crucibles were made of graphite, the ash content of which was less

Page 193: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

2

than 0,03 %. The content of impurities in the metals was less than 0,002 %. To obtain the current values of the lamp at some other temperature a double luminance method was applied. This method is commonly known as the method of combining luminous fluxes. As the secondary measurement standards are used tungsten strip lamps, which simultaneously are interpolation devices realizing a temperature scale in a continuous range of temperatures higher of 962 °C. A scale extrapolates from fixed points by a method of doubling of radiances with the special installation permitting to double visible radiances of a lamp strip. In performing such calibration an additional lamp which is placed instead of the standard radiator, was used. The arrangement with two semitransparent mirror was also used to obtain luminances, multiple of 2±1, by changing the light paths through the mirrors. From these values a corresponding temperature value is calculated using Planck's law. A correction includes to the SSE, the base temperature, the effective wavelength, the stray light. 2. Presentation of results 2.1. Local conditions. 2.1.1. Reference thermometer. - Effective wavelength was λe = 656.3 nm; - Half-width of spectral response function was about 4.5 nm. - Aperture ratio was about f/12. - Target distance was about 330 mm. - Target field dimensions was 0.7 x 0.7 mm. Size-of-source effect covering a range in radii (r0,rmax), with rmax about 12 mm, 2.1.2. Transfer lamps. - Orientation of lamps was normal. - Nominal base temperature was 21.8 ± 0.3 °C. - Total burning time was: 19.5 h for C564; 19 h for C681. 2.1.3. Ambient conditions. - Tamb was in limits: 20.9 ... 21.5 °C - RH was in limits: 55 ... 65 %

Page 194: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 1

CCT - Key comparison :Comparison of the Local Realizations of theITS-90 between Silver point and 1700 °C

Initial measurements on C564, C681 and C680 (Set I)

NMi/VSL - contributionMarch 1999

R. BosmaE.W.M. van der Ham

Page 195: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 2

This report describes the initial measurements from VSL for the CCT project ‘Comparison of theLocal Realizations of the ITS-90 between Silver point and 1700 °C’. The project uses two sets oftungsten strip lamps. One of these sets is provided by VSL, the second by NPL.

Contents

Description of the scale realisation and lamp setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3The optical pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3The fixed point furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Scale realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4The tungsten strip lamp setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Description of the measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Selection of lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Effects of lamp positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Spectral sensitivity of pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Size-of-source effect from pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Linearity of pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Results of lamp selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Results of lamp positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Results of spectral sensitivity of pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Results of Size-of-Source effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Results of linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Results of transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Results of scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Results of Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Page 196: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 3

Description of the scale realisation and lamp setup.

The optical pyrometer.

The pyrometer is a modified version of the pyrometer described in [1-3]. Figure 1 shows a schematicview of the pyrometer.

1

2

3 45 6

7 8 910

Figure 1 Schematic view of optical system of pyrometer1. The optical axis of pyrometer2. Two achromatic lenses with focal length of 500 mm (closely spaced together)3. An aperture stop, with diameter of 1 mm4. A lens with focal length of 75 mm5. The gray filter positions6. The spectral filter position; under 0,3 ° with optical axis7. A lens with focal length of 176 mm8. The field stop, with diameter of 1,76 mm9. The photo diode10. An aperture stop, with diameter of 8,33 mm, which defines aperture ratio to f/9

The objective (2) of this pyrometer consists of two equal achromatic lenses with a focal length of500 mm and a diameter of 80 mm. The lenses have an anti-reflection coating for use between 650nm and 950 nm. The 1 mm aperture (3) is placed in the focus of the lens (2), which results in a 1:1image of the observed source. A second lens (4) creates an parallel beam for the neutral densityfilters (5), the interference filters (6) and the aperture stop (10). To prevent interreflections theinterference filters are placed at an angle of 0,3 ° with the optical axis of the pyrometer. Theaperture stop in the parallel beam defines the aperture ratio to f/9. A third lens (7) produces animage on the field stop. The field stop has a diameter of 1,76 mm which results, after correction forthe the magnification of lenses 4 and 7, in a effective target spot of 0,75 mm. The remainingradiation is collected with a silicon photo diode (9), type Hamamatsu S1337 - 1010BQ. Both the 1mm aperture and the field stop can be observed via a mirror with an objective. The current of thephotodiode is amplified by a Keithley 428 current-to-voltage-converter from which the output ismeasured with a Keithley 181 Nanovoltmeter. The detector is cooled to 19,5 °C with a stability of50 mK.

The pyrometer has three interference filters. The filters have an effective wavelength of 661 nm,672 nm and 959 nm. The full width at half maximum transmission (FWHM) for the filters is 10 nm ,53 nm and 33 nm respectively. The 661 nm filter is used in combination with two additional filtersto improve the out-of-band blocking. All filters are positioned on a computer controlled filterwheel.

In this report the pyrometer has only been used with two filter/amplification combinations, i.e., the661 nm filter with an amplification of 108 VA and the 959 nm filter with 106 VA. Both settings arereferred to by the filter 661nm and 959 nm respectively.

Page 197: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 4

The fixed point furnace

Figure 2 shows the design of the insert of the Ag fixed point furnace. The total insert isincorporated in a quartz tube, with is closed by flanges at both ends. The front flange is equippedwith a quartz window, which is removed during the actual measurements. The fixed point cavity ispositioned in the center of the insert and can be flushed with Argon gas from the rear flange. Withthe window closed the insert can be maintained under Argon pressure. This reduces the decay ofthe four graphite rings in front of the cavity. After a few days of operation these rings arereplaced. The temperature of the cavity is controlled and measured with a S-type thermocouplejust below the fixed point cavity. With this setup an average plateau duration of one hour isobtained.

Figure 2 A schematic view of the insert of the silver fixed point furnace, that is used by NMi/VSL

The Ag fixed point contains approximately 0,8 kg of silver with a purity of 99,9999 %. The graphitecavity has a length of 176 mm, a diameter of 9,5 mm and a bottom with a 120 ° cone. The apertureof the cavity is 3 mm. The calculated effective emissivity is 0,999994 under a iso-thermal cavityconditions. The calculations were conducted with the software program Steep 3 that was design byVega International (1998).

Scale realization

The VSL pyrometer is used as a comparator of radiances. The radiances of the silver point arecompared with the strip lamp operating at an unknown temperature. This temperature isdetermined using an integral method. For this purpose the signal of the pyrometer is representedby:

Page 198: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 5

Q(T) ' m?0 %

12

? ?

?0 &12

? ?

g(?,T) @ t (?) @L(?,T) @S(?) @d? (1)

were Q(T) the signal of the pyrometer at temperature T80 the effective wavelength of the pyrometer)8 the spectral range of the pyrometerg the emissivity of the sourcet the transmission of the sourceL the radiance according to Planck’s LawS the sensitivity of the pyrometer

The temperature of the lamp is calculated from:

Q(TX) ' q(TX) @Q(TAg) 'i(TX)i(TAg)

@Q(TAg) (2)

were Tx the unknown temperatureTag the silver point temperatureq(TX) the relative response at Tx

i(TX) the photo current of the pyrometer at Tx

The relative response can also by calculated from the quotient of the photo currents. The photocurrents have to be corrected for linearity en size-of-source-effect. Using equation 1 and 2 the truetemperature of the source is calculated after correcting the response is for the emissivity of thetungsten strip lamp. The spectral radiance temperature at a reference wavelength 8r is calculatedusing:

Tr,?r'

c2

?r

@ 1

ln 1g @ t

@ ec2

Tt @?r & 1 % 1(3)

were Tr the spectral radiance temperature at wavelength 8r c2 the second radiation constant, 0,014388 m.KTt the true temperature of the source

A calculation of the uncertainties that is performed directly starting with the integral in Equation 1results in complex calculations. Therefore it is chosen to obtain the uncertainty from themonochromatic point of view as given in the supplementary information for the internationaltemperature scale of 1990 [4]. For each parameter the contribution to the overall uncertainty canthan be calculated with the partial differential quite simply.

The tungsten strip lamp setup

The tungsten strip lamp is mounted on a translation stage which allows movement with submilimeter accuracy in all three planes, in angular rotation and in a tilt angle adjustment. Afterpositioning the lamp, its vertical position was checked using a plumb line. The plumb line was

Page 199: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 6

positioned between the pyrometer and the lamp. For the adjustment the lamp strip and the plumpline were viewed from the rear of the lamp. The other positions were adjusted looking through anobjective from which the 1 mm aperture (position 3 in figure 1) is visible. For the angularadjustment an additional aperture was mounted in front of the pyrometer objective, increasing thefocal depth considerably. The filament notch and marker on the rear of the lamp were visible. Alladjustment were performed with the lamp at room temperature and using a light tubeilluminating the lamp filament from the rear.

The lamp current is provided by a Heinzinger TNS 15-450 power supply, which is controlled using aRS232/DAC interface. The current is measured using a Holec 300 SEP zero-flux-current-transformer(ZFCT) and the Keithley 181 Nanovoltmeter. The ZFCT transforms a 0 to 20 A dc-current to a 0 to10 V dc-voltage. Adjustments of the current are controlled by computer with a maximum currentrate of 1 A/min.

The base temperature of the lamp is measured using a Pt-100 and an ASL-F300 resistance bridge.The temperature is controlled with a Tamson TC-3 circulating bath. The bath has an externalcooling; an Eurotherm 818 controller with the feedback resistor is mounted in the bath to stabilizethe bath 0,03 °C accuracy. Note that the temperature of the base is not directly controlled by theEurotherm controller; with each current change the setpoint of the controller is changed manually.

Page 200: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 7

Description of the measurements

Selection of lamps

High-stability vacuum tungsten strip lamps, manufactured by GEC, were used for the comparison.These lamps are of type 10/V with a nominal width of the strip of 1,5 mm. For the comparisonthree lamps were selected based on a stabilization test as described in the protocol to thecomparison [5]. During a period of 100 hours the lamps were operated at a current equivalent to atemperature of 1700 °C. During this time both the temperature and current of the lamp weremonitored. The temperature drift during this period of time should not exceed 0,3 K, otherwisethe lamp should be rejected.

Effects of lamp positioning

To check the quality of the lamp and possible interreflections between the lamp and the pyrometerthe influence of position in the three planes and the angular rotation were measured. Thesemeasurements, preformed at approximately 1500 °C, were used in the uncertainty budget for thelamps temperatures.

Spectral sensitivity of pyrometer

The spectral sensitivity of the pyrometer is measured using a single monochromator, Jobin Yvon,type HR1000. The normal stray light suppression of the monochromator is approximately 1·10-4. Forhigh accuracy temperature measurements this is not sufficient. Therefore the stray light is reducedby using an extra band filter at the entrance of the monochromator, resulting in a straysuppression of 1·10-6 around 650 nm. Towards higher wavelengths this suppression decreased to1·10-5. The latter greatly effects measurements on the upper edge of the 959 nm filter andtherefore the accuracy of the spectral response measurement.

Size-of-source effect from pyrometer

The size-of-source effect measurements were performed in 1996 [3]. The setup consists of a 140 mmdisk with a 3 mm black spot in the center to suppress the main signal. The disk was illuminated by a250 W photo lamp. Apertures, ranging from 3 mm to 100 mm, were placed in front of the disk. Theprofile of the illuminated disk was also measured in order to correct for non-uniformity.

In order to determine the size-of-source correction on the pyrometer additional measurementswere conducted concerning the temperature profile of the fixed point furnace used and the sizze-of-source effect when measuring on a high-stability strip lamp.

Linearity of pyrometer

The linearity of the pyrometer was determined using a superposition method [6]. The setup usedfor these measurements consists of two high-stability strip lamps and a beamsplitter with twoshutters. The setup was checked upon interreflections between the lamps; effects were seen smallerthan 1·10-6. Implementing the methode by Coslovi [6] it is not strictly necessary to operate bothlamps at exactly the same temperature.

Transfer of fixed point onto pyrometer

The use of a silicon diode in the pyrometer improved the time stability of the response. Thisaffected our way of realization of the ITS-90. The shortterm stability of the pyrometer is sufficientto transfer the fixed point to the pyrometer instead of transferring it directly onto the strip lamp.Therefore it is not necessary to operate the lamps during the fixed point transfer.

Page 201: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 8

Scale realization on lamp

The realization of the scale was performed at currents specified in the protocol [5]. The lamps werestabilized for 1 hours at 1700 °C the day before the actual scale realization. For actual realizationall currents of appendix D of the protocol were measured successively. For temperatures below1100 °C the stabilization time was 30 minutes and above 1100 °C approximately 15 minutes. Duringthe stabilization time the response of the pyrometer was monitored. Based on these measurementsthe stabilization time was decreased or increased. At each setting the response and detectortemperature of the pyrometer together with the current and base temperature of the lamp weremeasured at least four times. All data were stored in a database for later use.

Measurement of ambient resistance of lamp

After the initial measurements the ambient temperature of the lamp was measured using aHewlett Packard 34420A nanovolt/micro-ohm meter. The meter was connected with four wires tothe base of the lamp; two on the current terminals and two on the connections for the watertubes. A 100 µS standard resistance was used to check the calibration of the instrument. A Pt-100element was used to measure the temperature of the base during these measurements.

Page 202: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 9

Results

Results of lamp selection

Three lamps were tested on stability. Table 1 presents the results.

Lamp identification Drift over 100 hours /K

C564 0,13

C681 0,12

C680 0,15

Table 1 : Stability test of lamps

The lamps C564 and C681 were used for the circulation scheme. Lamp C680 was retained as sparelamp in case of damage on one of the other lamps.

Results of lamp positioning

Figures 3 to 7 present the results of the position measurements on lamp C564. The “normalposition” refers to the position as described in the section “The tungsten strip lamp setup’.

-100

-80

-60

-40

-20

0

20

Res

pons

e /%

-1 -0.5 0 0.5 1 Position /mm

Figure 3 Horizontal position of C564;(0,0) is normal position

-2

-1.5

-1

-0.5

0

0.5

1 R

espo

nse

/%

-6 -4 -2 0 2 4 6 Position /mm

Figure 4 Vertical postion of C564; (0,0) isnormal position

Page 203: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 10

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005 R

espo

nse

/%

-3 -2 -1 0 1 2 3 Position /mm

Figure 5 Focus position of C564; (0,0) isnormal position

-0.300

-0.200

-0.100

0.000

0.100

Res

pons

e /%

-10 -5 0 5 10 Position /°

Figure 6 Angular rotation (vertical axis)of C564; (0,0) is normal position

-0.012 -0.01

-0.008 -0.006 -0.004 -0.002

0 0.002 0.004

Res

pons

e /%

-1.5 -1 -0.5 0 0.5 1 1.5 2 Position /°

Figure 7 Angular rotation (horizontalaxis) of C564; (0,0) is normal position

Page 204: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 11

Figures 8 to 11 present the results of the position measurements of lamp C681.

-100

-80

-60

-40

-20

0

20 R

espo

nse

/%

-0.6 -0.4 -0.2 0 0.2 0.4 Position /mm

Figure 8 Horizontal position of C681;(0,0) is normal position

-6

-4

-2

0

2

4

Res

pons

e /%

-10 -5 0 5 10 Position /mm

Figure 9 Vertical position of C681; (0,0) isnormal position

-0.2

-0.1

0

0.1

0.2

Res

pons

e /%

-15 -10 -5 0 5 10 15 20 25 Position /°

Figure 10 Angular rotation (vertical axis)of C681; (0,0) is normal position

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Res

pons

e /%

-3 -2 -1 0 1 2 3 Position /°

Figure 11 Angular rotation (horizontalaxis) of C681; (0,0) is normal position

Page 205: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 12

Figures 12 to 15 present the results of the position measurements on lamp C680

-60

-50

-40

-30

-20

-10

0 R

espo

nse

/%

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Position /mm

Figure 12 Horizontal position of C680;(0,0) is normal position

-7 -6 -5 -4 -3 -2 -1 0 1

Res

pons

e /%

-10 -5 0 5 10 Position /mm

Figure 13 Vertical position of C680; (0,0)is normal position

-0.03

-0.02

-0.01

0.00

0.01

Res

pons

e /%

-3 -2 -1 0 1 2 Position /mm

Figure 14 Focus position of C680; (0,0) isnormal position

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Res

pons

e /%

-15 -10 -5 0 5 10 15 20 Position /°

Figure 15 Angular position of C680; (0,0)is normal position

Page 206: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 13

Table 2 presents the uncertainties obtained from the position measurements for the three lamps.

Position Adjustmentaccuracy

Uncertainties in percentage of response /%

C564 C681 C680

Horizontal 0,1 mm 0,01 0,036 0,01

Vertical 0,1 mm 0,01 0,12 0,01

Focus 0,5 mm 0,005 - 0,0075

Angular (verticalaxis)

1 ° 0,05 0,054 0,07

Angular(horizontal axis)

1 ° 0,02 0,056 0,07(1)

Combined uncertainty 0,06 0,15 0,10

Table 2: Position uncertainties of lamp; (1) same as vertical axis

Results of spectral sensitivity of pyrometer

Figure 16 and 17 present the spectral measurements of the pyrometer. The blocking with the661 nm filter is measure to be beter than 1·10-6. Due to problems with the stray light of the present monochromator around 950 nm the blocking of the 959 nm filter could not be measured beterthan 5·10-4. The uncertainty in the wavelength for both filters was 0,05 nm resp. 0,2 nm.

0.0

0.2

0.4

0.6

0.8

1.0

Rel

ativ

e se

nsiti

vity

/1

640 650 660 670 680 Wavelength /nm

Figure 16 Sensitivity of pyrometer with661 nm filter

0.0

0.2

0.4

0.6

0.8

1.0

Rel

ativ

e se

nsiti

vity

/1

920 930 940 950 960 970 980 990 Wavelength /nm

Figure 17 Sensitivity of pyrometer with959 nm filter

Results of Size-of-Source effect

Figure 16 presents the result of the Size-of-source effect measurements on the flat plate and thestrip lamp. The flat plate had a 3 mm black spot to suppress the main signal. The black spot withthe strip lamp was 1 mm. Additional measurement were preformed with a flat plate and a 1 mm

Page 207: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 14

black spot. These measurements are not presented in figure 18.

0.0

0.2

0.4

0.6

0.8

1.0

s(r,r

0) /1

E-3

0 20 40 60 80 100 120 140 Diameter /mm

661 nm filter 959 nm filter661 with strip lamp

Figure 18 Size-of-source effect ofpyrometer with flat plate and strip lamp

For the Size-of-Source effect (SSE) correction the profile of the fixed point furnace is alsomeasured. Equation 4 shows the formula used for the correction.

SSE&correction ' s 0,5(striplamp) & s 0,5(1,5) % s 1,5(AG) (4)

were F0,5(strip lamp) SSE measured on strip lampF0,5(1,5) SSE for 3 mm source measure with 1 mm black spotF1,5(AG) SSE for fixed point source measure with 3 mm black spot

The first two terms are measured with the 661 nm filter. The results are also used for the 959 nmfilter. Table 3 presents the measured and calculated terms. The uncertainty is estimate to 5 %.

Wavelength 661 nm 959 nm

F0,5(strip lamp) 0,16·10-3

F0,5(1,5) 0,21·10-3

F1,5(AG) 0,69·10-3 0,66·10-3

SSE-correction -0,74·10-3 -0,71·10-3

Table 3: Size-of-Source effect correction of pyrometer

Page 208: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 15

Results of linearity

Table 4 present the linearity measurements for the 661 nm filter.

Response Lamp 1

[mv]

Response Lamp 2

[mv]

Response Lamp 1and 2

[mv]

Non-linearity

[ppm]

Non-linearitycorrected with

Coslovi[ppm]

7,72 7,72 7,73 7,75 7,75 7,75 7,77 7,77 7,76 7,76 7,76 7,56 7,56 7,60 15,78 31,77 31,76 31,77 31,76 63,76 63,76 63,77 63,77 127,72 127,72 127,71 127,72 255,69 255,69 255,68 255,69 7,15 7,15

1003,77 1003,76 1003,77 1003,78 2172,89 2172,75 2172,61 2172,51

7,73 7,65 7,74 7,74 7,73 7,74 7,74 7,74 7,74 7,74 7,75 7,74 7,74 7,76 15,78 31,78 31,77 31,77 31,77 63,78 63,78 63,78 63,78 127,70 127,71 127,70 127,70 255,74 255,74 255,75 255,74 7,19 7,18

1005,36 1005,36 1005,34 1005,34 2171,32 2170,92 2170,51 2170,27

15,45 15,38 15,47 15,49 15,48 15,49 15,50 15,50 15,50 15,50 15,51 15,30 15,31 15,36 31,56 63,54 63,54 63,54 63,54 127,53 127,54 127,54 127,55 255,44 255,44 255,43 255,43 511,44 511,43 511,43 511,42 14,34 14,34

2009,13 2009,10 2009,06 2009,08 4343,89 4343,40 4343,01 4342,57

-95,8 77,4 -49,1 -131,1 -198,9 -160,8 -26,4 -93,5 27,7

-110,3 -181,9 64,0 72,5

-162,8 6,3

-116,5 37,8 -75,5 -4,7 -34,5 -23,5 -26,7 11,0 39,1 43,1 66,6 47,0 25,4 2,0 2,0 -3,9 46,0 90,0 0,0

-10,0 -24,9 -19,9 -73,7 -62,2 -25,3 -48,4

-304,7 -132,7 -257,9 -339,6 -407,4 -369,3 -234,8 -301,9 -180,6 -318,7 -390,1 -147,0 -138,5 -373,1 -95,7 -166,6 -12,3 -125,7 -54,8 -58,3 -47,3 -50,5 -12,8 29,6 33,5 57,0 37,4 25,2 1,8 1,8 -4,1

-179,2 -135,3 22,6 12,6 -2,3 2,6

-22,2 -10,7 26,2 3,1

Table 4: Non-linearity of 661 nm filter

The average of the uncorrected non-linearity is (-26,9 ± 11,6) ppm. The average of the correctednon-linearity is (-112,7 ± 22,2) ppm. It seems that the correction with the Coslovi-method [6] doesnot work, as the corrected non-linearity increases. The difference between applying the Coslovi-correction and assuming a linear system is 0,08 K at 1700 °C. It is therefore chosen to assume alinear system and to take the non-linearity in account as uncertainty.

The measurements for the 959 nm filter yields the same result as with the 661 nm filter. Table 5presents the linearity corrections for both filters.

Page 209: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 16

i ai

661 nm filter 959 nm filter

012

0,001,000,00

0,001,000,00

Uncertainty 3·10-5 2·10-5

Table 5: Linearity of pyrometer for 661 and 959 nm filter.

Results of transfer of fixed point onto pyrometer

Table 6 presents the results of the fixed point transfer onto the pyrometer.

Filter Fixed pointresponse

[mV]

Uncertainty

[mV]

Date Drift afterprevious transfer

[mK/month]

661 nm 7,89095 0,002 21-05-1997 31

959 nm 34,17147 0,003 27-05-1997 -

661 nm 7,830296 0,002 10-03-1998 58

959 nm 34,13907 0,007 10-03-1998 10

Table 6: Fixed point transfer to pyrometer

The first two fixed point responses were used for the measurements on lamp C564 and C681. Thescale realization was performed within one month. The monthly drift is used as an additionaluncertainty. The data measured on 10-03-1998 was used for the measurements on lamp C680. Themeasurements were completed within two weeks after the fixed point transfer.

Results of scale realization on lamp

In the tables 7 to 19 the following measured or calculated values are presented according to theprotocol:í the measured lamp currentí the measured base temperature of the lampí the ratio of the measured photo current at the lamp and the fixed pointí the ratio of the photo current corrected for Size-of-Source effect and linearityí the calculated true temperatureí the calculated radiance temperature of the lampí the calculated effective wavelength of the pyrometerí the correction due to the deviation of the base temperature from 20 °Cí the spectral radiance temperature given at reference wavelength (650 nm or 950 nm)

Page 210: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 17

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,4814 4,4814 4,4813 4,4813 4,7210 4,7210 4,7210 4,7210 5,1675 5,1674 5,1674 5,1674 5,3223 5,3223 5,3222 5,3222 5,4375 5,4375 5,4374 5,4374 6,2693 6,2693 6,2693 6,2692 7,1931 7,1930 7,1930 7,1930 8,1864 8,1863 8,1862 8,1862 9,2413 9,2412 9,2410 9,2409

10,3472 10,3467 10,3468 10,3469 11,5003 11,5000 11,4999 11,4997

19,966 19,972 19,966 19,967 20,007 20,009 20,002 19,987 20,003 20,001 19,997 20,000 20,012 20,022 20,030 20,029 20,011 20,006 20,012 20,020 20,076 20,056 20,064 20,070 20,002 20,001 20,002 20,012 19,936 19,935 19,938 19,940 20,015 20,011 20,003 19,994 20,058 20,081 20,098 20,096 20,052 20,061 20,057 20,057

1,0174 1,0180 1,0176 1,0178 1,7144 1,7149 1,7146 1,7145 3,8696 3,8698 3,8708 3,8698 4,9519 4,9519 4,9520 4,9517 5,8929 5,8929 5,8930 5,8922

17,2405 17,2401 17,2405 17,2410 44,1080 44,1086 44,1091 44,1080 100,747 100,745 100,745 100,745 210,076 210,074 210,036 210,036 404,585 404,558 404,624 404,598 728,875 728,831 728,836 728,786

1,0182 1,0189 1,0184 1,0186 1,7158 1,7163 1,7161 1,7160 3,8728 3,8730 3,8740 3,8730 4,9560 4,9560 4,9561 4,9558 5,8977 5,8978 5,8979 5,8971

17,2548 17,2544 17,2548 17,2553 44,1446 44,1452 44,1457 44,1446 100,831 100,829 100,829 100,828 210,250 210,248 210,210 210,210 404,920 404,894 404,960 404,933 729,480 729,435 729,440 729,390

1300,86 1300,91 1300,87 1300,89 1342,91 1342,93 1342,92 1342,92 1414,25 1414,26 1414,28 1414,26 1437,39 1437,39 1437,39 1437,39 1454,18 1454,18 1454,18 1454,17 1567,15 1567,14 1567,15 1567,15 1681,53 1681,53 1681,53 1681,53 1796,94 1796,93 1796,93 1796,93 1913,89 1913,89 1913,86 1913,86 2031,94 2031,93 2031,96 2031,95 2151,21 2151,20 2151,20 2151,19

1236,20 1236,24 1236,21 1236,22 1273,96 1273,99 1273,98 1273,97 1337,72 1337,73 1337,75 1337,73 1358,32 1358,32 1358,32 1358,31 1373,23 1373,23 1373,23 1373,22 1473,01 1473,01 1473,01 1473,01 1573,02 1573,02 1573,02 1573,02 1672,89 1672,88 1672,88 1672,88 1773,03 1773,03 1773,00 1773,00 1873,02 1873,01 1873,04 1873,03 1972,95 1972,94 1972,94 1972,93

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

3,1 2,6 3,1 3

-0,5 -0,6 -0,1 0,9 -0,1

0 0,1 0

-0,4 -0,7 -0,9 -0,9 -0,3 -0,2 -0,3 -0,5 -0,8 -0,6 -0,6 -0,7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964,24 964,29 964,25 964,27

1002,09 1002,11 1002,10 1002,10 1065,99 1065,99 1066,01 1065,99 1086,63 1086,63 1086,63 1086,63 1101,58 1101,58 1101,58 1101,57 1201,61 1201,60 1201,61 1201,61 1301,89 1301,89 1301,89 1301,89 1402,05 1402,05 1402,05 1402,04 1502,51 1502,51 1502,48 1502,48 1602,85 1602,84 1602,86 1602,85 1703,15 1703,14 1703,14 1703,13

Table 7: Run one on lamp C564 with reference wavelength 650 nm. Measured on 29-05-1997 withlaboratory conditions: t = (23,2 ± 0,5) °C and rh = (43 ± 10) %.(3001997.11)

Page 211: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 18

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

4,4820 4,4819 4,4818 4,4818 4,7208 4,7207 4,7207 4,7207 5,1669 5,1668 5,1667 5,1667 5,3220 5,3219 5,3218 5,3218 5,4407 5,4406 5,4406 5,4405 6,2715 6,2714 6,2713 6,2713 7,1935 7,1935 7,1934 7,1934 8,1892 8,1892 8,1891 8,1891 9,2423 9,2420 9,2418 9,2414

10,3467 10,3464 10,3462 10,3462 11,5007 11,5000 11,4990 11,4988

19,994 19,981 19,976 19,978 19,996 19,994 19,993 19,984 20,010 20,014 20,021 20,013 20,026 20,020 20,030 20,023 20,026 20,026 20,033 20,027 20,060 20,061 20,060 20,064 20,010 20,000 20,000 20,004 20,069 20,058 20,052 20,049 20,109 20,114 20,117 20,114 20,173 20,166 20,163 20,168 20,045 20,036 20,036 20,030

0,5753 0,5756 0,5755 0,5755 0,8212 0,8213 0,8211 0,8214 1,4343 1,4341 1,4342 1,4343 1,6996 1,6993 1,6994 1,6994 1,9208 1,9209 1,9210 1,9208 4,0011 4,0011 4,0010 4,0011 7,6032 7,6032 7,6033 7,6033

13,4090 13,4092 13,4094 13,4097 22,1525 22,1493 22,1477 22,1440 34,6921 34,6894 34,6891 34,6906 51,9480 51,9339 51,9231 51,9213

0,5757 0,5760 0,5759 0,5759 0,8217 0,8219 0,8217 0,8219 1,4353 1,4352 1,4353 1,4353 1,7008 1,7005 1,7006 1,7006 1,9222 1,9223 1,9223 1,9221 4,0039 4,0040 4,0038 4,0040 7,6086 7,6086 7,6087 7,6087

13,4186 13,4188 13,4190 13,4193 22,1682 22,1651 22,1635 22,1598 34,7167 34,7141 34,7138 34,7153 51,9849 51,9708 51,9600 51,9583

1279,69 1279,75 1279,72 1279,72 1320,06 1320,08 1320,05 1320,09 1388,75 1388,74 1388,75 1388,75 1411,11 1411,09 1411,10 1411,10 1427,69 1427,70 1427,70 1427,69 1535,97 1535,97 1535,96 1535,97 1645,27 1645,27 1645,27 1645,27 1755,84 1755,84 1755,84 1755,85 1866,99 1866,96 1866,94 1866,90 1979,08 1979,06 1979,05 1979,07 2092,26 2092,18 2092,12 2092,11

1181,28 1181,32 1181,30 1181,30 1215,30 1215,32 1215,30 1215,33 1272,76 1272,75 1272,76 1272,76 1291,34 1291,32 1291,33 1291,33 1305,08 1305,08 1305,09 1305,07 1393,99 1393,99 1393,98 1393,99 1482,33 1482,33 1482,33 1482,33 1570,27 1570,27 1570,27 1570,27 1657,25 1657,22 1657,21 1657,18 1743,53 1743,52 1743,52 1743,53 1829,25 1829,18 1829,14 1829,13

958,25 958,25 958,25 958,25 958,22 958,22 958,22 958,22 958,15 958,15 958,15 958,15 958,13 958,13 958,13 958,13 958,12 958,12 958,12 958,12 958,04 958,04 958,04 958,04 957,97 957,97 957,97 957,97 957,91 957,91 957,91 957,91 957,85 957,85 957,85 957,85 957,80 957,80 957,80 957,80 957,76 957,76 957,76 957,76

0,6 2

2,6 2,3 0,3 0,5 0,6 1,3 -0,5 -0,6 -1

-0,6 -1

-0,8 -1,2 -0,9 -0,9 -0,9 -1,1 -0,9 -0,8 -0,9 -0,8 -0,9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

909,37 909,42 909,40 909,40 943,47 943,48 943,46 943,49

1001,04 1001,03 1001,03 1001,04 1019,65 1019,64 1019,64 1019,64 1033,42 1033,43 1033,43 1033,42 1122,52 1122,52 1122,51 1122,52 1211,06 1211,06 1211,06 1211,06 1299,20 1299,20 1299,21 1299,21 1386,39 1386,37 1386,36 1386,32 1472,90 1472,88 1472,88 1472,89 1558,83 1558,77 1558,73 1558,72

Table 8: Run one on lamp C564 with reference wavelength 950 nm. Measured on 04-06-1997 withlaboratory conditions: t = (23,1 ± 0,5) °C and rh = (47 ± 10) %.(3001997.13)

Page 212: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 19

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

4,4811 4,4810 4,4810 4,4810 4,7213 4,7212 4,7211 4,7211 5,1691 5,1690 5,1689 5,1688 5,3302 5,3301 5,3300 5,3300 5,4401 5,4401 5,4400 5,4400 6,2727 6,2727 6,2726 6,2726 7,1945 7,1943 7,1942 7,1941 8,1892 8,1891 8,1889 8,1889 9,2391 9,2390 9,2389 9,2389

10,3485 10,3483 10,3482 10,3482 11,5018 11,5017 11,5016 11,5016

19,991 20,003 19,977 19,981 19,980 19,979 19,974 19,986 20,003 19,995 20,000 19,998 20,015 20,016 20,016 20,001 20,012 20,017 20,008 20,017 20,055 20,053 20,057 20,052 19,996 19,995 20,001 20,003 20,048 20,037 20,032 20,032 20,094 20,092 20,096 20,100 20,066 20,061 20,060 20,052 20,124 20,123 20,124 20,121

0,6523 0,6527 0,6526 0,6525 0,9337 0,9337 0,9337 0,9337 1,6341 1,6341 1,6341 1,6342 1,9480 1,9480 1,9480 1,9481 2,1827 2,1826 2,1829 2,1826 4,5539 4,5539 4,5539 4,5540 8,6492 8,6493 8,6493 8,6493

15,2368 15,2372 15,2370 15,2372 25,1426 25,1430 25,1433 25,1441 39,4542 39,4545 39,4554 39,4551 59,0703 59,0729 59,0744 59,0758

0,6528 0,6532 0,6531 0,6530 0,9344 0,9344 0,9344 0,9344 1,6352 1,6353 1,6353 1,6354 1,9494 1,9494 1,9494 1,9495 2,1842 2,1842 2,1844 2,1842 4,5572 4,5572 4,5572 4,5572 8,6553 8,6555 8,6555 8,6555

15,2477 15,2480 15,2478 15,2481 25,1605 25,1609 25,1612 25,1620 39,4823 39,4826 39,4834 39,4832 59,1123 59,1149 59,1164 59,1178

1293,66 1293,72 1293,71 1293,69 1335,27 1335,27 1335,26 1335,26 1405,87 1405,88 1405,88 1405,88 1429,62 1429,62 1429,62 1429,63 1445,43 1445,42 1445,44 1445,42 1556,81 1556,81 1556,81 1556,81 1669,14 1669,14 1669,14 1669,14 1782,84 1782,85 1782,84 1782,85 1897,31 1897,31 1897,32 1897,33 2013,77 2013,77 2013,78 2013,78 2131,08 2131,09 2131,10 2131,10

1193,07 1193,13 1193,12 1193,10 1228,08 1228,07 1228,07 1228,07 1286,99 1286,99 1287,00 1287,00 1306,67 1306,67 1306,67 1306,68 1319,74 1319,74 1319,75 1319,74 1410,94 1410,94 1410,94 1410,94 1501,43 1501,44 1501,44 1501,44 1591,53 1591,53 1591,53 1591,53 1680,73 1680,73 1680,73 1680,74 1769,96 1769,96 1769,96 1769,96 1858,32 1858,33 1858,33 1858,34

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

0,9 -0,3 2,2 1,8 1,4 1,5 1,8 1

-0,1 0,2 0

0,1 -0,5 -0,5 -0,5

0 -0,4 -0,5 -0,2 -0,5 -0,6 -0,6 -0,6 -0,6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

921,19 921,25 921,24 921,22 956,26 956,26 956,26 956,26

1015,29 1015,30 1015,30 1015,30 1035,02 1035,02 1035,02 1035,03 1048,11 1048,11 1048,12 1048,11 1139,51 1139,51 1139,51 1139,51 1230,21 1230,21 1230,21 1230,21 1320,52 1320,52 1320,52 1320,52 1409,93 1409,94 1409,94 1409,94 1499,39 1499,39 1499,40 1499,40 1587,98 1587,99 1588,00 1588,00

Table 9: Run two on lamp C564 with reference wavelength 950 nm. Measured on 009-06-1997with laboratory conditions: t = (23,2 ± 0,5) °C and rh = (44 ± 10) %.(3001997.18)

Page 213: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 20

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5075 5,5072 5,5074 5,5073 5,8192 5,8191 5,8190 5,8190 6,4000 6,3999 6,3998 6,3997 6,5910 6,5909 6,5908 6,5906 6,7419 6,7418 6,7417 6,7417 7,7936 7,7935 7,7934 7,7933 8,9479 8,9478 8,9477 8,9477

10,1832 10,1831 10,1835 10,1836 11,4868 11,4870 11,4872 11,4872 12,8511 12,8509 12,8509 12,8508 14,2741 14,2738 14,2734 14,2734

20,024 20,005 20,004 20,000 20,048 20,050 20,041 20,033 20,071 20,057 20,052 20,058 19,968 19,959 19,965 19,952 19,978 19,975 19,981 19,979 20,019 20,012 20,007 20,008 20,061 20,062 20,054 20,063 20,028 20,014 20,015 20,017 20,093 20,098 20,076 20,072 20,139 20,135 20,130 20,121 20,200 20,186 20,199 20,200

1,0052 1,0054 1,0053 1,0054 1,6992 1,6994 1,6989 1,6989 3,8804 3,8804 3,8805 3,8806 4,9263 4,9263 4,9264 4,9262 5,8950 5,8943 5,8944 5,8945

17,2925 17,2934 17,2925 17,2923 44,2886 44,2887 44,2880 44,2888 101,303 101,311 101,336 101,340 210,725 210,748 210,767 210,778 405,243 405,236 405,235 405,241 728,564 728,483 728,442 728,480

1,0060 1,0063 1,0062 1,0062 1,7006 1,7008 1,7003 1,7003 3,8836 3,8836 3,8837 3,8838 4,9304 4,9303 4,9305 4,9303 5,8999 5,8992 5,8993 5,8993

17,3068 17,3077 17,3068 17,3067 44,3253 44,3254 44,3247 44,3256 101,387 101,395 101,420 101,424 210,900 210,923 210,942 210,953 405,579 405,572 405,571 405,577 729,168 729,087 729,046 729,084

1299,92 1299,94 1299,93 1299,93 1342,17 1342,18 1342,16 1342,15 1414,51 1414,51 1414,51 1414,52 1436,90 1436,90 1436,90 1436,90 1454,21 1454,20 1454,20 1454,20 1567,49 1567,49 1567,49 1567,49 1682,06 1682,06 1682,06 1682,06 1797,76 1797,77 1797,81 1797,81 1914,42 1914,43 1914,45 1914,46 2032,25 2032,25 2032,25 2032,25 2151,12 2151,10 2151,09 2151,10

1235,35 1235,37 1235,36 1235,37 1273,30 1273,31 1273,29 1273,29 1337,95 1337,95 1337,96 1337,96 1357,88 1357,88 1357,88 1357,88 1373,26 1373,25 1373,25 1373,25 1473,31 1473,32 1473,31 1473,31 1573,49 1573,49 1573,49 1573,49 1673,60 1673,61 1673,64 1673,64 1773,47 1773,49 1773,50 1773,51 1873,28 1873,28 1873,28 1873,28 1972,88 1972,86 1972,85 1972,86

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-1,5 -0,3 -0,2

0 -2

-2,1 -1,7 -1,4 -1,5 -1,2 -1,1 -1,2 0,5 0,7 0,6 0,8 0,3 0,4 0,3 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,40 963,41 963,40 963,41

1001,43 1001,43 1001,41 1001,41 1066,22 1066,22 1066,22 1066,22 1086,19 1086,19 1086,19 1086,19 1101,61 1101,60 1101,60 1101,60 1201,91 1201,91 1201,91 1201,91 1302,35 1302,35 1302,35 1302,35 1402,76 1402,77 1402,80 1402,80 1502,96 1502,97 1502,98 1502,99 1603,11 1603,11 1603,11 1603,11 1703,07 1703,05 1703,04 1703,05

Table 10: Run one on lamp C681 with reference wavelength 650 nm. Measured on 18-06-1997 withlaboratory conditions: t = (23,3 ± 0,5) °C and rh = (42 ± 10) %.(3001997.19)

Page 214: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 21

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5100 5,5099 5,5099 5,5099 5,8197 5,8197 5,8197 5,8197 6,3996 6,3996 6,3995 6,3995 6,5943 6,5942 6,5941 6,5940 6,7444 6,7443 6,7442 6,7441 7,7941 7,7940 7,7939 7,7939 8,9481 8,9480 8,9479 8,9478

10,1840 10,1838 10,1834 10,1832

20,003 20,015 20,017 20,010 20,009 20,027 20,033 20,029 20,042 20,041 20,047 20,048 19,949 19,957 19,947 19,936 19,957 19,953 19,955 19,947 19,999 19,996 20,002 19,992 20,056 20,048 20,050 20,042 20,105 20,113 20,111 20,096

1,0112 1,0115 1,0113 1,0113 1,7018 1,7030 1,7028 1,7023 3,8794 3,8799 3,8804 3,8803 4,9463 4,9469 4,9472 4,9476 5,9115 5,9118 5,9117 5,9119

17,2979 17,2978 17,2973 17,2979 44,3066 44,3067 44,3057 44,3063 101,327 101,322 101,300 101,292

1,0120 1,0123 1,0122 1,0122 1,7033 1,7044 1,7042 1,7037 3,8826 3,8831 3,8836 3,8835 4,9505 4,9510 4,9513 4,9517 5,9164 5,9167 5,9166 5,9168

17,3123 17,3121 17,3116 17,3123 44,3433 44,3434 44,3424 44,3431 101,411 101,406 101,384 101,376

1300,38 1300,41 1300,39 1300,39 1342,30 1342,36 1342,35 1342,32 1414,49 1414,50 1414,51 1414,51 1437,29 1437,30 1437,30 1437,31 1454,49 1454,49 1454,49 1454,49 1567,52 1567,52 1567,52 1567,52 1682,12 1682,12 1682,11 1682,12 1797,79 1797,79 1797,75 1797,74

1235,77 1235,79 1235,78 1235,78 1273,42 1273,47 1273,46 1273,44 1337,93 1337,94 1337,95 1337,95 1358,22 1358,23 1358,24 1358,24 1373,50 1373,51 1373,51 1373,51 1473,34 1473,34 1473,34 1473,34 1573,53 1573,53 1573,53 1573,53 1673,62 1673,62 1673,59 1673,58

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02

-0,2 -0,9 -1,1 -0,6 -0,4 -1,1 -1,4 -1,2 -0,9 -0,9 -1 -1 0,9 0,7 0,9 1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,81 963,83 963,82 963,82

1001,54 1001,59 1001,58 1001,56 1066,20 1066,21 1066,22 1066,22 1086,53 1086,54 1086,55 1086,56 1101,85 1101,86 1101,85 1101,86 1201,94 1201,94 1201,93 1201,94 1302,40 1302,40 1302,40 1302,40 1402,79 1402,78 1402,75 1402,74

Table 11: Run two on lamp C681 with reference wavelength 650 nm. Measured on 20-06-1997with laboratory conditions: t = (23,1 ± 0,5) °C and rh = (43 ± 10) %.(3001997.21)

Page 215: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 22

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5098 5,5097 5,5096 5,5097 5,8225 5,8224 5,8223 5,8223 6,3963 6,3961 6,3961 6,3960 6,5903 6,5902 6,5901 6,5901 6,7446 6,7445 6,7444 6,7443 7,7954 7,7952 7,7952 7,7951 8,9458 8,9457 8,9457 8,9456

10,1786 10,1784 10,1782 10,1780 11,4862 11,4865 11,4862 11,4860 12,8499 12,8498 12,8500 12,8505 14,2732 14,2732 14,2731 14,2731

20,008 20,019 20,004 20,001 20,026 20,030 20,012 20,004 20,020 20,027 20,033 20,066 20,067 20,071 20,051 20,059 19,968 19,949 19,951 19,945 19,985 19,987 20,017 20,020 20,053 20,061 20,058 20,057 20,002 20,015 20,023 20,019 19,958 19,956 19,968 19,975 20,036 20,041 20,045 20,029 20,095 20,105 20,104 20,100

1,0108 1,0110 1,0105 1,0111 1,7098 1,7091 1,7095 1,7095 3,8619 3,8612 3,8616 3,8620 4,9222 4,9222 4,9219 4,9217 5,9119 5,9114 5,9121 5,9115

17,3119 17,3125 17,3114 17,3121 44,2278 44,2298 44,2303 44,2280 100,989 100,984 100,979 100,971 210,644 210,660 210,635 210,606 404,866 404,879 404,968 405,060 728,205 728,234 728,236 728,260

1,0117 1,0118 1,0113 1,0120 1,7112 1,7105 1,7110 1,7110 3,8651 3,8644 3,8648 3,8652 4,9262 4,9262 4,9260 4,9258 5,9169 5,9163 5,9170 5,9164

17,3262 17,3268 17,3257 17,3265 44,2644 44,2665 44,2670 44,2647 101,072 101,068 101,063 101,055 210,819 210,835 210,810 210,780 405,202 405,215 405,303 405,396 728,809 728,838 728,839 728,863

1300,36 1300,37 1300,33 1300,38 1342,69 1342,65 1342,68 1342,68 1414,07 1414,05 1414,06 1414,07 1436,82 1436,82 1436,81 1436,81 1454,49 1454,49 1454,50 1454,49 1567,61 1567,62 1567,61 1567,62 1681,88 1681,89 1681,89 1681,88 1797,29 1797,29 1797,28 1797,27 1914,35 1914,36 1914,34 1914,32 2032,07 2032,08 2032,12 2032,17 2151,02 2151,03 2151,03 2151,03

1235,74 1235,76 1235,72 1235,76 1273,76 1273,74 1273,75 1273,75 1337,56 1337,54 1337,55 1337,56 1357,81 1357,81 1357,80 1357,80 1373,51 1373,50 1373,51 1373,50 1473,42 1473,43 1473,42 1473,42 1573,33 1573,34 1573,34 1573,33 1673,19 1673,19 1673,18 1673,17 1773,42 1773,43 1773,41 1773,39 1873,13 1873,14 1873,17 1873,21 1972,79 1972,80 1972,80 1972,80

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-0,5 -1,2 -0,2 -0,1 -1,1 -1,3 -0,5 -0,2 -0,4 -0,6 -0,7 -1,4 -1,1 -1,2 -0,9 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,79 963,80 963,76 963,81

1001,89 1001,86 1001,88 1001,88 1065,82 1065,81 1065,82 1065,83 1086,12 1086,12 1086,11 1086,11 1101,86 1101,85 1101,86 1101,85 1202,02 1202,02 1202,02 1202,02 1302,20 1302,20 1302,20 1302,20 1402,36 1402,35 1402,34 1402,33 1502,90 1502,91 1502,89 1502,87 1602,96 1602,96 1603,00 1603,04 1702,98 1702,99 1702,99 1703,00

Table 12: Run three on lamp C681 with reference wavelength 650 nm. Measured on 24-06-1997with laboratory conditions: t = (23,1 ± 0,5) °C and rh = (42 ± 10) %.(3001997.23)

Page 216: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 23

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

5,5103 5,5097 5,5097 5,5103 5,8201 5,8212 5,8212 5,8221 6,3981 6,3981 6,3990 6,3980 6,5925 6,5938 6,5917 6,5925 6,7944 6,7954 6,7944 6,7954 7,7955 7,7931 7,7935 7,7962 8,9495 8,9492 8,9485 8,9508

10,1829 10,1832 10,1833 10,1826 11,4878 11,4873 11,4875 11,4873 12,8512 12,8512 12,8512 12,8517 14,2726 14,2729 14,2731 14,2732

20,007 20,007 20,020 20,007 20,032 20,026 20,028 20,029 20,061 20,055 20,057 20,069 19,969 19,966 19,983 19,980 19,981 19,976 19,970 19,966 20,013 20,012 20,008 20,008 20,071 20,072 20,076 20,056 20,017 20,008 20,000 20,001 19,978 19,979 19,987 19,984 20,034 20,042 20,038 20,037 20,003 20,002 20,007 20,001

0,6439 0,6440 0,6440 0,6440 0,9212 0,9212 0,9213 0,9213 1,6165 1,6167 1,6166 1,6166 1,9102 1,9101 1,9103 1,9102 2,2503 2,2503 2,2502 2,2503 4,5119 4,5119 4,5121 4,5122 8,5948 8,5939 8,5944 8,5945

15,1353 15,1354 15,1360 15,1362 25,0076 25,0075 25,0081 25,0072 39,1481 39,1490 39,1513 39,1554 58,5131 58,5210 58,5245 58,5263

0,6443 0,6444 0,6444 0,6444 0,9218 0,9218 0,9220 0,9219 1,6177 1,6178 1,6177 1,6178 1,9116 1,9115 1,9116 1,9115 2,2519 2,2519 2,2518 2,2519 4,5152 4,5151 4,5153 4,5154 8,6009 8,6000 8,6005 8,6006

15,1461 15,1462 15,1468 15,1469 25,0254 25,0253 25,0259 25,0250 39,1760 39,1768 39,1792 39,1833 58,5547 58,5626 58,5661 58,5679

1292,19 1292,21 1292,21 1292,21 1333,65 1333,65 1333,67 1333,66 1404,44 1404,45 1404,44 1404,44 1426,93 1426,93 1426,94 1426,93 1449,73 1449,72 1449,72 1449,73 1555,30 1555,30 1555,30 1555,31 1667,95 1667,93 1667,94 1667,95 1781,41 1781,41 1781,42 1781,42 1896,00 1896,00 1896,01 1896,00 2011,64 2011,64 2011,66 2011,69 2128,16 2128,20 2128,22 2128,23

1191,84 1191,85 1191,85 1191,85 1226,72 1226,72 1226,73 1226,73 1285,80 1285,81 1285,80 1285,81 1304,45 1304,44 1304,45 1304,45 1323,29 1323,28 1323,28 1323,29 1409,71 1409,71 1409,72 1409,72 1500,49 1500,47 1500,48 1500,48 1590,40 1590,40 1590,41 1590,41 1679,72 1679,71 1679,72 1679,71 1768,33 1768,34 1768,35 1768,37 1856,14 1856,17 1856,18 1856,19

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,10 958,10 958,10 958,10 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

-0,5 -0,5 -1,3 -0,5 -1,5 -1,2 -1,3 -1,3 -1,4 -1,3 -1,3 -1,6 0,6 0,6 0,3 0,4 0,3 0,4 0,5 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

919,95 919,97 919,97 919,97 954,90 954,90 954,92 954,91

1014,10 1014,11 1014,11 1014,11 1032,79 1032,79 1032,79 1032,79 1051,67 1051,66 1051,66 1051,67 1138,28 1138,28 1138,28 1138,29 1229,26 1229,24 1229,25 1229,25 1319,39 1319,39 1319,39 1319,40 1408,92 1408,92 1408,92 1408,92 1497,76 1497,77 1497,78 1497,80 1585,80 1585,83 1585,84 1585,85

Table 13: Run one on lamp C681 with reference wavelength 950 nm. Measured on 19-06-1997 withlaboratory conditions: t = (23,2 ± 0,5) °C and rh = (43 ± 10) %.(3001997.20)

Page 217: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 24

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

5,5092 5,5094 5,5093 5,5092 5,8225 5,8224 5,8223 5,8222 6,3960 6,3959 6,3958 6,3958 6,5939 6,5938 6,5937 6,5936 6,7445 6,7444 6,7443 6,7443 7,7952 7,7951 7,7951 7,7951 8,9457 8,9457 8,9457 8,9454

10,1796 10,1792 10,1785 10,1779 11,4879 11,4882 11,4883 11,4883 12,8511 12,8510 12,8510 12,8509 14,2737 14,2732 14,2729 14,2729

20,022 20,008 20,002 20,004 20,024 20,020 20,033 20,032 20,037 20,050 20,051 20,054 19,962 19,954 19,958 19,958 19,963 19,956 19,949 19,946 20,001 19,996 19,999 19,991 20,066 20,057 20,061 20,058 20,017 20,020 20,020 20,021 19,988 19,986 19,977 19,982 20,035 20,032 20,035 20,033 20,002 20,001 20,010 20,010

0,6430 0,6430 0,6431 0,6431 0,9226 0,9226 0,9227 0,9225 1,6130 1,6130 1,6130 1,6130 1,9109 1,9108 1,9107 1,9108 2,1601 2,1601 2,1601 2,1600 4,5106 4,5107 4,5106 4,5110 8,5780 8,5782 8,5782 8,5776

15,1118 15,1099 15,1054 15,1023 25,0121 25,0158 25,0162 25,0171 39,1265 39,1276 39,1288 39,1288 58,5023 58,4970 58,4964 58,4990

0,6435 0,6435 0,6435 0,6436 0,9232 0,9233 0,9234 0,9232 1,6141 1,6141 1,6141 1,6142 1,9122 1,9122 1,9121 1,9122 2,1617 2,1616 2,1616 2,1616 4,5138 4,5139 4,5138 4,5142 8,5841 8,5843 8,5843 8,5837

15,1226 15,1206 15,1162 15,1131 25,0299 25,0336 25,0340 25,0349 39,1543 39,1555 39,1566 39,1566 58,5439 58,5386 58,5380 58,5406

1292,05 1292,04 1292,06 1292,07 1333,83 1333,84 1333,85 1333,82 1404,15 1404,15 1404,15 1404,15 1426,98 1426,98 1426,97 1426,98 1443,97 1443,97 1443,97 1443,96 1555,25 1555,25 1555,25 1555,26 1667,59 1667,59 1667,59 1667,58 1781,08 1781,05 1780,99 1780,94 1896,04 1896,08 1896,08 1896,09 2011,49 2011,49 2011,50 2011,50 2128,11 2128,08 2128,07 2128,09

1191,71 1191,71 1191,72 1191,73 1226,87 1226,87 1226,88 1226,86 1285,56 1285,56 1285,56 1285,56 1304,49 1304,49 1304,48 1304,49 1318,53 1318,53 1318,53 1318,53 1409,67 1409,68 1409,67 1409,68 1500,19 1500,20 1500,20 1500,19 1590,14 1590,12 1590,07 1590,04 1679,75 1679,78 1679,78 1679,79 1768,22 1768,23 1768,23 1768,23 1856,10 1856,08 1856,07 1856,08

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

-1,5 -0,5 -0,1 -0,3 -1,1 -0,9 -1,5 -1,5 -0,9 -1,2 -1,2 -1,3 0,7 0,9 0,8 0,8 0,6 0,7 0,8 0,9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

919,83 919,82 919,84 919,84 955,05 955,06 955,07 955,05

1013,86 1013,86 1013,86 1013,86 1032,83 1032,83 1032,82 1032,83 1046,90 1046,90 1046,90 1046,90 1138,24 1138,24 1138,24 1138,25 1228,96 1228,97 1228,97 1228,96 1319,12 1319,10 1319,05 1319,02 1408,95 1408,98 1408,98 1408,99 1497,65 1497,65 1497,66 1497,66 1585,76 1585,74 1585,73 1585,74

Table 14: Run two on lamp C681 with reference wavelength 950 nm. Measured on 25-06-1997with laboratory conditions: t = (23,1 ± 0,5) °C and rh = (44 ± 10) %.(3001997.24)

Page 218: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 25

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5114 5,5113 5,5113 5,5112 5,8208 5,8207 5,8207 5,8207 6,4013 6,4012 6,4011 6,4011 6,6003 6,6002 6,6002 6,6001 6,7505 6,7504 6,7504 6,7504 7,8072 7,8070 7,8070 7,8070 8,9619 8,9618 8,9618 8,9617

10,1968 10,1967 10,1967 10,1965 11,4984 11,4983 11,4983 11,4983 12,8624 12,8622 12,8620 12,8619 14,2855 14,2852 14,2850 14,2848

20,061 20,052 20,041 20,029 20,053 20,048 20,055 20,039 20,064 20,059 20,060 20,067 20,072 20,073 20,067 20,068 20,077 20,079 20,088 20,089 20,149 20,131 20,135 20,137 20,188 20,188 20,198 20,198 20,041 20,044 20,042 20,048 20,179 20,152 20,131 20,121 20,123 20,090 20,079 20,076 20,146 20,145 20,083 20,126

1,0037 1,0041 1,0033 1,0034 1,6844 1,6840 1,6842 1,6835 3,8275 3,8283 3,8280 3,8278 4,9032 4,9030 4,9033 4,9024 5,8566 5,8572 5,8567 5,8569

17,2125 17,2130 17,2116 17,2117 44,0585 44,0594 44,0586 44,0582 100,830 100,829 100,830 100,828 209,928 209,929 209,929 209,927 404,273 404,263 404,268 404,260 728,825 728,819 728,819 728,806

1,0045 1,0048 1,0041 1,0041 1,6856 1,6853 1,6854 1,6847 3,8303 3,8312 3,8309 3,8306 4,9068 4,9066 4,9069 4,9061 5,8610 5,8616 5,8610 5,8612

17,2252 17,2258 17,2244 17,2245 44,0911 44,0920 44,0912 44,0908 100,904 100,904 100,905 100,903 210,084 210,085 210,085 210,082 404,573 404,562 404,567 404,560 729,365 729,359 729,359 729,346

1299,80 1299,83 1299,77 1299,77 1341,43 1341,42 1341,43 1341,39 1413,24 1413,26 1413,25 1413,24 1436,44 1436,44 1436,44 1436,43 1453,57 1453,58 1453,57 1453,57 1566,95 1566,95 1566,94 1566,95 1681,37 1681,37 1681,37 1681,37 1797,05 1797,05 1797,05 1797,04 1913,76 1913,76 1913,76 1913,76 2031,78 2031,77 2031,77 2031,77 2151,18 2151,18 2151,18 2151,18

1235,24 1235,27 1235,21 1235,22 1272,64 1272,63 1272,64 1272,60 1336,82 1336,84 1336,83 1336,82 1357,47 1357,47 1357,47 1357,46 1372,69 1372,70 1372,69 1372,69 1472,84 1472,84 1472,83 1472,84 1572,88 1572,89 1572,88 1572,88 1672,98 1672,98 1672,98 1672,98 1772,91 1772,91 1772,91 1772,91 1872,88 1872,88 1872,88 1872,88 1972,93 1972,92 1972,92 1972,92

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-4 -3,4 -2,7 -1,9 -2,5 -2,3 -2,6 -1,8 -1,6 -1,5 -1,5 -1,7 -1,5 -1,5 -1,4 -1,4 -1,3 -1,3 -1,5 -1,5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,29 963,31 963,26 963,26

1000,76 1000,75 1000,76 1000,73 1065,08 1065,10 1065,09 1065,09 1085,78 1085,78 1085,78 1085,77 1101,03 1101,04 1101,03 1101,04 1201,43 1201,44 1201,43 1201,43 1301,75 1301,75 1301,75 1301,75 1402,14 1402,14 1402,14 1402,14 1502,39 1502,39 1502,39 1502,39 1602,71 1602,70 1602,71 1602,70 1703,12 1703,12 1703,12 1703,11

Table 15: Run one on lamp C680 with reference wavelength 650 nm. Measured on 11-03-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001998.04)

Page 219: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 26

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5101 5,5099 5,5099 5,5099 5,8226 5,8225 5,8226 5,8226 6,4015 6,4014 6,4013 6,4013 6,6003 6,6002 6,6002 6,6001 6,7506 6,7506 6,7505 6,7505 7,8070 7,8068 7,8068 7,8067

20,042 20,053 20,047 20,046 20,075 20,049 20,058 20,065 19,971 19,966 19,975 19,975 19,985 19,980 19,984 19,981 19,987 19,993 19,988 19,988 20,031 20,021 20,026 20,027

1,0009 1,0016 1,0011 1,0014 1,6893 1,6889 1,6888 1,6897 3,8299 3,8296 3,8305 3,8306 4,9053 4,9054 4,9054 4,9052 5,8601 5,8600 5,8597 5,8597

17,2182 17,2172 17,2168 17,2161

1,0017 1,0024 1,0018 1,0021 1,6905 1,6901 1,6901 1,6910 3,8327 3,8324 3,8334 3,8335 4,9090 4,9091 4,9091 4,9088 5,8644 5,8643 5,8641 5,8640

17,2310 17,2300 17,2296 17,2288

1299,58 1299,63 1299,59 1299,61 1341,68 1341,66 1341,65 1341,70 1413,29 1413,29 1413,31 1413,31 1436,48 1436,49 1436,49 1436,48 1453,63 1453,62 1453,62 1453,62 1566,99 1566,98 1566,98 1566,97

1235,05 1235,09 1235,06 1235,08 1272,86 1272,84 1272,84 1272,88 1336,87 1336,86 1336,88 1336,88 1357,51 1357,51 1357,51 1357,51 1372,74 1372,74 1372,73 1372,73 1472,87 1472,87 1472,87 1472,86

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08

-2,7 -3,5 -3,1 -3

-3,5 -2,3 -2,7 -3 0,7 0,9 0,6 0,6 0,3 0,4 0,3 0,4 0,2 0,1 0,2 0,2 0 0 0 0

963,09 963,14 963,10 963,12

1000,98 1000,96 1000,96 1001,00 1065,13 1065,13 1065,15 1065,15 1085,82 1085,82 1085,82 1085,82 1101,08 1101,08 1101,08 1101,08 1201,47 1201,46 1201,46 1201,46

Table 16: Run two on lamp C680 with reference wavelength 650 nm. Measured on 12-03-1998with laboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001998.05)

Page 220: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 27

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5091 5,5090 5,5090 5,5090 5,8226 5,8225 5,8224 5,8224 6,4024 6,4023 6,4023 6,4022 6,6005 6,6004 6,6003 6,6003 6,7508 6,7506 6,7506 6,7506 7,8075 7,8074 7,8074 7,8074 8,9615 8,9614 8,9613 8,9613

10,1968 10,1965 10,1963 10,1963 11,4987 11,4986 11,4986 11,4985 12,8624 12,8622 12,8620 12,8619 14,2851 14,2849 14,2846 14,2846

19,917 19,910 19,913 19,918 19,871 19,901 19,928 19,925 19,949 19,952 19,949 19,956 19,947 19,948 19,951 19,956 19,963 19,956 19,954 19,955 20,006 19,993 19,996 20,000 20,051 20,054 20,058 20,053 20,017 20,026 20,019 20,027 19,982 19,982 19,974 19,979 20,044 20,040 20,037 20,053 20,035 20,028 20,034 20,026

0,9992 0,9994 0,9995 0,9994 1,6889 1,6889 1,6889 1,6893 3,8350 3,8346 3,8351 3,8349 4,9060 4,9063 4,9060 4,9058 5,8610 5,8602 5,8612 5,8605

17,2262 17,2255 17,2260 17,2255 44,0688 44,0683 44,0679 44,0686 100,853 100,850 100,833 100,835 210,000 210,001 209,995 209,995 404,354 404,347 404,340 404,346 728,699 728,696 728,704 728,699

0,9999 1,0002 1,0003 1,0001 1,6902 1,6902 1,6901 1,6905 3,8378 3,8375 3,8380 3,8378 4,9097 4,9099 4,9097 4,9094 5,8653 5,8646 5,8655 5,8648

17,2389 17,2383 17,2388 17,2383 44,1014 44,1009 44,1006 44,1012 100,927 100,925 100,908 100,910 210,155 210,156 210,150 210,150 404,653 404,647 404,639 404,645 729,238 729,236 729,244 729,238

1299,44 1299,46 1299,47 1299,46 1341,66 1341,66 1341,66 1341,68 1413,42 1413,41 1413,42 1413,42 1436,50 1436,50 1436,50 1436,49 1453,64 1453,63 1453,64 1453,63 1567,04 1567,04 1567,04 1567,04 1681,40 1681,40 1681,40 1681,40 1797,08 1797,08 1797,05 1797,05 1913,82 1913,82 1913,81 1913,81 2031,81 2031,81 2031,81 2031,81 2151,14 2151,14 2151,15 2151,14

1234,92 1234,94 1234,95 1234,94 1272,84 1272,84 1272,84 1272,86 1336,98 1336,97 1336,98 1336,98 1357,52 1357,52 1357,52 1357,52 1372,75 1372,74 1372,75 1372,74 1472,92 1472,92 1472,92 1472,92 1572,91 1572,91 1572,91 1572,91 1673,01 1673,01 1672,99 1672,99 1772,96 1772,96 1772,96 1772,96 1872,92 1872,91 1872,91 1872,91 1972,90 1972,89 1972,90 1972,90

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

5,4 5,9 5,7 5,3 6

4,6 3,4 3,5 1,3 1,2 1,3 1,1 1,1 1,1 1

0,9 0,6 0,7 0,8 0,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

962,97 962,98 962,99 962,98

1000,97 1000,97 1000,96 1000,98 1065,24 1065,23 1065,24 1065,24 1085,83 1085,84 1085,83 1085,83 1101,10 1101,09 1101,10 1101,09 1201,51 1201,51 1201,51 1201,51 1301,78 1301,78 1301,77 1301,78 1402,17 1402,17 1402,15 1402,15 1502,44 1502,44 1502,44 1502,44 1602,74 1602,74 1602,73 1602,74 1703,09 1703,09 1703,09 1703,09

Table 17: Run three on lamp C680 with reference wavelength 650 nm. Measured on 13-03-1998with laboratory conditions: t = (23,0 ± 0,5) °C and rh = (45 ± 10) %.(3001998.06)

Page 221: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 28

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

5,5105 5,5104 5,5103 5,5103 5,8220 5,8219 5,8219 5,8218 6,4027 6,4026 6,4025 6,4025 6,6003 6,6002 6,6001 6,6001 6,7508 6,7506 6,7506 6,7506 7,8071 7,8071 7,8070 7,8070 8,9619 8,9619 8,9617 8,9617

10,1965 10,1965 10,1964 10,1964 11,4985 11,4984 11,4983 11,4982 12,8628 12,8627 12,8626 12,8627 14,2852 14,2849 14,2848 14,2847

20,013 20,004 20,013 20,019 20,032 20,021 20,018 20,024 20,042 20,054 20,065 20,060 19,958 19,951 19,953 19,952 19,954 19,955 19,953 19,959 20,003 20,000 20,003 19,992 20,058 20,055 20,049 20,053 20,015 20,027 20,016 20,016 19,978 19,970 19,978 19,971 20,047 20,051 20,046 20,055 20,038 20,037 20,040 20,032

0,6478 0,6477 0,6476 0,6476 0,9260 0,9259 0,9258 0,9258 1,6250 1,6251 1,6249 1,6248 1,9231 1,9232 1,9231 1,9231 2,1725 2,1725 2,1725 2,1726 4,5457 4,5456 4,5456 4,5457 8,6548 8,6550 8,6548 8,6545

15,2558 15,2558 15,2559 15,2554 25,2148 25,2147 25,2141 25,2135 39,5066 39,5060 39,5060 39,5057 59,1653 59,1650 59,1653 59,1656

0,6483 0,6481 0,6481 0,6481 0,9266 0,9266 0,9265 0,9264 1,6262 1,6263 1,6260 1,6260 1,9244 1,9245 1,9245 1,9245 2,1740 2,1741 2,1741 2,1741 4,5490 4,5488 4,5489 4,5489 8,6609 8,6611 8,6610 8,6607

15,2667 15,2666 15,2668 15,2663 25,2327 25,2326 25,2320 25,2314 39,5347 39,5341 39,5341 39,5338 59,2074 59,2071 59,2074 59,2077

1292,88 1292,85 1292,85 1292,85 1334,27 1334,26 1334,25 1334,24 1405,13 1405,14 1405,12 1405,12 1427,85 1427,86 1427,86 1427,85 1444,77 1444,77 1444,77 1444,77 1556,51 1556,51 1556,51 1556,51 1669,26 1669,26 1669,26 1669,25 1783,11 1783,11 1783,11 1783,10 1898,01 1898,01 1898,00 1898,00 2014,14 2014,13 2014,13 2014,13 2131,57 2131,57 2131,57 2131,57

1192,42 1192,39 1192,39 1192,39 1227,24 1227,23 1227,22 1227,21 1286,38 1286,39 1286,37 1286,36 1305,21 1305,22 1305,21 1305,21 1319,19 1319,20 1319,20 1319,20 1410,70 1410,70 1410,70 1410,70 1501,53 1501,53 1501,53 1501,53 1591,74 1591,74 1591,74 1591,74 1681,27 1681,27 1681,26 1681,26 1770,23 1770,23 1770,23 1770,23 1858,68 1858,68 1858,68 1858,69

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

-0,9 -0,3 -0,9 -1,3 -1,6 -1

-0,9 -1,2 -1,2 -1,5 -1,8 -1,7 0,9 1,1 1

1,1 0,9 0,8 0,9 0,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

920,53 920,51 920,50 920,50 955,42 955,42 955,40 955,40

1014,68 1014,69 1014,67 1014,67 1033,55 1033,56 1033,56 1033,55 1047,57 1047,57 1047,57 1047,57 1139,27 1139,27 1139,27 1139,27 1230,30 1230,31 1230,30 1230,30 1320,73 1320,73 1320,73 1320,72 1410,47 1410,47 1410,47 1410,46 1499,67 1499,67 1499,67 1499,66 1588,35 1588,35 1588,35 1588,35

Table 18: Run one on lamp C680 with reference wavelength 950 nm. Measured on 23-03-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001998.07)

Page 222: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 29

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5096 5,5096 5,5096 5,5096 5,8224 5,8224 5,8223 5,8223 6,4023 6,4022 6,4021 6,4022 6,6004 6,6003 6,6003 6,6003 6,7507 6,7505 6,7505 6,7505 7,8075 7,8075 7,8074 7,8074 8,9617 8,9616 8,9616 8,9615

10,1969 10,1967 10,1967 10,1967 11,4978 11,4977 11,4977 11,4976 12,8625 12,8623 12,8623 12,8623 14,2854 14,2852 14,2850 14,2849

20,019 20,022 20,016 20,018 20,022 20,032 20,040 20,042 20,050 20,053 20,063 20,050 19,963 19,961 19,966 19,963 19,973 19,969 19,972 19,964 20,007 20,012 20,006 20,008 20,059 20,065 20,064 20,059 20,030 20,030 20,024 20,021 19,999 20,000 19,994 19,991 20,060 20,054 20,055 20,064 20,044 20,053 20,046 20,049

0,6478 0,6478 0,6479 0,6478 0,9270 0,9271 0,9271 0,9269 1,6261 1,6261 1,6260 1,6259 1,9253 1,9252 1,9251 1,9252 2,1745 2,1746 2,1745 2,1745 4,5514 4,5514 4,5514 4,5513 8,6630 8,6628 8,6629 8,6629

15,2725 15,2725 15,2724 15,2725 25,2326 25,2326 25,2329 25,2326 39,5377 39,5374 39,5377 39,5374 59,2174 59,2166 59,2163 59,2160

0,6483 0,6483 0,6483 0,6482 0,9277 0,9277 0,9277 0,9275 1,6273 1,6272 1,6272 1,6270 1,9267 1,9265 1,9265 1,9266 2,1761 2,1761 2,1761 2,1761 4,5547 4,5547 4,5546 4,5545 8,6692 8,6690 8,6690 8,6690

15,2834 15,2833 15,2833 15,2834 25,2505 25,2506 25,2509 25,2506 39,5658 39,5655 39,5658 39,5655 59,2595 59,2587 59,2584 59,2581

1292,88 1292,88 1292,89 1292,87 1334,40 1334,41 1334,41 1334,39 1405,22 1405,22 1405,21 1405,20 1428,01 1428,00 1428,00 1428,01 1444,90 1444,90 1444,90 1444,90 1556,72 1556,72 1556,72 1556,71 1669,44 1669,43 1669,44 1669,44 1783,35 1783,34 1783,34 1783,34 1898,18 1898,18 1898,18 1898,18 2014,35 2014,35 2014,35 2014,35 2131,84 2131,84 2131,83 2131,83

1192,42 1192,42 1192,42 1192,41 1227,35 1227,36 1227,36 1227,34 1286,45 1286,45 1286,45 1286,44 1305,34 1305,33 1305,33 1305,34 1319,30 1319,31 1319,30 1319,30 1410,87 1410,87 1410,87 1410,86 1501,67 1501,67 1501,67 1501,67 1591,92 1591,92 1591,92 1591,92 1681,40 1681,40 1681,40 1681,40 1770,40 1770,40 1770,40 1770,40 1858,89 1858,88 1858,88 1858,88

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

-1,3 -1,5 -1,1 -1,2 -1,1 -1,6 -2

-2,1 -1,4 -1,5 -1,7 -1,4 0,8 0,9 0,8 0,8 0,5 0,6 0,5 0,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

920,54 920,54 920,54 920,53 955,54 955,54 955,54 955,52

1014,76 1014,75 1014,75 1014,74 1033,69 1033,68 1033,67 1033,68 1047,67 1047,68 1047,68 1047,68 1139,44 1139,44 1139,43 1139,43 1230,45 1230,44 1230,44 1230,44 1320,91 1320,91 1320,91 1320,91 1410,61 1410,61 1410,61 1410,61 1499,83 1499,83 1499,83 1499,83 1588,55 1588,55 1588,55 1588,55

Table 19: Run two on lamp C680 with reference wavelength 950 nm. Measured on 24-03-1998with laboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001998.08)

Page 223: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 30

Table 20 and 21 present the final results of the calibration on lamp C564. The results werecalculated with a polynomial fit; t = 3ai·Ln(I)i with i = 0..5. For the reference wavelength 650 nmonly one run was preformed. For wavelength 950 nm two runs were measured. Final analysisshowed that the first run was incorrect. The final temperature is therefore only based on thesecond run.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

4,480 4,721 5,169 5,322 5,441 6,272 7,194 8,189 9,242 10,347 11,502

964,05 1002,08 1066,21 1086,60 1102,04 1201,91 1301,99 1402,32 1502,58 1602,85 1703,31

964,05 1002,08 1066,21 1086,60 1102,04 1201,91 1301,99 1402,32 1502,58 1602,85 1703,31

Table 20: Final results C564 with reference wavelength 650 nm.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

n.a. 4,480 4,721 5,169 5,322 5,441 6,272 7,194 8,189 9,242 10,347 11,502

909,12 943,53

1001,32 1019,63 1033,47 1122,58 1211,13 1299,16 1386,39 1472,93 1558,94

921,07 956,23

1015,32 1034,05 1048,21 1139,44 1230,19 1320,52 1410,19 1499,30 1588,01

-11,95 -12,70 -14,00 -14,42 -14,74 -16,86 -19,06 -21,36 -23,80 -26,37 -29,07

921,07 956,23

1015,32 1034,05 1048,21 1139,44 1230,19 1320,52 1410,19 1499,3

1588,01

Table 21: Final results C564 with reference wavelength 950 nm. For the average only run 2 istaken.

Page 224: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 31

Table 22 and 23 present the final results of the calibration on lamp C681. The results werecalculated with a polynomial fit; t = 3ai·Ln(I)i with i = 0..5. The final temperature is the average of3 and 2 runs, respectively.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

5,508 5,822 6,399 6,594 6,745 7,795 8,948 10,183 11,487 12,852 14,273

963,49 1001,77 1066,12 1086,52 1101,93 1202,06 1302,37 1402,72 1503,02 1603,15 1703,02

963,58 1001,84 1066,15 1086,53 1101,93 1202,03 1302,40 1402,72

963,58 1001,82 1066,12 1086,51 1101,91 1202,03 1302,36 1402,71 1502,99 1603,10 1702,99

-0,09 -0,07 -0,03 -0,01 0,00 0,03 -0,03 0,00

0,00 0,02 0,03 0,02 0,02 0,00 0,04 0,01

963,55 1001,81 1066,13 1086,52 1101,92 1202,04 1302,38 1402,72 1503,01 1603,13 1703,01

0,04 0,03 0,01 0,01 0,01 0,01 0,02 0,00 0,01 0,03 0,01

Table 22: Final results C681 with reference wavelength 650 nm.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

n.a. 5,508 5,822 6,399 6,594 6,745 7,795 8,948 10,183 11,487 12,852 14,273

919,72 955,02

1014,20 1032,90 1047,02 1138,35 1229,14 1319,35 1408,93 1497,80 1585,84

919,69 955,02

1014,16 1032,85 1046,96 1138,26 1229,12 1319,37 1408,92 1497,70 1585,74

0,03 0,00 0,04 0,05 0,06 0,09 0,02 -0,02 0,01 0,10 0,10

919,71 955,02

1014,18 1032,88 1046,99 1138,31 1229,13 1319,36 1408,93 1497,75 1585,79

0,01 0,00 0,02 0,02 0,03 0,05 0,01 0,01 0,00 0,05 0,05

Table 23: Final results C681 with reference wavelength 950 nm.

Page 225: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 32

Table 24 and 25 present the final results of the calibration on lamp C680. The results werecalculated with a polynomial fit; t = 3ai·Ln(I)i with i = 0..5. The final temperature is the average of3 and 2 runs, respectively.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8average

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

5,508 5,822 6,403 6,600 6,752 7,807 8,962 10,196 11,498 12,862 14,285

962,87 1000,89 1065,28 1085,76 1101,20 1201,42 1301,77 1402,08 1502,38 1602,69 1703,11

962,87 1000,90 1065,32 1085,80 1101,22 1201,48

962,86 1000,90 1065,31 1085,80 1101,24 1201,47 1301,82 1402,12 1502,41 1602,71 1703,11

0,00 -0,01 -0,04 -0,04 -0,02 -0,06

0,01 0,00 0,01 0,00 -0,02 0,01

962,87 1000,90 1065,30 1085,79 1101,22 1201,46 1301,80 1402,10 1502,40 1602,70 1703,11

0,00 0,00 0,02 0,02 0,02 0,03 0,02 0,02 0,02 0,01 0,00

Table 24: Final results C680 with reference wavelength 650 nm.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8average

[°C]

F

[°C]

n.a. 5,508 5,822 6,403 6,600 6,752 7,807 8,962 10,196 11,498 12,862 14,285

920,24 955,41

1014,73 1033,54 1047,69 1139,26 1230,31 1320,70 1410,45 1499,62 1588,36

920,35 955,50

1014,83 1033,65 1047,81 1139,40 1230,47 1320,86 1410,62 1499,81 1588,54

-0,11 -0,09 -0,10 -0,11 -0,12 -0,14 -0,16 -0,16 -0,17 -0,19 -0,18

920,30 955,46

1014,78 1033,60 1047,75 1139,33 1230,39 1320,78 1410,54 1499,72 1588,45

0,05 0,05 0,05 0,06 0,06 0,07 0,08 0,08 0,09 0,09 0,09

Table 25: Final results C680 with reference wavelength 950 nm.

Page 226: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 33

Table 26 and 27 presents the uncertainty for the scale realization at 650 nm resp. 950 nm.

Source of uncertainty Type Uncertainty (2F) /°C

tAg tAu 1300 °C 1500 °C 1700 °C

Fixed point

Realization of fixed point B 0,017 0,020 0,027 0,035 0,043

Emissivity of fixed point B 0,001 0,001 0,001 0,001 0,002

Pyrometer

Response A 0,016 0,013 0,017 0,022 0,027

Linearity B 0,002 0,002 0,003 0,004 0,005

SSE B 0,003 0,003 0,005 0,006 0,007

Wavelength B 0,000 0,008 0,033 0,059 0,089

Drift B 0,030 0,035 0,049 0,062 0,077

Lamp

Positioning B 0,105 0,123 0,171 0,217 0,268

Current A 0,109 0,106 0,117 0,135 0,154

Emissivity B 0,006 0,007 0,010 0,012 0,015

Transmission of window B 0,001 0,001 0,002 0,002 0,003

Quality of polynomial fit A 0,052

Total (2F) 0,17 0,18 0,22 0,28 0,34

Total (1F) 0,09 0,09 0,11 0,14 0,17

Table 26: Uncertainty in scale realization at 650 nm

Page 227: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 34

Source of uncertainty Type Uncertainty (2F) /°C

920 °C 1014 °C 1230 °C 1409 °C 1586 °C

Fixed point

Realization of fixed point B 0,008 0,010 0,013 0,016 0,020

Emissivity of fixed point B 0,001 0,001 0,001 0,002 0,002

Pyrometer

Response A 0,016 0,017 0,023 0,028 0,034

Linearity B 0,002 0,002 0,003 0,004 0,005

SSE B 0,003 0,004 0,005 0,007 0,008

Wavelength B 0,009 0,011 0,067 0,126 0,195

Drift B 0,028 0,033 0,044 0,056 0,068

Lamp

Positioning B 0,142 0,165 0,225 0,282 0,344

Current A 0,129 0,107 0,119 0,132 0,151

Emissivity B 0,004 0,005 0,006 0,008 0,009

Transmission of window B 0,001 0,001 0,001 0,002 0,002

Quality of polynomial fit A 0,130

Total (2F) 0,23 0,24 0,30 0,37 0,45

Total (1F) 0,12 0,12 0,15 0,19 0,23

Table 27: Uncertainty in scale realization at 950 nm

Page 228: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 35

Results of Measurement of ambient resistance of lamp

Table 28 presents the results of the ambient resistance measurements.

Lamp Resistance[mS]

Temperature[°C]

C564 40,0755 ± 0,00440,0748 ± 0,00440,0748 ± 0,004

22,11 ± 0,0222,09 ± 0,0221,54 ± 0,02

C681 34,1967 ± 0,00434,1201 ± 0,004

22,08 ± 0,0221,60 ± 0,02

C680 No measurements

Table 28: Ambient resistance measurements of lamp C564 and C681.

Page 229: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Initial measurements on C564, C681 and C680 by NMi/VSL 36

References

[1] Bezemer, J., Thesis, Utrecht, Elinkwijk Press b.v., 1976

[2] Bezemer, J., Metrologia, Vol. 10, 1974, pp. 47 -54.

[3] The characterization of radiation thermometers subject to the size-of-source effectP.Bloembergen, Y.Duan, R.Bosma, Z.YuanProceedings of Tempmeko ‘96

[4] The supplementary information for the international temperature scale of 1990Bureau International des poids et mesures1990, Pavillon de Breteuil, F-92310 SEVRES

[5] Protocol to the comparison of local realizations of the ITS-90 between the silver point and1700 °C using vacuum tungsten-strip lamps as transfer standards.Not published.

[6] Fast determination of the nonlinearity of photodetectorsL.Coslovi and F.RighiniApplied Optics / Vol. 19, No. 18 / 15 September 1980

Page 230: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 1

CCT - Key comparison :Comparison of the Local Realizations of theITS-90 between Silver point and 1700 °C

2nd measurements on C564 and C681 (Set I)

NMi/VSL - contributionMarch 1999

R. BosmaE.W.M. van der Ham

Page 231: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 2

This report describes the 2e measurements from NMi/VSL on the VSL-lamp set for the CCT project‘Comparison of the Local Realizations of the ITS-90 between Silver point and 1700 °C’. After theprevious measurements at NMi/VSL they were in chronologically order measured by CSIRO(Australia), KRISS (Korea), NIM (China), NMC (Singapore) and NLRM (Japan). The measurements atthese laboratories were performed in period from July 1997 to June 1998.

Contents

Description of the scale realisation and lamp setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Description of the measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Stability check on the lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Effects of lamp positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of stability check on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Page 232: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 3

Description of the scale realisation and lamp setup.

The measurements were performed with the same setup as used for the initial measurements [1].For the spectral sensitivity, the size-of-source-effect and the linearity the same calibration valueswere used as with the initial measurements. Only the transfer of the fixed point values wasmeasured again.

Description of the measurements

Stability check on the lamps

According to the Protocol [2] a initial check was made to see if there was mechanical stress presentin the strip. The lamp current and temperature were measured at the silver point current. After thelamp was operated at the 1700 °C- current for one hour, the current was again adjusted to thesilver point. After about 30 minutes the current and temperature were measured. The difference intemperature, corrected for the current difference, should be smaller than 0,25 K.

Effects of lamp positioning

The effects of lamp positioning was not measured again. For the uncertainty budget the results ofthe former measurements were used.

Scale realization on lamp

The scale realization was performed at 650 nm, not at 950 nm.

Measurement of ambient resistance of lamp

The ambient resistance of the lamps was measured before and after all measurements. The samesetup was used as described in the initial measurements [1].

Page 233: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 4

Results

Results of stability check on lamp

The lamps were tested on stability. Table 1 presents the results.

Lamp identification Drift after stabilisation /K

C564 - first run 0,35

C564 - second run -0,02

C681 - first run 0,01

Table 1 : Stability test of lamps

The drift of lamp C564 was after the first run larger than the 0,25 K as stated in the protocol [2]. Itwas decided to repeat the measurement. In the second run the drift was far below the requestedvalue. The large in the 1st run was probably due to mechanical stress in the lamp.

Results of transfer of fixed point onto pyrometer

Table 2 presents the results of the fixed point transfer onto the pyrometer.

Filter Fixed pointresponse

[mV]

Uncertainty

[mV]

Date Drift afterprevious transfer

[mK]

661 nm 7,800693 0,002 23-06-1998 266

661 nm 7,798007 0,002 01-07-1998 24

Table 2: Fixed point transfer to pyrometer

The first fixed point measurements were related to lamp C564. The scale realization was performedwithin two weeks. The second fixed point measurements were related to lamp C681. Themeasurements were completed within one week after the fixed point transfer. The drift betweenboth fixed point realization was used as an additional uncertainty.

Results of scale realization on lamp

In the tables 3 to 9 the following measured or calculated values are presented according to theprotocol:í the measured lamp currentí the measured base temperature of the lampí the ratio of the measured photo current at the lamp and the fixed pointí the ratio of the photo current corrected for size-of-source effect and linearityí the calculated true temperatureí the calculated radiance temperature of the lampí the calculated effective wavelength of the pyrometerí the correction due to the deviation of the base temperature from 20 °Cí the spectral radiance temperature given at reference wavelength

Page 234: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 5

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,4828 4,4827 4,4827 4,4827 4,7205 4,7204 4,7204 4,7203 5,1687 5,1687 5,1687 5,1686 5,3219 5,3218 5,3218 5,3217 5,4412 5,4412 5,4411 5,4411 6,2725 6,2724 6,2724 6,2723 7,1943 7,1941 7,1941 7,1941 8,1887 8,1895 8,1896 8,1888 9,2439 9,2427 9,2427 9,2436

10,3481 10,3477 10,3474 10,3472 11,5017 11,5014 11,5013 11,5012

20,031 20,041 20,034 20,040 20,050 20,034 20,043 20,042 20,072 20,062 20,064 20,066 19,980 19,977 19,979 19,974 19,970 19,981 19,976 19,974 20,034 20,012 20,015 20,014 20,058 20,053 20,063 20,049 20,008 20,008 20,012 20,012 20,070 20,064 20,062 20,062 20,043 20,033 20,038 20,036 20,016 20,002 20,000 20,009

1,0195 1,0193 1,0192 1,0197 1,7098 1,7093 1,7090 1,7095 3,8730 3,8729 3,8727 3,8728 4,9418 4,9423 4,9419 4,9411 5,9172 5,9174 5,9176 5,9168

17,2803 17,2803 17,2799 17,2798 44,1156 44,1166 44,1153 44,1157 100,878 100,874 100,876 100,870 210,167 210,162 210,162 210,162 404,567 404,562 404,548 404,550 728,970 728,934 728,928 728,912

1,0203 1,0200 1,0199 1,0205 1,7110 1,7106 1,7102 1,7107 3,8759 3,8758 3,8756 3,8756 4,9455 4,9460 4,9455 4,9447 5,9215 5,9218 5,9220 5,9211

17,2931 17,2931 17,2927 17,2925 44,1482 44,1492 44,1480 44,1483 100,953 100,949 100,951 100,945 210,323 210,318 210,318 210,318 404,866 404,861 404,847 404,849 729,509 729,473 729,467 729,452

1301,02 1301,00 1300,99 1301,03 1342,68 1342,66 1342,64 1342,66 1414,33 1414,33 1414,32 1414,32 1437,19 1437,20 1437,19 1437,18 1454,57 1454,58 1454,58 1454,56 1567,40 1567,40 1567,39 1567,39 1681,54 1681,54 1681,54 1681,54 1797,12 1797,11 1797,11 1797,11 1913,95 1913,95 1913,95 1913,95 2031,92 2031,91 2031,91 2031,91 2151,22 2151,21 2151,21 2151,21

1236,34 1236,32 1236,32 1236,35 1273,76 1273,74 1273,72 1273,74 1337,79 1337,79 1337,78 1337,78 1358,14 1358,15 1358,14 1358,12 1373,58 1373,58 1373,58 1373,57 1473,23 1473,23 1473,23 1473,23 1573,03 1573,03 1573,03 1573,03 1673,04 1673,04 1673,04 1673,03 1773,08 1773,07 1773,07 1773,07 1873,00 1873,00 1872,99 1872,99 1972,96 1972,95 1972,95 1972,95

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-2,8 -3,7 -3,1 -3,6 -3,3 -2,3 -2,9 -2,8 -2,7 -2,3 -2,4 -2,5 0,6 0,7 0,7 0,8 0,8 0,5 0,7 0,7 -0,3 -0,1 -0,1 -0,1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964,38 964,37 964,36 964,40

1001,88 1001,86 1001,85 1001,87 1066,05 1066,05 1066,05 1066,05 1086,45 1086,46 1086,45 1086,44 1101,93 1101,93 1101,93 1101,92 1201,83 1201,83 1201,82 1201,82 1301,90 1301,90 1301,90 1301,90 1402,20 1402,20 1402,20 1402,19 1502,56 1502,56 1502,56 1502,56 1602,82 1602,82 1602,82 1602,82 1703,16 1703,15 1703,14 1703,14

Table 3: Run one on lamp C564 with reference wavelength 650 nm. Measured on 24-06-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (47 ± 10) %.(3001998.12)

Page 235: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 6

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,4821 4,4820 4,4820 4,4820 4,7210 4,7209 4,7209 4,7208 5,1682 5,1681 5,1680 5,1680 5,3221 5,3220 5,3219 5,3219 5,4412 5,4410 5,4410 5,4410 6,2727 6,2726 6,2725 6,2725 7,1939 7,1938 7,1938 7,1937 8,1895 8,1894 8,1894 8,1894 9,2422 9,2421 9,2420 9,2420

10,3475 10,3473 10,3471 10,3470 11,5014 11,5011 11,5009 11,5009

20,050 20,044 20,032 20,039 20,047 20,055 20,058 20,055 19,962 19,973 19,982 19,968 19,979 19,976 19,983 19,985 19,986 19,972 19,976 19,984 20,028 20,020 20,021 20,016 20,071 20,069 20,071 20,066 20,009 20,013 20,014 20,012 20,067 20,072 20,077 20,084 20,024 20,028 20,021 20,030 20,022 20,021 20,011 20,010

1,0179 1,0189 1,0189 1,0189 1,7124 1,7131 1,7137 1,7137 3,8726 3,8728 3,8725 3,8727 4,9490 4,9492 4,9483 4,9478 5,9229 5,9223 5,9224 5,9219

17,3008 17,3003 17,2996 17,2999 44,1357 44,1348 44,1347 44,1338 100,997 100,996 100,998 100,997 210,213 210,212 210,210 210,202 404,749 404,741 404,749 404,755 729,328 729,318 729,297 729,265

1,0186 1,0196 1,0197 1,0197 1,7137 1,7144 1,7150 1,7150 3,8754 3,8757 3,8754 3,8756 4,9527 4,9529 4,9520 4,9515 5,9272 5,9267 5,9268 5,9263

17,3136 17,3131 17,3124 17,3127 44,1684 44,1675 44,1673 44,1664 101,072 101,071 101,073 101,072 210,369 210,368 210,365 210,357 405,048 405,041 405,048 405,055 729,867 729,857 729,836 729,804

1300,89 1300,97 1300,97 1300,97 1342,81 1342,84 1342,87 1342,87 1414,32 1414,32 1414,32 1414,32 1437,33 1437,33 1437,32 1437,31 1454,67 1454,66 1454,66 1454,65 1567,53 1567,53 1567,52 1567,53 1681,60 1681,60 1681,60 1681,59 1797,29 1797,29 1797,30 1797,29 1913,99 1913,99 1913,99 1913,98 2032,00 2032,00 2032,00 2032,00 2151,33 2151,33 2151,32 2151,31

1236,23 1236,29 1236,30 1236,30 1273,87 1273,90 1273,93 1273,93 1337,78 1337,79 1337,78 1337,78 1358,26 1358,26 1358,25 1358,24 1373,66 1373,65 1373,65 1373,65 1473,35 1473,35 1473,34 1473,34 1573,08 1573,08 1573,08 1573,08 1673,19 1673,19 1673,20 1673,19 1773,11 1773,11 1773,11 1773,10 1873,07 1873,07 1873,07 1873,07 1973,05 1973,05 1973,04 1973,03

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-4,6 -4

-2,9 -3,6 -3,1 -3,6 -3,8 -3,6 1,4 1

0,7 1,2 0,7 0,8 0,5 0,5 0,4 0,8 0,7 0,4 -0,3 -0,2 -0,2 -0,2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964,27 964,34 964,34 964,34

1002,00 1002,03 1002,05 1002,05 1066,04 1066,05 1066,04 1066,05 1086,57 1086,58 1086,56 1086,55 1102,01 1102,00 1102,00 1102,00 1201,95 1201,94 1201,94 1201,94 1301,95 1301,95 1301,95 1301,94 1402,36 1402,36 1402,36 1402,36 1502,59 1502,59 1502,59 1502,58 1602,90 1602,89 1602,90 1602,90 1703,24 1703,24 1703,24 1703,23

Table 4: Run two on lamp C564 with reference wavelength 650 nm. Measured on 25-06-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (47 ± 10) %.(3001998.13)

Page 236: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 7

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,4829 4,4828 4,4827 4,4827 4,7209 4,7208 4,7208 4,7207 5,1691 5,1690 5,1689 5,1689 5,3220 5,3219 5,3218 5,3218 5,4411 5,4409 5,4409 5,4408 6,2722 6,2722 6,2721 6,2721 7,1939 7,1939 7,1938 7,1938 8,1897 8,1896 8,1896 8,1895

20,029 20,027 20,020 20,029 20,063 20,042 20,046 20,048 20,070 20,074 20,071 20,061 19,970 19,981 19,980 19,966 19,983 19,985 19,986 19,986 20,026 20,026 20,032 20,029 20,084 20,078 20,075 20,074 20,035 20,021 20,029 20,026

1,0213 1,0212 1,0206 1,0213 1,7134 1,7124 1,7131 1,7126 3,8796 3,8797 3,8794 3,8798 4,9498 4,9488 4,9505 4,9496 5,9247 5,9244 5,9244 5,9241

17,2942 17,2962 17,2949 17,2956 44,1430 44,1435 44,1447 44,1434 101,016 101,015 101,012 101,014

1,0220 1,0220 1,0214 1,0220 1,7147 1,7137 1,7144 1,7139 3,8824 3,8825 3,8823 3,8826 4,9534 4,9525 4,9542 4,9532 5,9291 5,9288 5,9288 5,9285

17,3070 17,3090 17,3077 17,3084 44,1757 44,1762 44,1773 44,1761 101,091 101,090 101,087 101,089

1301,15 1301,14 1301,10 1301,15 1342,86 1342,81 1342,84 1342,82 1414,48 1414,49 1414,48 1414,49 1437,34 1437,33 1437,36 1437,34 1454,70 1454,69 1454,69 1454,69 1567,49 1567,50 1567,49 1567,50 1681,62 1681,62 1681,63 1681,62 1797,32 1797,32 1797,32 1797,32

1236,46 1236,45 1236,42 1236,46 1273,92 1273,87 1273,90 1273,88 1337,93 1337,93 1337,93 1337,93 1358,27 1358,26 1358,29 1358,27 1373,69 1373,68 1373,68 1373,68 1473,31 1473,32 1473,32 1473,32 1573,10 1573,10 1573,11 1573,10 1673,22 1673,22 1673,21 1673,22

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02

-2,6 -2,5 -1,8 -2,6 -4,2 -2,8 -3

-3,2 -2,6 -2,8 -2,7 -2,3 0,9 0,6 0,6 1,1 0,5 0,4 0,4 0,4 -0,3 -0,3 -0,3 -0,3

0 0 0 0 0 0 0 0

964,51 964,50 964,46 964,50

1002,04 1002,00 1002,03 1002,01 1066,19 1066,20 1066,19 1066,20 1086,58 1086,57 1086,60 1086,58 1102,04 1102,03 1102,03 1102,03 1201,91 1201,92 1201,91 1201,92 1301,97 1301,97 1301,97 1301,97 1402,38 1402,38 1402,38 1402,38

Table 5: Run three on lamp C564 with reference wavelength 650 nm. Measured on 29-06-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (46 ± 10) %.(3001998.14)

Page 237: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 8

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5112 5,5111 5,5111 5,5111 5,8217 5,8216 5,8215 5,8215 6,3992 6,3991 6,3992 6,3991 6,5943 6,5942 6,5941 6,5941 6,7451 6,7450 6,7450 6,7450 7,7958 7,7957 7,7957 7,7957 8,9481 8,9480 8,9480 8,9480

10,1839 10,1837 10,1848 10,1836 11,4873 11,4871 11,4867 11,4868 12,8518 12,8516 12,8513 12,8513 14,2730 14,2731 14,2729 14,2727

20,040 20,035 20,043 20,046 20,045 20,053 20,058 20,057 19,980 20,000 19,983 19,979 19,988 19,979 19,978 19,977 19,990 19,986 19,975 19,987 20,019 20,023 20,029 20,029 20,076 20,070 20,078 20,067 20,034 20,027 20,030 20,032 19,990 19,989 19,995 19,992 20,060 20,060 20,056 20,050 20,020 20,006 20,019 20,013

1,0096 1,0098 1,0101 1,0102 1,7025 1,7033 1,7029 1,7030 3,8680 3,8679 3,8684 3,8689 4,9356 4,9359 4,9353 4,9352 5,9037 5,9036 5,9041 5,9037

17,2915 17,2917 17,2926 17,2927 44,2055 44,2051 44,2045 44,2060 101,104 101,101 101,103 101,104 210,488 210,482 210,475 210,473 404,484 404,476 404,470 404,475 726,885 726,861 726,861 726,835

1,0104 1,0106 1,0108 1,0109 1,7037 1,7046 1,7041 1,7043 3,8708 3,8708 3,8713 3,8718 4,9392 4,9395 4,9390 4,9389 5,9081 5,9080 5,9084 5,9081

17,3043 17,3045 17,3054 17,3056 44,2382 44,2379 44,2372 44,2388 101,179 101,176 101,178 101,179 210,644 210,638 210,631 210,629 404,783 404,776 404,769 404,775 727,424 727,399 727,399 727,374

1300,26 1300,27 1300,29 1300,30 1342,32 1342,36 1342,34 1342,35 1414,21 1414,21 1414,22 1414,23 1437,07 1437,08 1437,06 1437,06 1454,35 1454,35 1454,35 1454,35 1567,47 1567,47 1567,48 1567,48 1681,81 1681,81 1681,80 1681,81 1797,45 1797,45 1797,45 1797,45 1914,21 1914,21 1914,20 1914,20 2031,88 2031,87 2031,87 2031,87 2150,61 2150,60 2150,60 2150,59

1235,66 1235,67 1235,69 1235,69 1273,44 1273,48 1273,46 1273,46 1337,68 1337,68 1337,69 1337,70 1358,03 1358,03 1358,03 1358,02 1373,38 1373,38 1373,39 1373,38 1473,30 1473,30 1473,30 1473,30 1573,26 1573,26 1573,26 1573,26 1673,33 1673,33 1673,33 1673,33 1773,30 1773,29 1773,29 1773,29 1872,97 1872,96 1872,96 1872,96 1972,45 1972,44 1972,44 1972,44

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-2,5 -2,2 -2,7 -2,9 -1,9 -2,2 -2,5 -2,4 0,4 0

0,4 0,4 0,2 0,4 0,4 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,70 963,71 963,73 963,73

1001,56 1001,60 1001,58 1001,59 1065,95 1065,95 1065,96 1065,97 1086,34 1086,35 1086,34 1086,34 1101,73 1101,73 1101,73 1101,73 1201,89 1201,89 1201,90 1201,90 1302,13 1302,13 1302,13 1302,13 1402,49 1402,49 1402,49 1402,49 1502,78 1502,78 1502,77 1502,77 1602,79 1602,79 1602,79 1602,79 1702,64 1702,64 1702,64 1702,63

Table 6: Run one on lamp C681 with reference wavelength 650 nm. Measured on 02-07-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (45 ± 10) %.(3001998.16)

Page 238: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 9

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5106 5,5106 5,5107 5,5107 5,8219 5,8218 5,8217 5,8217 6,3993 6,3992 6,3991 6,3991 6,5941 6,5940 6,5939 6,5938 6,7447 6,7446 6,7446 6,7445 7,7954 7,7955 7,7955 7,7954 8,9480 8,9480 8,9479 8,9480

10,1835 10,1834 10,1833 10,1834 11,4873 11,4873 11,4873 11,4872 12,8512 12,8510 12,8508 12,8506 14,2734 14,2731 14,2729 14,2728

20,035 20,043 20,036 20,041 20,047 20,053 20,052 20,049 19,974 19,968 19,968 19,972 19,979 19,972 19,981 19,980 19,976 19,985 19,987 19,982 20,026 20,039 20,017 20,022 19,983 19,980 19,984 19,972 20,027 20,024 20,037 20,043 19,994 19,995 19,992 19,994 20,057 20,054 20,062 20,048 20,017 20,017 20,009 20,000

1,0090 1,0100 1,0106 1,0105 1,7054 1,7055 1,7059 1,7060 3,8741 3,8746 3,8734 3,8735 4,9416 4,9416 4,9412 4,9417 5,9093 5,9099 5,9094 5,9091

17,3153 17,3144 17,3152 17,3157 44,2683 44,2696 44,2691 44,2705 101,301 101,302 101,300 101,300 210,761 210,749 210,756 210,754 404,870 404,843 404,844 404,826 729,051 729,042 729,028 729,030

1,0097 1,0108 1,0113 1,0113 1,7067 1,7068 1,7072 1,7072 3,8770 3,8774 3,8763 3,8764 4,9452 4,9452 4,9449 4,9453 5,9137 5,9143 5,9138 5,9135

17,3281 17,3272 17,3280 17,3285 44,3011 44,3024 44,3019 44,3033 101,376 101,377 101,375 101,375 210,918 210,905 210,912 210,910 405,170 405,143 405,144 405,126 729,591 729,582 729,568 729,569

1300,20 1300,28 1300,33 1300,32 1342,47 1342,47 1342,49 1342,49 1414,35 1414,36 1414,34 1414,34 1437,19 1437,19 1437,18 1437,19 1454,44 1454,45 1454,44 1454,44 1567,63 1567,62 1567,63 1567,63 1681,99 1682,00 1681,99 1682,00 1797,74 1797,74 1797,74 1797,74 1914,43 1914,42 1914,43 1914,42 2032,06 2032,05 2032,05 2032,04 2151,25 2151,24 2151,24 2151,24

1235,61 1235,68 1235,72 1235,72 1273,57 1273,57 1273,59 1273,59 1337,81 1337,82 1337,80 1337,80 1358,13 1358,13 1358,13 1358,13 1373,46 1373,47 1373,46 1373,46 1473,43 1473,43 1473,43 1473,44 1573,42 1573,43 1573,43 1573,43 1673,58 1673,58 1673,58 1673,58 1773,49 1773,48 1773,48 1773,48 1873,12 1873,11 1873,11 1873,10 1972,98 1972,98 1972,98 1972,98

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-2,2 -2,7 -2,2 -2,5 -2

-2,2 -2,2 -2,1 0,5 0,7 0,7 0,6 0,4 0,5 0,3 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,65 963,72 963,76 963,76

1001,69 1001,70 1001,71 1001,71 1066,08 1066,09 1066,06 1066,06 1086,44 1086,44 1086,44 1086,45 1101,81 1101,82 1101,81 1101,81 1202,03 1202,02 1202,03 1202,03 1302,29 1302,30 1302,29 1302,30 1402,74 1402,74 1402,74 1402,74 1502,97 1502,96 1502,96 1502,96 1602,95 1602,94 1602,94 1602,93 1703,18 1703,17 1703,17 1703,17

Table 7: Run two on lamp C681 with reference wavelength 650 nm. Measured on 03-07-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001998.17)

Page 239: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 10

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5111 5,5111 5,5111 5,5111 5,8222 5,8221 5,8220 5,8220 6,3990 6,3989 6,3989 6,3989 6,5942 6,5941 6,5939 6,5940 6,7454 6,7454 6,7453 6,7452 7,7954 7,7954 7,7954 7,7953 8,9481 8,9481 8,9481 8,9480

10,1839 10,1838 10,1837 10,1837 11,4863 11,4861 11,4861 11,4860 12,8501 12,8504 12,8504 12,8504 14,2720 14,2723 14,2723 14,2724

20,024 20,022 20,027 20,026 20,035 20,029 20,041 20,037 19,954 19,957 19,957 19,955 19,973 19,975 19,964 19,969 19,976 19,977 19,978 19,964 20,008 20,022 20,012 20,016 19,959 19,955 19,963 19,973 20,023 20,019 20,019 20,014 19,959 19,966 19,966 19,973 20,033 20,035 20,025 20,033 20,005 20,012 20,008 20,000

1,0112 1,0117 1,0117 1,0117 1,7069 1,7069 1,7066 1,7069 3,8739 3,8733 3,8737 3,8735 4,9405 4,9410 4,9402 4,9402 5,9117 5,9124 5,9126 5,9117

17,3092 17,3102 17,3108 17,3103 44,2651 44,2646 44,2660 44,2654 101,310 101,308 101,308 101,306 210,602 210,602 210,599 210,596 405,235 405,217 405,216 405,198 728,337 728,355 728,331 728,320

1,0119 1,0124 1,0124 1,0124 1,7081 1,7082 1,7079 1,7082 3,8768 3,8762 3,8765 3,8764 4,9441 4,9447 4,9438 4,9438 5,9161 5,9168 5,9170 5,9161

17,3220 17,3230 17,3236 17,3231 44,2979 44,2974 44,2988 44,2982 101,385 101,383 101,383 101,381 210,758 210,758 210,755 210,752 405,536 405,518 405,516 405,498 728,876 728,894 728,870 728,860

1300,38 1300,41 1300,41 1300,41 1342,54 1342,54 1342,52 1342,54 1414,35 1414,33 1414,34 1414,34 1437,16 1437,18 1437,16 1437,16 1454,48 1454,49 1454,50 1454,48 1567,59 1567,59 1567,60 1567,59 1681,98 1681,98 1681,99 1681,98 1797,76 1797,75 1797,75 1797,75 1914,30 1914,30 1914,30 1914,30 2032,23 2032,22 2032,22 2032,21 2151,04 2151,04 2151,04 2151,03

1235,76 1235,80 1235,79 1235,80 1273,63 1273,63 1273,62 1273,63 1337,81 1337,80 1337,80 1337,80 1358,11 1358,12 1358,11 1358,11 1373,50 1373,51 1373,51 1373,50 1473,40 1473,40 1473,41 1473,40 1573,42 1573,42 1573,42 1573,42 1673,59 1673,59 1673,59 1673,59 1773,38 1773,38 1773,37 1773,37 1873,27 1873,26 1873,26 1873,25 1972,81 1972,81 1972,80 1972,80

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-1,5 -1,4 -1,7 -1,6 -1,5 -1,2 -1,7 -1,6

1 0,9 0,9 0,9 0,5 0,4 0,6 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,81 963,84 963,84 963,84

1001,76 1001,76 1001,74 1001,76 1066,07 1066,06 1066,07 1066,07 1086,43 1086,44 1086,42 1086,42 1101,85 1101,86 1101,86 1101,85 1201,99 1202,00 1202,00 1202,00 1302,28 1302,28 1302,29 1302,28 1402,76 1402,75 1402,75 1402,75 1502,86 1502,86 1502,86 1502,85 1603,09 1603,08 1603,08 1603,08 1703,00 1703,00 1703,00 1703,00

Table 8: Run three on lamp C681 with reference wavelength 650 nm. Measured on 06-07-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (46 ± 10) %.(3001998.18)

Page 240: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 11

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,5105 5,5106 5,5105 5,5105 5,8225 5,8224 5,8223 5,8223 6,3989 6,3988 6,3988 6,3988 6,5938 6,5937 6,5936 6,5936 6,7444 6,7443 6,7443 6,7442 7,7957 7,7957 7,7957 7,7957 8,9468 8,9467 8,9466 8,9466

10,1820 10,1820 10,1820 10,1819 11,4877 11,4878 11,4877 11,4876 12,8508 12,8506 12,8504 12,8504 14,2735 14,2732 14,2731 14,2730

20,023 20,030 20,020 20,023 20,040 20,047 20,039 20,041 19,959 19,956 19,955 19,957 19,976 19,963 19,974 19,975 19,968 19,965 19,977 19,970 20,014 20,009 20,005 20,007 20,069 20,060 20,071 20,071 20,023 20,013 20,011 20,027 19,980 19,977 19,974 19,978 20,042 20,044 20,037 20,036 20,016 20,009 20,009 20,010

1,0108 1,0103 1,0103 1,0105 1,7081 1,7074 1,7077 1,7073 3,8708 3,8711 3,8706 3,8710 4,9382 4,9384 4,9378 4,9378 5,9064 5,9061 5,9061 5,9050

17,3147 17,3148 17,3154 17,3157 44,2186 44,2183 44,2174 44,2174 101,169 101,170 101,168 101,169 210,828 210,829 210,826 210,823 404,867 404,864 404,864 404,856 728,468 728,436 728,449 728,418

1,0115 1,0110 1,0111 1,0112 1,7093 1,7087 1,7090 1,7085 3,8736 3,8740 3,8735 3,8738 4,9418 4,9421 4,9414 4,9415 5,9107 5,9105 5,9105 5,9094

17,3275 17,3276 17,3283 17,3285 44,2513 44,2511 44,2502 44,2502 101,244 101,245 101,243 101,243 210,984 210,986 210,982 210,979 405,167 405,163 405,163 405,156 729,007 728,975 728,988 728,957

1300,34 1300,31 1300,31 1300,32 1342,60 1342,57 1342,58 1342,56 1414,27 1414,28 1414,27 1414,28 1437,12 1437,13 1437,11 1437,11 1454,39 1454,39 1454,39 1454,37 1567,62 1567,62 1567,63 1567,63 1681,85 1681,84 1681,84 1681,84 1797,55 1797,55 1797,55 1797,55 1914,48 1914,49 1914,48 1914,48 2032,06 2032,06 2032,06 2032,05 2151,08 2151,07 2151,07 2151,06

1235,73 1235,70 1235,70 1235,71 1273,68 1273,66 1273,67 1273,65 1337,74 1337,75 1337,74 1337,75 1358,07 1358,08 1358,07 1358,07 1373,42 1373,42 1373,42 1373,40 1473,43 1473,43 1473,43 1473,44 1573,30 1573,30 1573,29 1573,29 1673,41 1673,41 1673,41 1673,41 1773,53 1773,53 1773,53 1773,53 1873,12 1873,12 1873,12 1873,12 1972,84 1972,83 1972,83 1972,83

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-1,4 -1,9 -1,2 -1,4 -1,7 -2

-1,6 -1,7 0,9 0,9 0,9 0,9 0,4 0,6 0,4 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963,78 963,74 963,75 963,76

1001,81 1001,78 1001,79 1001,77 1066,01 1066,01 1066,00 1066,01 1086,39 1086,39 1086,38 1086,38 1101,77 1101,76 1101,76 1101,75 1202,03 1202,03 1202,03 1202,03 1302,16 1302,16 1302,16 1302,16 1402,58 1402,58 1402,57 1402,58 1503,01 1503,01 1503,01 1503,01 1602,94 1602,94 1602,94 1602,94 1703,03 1703,02 1703,03 1703,02

Table 9: Run four on lamp C681 with reference wavelength 650 nm. Measured on 07-07-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001998.19)

Page 241: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 12

Table 10 presents the final results of the calibration on lamp C564. The results were calculated witha polynomial fit; t = 3ai·Ln(I)i with i = 0..5. Because of the large drift between run one and two anadditional run was measured. The final results were calculated with run two and three.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

4,480 4,721 5,169 5,322 5,441 6,272 7,194 8,189 9,242 10,347 11,502

963,93 1001,95 1066,08 1086,48 1101,91 1201,80 1301,86 1402,19 1502,46 1602,75 1703,20

964,00 1002,04 1066,17 1086,57 1102,00 1201,88 1301,96 1402,31 1502,59 1602,87 1703,32

964,04 1002,05 1066,20 1086,60 1102,03 1201,90 1301,98 1402,32

-0,07 -0,09 -0,09 -0,09 -0,09 -0,08 -0,10 -0,12 -0,13 -0,12 -0,12

-0,04 -0,01 -0,03 -0,03 -0,03 -0,02 -0,02 -0,01

964,02 1002,05 1066,19 1086,59 1102,02 1201,89 1301,97 1402,32 1502,59 1602,87 1703,32

0,02 0,01 0,02 0,01 0,02 0,01 0,01 0,00

Table 10: Final results C564 with reference wavelength 650 nm.

Table 11 presents the final results of the calibration on lamp C681. The results were calculated witha polynomial fit; t = 3ai·Ln(I)i with i = 0..5. The final temperature is the average over runs two tofour. Run one is rejected because of the large drift (-0,5 K at 1700 °C).

tnominal

[°C]

Ilamp

[A]

tR,8run 2

[°C]

tR,8run 3

[°C]

tR,8run 4

[°C]

ªtrun 2,3

[°C]

ªtrun 3,4

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

5,508 5,822 6,399 6,594 6,745 7,795 8,948 10,183 11,487 12,852 14,273

963.39 1001.73 1066.07 1086.45 1101.85 1201.97 1302.33 1402.70 1502.93 1603.03 1703.16

963.45 1001.72 1066.05 1086.44 1101.85 1201.96 1302.28 1402.66 1502.99 1603.16 1703.06

963.44 1001.73 1066.04 1086.42 1101.83 1201.94 1302.29 1402.66 1502.94 1603.06 1703.01

-0.06 0.01 0.02 0.01 0.00 0.01 0.05 0.04 -0.06 -0.13 0.10

0.01 -0.01 0.01 0.02 0.02 0.02 -0.01 0.00 0.05 0.10 0.05

963.43 1001.73 1066.05 1086.44 1101.84 1201.96 1302.30 1402.67 1502.95 1603.08 1703.08

0.03 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.06 0.06

Table 11: Final results C681 with reference wavelength 650 nm.

Page 242: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 13

Table 12 and figure 1 present the drift of lamp C564 and C681 since the initial measurements in1997.

C564 C681

tnominal

[°C]

tR,8

final 1997 [°C]

tR,8

final 1998 [°C]

ªt

[°C]

tnominal

[°C]

tR,8

final 1997 [°C]

tR,8final 1998

[°C]

ªt

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

964.05 1002.08 1066.21 1086.60 1102.04 1201.91 1301.99 1402.32 1502.58 1602.85 1703.31

964,02 1002,05 1066,19 1086,59 1102,02 1201,89 1301,97 1402,32 1502,59 1602,87 1703,32

0.03 0.04 0.03 0.01 0.03 0.02 0.02 0.00 -0.01 -0.02 -0.01

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

963.55 1001.81 1066.13 1086.52 1101.92 1202.04 1302.38 1402.72 1503.01 1603.13 1703.01

963.43 1001.73 1066.05 1086.44 1101.84 1201.96 1302.30 1402.67 1502.95 1603.08 1703.08

0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.04 0.05 0.04 -0.07

Table 12: Drift of lamps C564 and C681 since initial measurements

-0.10

-0.05

0.00

0.05

0.10

0.15

Drif

t /°C

800 1000 1200 1400 1600 1800 Temperature /°C

C564 C681

Figure 1 Drift of lamps C564 and C681 since initialmeasurements

Page 243: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 14

Table 13 presents the uncertainty for the scale realization at 650 nm.

Source of uncertainty Type Uncertainty (2F) /°C

tAg tAu 1300 °C 1500 °C 1700 °C

Fixed point

Realization of fixed point B 0,017 0,020 0,027 0,035 0,043

Emissivity of fixed point B 0,001 0,001 0,001 0,001 0,002

Pyrometer

Response A 0,016 0,013 0,017 0,022 0,027

Linearity B 0,002 0,002 0,003 0,004 0,005

SSE B 0,003 0,003 0,005 0,006 0,007

Wavelength B 0,000 0,008 0,033 0,059 0,089

Drift B 0,030 0,035 0,049 0,062 0,077

Lamp

Positioning B 0,105 0,123 0,171 0,217 0,268

Current A 0,109 0,106 0,117 0,135 0,154

Emissivity B 0,006 0,007 0,010 0,012 0,015

Transmission of window B 0,001 0,001 0,002 0,002 0,003

Quality of polynomial fit A 0,052

Total (2F) 0,17 0,18 0,22 0,28 0,34

Total (1F) 0,09 0,09 0,11 0,14 0,17

Table 13: Uncertainty in scale realization at 650 nm

Page 244: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 15

Results of Measurement of ambient resistance of lamp

Table 14 presents the results of the ambient resistance measurements.

Lamp Resistance[mS]

Temperature[°C]

C564 - before 40,2936 ± 0,00440,3376 ± 0,004

23,36 ± 0,0223,67 ± 0,02

C564 - after 40,3826 ± 0,004 23,88 ± 0,02

C681 - before 34,3526 ± 0,00434,4336 ± 0,004

22,97 ± 0,0223,59 ± 0,02

C681 - after 34,4046 ± 0,00434,4546 ± 0,004

23,65 ± 0,0224,02 ± 0,02

Table 14: Ambient resistance measurements of lamp C564 and C681.

Page 245: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. 2nd measurements on C564 and C681 NMi/VSL 16

References

[1] CCT - Key comparison : Comparison of the Local Realizations of the ITS-90 between Silverpoint and 1700 °CInitial measurements on C564, C681 and C680NMi/VSL - contributionMarch 1999Not published.

[2] Protocol to the comparison of local realizations of the ITS-90 between the silver point and1700 °C using vacuum tungsten-strip lamps as transfer standards.Not published.

Page 246: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 1

CCT - Key comparison :Comparison of the Local Realizations of theITS-90 between Silver point and 1700 °C

Measurements on C860 and C864 (Set II)

NMi/VSL - contributionMarch 1999

R. BosmaE.W.M. van der Ham

Page 247: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 2

This report describes the measurements from NMi/VSL on the NPL-lamp set for the CCT project‘Comparison of the Local Realizations of the ITS-90 between Silver point and 1700 °C’. Before thelamps were measured at NMi/VSL they were in chronologically order measured by NPL (UK), NIST(USA), CENAM (Mexico), NPL (UK), INM (France) and IMGC (Italy). The measurements at theselaboratories were performed in period from July 1997 to November 1998.

Contents

Description of the scale realisation and lamp setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Description of the measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Stability check on the lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Effects of lamp positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Spectral sensitivity of pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Size-of-source effect from pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Linearity of pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Results of lamp selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Results of transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Results of scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Results of Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Page 248: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 3

Description of the scale realisation and lamp setup.

The measurements were performed with the same setup as used for the initial measurements [1].For the spectral sensitivity, the size-of-source-effect and the linearity the same calibration valueswere used as with the initial measurements. Only the transfer of the fixed point values wasmeasured again.

Description of the measurements

Stability check on the lamps

According to the Protocol [2] a initial check was made to see if there was mechanical stress presentin the strip. The lamp current and temperature were measured at the silver point current. After thelamp was operated at the 1700 °C- current for one hour, the current was again adjusted to thesilver point. After about 30 minutes the current and temperature were measured. The difference intemperature, corrected for the current difference, should be smaller than 0,25 K.

Effects of lamp positioning

To check the quality of the lamp and possible interreflections between the lamp and the pyrometerthe influence of position in the three planes and the angular rotation were measured. Thesemeasurements were used in the uncertainty budget for the lamps temperatures. The measurementswere preformed at approximately 1500 °C.

Scale realization on lamp

The scale realization was performed at 650 nm and 950 nm.

Measurement of ambient resistance of lamp

The ambient resistance of the lamps was measured before and after all measurements. The samesetup was used as described in the initial measurements [1].

Page 249: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 4

Results

Results of stability check on lamp

The lamps were tested on stability. Table 1 presents the results.

Lamp identification Drift after stabilisation /K

C860 - first run -0,03

C864 - first run 0,26

Table 1 : Stability test of lamps

The drift of both lamps was within the value stated in the protocol [2].

Results of lamp positioning

Figure 1 to 4 present the results of the position measurements on lamp C860.

-70

-60 -50

-40 -30

-20 -10

0

10

Res

pons

e /%

-1.2 -0.8 -0.4 0.0 0.4 0.8 Position /mm

Figure 1 Horizontal position of C860;(0,0) is normal position

0

1

2

3

4

5

Res

pons

e /%

-5 0 5 10 15 Position /mm

Figure 2 Vertical position of C860; (0,0) isnormal position

Page 250: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 5

-0.025

-0.020

-0.015

-0.010

-0.005

0.000 R

espo

nse

/%

-3 -2 -1 0 1 2 3 Position /mm

Figure 3 Focus position of C860; (0,0) isnormal position

-0.05

0.00

0.05

0.10

0.15

0.20

Res

pons

e / %

-10 -5 0 5 10 Position /°

Figure 4 Angular rotation (vertical axis)of C860; (0,0) is normal position

Figure 5 to 8 present the results of the position measurements on lamp C860.

-90

-70

-50

-30

-10

10

Res

pons

e /%

-1 -0.5 0 0.5 1 1.5 Position /mm

Rel. response

Figure 5 Horizontal position of C864;(0,0) is normal position

-6

-5

-4

-3

-2

-1

0

1 R

espo

nse

/%

-5 0 5 10 15 Position /mm

Figure 6 Vertical position of C864; (0,0) isnormal position

Page 251: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 6

-8

-6

-4

-2

0

2 R

espo

nse

/%

-8 -6 -4 -2 0 2 4 Position /mm

Figure 7 Focus position of C864; (0,0) isnormal position

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Res

pons

e /%

-10 -5 0 5 10 Position /°

Figure 8 Angular rotation (vertical axis)of C864; (0,0) is normal position

Table 2 presents the uncertainties obtained from the position measurements for the lamps.

Position Adjustment accuracy Uncertainties in percentage of response /%

C860 C864

Horizontal 0,1 mm 0,02 0,03

Vertical 0,1 mm 0,02 0,03

Focus 0,5 mm 0,0 0,0

Angular (vertical axis) 1 ° 0,05 0,03

Combined uncertainty 0,06 0,05

Table 2: Position uncertainties of lamp

Results of transfer of fixed point onto pyrometer

Table 3 presents the results of the fixed point transfer onto the pyrometer.

Filter Fixed pointresponse

[mV]

Uncertainty

[mV]

Date Drift afterprevious transfer

[mK/month]

661 nm 7,734898 0,002 03-12-1998 123

959 nm 34,13964 0,007 04-12-1998 -0,2

Table 3: Fixed point transfer to pyrometer

The measurements with the 661 nm setup were completed within two weeks after the fixed pointtransfer. The drift in the fixed point realizations was used as an additional uncertainty.

Page 252: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 7

Results of scale realization on lamp

In the tables 4 to 11 the following measured or calculated values are presented according to theprotocol:í the measured lamp currentí the measured base temperature of the lampí the ratio of the measured photo current at the lamp and the fixed pointí the ratio of the photo current corrected for size-of-source effect and linearityí the calculated true temperatureí the calculated radiance temperature of the lampí the calculated effective wavelength of the pyrometerí the correction due to the deviation of the base temperature from 20 °Cí the spectral radiance temperature given at reference wavelength

Page 253: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 8

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,0702 5,0702 5,0701 5,0701 5,3788 5,3787 5,3788 5,3788 5,9442 5,9441 5,9442 5,9441 6,1403 6,1402 6,1402 6,1401 6,2840 6,2839 6,2838 6,2838 7,2980 7,2980 7,2980 7,2980 8,3971 8,3968 8,3969 8,3969 9,5671 9,5669 9,5666 9,5660

10,8015 10,8030 10,8030 10,7997 12,1009 12,1020 13,4421 13,4423 13,4425 13,4428

19,975 19,984 19,978 19,977 19,986 19,985 19,985 19,978 20,000 20,002 20,010 19,999 20,009 20,009 20,005 20,007 19,924 19,919 19,918 19,924 19,964 19,956 19,965 19,975 20,019 20,022 20,020 20,018 19,970 19,964 19,964 19,964 20,037 20,040 20,033 20,030 20,016 20,007 20,104 20,101 20,096 20,096

0,9861 0,9868 0,9867 0,9868 1,6726 1,6732 1,6729 1,6730 3,8002 3,8005 3,8006 3,8003 4,8860 4,8856 4,8860 4,8861 5,8231 5,8223 5,8228 5,8225

17,0706 17,0716 17,0715 17,0722 43,6304 43,6267 43,6240 43,6253 99,6702 99,6565 99,6331 99,6084 207,367 207,549 207,566 207,325 400,666 400,535 718,243 718,361 718,366 718,432

0,9868 0,9875 0,9875 0,9876 1,6738 1,6745 1,6742 1,6742 3,8030 3,8033 3,8034 3,8031 4,8896 4,8892 4,8896 4,8897 5,8274 5,8266 5,8271 5,8268

17,0832 17,0842 17,0841 17,0849 43,6627 43,6590 43,6563 43,6576 99,7440 99,7303 99,7069 99,6821 207,520 207,703 207,719 207,479 400,962 400,832 718,775 718,893 718,898 718,964

1298,42 1298,47 1298,47 1298,48 1340,85 1340,88 1340,87 1340,87 1412,58 1412,58 1412,59 1412,58 1436,11 1436,10 1436,11 1436,11 1453,01 1452,99 1453,00 1453,00 1566,01 1566,02 1566,02 1566,02 1680,10 1680,08 1680,08 1680,08 1795,32 1795,30 1795,26 1795,23 1911,68 1911,83 1911,84 1911,65 2030,06 2030,00 2148,05 2148,08 2148,08 2148,10

1234,00 1234,05 1234,05 1234,05 1272,12 1272,15 1272,14 1272,14 1336,23 1336,24 1336,24 1336,23 1357,17 1357,17 1357,17 1357,18 1372,19 1372,18 1372,19 1372,18 1472,01 1472,02 1472,02 1472,02 1571,78 1571,77 1571,76 1571,76 1671,49 1671,48 1671,45 1671,42 1771,14 1771,27 1771,28 1771,11 1871,44 1871,39 1970,31 1970,34 1970,34 1970,36

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,97 660,97 660,97 660,97

1,2 0,8 1,1 1,1 0,4 0,5 0,5 0,7 0 0

-0,2 0

-0,1 -0,1 -0,1 -0,1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

962,04 962,09 962,09 962,09

1000,24 1000,27 1000,26 1000,26 1064,49 1064,50 1064,50 1064,49 1085,48 1085,48 1085,48 1085,49 1100,53 1100,52 1100,53 1100,53 1200,61 1200,61 1200,61 1200,62 1300,64 1300,63 1300,62 1300,62 1400,65 1400,63 1400,60 1400,57 1500,62 1500,74 1500,76 1500,59 1601,26 1601,21 1700,50 1700,53 1700,53 1700,54

Table 4: Run one on lamp C860 with reference wavelength 650 nm. Measured on 08-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (42 ± 10) %.(3001998.31)

Page 254: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 9

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5,0720 5,0724 5,0727 5,0729 5,3786 5,3790 5,3793 5,3796 5,9434 5,9434 5,9434 5,9434 6,1404 6,1408 6,1411 6,1414 6,2832 6,2835 6,2837 6,2839 7,2964 7,2967 7,2969 7,2970 9,5678 9,5680 9,5682 9,5684

10,8035 10,8037 10,8039 10,8040 12,0991 12,0989 12,0988 12,0988 13,4445 13,4446 13,4447 13,4447

19,970 19,974 19,980 19,977 19,981 19,987 19,979 19,977 20,015 20,016 20,016 20,008 20,005 20,006 20,013 20,015 20,010 20,009 20,017 20,010 19,971 19,967 19,969 19,978 19,964 19,965 19,959 19,964 20,023 20,036 20,035 20,034 20,017 20,008 20,009 20,013 20,003 19,988 19,999 20,005

0,9917 0,9915 0,9919 0,9924 1,6734 1,6736 1,6742 1,6751 3,7928 3,7932 3,7935 3,7932 4,8914 4,8914 4,8920 4,8918 5,8220 5,8218 5,8214 5,8209

17,0549 17,0545 17,0534 17,0528 99,7189 99,7183 99,7193 99,7176 207,677 207,677 207,676 207,674 399,802 399,794 399,800 399,793 718,930 718,916 718,905 718,907

0,9924 0,9922 0,9927 0,9931 1,6747 1,6748 1,6754 1,6763 3,7956 3,7961 3,7963 3,7960 4,8950 4,8950 4,8956 4,8954 5,8263 5,8261 5,8258 5,8252

17,0675 17,0671 17,0660 17,0655 99,7928 99,7921 99,7931 99,7915 207,831 207,831 207,829 207,828 400,098 400,090 400,096 400,089 719,462 719,448 719,437 719,439

1298,86 1298,84 1298,88 1298,91 1340,90 1340,90 1340,93 1340,98 1412,40 1412,41 1412,41 1412,41 1436,21 1436,21 1436,22 1436,22 1452,99 1452,99 1452,98 1452,97 1565,91 1565,91 1565,90 1565,89 1795,39 1795,39 1795,39 1795,39 1911,93 1911,93 1911,93 1911,93 2029,65 2029,65 2029,65 2029,65 2148,25 2148,25 2148,24 2148,24

1234,39 1234,38 1234,41 1234,45 1272,16 1272,17 1272,19 1272,23 1336,07 1336,08 1336,08 1336,08 1357,27 1357,27 1357,28 1357,27 1372,17 1372,17 1372,17 1372,16 1471,92 1471,92 1471,91 1471,91 1671,56 1671,56 1671,56 1671,56 1771,36 1771,36 1771,36 1771,36 1871,09 1871,09 1871,09 1871,09 1970,48 1970,48 1970,48 1970,48

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

1,4 1,2 1

1,1 0,6 0,4 0,7 0,7 -0,2 -0,2 -0,2 -0,1 -0,1 -0,1 -0,2 -0,2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

962,44 962,42 962,45 962,49

1000,28 1000,29 1000,31 1000,35 1064,33 1064,34 1064,35 1064,34 1085,58 1085,58 1085,59 1085,58 1100,52 1100,51 1100,51 1100,50 1200,52 1200,51 1200,51 1200,50 1400,71 1400,71 1400,72 1400,71 1500,83 1500,83 1500,83 1500,83 1600,91 1600,91 1600,91 1600,91 1700,67 1700,67 1700,66 1700,66

Table 5: Run two on lamp C860 with reference wavelength 650 nm. Measured on 09-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001998.13)

Page 255: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 10

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

5,0742 5,0741 5,0741 5,0740 5,3802 5,3802 5,3802 5,3801 5,9440 5,9439 5,9439 5,9439 6,1407 6,1407 6,1406 6,1406 6,2834 6,2833 6,2833 6,2833 7,2981 7,2981 7,2981 7,2981 8,3976 8,3976 8,3976 8,3976 9,5686 9,5685 9,5684 9,5684

10,8058 10,8055 10,8056 10,8056 12,0985 12,0985 12,0984 12,0984 13,4440 13,4442 13,4443 13,4445

19,970 19,971 19,975 19,969 19,983 19,983 19,983 19,979 20,008 20,003 20,005 20,003 20,017 20,015 20,013 20,020 19,912 19,907 19,913 19,915 19,973 19,965 19,964 19,966 20,004 20,004 20,011 20,013 19,971 19,969 19,976 19,968 20,039 20,039 20,037 20,044 20,012 20,000 19,997 19,995 19,994 19,995 19,996 19,999

0,6451 0,6451 0,6453 0,6452 0,9228 0,9227 0,9228 0,9228 1,6163 1,6163 1,6164 1,6163 1,9212 1,9212 1,9211 1,9211 2,1647 2,1648 2,1648 2,1648 4,5251 4,5250 4,5253 4,5255 8,6083 8,6083 8,6084 8,6085

15,1603 15,1603 15,1602 15,1600 25,0751 25,0751 25,0746 25,0746 39,2486 39,2483 39,2483 39,2480 58,6841 58,6855 58,6882 58,6879

0,6455 0,6456 0,6457 0,6456 0,9234 0,9233 0,9235 0,9235 1,6175 1,6174 1,6176 1,6175 1,9225 1,9226 1,9225 1,9225 2,1662 2,1663 2,1664 2,1663 4,5283 4,5282 4,5285 4,5287 8,6144 8,6144 8,6146 8,6146

15,1710 15,1711 15,1709 15,1708 25,0929 25,0929 25,0924 25,0924 39,2764 39,2761 39,2761 39,2758 58,7257 58,7271 58,7298 58,7295

1292,41 1292,42 1292,44 1292,42 1333,86 1333,84 1333,86 1333,86 1404,42 1404,42 1404,43 1404,42 1427,72 1427,72 1427,71 1427,71 1444,27 1444,27 1444,27 1444,27 1555,77 1555,77 1555,78 1555,79 1668,25 1668,25 1668,25 1668,25 1781,76 1781,76 1781,76 1781,76 1896,66 1896,66 1896,65 1896,65 2012,34 2012,34 2012,34 2012,33 2129,06 2129,07 2129,08 2129,08

1192,02 1192,02 1192,04 1192,03 1226,89 1226,88 1226,90 1226,89 1285,79 1285,78 1285,79 1285,79 1305,10 1305,10 1305,09 1305,10 1318,78 1318,78 1318,79 1318,78 1410,10 1410,10 1410,10 1410,11 1500,72 1500,72 1500,72 1500,73 1590,68 1590,68 1590,68 1590,68 1680,22 1680,22 1680,22 1680,22 1768,87 1768,87 1768,87 1768,86 1856,81 1856,81 1856,82 1856,82

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

n.a. 920,13 920,14 920,16 920,15 955,08 955,06 955,08 955,08

1014,09 1014,09 1014,10 1014,09 1033,44 1033,44 1033,44 1033,44 1047,15 1047,15 1047,16 1047,16 1138,66 1138,66 1138,67 1138,68 1229,49 1229,49 1229,50 1229,50 1319,66 1319,66 1319,66 1319,66 1409,43 1409,43 1409,42 1409,42 1498,30 1498,30 1498,30 1498,30 1586,47 1586,48 1586,49 1586,48

Table 6: Run one on lamp C860 with reference wavelength 950 nm. Measured on 10-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001998.33)

Page 256: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 11

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

5,0734 5,0733 5,0733 5,0733 5,3802 5,3802 5,3802 5,3801 5,9439 5,9438 5,9438 5,9437 6,1410 6,1409 6,1409 6,1408 6,2842 6,2841 6,2841 6,2840 6,2840 7,2980 7,2980 7,2980 7,2979 8,3978 8,3977 8,3977 8,3976 9,5700 9,5701 9,5701 9,5702

10,8048 10,8048 10,8049 10,8048 12,0989 12,0990 12,0990 12,0988 13,4458 13,4454 13,4449 13,4446

19,970 19,976 19,972 19,974 19,979 19,981 19,983 19,982 20,004 19,998 20,002 20,003 20,012 20,010 20,011 20,018 19,915 19,914 19,919 19,919 19,919 19,961 19,955 19,959 19,956 20,013 20,000 20,001 20,005 19,968 19,968 19,964 19,962 20,033 20,038 20,031 20,039 19,998 20,000 20,002 20,003 19,999 19,988 19,987 19,988

0,6442 0,6444 0,6442 0,6443 0,9227 0,9226 0,9226 0,9226 1,6157 1,6157 1,6158 1,6158 1,9211 1,9212 1,9211 1,9212 2,1655 2,1655 2,1655 2,1654 2,1654 4,5238 4,5239 4,5237 4,5238 8,6067 8,6067 8,6067 8,6066

15,1697 15,1705 15,1709 15,1716 25,0600 25,0610 25,0619 25,0623 39,2424 39,2442 39,2450 39,2442 58,6940 58,6949 58,6870 58,6861

0,6447 0,6449 0,6447 0,6448 0,9234 0,9232 0,9233 0,9233 1,6168 1,6169 1,6169 1,6169 1,9224 1,9225 1,9224 1,9225 2,1670 2,1670 2,1671 2,1669 2,1669 4,5270 4,5271 4,5270 4,5270 8,6129 8,6128 8,6128 8,6127

15,1804 15,1813 15,1816 15,1824 25,0777 25,0788 25,0797 25,0801 39,2702 39,2720 39,2729 39,2720 58,7356 58,7365 58,7286 58,7277

1292,26 1292,29 1292,26 1292,27 1333,85 1333,83 1333,84 1333,84 1404,37 1404,37 1404,38 1404,37 1427,71 1427,71 1427,71 1427,71 1444,32 1444,31 1444,32 1444,31 1444,31 1555,72 1555,73 1555,72 1555,72 1668,21 1668,21 1668,21 1668,21 1781,89 1781,91 1781,91 1781,92 1896,51 1896,52 1896,53 1896,53 2012,30 2012,31 2012,31 2012,31 2129,11 2129,11 2129,07 2129,07

1191,89 1191,92 1191,89 1191,90 1226,88 1226,87 1226,87 1226,87 1285,74 1285,74 1285,75 1285,75 1305,09 1305,10 1305,09 1305,10 1318,82 1318,82 1318,82 1318,81 1318,82 1410,06 1410,06 1410,06 1410,06 1500,69 1500,69 1500,69 1500,69 1590,78 1590,79 1590,80 1590,81 1680,11 1680,12 1680,12 1680,13 1768,84 1768,84 1768,85 1768,84 1856,85 1856,85 1856,82 1856,82

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

n.a. 920,01 920,04 920,00 920,02 955,07 955,05 955,06 955,06

1014,05 1014,05 1014,05 1014,05 1033,43 1033,44 1033,43 1033,44 1047,19 1047,19 1047,19 1047,19 1047,19 1138,63 1138,63 1138,63 1138,63 1229,47 1229,47 1229,46 1229,46 1319,77 1319,78 1319,78 1319,79 1409,31 1409,32 1409,33 1409,33 1498,27 1498,27 1498,28 1498,27 1586,51 1586,51 1586,48 1586,48

Table 7: Run two on lamp C860 with reference wavelength 950 nm. Measured on 11-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001998.34)

Page 257: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 12

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,9345 4,9344 4,9343 4,9344 5,2360 5,2359 5,2358 5,2359 5,7880 5,7879 5,7879 5,7879 5,9799 5,9798 5,9797 5,9797 6,1199 6,1198 6,1198 6,1197 7,1074 7,1073 7,1073 7,1073 8,1765 8,1764 8,1763 8,1763 9,3130 9,3129 9,3130 9,3129

10,5137 10,5136 10,5136 10,5136 11,7673 11,7672 11,7672 11,7671 13,0738 13,0734 13,0732 13,0733

20,061 20,058 20,063 20,072 19,962 19,957 19,958 19,961 19,988 19,982 19,987 19,991 19,993 19,990 19,983 19,995 19,995 19,992 19,990 19,990 20,021 20,034 20,028 20,027 19,964 19,965 19,955 19,960 20,001 20,004 20,001 20,001 19,942 19,940 19,939 19,936 19,982 19,980 19,986 19,975 20,042 20,036 20,024 20,026

0,9893 0,9896 0,9903 0,9903 1,6714 1,6713 1,6715 1,6708 3,7876 3,7876 3,7884 3,7874 4,8728 4,8739 4,8737 4,8735 5,8070 5,8068 5,8070 5,8065

17,0345 17,0344 17,0344 17,0341 43,5653 43,5655 43,5646 43,5651 99,5334 99,5313 99,5307 99,5329 207,440 207,442 207,439 207,439 399,034 399,042 399,050 399,070 718,207 718,179 718,104 718,137

0,9900 0,9904 0,9911 0,9910 1,6727 1,6725 1,6727 1,6720 3,7904 3,7904 3,7912 3,7902 4,8765 4,8775 4,8773 4,8771 5,8113 5,8111 5,8113 5,8108

17,0471 17,0470 17,0470 17,0467 43,5975 43,5978 43,5969 43,5974 99,6071 99,6050 99,6044 99,6066 207,594 207,595 207,593 207,593 399,330 399,337 399,345 399,366 718,739 718,710 718,635 718,669

1298,67 1298,70 1298,75 1298,75 1340,80 1340,79 1340,80 1340,76 1412,27 1412,27 1412,29 1412,27 1435,85 1435,87 1435,87 1435,86 1452,74 1452,73 1452,74 1452,73 1565,77 1565,77 1565,77 1565,77 1679,90 1679,90 1679,90 1679,90 1795,12 1795,11 1795,11 1795,11 1911,74 1911,74 1911,74 1911,74 2029,28 2029,29 2029,29 2029,30 2148,04 2148,03 2148,01 2148,02

1234,23 1234,25 1234,30 1234,30 1272,07 1272,06 1272,07 1272,04 1335,96 1335,96 1335,97 1335,95 1356,95 1356,96 1356,96 1356,96 1371,95 1371,95 1371,95 1371,94 1471,80 1471,80 1471,80 1471,80 1571,61 1571,61 1571,60 1571,61 1671,32 1671,32 1671,32 1671,32 1771,19 1771,19 1771,19 1771,19 1870,78 1870,79 1870,79 1870,80 1970,31 1970,30 1970,28 1970,29

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

-2,6 -2,4 -2,7 -3 1,1 1,2 1,2 1,1 0,1 0,2 0,2 0,1 0,1 0,1 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

962,27 962,29 962,34 962,34

1000,19 1000,18 1000,19 1000,16 1064,22 1064,22 1064,24 1064,21 1085,26 1085,27 1085,27 1085,27 1100,29 1100,29 1100,30 1100,29 1200,40 1200,40 1200,40 1200,39 1300,47 1300,47 1300,47 1300,47 1400,47 1400,47 1400,47 1400,47 1500,67 1500,67 1500,67 1500,67 1600,60 1600,60 1600,61 1600,61 1700,49 1700,48 1700,46 1700,47

Table 8: Run one on lamp C864 with reference wavelength 650 nm. Measured on 16-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001998.35)

Page 258: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 13

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,9347 4,9346 4,9345 4,9346 5,2361 5,2360 5,2360 5,2360 5,7876 5,7876 5,7876 5,7876 5,9790 5,9790 5,9790 5,9789 6,1189 6,1188 6,1188 6,1188 7,1069 7,1070 7,1070 7,1070 8,1761 8,1761 8,1762 8,1762 9,3130 9,3129 9,3130 9,3130

10,5121 10,5121 10,5121 10,5122 11,7666 11,7664 11,7662 11,7661 13,0734 13,0732 13,0728 13,0728

19,956 19,950 19,959 19,951 19,981 19,978 19,974 19,981 19,986 19,983 19,993 19,998 20,010 20,011 20,002 20,003 20,009 20,003 20,013 20,011 19,933 19,934 19,936 19,935 19,971 19,967 19,965 19,966 20,005 20,004 20,004 19,996 19,957 19,961 19,946 19,947 19,993 19,986 19,985 19,985 20,035 20,035 20,029 20,031

0,9902 0,9911 0,9910 0,9910 1,6729 1,6726 1,6720 1,6724 3,7878 3,7878 3,7875 3,7877 4,8712 4,8718 4,8710 4,8711 5,8036 5,8031 5,8031 5,8043

17,0342 17,0344 17,0346 17,0349 43,5735 43,5751 43,5743 43,5744 99,5593 99,5594 99,5567 99,5610 207,336 207,315 207,315 207,321 398,930 398,922 398,913 398,906 718,144 718,127 718,033 717,996

0,9910 0,9919 0,9918 0,9917 1,6742 1,6738 1,6732 1,6736 3,7906 3,7906 3,7903 3,7905 4,8748 4,8754 4,8746 4,8747 5,8079 5,8074 5,8074 5,8086

17,0468 17,0470 17,0472 17,0475 43,6058 43,6074 43,6066 43,6067 99,6330 99,6331 99,6304 99,6347 207,489 207,468 207,468 207,475 399,225 399,217 399,208 399,202 718,675 718,659 718,564 718,528

1298,74 1298,82 1298,81 1298,80 1340,87 1340,85 1340,82 1340,84 1412,28 1412,28 1412,27 1412,27 1435,82 1435,83 1435,82 1435,82 1452,68 1452,67 1452,67 1452,69 1565,77 1565,77 1565,77 1565,78 1679,93 1679,93 1679,93 1679,93 1795,15 1795,15 1795,15 1795,16 1911,65 1911,64 1911,64 1911,64 2029,23 2029,23 2029,23 2029,22 2148,02 2148,01 2147,98 2147,97

1234,29 1234,36 1234,35 1234,35 1272,14 1272,12 1272,09 1272,11 1335,96 1335,96 1335,96 1335,96 1356,92 1356,93 1356,91 1356,92 1371,90 1371,89 1371,89 1371,91 1471,80 1471,80 1471,81 1471,81 1571,63 1571,63 1571,63 1571,63 1671,35 1671,35 1671,35 1671,35 1771,12 1771,11 1771,11 1771,11 1870,74 1870,74 1870,73 1870,73 1970,29 1970,29 1970,26 1970,25

661,20 661,20 661,20 661,20 661,17 661,17 661,17 661,17 661,14 661,14 661,14 661,14 661,13 661,13 661,13 661,13 661,12 661,12 661,12 661,12 661,08 661,08 661,08 661,08 661,05 661,05 661,05 661,05 661,02 661,02 661,02 661,02 661,00 661,00 661,00 661,00 660,98 660,98 660,98 660,98 660,97 660,97 660,97 660,97

1,9 2,1 1,7 2,1 0,5 0,6 0,7 0,5 0,2 0,2 0,1 0

-0,1 -0,1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

962,34 962,40 962,39 962,39

1000,26 1000,24 1000,21 1000,23 1064,22 1064,22 1064,22 1064,22 1085,23 1085,24 1085,22 1085,23 1100,24 1100,24 1100,24 1100,25 1200,39 1200,40 1200,40 1200,40 1300,49 1300,49 1300,49 1300,49 1400,51 1400,51 1400,50 1400,51 1500,60 1500,58 1500,58 1500,59 1600,56 1600,55 1600,55 1600,55 1700,47 1700,47 1700,45 1700,44

Table 9: Run two on lamp C864 with reference wavelength 650 nm. Measured on 21-12-1998 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (42 ± 10) %.(3001998.36)

Page 259: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 14

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 950nm

[°C]

4,9345 4,9347 4,9346 4,9346 5,2362 5,2361 5,2360 5,2359 5,7880 5,7880 5,7880 5,7879 5,9796 5,9795 5,9795 5,9794 6,1200 6,1199 6,1200 6,1199 7,1074 7,1074 7,1074 7,1073 8,1771 8,1771 8,1771 8,1771 9,3134 9,3134 9,3134 9,3133

10,5137 10,5136 10,5136 10,5137 11,7653 11,7654 11,7653 11,7654 13,0738 13,0736 13,0734 13,0733

19,973 19,971 19,974 19,973 19,985 19,991 19,993 19,989 19,998 19,989 19,994 20,003 20,000 20,004 19,999 19,990 20,016 20,009 20,011 20,004 20,043 20,037 20,042 20,042 19,972 19,962 19,962 19,974 20,005 20,008 20,013 20,008 19,943 19,937 19,938 19,942 19,982 19,979 19,979 19,987 20,045 20,033 20,032 20,032

0,6421 0,6423 0,6422 0,6421 0,9192 0,9193 0,9194 0,9194 1,6105 1,6104 1,6104 1,6105 1,9132 1,9133 1,9131 1,9132 2,1582 2,1582 2,1583 2,1584 4,5107 4,5109 4,5111 4,5110 8,5856 8,5862 8,5861 8,5864

15,1170 15,1170 15,1176 15,1172 24,9985 24,9984 24,9985 24,9990 39,1012 39,1021 39,1027 39,1030 58,5361 58,5341 58,5332 58,5338

0,6425 0,6428 0,6426 0,6426 0,9199 0,9199 0,9200 0,9200 1,6117 1,6115 1,6115 1,6116 1,9146 1,9146 1,9145 1,9146 2,1598 2,1597 2,1598 2,1600 4,5139 4,5141 4,5143 4,5142 8,5917 8,5922 8,5922 8,5924

15,1277 15,1277 15,1283 15,1279 25,0163 25,0161 25,0162 25,0168 39,1289 39,1298 39,1304 39,1307 58,5776 58,5756 58,5747 58,5753

1291,88 1291,92 1291,90 1291,89 1333,40 1333,40 1333,42 1333,41 1403,94 1403,93 1403,93 1403,94 1427,15 1427,15 1427,14 1427,15 1443,85 1443,84 1443,85 1443,86 1555,25 1555,26 1555,26 1555,26 1667,75 1667,76 1667,76 1667,77 1781,15 1781,15 1781,16 1781,15 1895,91 1895,91 1895,91 1895,92 2011,31 2011,31 2011,32 2011,32 2128,28 2128,27 2128,27 2128,27

1191,58 1191,61 1191,59 1191,58 1226,50 1226,51 1226,52 1226,52 1285,39 1285,38 1285,38 1285,39 1304,63 1304,63 1304,62 1304,63 1318,43 1318,43 1318,43 1318,44 1409,68 1409,68 1409,69 1409,69 1500,33 1500,34 1500,33 1500,34 1590,20 1590,20 1590,21 1590,20 1679,65 1679,65 1679,65 1679,65 1768,09 1768,09 1768,09 1768,09 1856,23 1856,22 1856,22 1856,22

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

n.a. 919,69 919,72 919,70 919,69 954,69 954,69 954,70 954,70

1013,69 1013,68 1013,68 1013,69 1032,97 1032,97 1032,96 1032,97 1046,80 1046,80 1046,81 1046,81 1138,24 1138,25 1138,25 1138,25 1229,10 1229,11 1229,11 1229,11 1319,18 1319,18 1319,19 1319,18 1408,85 1408,85 1408,85 1408,85 1497,51 1497,52 1497,52 1497,52 1585,89 1585,88 1585,88 1585,88

Table 10: Run one on lamp C864 with reference wavelength 950 nm. Measured on 05-01-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001999.01)

Page 260: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 15

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4,9343 4,9343 4,9343 4,9343 5,2358 5,2357 5,2357 5,2357 5,7877 5,7876 5,7876 5,7876 5,9801 5,9802 5,9801 5,9801 6,1197 6,1197 6,1197 6,1196 7,1073 7,1073 7,1073 7,1072 8,1767 8,1766 8,1764 8,1764 9,3140 9,3139 9,3139 9,3139

10,5131 10,5130 10,5131 10,5130 11,7670 11,7669 11,7670 11,7670 13,0740 13,0738 13,0736 13,0735

19,977 19,975 19,982 19,975 19,991 19,986 19,979 19,973 20,001 20,010 19,997 20,000 20,007 20,001 20,003 20,003 20,015 20,001 20,014 20,011 20,036 20,032 20,041 20,036 19,983 19,973 19,975 19,970 20,008 20,007 19,992 20,001 19,941 19,945 19,953 19,947 19,973 19,984 19,985 19,980 20,045 20,044 20,040 20,038

0,6421 0,6421 0,6422 0,6421 0,9193 0,9192 0,9193 0,9192 1,6101 1,6101 1,6102 1,6102 1,9149 1,9147 1,9149 1,9148 2,1582 2,1582 2,1583 2,1583 4,5119 4,5119 4,5121 4,5119 8,5861 8,5860 8,5863 8,5863

15,1240 15,1236 15,1237 15,1238 24,9965 24,9961 24,9972 24,9965 39,1320 39,1329 39,1326 39,1326 58,5505 58,5508 58,5487 58,5487

0,6425 0,6426 0,6426 0,6425 0,9200 0,9199 0,9200 0,9199 1,6113 1,6112 1,6114 1,6114 1,9163 1,9161 1,9163 1,9162 2,1598 2,1597 2,1598 2,1598 4,5151 4,5151 4,5153 4,5151 8,5922 8,5920 8,5924 8,5924

15,1348 15,1343 15,1344 15,1345 25,0142 25,0139 25,0149 25,0142 39,1597 39,1606 39,1603 39,1603 58,5920 58,5923 58,5902 58,5902

1291,88 1291,89 1291,90 1291,88 1333,41 1333,40 1333,41 1333,40 1403,91 1403,91 1403,92 1403,92 1427,27 1427,26 1427,27 1427,26 1443,85 1443,84 1443,85 1443,85 1555,30 1555,30 1555,30 1555,29 1667,76 1667,76 1667,77 1667,77 1781,25 1781,24 1781,24 1781,24 1895,89 1895,89 1895,90 1895,89 2011,52 2011,53 2011,53 2011,53 2128,36 2128,36 2128,35 2128,35

1191,57 1191,58 1191,59 1191,57 1226,52 1226,50 1226,51 1226,51 1285,36 1285,36 1285,37 1285,37 1304,73 1304,72 1304,73 1304,72 1318,43 1318,43 1318,43 1318,44 1409,71 1409,71 1409,72 1409,71 1500,33 1500,33 1500,34 1500,34 1590,28 1590,27 1590,27 1590,27 1679,63 1679,63 1679,64 1679,63 1768,25 1768,25 1768,25 1768,25 1856,29 1856,29 1856,28 1856,28

958,24 958,24 958,24 958,24 958,20 958,20 958,20 958,20 958,14 958,14 958,14 958,14 958,12 958,12 958,12 958,12 958,11 958,11 958,11 958,11 958,03 958,03 958,03 958,03 957,96 957,96 957,96 957,96 957,89 957,89 957,89 957,89 957,84 957,84 957,84 957,84 957,79 957,79 957,79 957,79 957,75 957,75 957,75 957,75

n.a. 919,69 919,69 919,70 919,69 954,70 954,69 954,70 954,69

1013,66 1013,66 1013,67 1013,67 1033,07 1033,06 1033,07 1033,06 1046,80 1046,80 1046,80 1046,81 1138,28 1138,28 1138,28 1138,28 1229,10 1229,10 1229,11 1229,11 1319,26 1319,25 1319,26 1319,26 1408,83 1408,83 1408,84 1408,83 1497,68 1497,68 1497,68 1497,68 1585,95 1585,95 1585,94 1585,94

Table 11: Run two on lamp C864 with reference wavelength 950 nm. Measured on 06-01-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (42 ± 10) %.(3001999.02)

Page 261: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 16

Table 12 and 13 present the final results of the calibration on lamp C860. The results werecalculated with a polynomial fit; t = 3ai·Ln(I)i with i = 0..5.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

5,072 5,380 5,944 6,141 6,284 7,298 8,398 9,570 10,805 12,099 13,446

962,32 1000,39 1064,48 1085,57 1100,55 1200,62 1300,71 1400,88 1500,97 1600,99 1700,79

962,39 1000,4

1064,46 1085,56 1100,54 1200,64 1300,74 1400,88 1500,92 1600,93 1700,76

-0,07 -0,01 0,02 0,01 0,01 -0,02 -0,03 0,00 0,05 0,06 0,03

962,36 1000,40 1064,47 1085,57 1100,55 1200,63 1300,73 1400,88 1500,95 1600,96 1700,78

0,04 0,01 0,01 0,00 0,00 0,01 0,02 0,00 0,02 0,03 0,01

Table 12: Final results C860 with reference wavelength 650 nm.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

5,072 5,380 5,944 6,141 6,284 7,298 8,398 9,570 10,805 12,099 13,446

919,89 955,06

1014,09 1033,47 1047,22 1138,67 1229,52 1319,79 1409,37 1498,33 1586,59

919,86 955,05

1014,07 1033,44 1047,18 1138,63 1229,49 1319,77 1409,34 1498,28 1586,55

0,03 0,01 0,02 0,03 0,04 0,04 0,03 0,02 0,03 0,05 0,04

919,88 955,06

1014,08 1033,46 1047,20 1138,65 1229,51 1319,78 1409,36 1498,31 1586,57

0,02 0,01 0,01 0,02 0,02 0,02 0,01 0,01 0,01 0,03 0,02

Table 13: Final results C860 with reference wavelength 950 nm.

Page 262: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 17

Table 14 and 15 present the final results of the calibration on lamp C864. The results werecalculated with a polynomial fit; t = 3ai·Ln(I)i with i = 0..5.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 2,3

[°C]

ªtrun 3,4

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

4,933 5,236 5,788 5,980 6,120 7,107 8,177 9,314 10,513 11,767 13,074

962,13 1000,19 1064,23 1085,29 1100,32 1200,36 1300,53 1400,55 1500,64 1600,58 1700,52

962,17 1000,23 1064,28 1085,33 1100,36 1200,40 1300,57 1400,59 1500,67 1600,60 1700,53

-0,04 -0,04 -0,05 -0,04 -0,04 -0,04 -0,04 -0,04 -0,03 -0,02 -0,01

962,15 1000,21 1064,26 1085,31 1100,34 1200,38 1300,55 1400,57 1500,66 1600,59 1700,53

0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,01 0,01 0,00

Table 14: Final results C864 with reference wavelength 650 nm.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

4,933 5,236 5,788 5,980 6,120 7,107 8,177 9,314 10,513 11,767 13,074

919,51 954,70

1013,69 1033,02 1046,81 1138,21 1229,10 1319,23 1408,80 1497,63 1585,91

919,54 954,72

1013,71 1033,05 1046,84 1138,25 1229,14 1319,27 1408,84 1497,68 1585,96

-0,03 -0,02 -0,02 -0,03 -0,03 -0,04 -0,04 -0,04 -0,04 -0,05 -0,05

919,53 954,71

1013,70 1033,04 1046,83 1138,23 1229,12 1319,25 1408,82 1497,66 1585,94

0,01 0,01 0,01 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,03

Table 15: Final results C864 with reference wavelength 950 nm.

Page 263: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 18

Table 16 and 17 present the uncertainty for the scale realization at 650 nm and 950 nm,

Source of uncertainty Type Uncertainty (2F) /°C

tAg tAu 1300 °C 1500 °C 1700 °C

Fixed point

Realization of fixed point B 0,02 0,02 0,03 0,04 0,04

Emissivity of fixed point B 0,001 0,001 0,001 0,001 0,002

Pyrometer

Response A 0,02 0,02 0,02 0,02 0,03

Linearity B 0,003 0,003 0,003 0,005 0,006

SSE B 0,003 0,003 0,005 0,006 0,007

Wavelength B 0,00 0,01 0,03 0,06 0,09

Drift B 0,06 0,07 0,10 0,12 0,15

Lamp

Positioning B 0,05 0,05 0,07 0,09 0,13

Current A 0,13 0,13 0,15 0,18 0,20

Emissivity B 0,006 0,007 0,010 0,012 0,015

Transmission of window B 0,001 0,001 0,002 0,002 0,003

Quality of polynomial fit A 0,06

Total (2F) 0,17 0,17 0,21 0,25 0,31

Total (1F) 0,08 0,08 0,10 0,13 0,15

Table 16: Uncertainty in scale realization at 650 nm

Page 264: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 19

Source of uncertainty Type Uncertainty (2F) /°C

920 °C 1014 °C 1230 °C 1409 °C 1586 °C

Fixed point

Realization of fixed point B 0,02 0,02 0,03 0,04 0,05

Emissivity of fixed point B 0,001 0,001 0,001 0,002 0,002

Pyrometer

Response A 0,02 0,02 0,03 0,04 0,05

Linearity B 0,002 0,002 0,003 0,004 0,005

SSE B 0,003 0,004 0,005 0,007 0,008

Wavelength B 0,01 0,01 0,07 0,13 0,20

Drift B 0,0 0,0 0,0 0,0 0,0

Lamp

Positioning B 0,06 0,07 0,09 0,11 0,14

Current A 0,13 0,13 0,15 0,17 0,20

Emissivity B 0,004 0,005 0,006 0,008 0,009

Transmission of window B 0,001 0,001 0,001 0,002 0,002

Quality of polynomial fit A 0,02

Total (2F) 0,15 0,15 0,19 0,25 0,32

Total (1F) 0,07 0,08 0,10 0,12 0,16

Table 17: Uncertainty in scale realization at 950 nm

Page 265: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 20

Results of Measurement of ambient resistance of lamp

Table 18 presents the results of the ambient resistance measurements.

Lamp Resistance[mS]

Temperature[°C]

C860 - before 40,0686 ± 0,004 22,81 ± 0,02

C860 - after 40,1036 ± 0,00440,0836 ± 0,004

23,06 ± 0,0222,96 ± 0,02

C864 - before 41,8546 ± 0,004 22,87 ± 0,02

C864 - after 41,7596 ± 0,00441,7796 ± 0,004

22,59 ± 0,0222,63 ± 0,02

Table 18: Ambient resistance measurements of lamp C680 and C864.

Page 266: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison. Measurements on C860 and C864 NMi/VSL 21

References

[1] CCT - Key comparison : Comparison of the Local Realizations of the ITS-90 between Silverpoint and 1700 °CInitial measurements on C564, C681 and C680NMi/VSL - contributionMarch 1999Not published.

[2] Protocol to the comparison of local realizations of the ITS-90 between the silver point and1700 °C using vacuum tungsten-strip lamps as transfer standards.Not published.

Page 267: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 1

CCT - Key comparison :Comparison of the Local Realizations of theITS-90 between Silver point and 1700 °C

3th measurements on C564 and C681 (Set I)

NMi/VSL - contributionJuly 1999

R. BosmaE.W.M. van der Ham

Page 268: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 2

This report describes the 3th measurements from NMi/VSL on the VSL-lamp set for the CCT project‘Comparison of the Local Realizations of the ITS-90 between Silver point and 1700 °C’. After theprevious measurements at NMi/VSL they were in chronologically order measured by NPL (GreatBrittain) and VNIIM(Russia). The measurements at these laboratories were performed in periodfrom August 1998 to May 1999.

Contents

Description of the scale realisation and lamp setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Description of the measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Stability check on the lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Effects of lamp positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of stability check on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of transfer of fixed point onto pyrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of scale realization on lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Results of Measurement of ambient resistance of lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Page 269: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 3

Description of the scale realisation and lamp setup.

The measurements were performed with the same setup as used for the initial measurements [1].For the spectral sensitivity, the size-of-source-effect and the linearity the same calibration valueswere used as with the initial measurements. Only the transfer of the fixed point values wasmeasured again.

Description of the measurements

Stability check on the lamps

According to the Protocol [2] a initial check was made to see if there was mechanical stress presentin the strip. The lamp current and temperature were measured at the silver point current. After thelamp was operated at the 1700 °C- current for one hour, the current was again adjusted to thesilver point. After about 30 minutes the current and temperature were measured. The difference intemperature, corrected for the current difference, should be smaller than 0,25 K.

Effects of lamp positioning

The effects of lamp positioning was not measured again. For the uncertainty budget the results ofthe former measurements were used.

Scale realization on lamp

The scale realization was performed at 650 nm, not at 950 nm.

Measurement of ambient resistance of lamp

The ambient resistance of the lamps was measured before and after all measurements. The samesetup was used as described in the initial measurements [1].

Page 270: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 4

Results

Results of stability check on lamp

The lamps were tested on stability. Table 1 presents the results.

Lamp identification Drift after stabilisation /K

C564 - first run 0,38

C564 - second run 0,09

C681 - first run 0,04

Table 1 : Stability test of lamps

The drift of lamp C564 was after the first run larger than the 0,25 K as stated in the protocol [2]. Itwas decided to repeat the measurement. In the second run the drift was far below the requestedvalue. The large in the 1st run was probably due to mechanical stress in the lamp.

Results of transfer of fixed point onto pyrometer

Table 2 presents the results of the fixed point transfer onto the pyrometer.

Filter Fixed pointresponse

[mV]

Uncertainty

[mV]

Date Drift afterprevious transfer

[mK]

661 nm 7.583074 0,002 06-07-1999

661 nm 7.571304 0,002 20-07-1999 109

Table 2: Fixed point transfer to pyrometer

The first fixed point measurements were related to lamp C564 and C681. The scale realization onboth lamps was performed within two weeks. The second fixed point measurements was measuredafter the realizations on the lamps. The drift between both fixed point realization was used as anadditional uncertainty.

Results of scale realization on lamp

In the tables 3 to 8 the following measured or calculated values are presented according to theprotocol:í the measured lamp currentí the measured base temperature of the lampí the ratio of the measured photo current at the lamp and the fixed pointí the ratio of the photo current corrected for size-of-source effect and linearityí the calculated true temperatureí the calculated radiance temperature of the lampí the calculated effective wavelength of the pyrometerí the correction due to the deviation of the base temperature from 20 °Cí the spectral radiance temperature given at reference wavelength

Page 271: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 5

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4.4826 4.4826 4.4825 4.4825 4.7212 4.7211 4.7211 4.7211 5.1681 5.1676 5.1686 5.1675 5.3229 5.3234 5.3242 5.3220 5.4391 5.4407 5.4406 5.4400 6.2702 6.2684 6.2713 6.2698 7.1906 7.1920 7.1919 7.1923 8.1886 8.1895 8.1893 8.1882 9.2425 9.2412 9.2416 9.2417

10.3475 10.3459 10.3445 10.3441 11.4975 11.4979 11.4969 11.4950

19.981 19.982 19.979 19.971 19.985 19.986 19.983 19.999 20.015 20.013 20.013 20.010 20.008 20.002 20.003 20.021 20.023 20.015 20.036 20.031 19.962 19.953 19.950 19.945 19.991 19.993 19.988 19.984 20.046 20.044 20.038 20.048 19.997 19.990 20.000 20.001 19.968 19.979 19.987 19.985 20.049 20.050 20.036 20.034

1.0211 1.0210 1.0205 1.0211 1.7158 1.7149 1.7157 1.7153 3.8733 3.8751 3.8750 3.8748 4.9600 4.9595 4.9602 4.9602 5.9243 5.9244 5.9232 5.9237

17.2828 17.2836 17.2828 17.2821 44.0848 44.0858 44.0804 44.0782 101.042 101.049 101.048 101.049 210.167 210.176 210.181 210.166 404.555 404.456 404.384 404.162 728.055 727.964 727.725 727.875

1.0219 1.0218 1.0213 1.0219 1.7170 1.7162 1.7169 1.7166 3.8762 3.8780 3.8779 3.8777 4.9637 4.9631 4.9639 4.9639 5.9286 5.9288 5.9276 5.9281

17.2956 17.2964 17.2956 17.2948 44.1174 44.1184 44.1130 44.1108 101.117 101.124 101.123 101.124 210.322 210.332 210.337 210.321 404.854 404.755 404.683 404.461 728.593 728.502 728.263 728.414

1301.14 1301.13 1301.09 1301.14 1342.97 1342.93 1342.97 1342.95 1414.33 1414.38 1414.37 1414.37 1437.54 1437.53 1437.54 1437.54 1454.69 1454.69 1454.67 1454.68 1567.41 1567.42 1567.41 1567.41 1681.45 1681.45 1681.44 1681.43 1797.36 1797.37 1797.37 1797.37 1913.95 1913.96 1913.96 1913.95 2031.91 2031.86 2031.83 2031.72 2150.95 2150.93 2150.86 2150.90

1236.45 1236.44 1236.41 1236.45 1274.02 1273.98 1274.01 1274.00 1337.80 1337.83 1337.83 1337.83 1358.45 1358.44 1358.45 1358.45 1373.68 1373.68 1373.67 1373.67 1473.25 1473.25 1473.25 1473.24 1572.95 1572.95 1572.94 1572.94 1673.25 1673.26 1673.26 1673.26 1773.08 1773.08 1773.09 1773.08 1873.00 1872.96 1872.93 1872.84 1972.74 1972.71 1972.66 1972.69

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

1.7 1.6 1.9 2.6 1

0.9 1.1 0.1 -0.6 -0.5 -0.5 -0.4 -0.3 -0.1 -0.1 -0.7 -0.6 -0.4 -1

-0.8 0.4 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964.50 964.49 964.45 964.49

1002.14 1002.11 1002.14 1002.12 1066.06 1066.10 1066.10 1066.09 1086.76 1086.75 1086.76 1086.76 1102.03 1102.03 1102.01 1102.02 1201.84 1201.85 1201.84 1201.84 1301.82 1301.82 1301.81 1301.80 1402.41 1402.42 1402.42 1402.42 1502.56 1502.56 1502.57 1502.56 1602.82 1602.78 1602.75 1602.66 1702.93 1702.91 1702.85 1702.89

Table 3: Run one on lamp C564 with reference wavelength 650 nm. Measured on 08-07-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (45 ± 10) %.(3001999.04)

Page 272: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 6

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4.4798 4.4800 4.4802 4.4802 4.7196 4.7201 4.7203 4.7204 5.1672 5.1677 5.1679 5.1682 5.3204 5.3206 5.3209 5.3211 5.4404 5.4406 5.4409 5.4410 6.2703 6.2708 6.2710 6.2712 7.1922 7.1925 7.1927 7.1928 8.1884 8.1887 8.1890 8.1892 9.2407 9.2411 9.2413 9.2414

10.3472 10.3470 10.3469 10.3468 11.5018 11.5015 11.5014 11.5011

19.971 19.978 19.977 19.974 19.971 19.965 19.962 19.961 20.000 19.999 19.986 19.992 19.998 20.017 20.010 19.993 20.001 20.007 20.008 20.006 20.059 20.050 20.039 20.035 19.987 19.991 19.985 19.987 20.032 20.033 20.037 20.042 19.984 19.978 19.982 19.992 20.052 20.064 20.065 20.050 20.041 20.044 20.041 20.033

1.0163 1.0168 1.0162 1.0163 1.7151 1.7156 1.7156 1.7144 3.8824 3.8828 3.8829 3.8820 4.9529 4.9518 4.9521 4.9525 5.9340 5.9339 5.9334 5.9340

17.2979 17.2984 17.2983 17.2980 44.1522 44.1524 44.1526 44.1516 101.072 101.071 101.070 101.072 210.279 210.280 210.278 210.282 404.798 404.806 404.796 404.794 729.639 729.628 729.627 729.604

1.0170 1.0176 1.0170 1.0171 1.7163 1.7168 1.7168 1.7156 3.8852 3.8857 3.8858 3.8849 4.9565 4.9554 4.9558 4.9562 5.9383 5.9383 5.9378 5.9384

17.3107 17.3112 17.3111 17.3108 44.1848 44.1851 44.1852 44.1843 101.147 101.146 101.145 101.147 210.434 210.436 210.433 210.437 405.097 405.105 405.096 405.093 730.178 730.168 730.166 730.144

1300.77 1300.81 1300.76 1300.77 1342.94 1342.96 1342.96 1342.90 1414.55 1414.56 1414.56 1414.54 1437.40 1437.38 1437.39 1437.40 1454.85 1454.85 1454.84 1454.85 1567.51 1567.52 1567.51 1567.51 1681.65 1681.65 1681.65 1681.65 1797.40 1797.40 1797.40 1797.40 1914.04 1914.04 1914.04 1914.04 2032.02 2032.03 2032.02 2032.02 2151.42 2151.42 2151.42 2151.41

1236.12 1236.15 1236.11 1236.12 1273.99 1274.01 1274.01 1273.96 1337.99 1338.00 1338.00 1337.98 1358.33 1358.31 1358.31 1358.32 1373.82 1373.82 1373.81 1373.82 1473.33 1473.34 1473.34 1473.33 1573.13 1573.13 1573.13 1573.12 1673.29 1673.29 1673.29 1673.29 1773.15 1773.16 1773.15 1773.16 1873.09 1873.09 1873.09 1873.09 1973.13 1973.12 1973.12 1973.12

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

2.6 2

2.1 2.4 1.9 2.3 2.5 2.6 0 0

0.5 0.3 0.1 -0.5 -0.3 0.2 0

-0.2 -0.2 -0.2 -0.6 -0.5 -0.4 -0.3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964.16 964.20 964.16 964.16

1002.11 1002.13 1002.13 1002.08 1066.25 1066.26 1066.26 1066.25 1086.64 1086.62 1086.63 1086.63 1102.17 1102.17 1102.16 1102.17 1201.93 1201.93 1201.93 1201.93 1301.99 1301.99 1301.99 1301.99 1402.45 1402.45 1402.45 1402.45 1502.64 1502.64 1502.63 1502.64 1602.92 1602.92 1602.92 1602.92 1703.32 1703.32 1703.32 1703.31

Table 4: Run two on lamp C564 with reference wavelength 650 nm. Measured on 09-07-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (44 ± 10) %.(3001999.06)

Page 273: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 7

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

4.4789 4.4794 4.4796 4.4798 4.7179 4.7183 4.7186 4.7188 5.1665 5.1669 5.1672 5.1675 5.3310 5.3313 5.3316 5.3318 5.4401 5.4404 5.4407 5.4408 6.2705 6.2709 6.2712 6.2714 7.1923 7.1927 7.1929 7.1931 8.1872 8.1876 8.1878 8.1880 9.2404 9.2408 9.2410 9.2413

10.3460 10.3461 10.3463 10.3463 11.5006 11.5008 11.5009 11.5009

19.957 19.962 19.974 19.976 19.972 19.971 19.963 19.967 19.990 19.996 19.995 20.006 19.999 20.000 19.994 19.997 19.993 19.990 19.995 19.987 20.031 20.030 20.032 20.032 19.988 19.989 19.993 19.996 20.040 20.037 20.034 20.041 19.988 19.988 19.990 19.987 19.958 19.959 19.966 19.963 20.025 20.030 20.030 20.034

1.0164 1.0164 1.0165 1.0156 1.7108 1.7102 1.7102 1.7109 3.8781 3.8773 3.8778 3.8777 5.0344 5.0342 5.0341 5.0338 5.9307 5.9313 5.9311 5.9305

17.3025 17.3022 17.3013 17.3022 44.1609 44.1603 44.1610 44.1609 100.977 100.976 100.977 100.976 210.229 210.225 210.226 210.226 404.812 404.806 404.800 404.807 729.587 729.573 729.579 729.573

1.0171 1.0171 1.0173 1.0163 1.7120 1.7115 1.7115 1.7122 3.8810 3.8802 3.8807 3.8806 5.0381 5.0379 5.0379 5.0375 5.9351 5.9357 5.9355 5.9349

17.3153 17.3150 17.3141 17.3150 44.1935 44.1930 44.1937 44.1935 101.051 101.051 101.051 101.051 210.384 210.380 210.382 210.382 405.112 405.105 405.100 405.106 730.127 730.112 730.119 730.112

1300.77 1300.78 1300.79 1300.71 1342.73 1342.70 1342.70 1342.73 1414.45 1414.43 1414.44 1414.44 1438.96 1438.96 1438.96 1438.95 1454.79 1454.80 1454.80 1454.79 1567.54 1567.54 1567.53 1567.54 1681.67 1681.67 1681.67 1681.67 1797.26 1797.26 1797.26 1797.26 1914.00 1914.00 1914.00 1914.00 2032.03 2032.03 2032.03 2032.03 2151.40 2151.40 2151.40 2151.40

1236.12 1236.12 1236.13 1236.07 1273.80 1273.78 1273.78 1273.81 1337.90 1337.88 1337.89 1337.89 1359.71 1359.71 1359.71 1359.70 1373.78 1373.78 1373.78 1373.77 1473.36 1473.36 1473.35 1473.36 1573.15 1573.15 1573.15 1573.15 1673.17 1673.17 1673.17 1673.17 1773.12 1773.12 1773.12 1773.12 1873.10 1873.09 1873.09 1873.10 1973.11 1973.11 1973.11 1973.11

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

3.9 3.5 2.4 2.2 1.9 1.9 2.5 2.2 0.4 0.2 0.2 -0.2

0 0

0.2 0.1 0.2 0.3 0.1 0.4 0 0

-0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

964.17 964.17 964.18 964.11

1001.92 1001.90 1001.90 1001.93 1066.16 1066.15 1066.16 1066.15 1088.03 1088.02 1088.02 1088.02 1102.12 1102.13 1102.13 1102.12 1201.96 1201.95 1201.95 1201.95 1302.01 1302.01 1302.02 1302.01 1402.33 1402.33 1402.33 1402.33 1502.60 1502.60 1502.60 1502.60 1602.92 1602.92 1602.92 1602.92 1703.31 1703.30 1703.31 1703.30

Table 5: Run three on lamp C564 with reference wavelength 650 nm. Measured on 12-06-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (45 ± 10) %.(3001999.07)

Page 274: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 8

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5.5080 5.5082 5.5084 5.5085 5.8206 5.8209 5.8212 5.8213 6.3985 6.3989 6.3990 6.3992 6.5919 6.5922 6.5924 6.5926 6.7437 6.7440 6.7442 6.7444 7.7945 7.7948 7.7950 7.7952 8.9468 8.9471 8.9472 8.9473

10.1817 10.1820 10.1822 10.1824 11.4854 11.4856 11.4854 11.4847 12.8495 12.8494 12.8495 12.8495 14.2717 14.2719 14.2715 14.2718

20.004 20.004 20.007 20.005 20.016 20.010 20.014 20.015 20.046 20.053 20.054 20.053 19.949 19.953 19.958 19.952 19.961 19.957 19.968 19.957 19.985 19.996 19.984 19.985 20.040 20.050 20.039 20.050 20.015 20.009 20.007 20.004 20.071 20.068 20.067 20.071 20.036 20.038 20.031 20.035 20.030 20.030 20.028 20.024

1.0073 1.0071 1.0073 1.0069 1.7059 1.7056 1.7052 1.7050 3.8747 3.8746 3.8750 3.8750 4.9332 4.9328 4.9330 4.9331 5.9105 5.9102 5.9103 5.9098

17.3092 17.3099 17.3099 17.3091 44.2763 44.2761 44.2765 44.2745 101.281 101.282 101.282 101.282 210.719 210.709 210.686 210.610 405.187 405.172 405.150 405.147 728.473 728.448 728.395 728.404

1.0080 1.0079 1.0081 1.0077 1.7071 1.7069 1.7065 1.7062 3.8776 3.8774 3.8778 3.8779 4.9368 4.9364 4.9367 4.9368 5.9148 5.9146 5.9147 5.9141

17.3220 17.3227 17.3227 17.3219 44.3090 44.3089 44.3093 44.3073 101.356 101.357 101.356 101.357 210.875 210.865 210.842 210.766 405.486 405.472 405.450 405.447 729.012 728.986 728.934 728.943

1300.08 1300.06 1300.08 1300.04 1342.49 1342.48 1342.46 1342.45 1414.37 1414.36 1414.37 1414.38 1437.02 1437.02 1437.02 1437.02 1454.46 1454.46 1454.46 1454.45 1567.59 1567.59 1567.59 1567.59 1682.02 1682.02 1682.02 1682.01 1797.71 1797.72 1797.71 1797.71 1914.40 1914.39 1914.37 1914.31 2032.21 2032.20 2032.19 2032.19 2151.08 2151.07 2151.05 2151.06

1235.49 1235.48 1235.49 1235.46 1273.59 1273.58 1273.56 1273.55 1337.83 1337.82 1337.83 1337.83 1357.99 1357.98 1357.99 1357.99 1373.48 1373.48 1373.48 1373.47 1473.40 1473.40 1473.40 1473.40 1573.44 1573.44 1573.45 1573.44 1673.56 1673.56 1673.56 1673.56 1773.46 1773.45 1773.43 1773.38 1873.25 1873.24 1873.23 1873.23 1972.84 1972.83 1972.82 1972.82

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

-0.2 -0.2 -0.4 -0.3 -0.7 -0.4 -0.6 -0.6 -1

-1.1 -1.1 -1.1 0.9 0.8 0.7 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963.54 963.52 963.54 963.51

1001.71 1001.70 1001.68 1001.67 1066.09 1066.09 1066.10 1066.10 1086.30 1086.29 1086.30 1086.30 1101.83 1101.82 1101.83 1101.82 1201.99 1202.00 1202.00 1201.99 1302.31 1302.31 1302.31 1302.31 1402.72 1402.72 1402.72 1402.72 1502.94 1502.93 1502.92 1502.86 1603.07 1603.07 1603.06 1603.06 1703.03 1703.03 1703.01 1703.02

Table 6: Run one on lamp C681 with reference wavelength 650 nm. Measured on 14-07-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001999.08)

Page 275: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 9

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5.5076 5.5081 5.5084 5.5087 5.8201 5.8206 5.8209 5.8210 6.3979 6.3983 6.3986 6.3987 6.5924 6.5930 6.5932 6.5935 6.7415 6.7420 6.7424 6.7425 7.7939 7.7944 7.7946 7.7948 8.9465 8.9469 8.9473 8.9474

10.1815 10.1818 10.1820 10.1823 11.4861 11.4865 11.4867 11.4869 12.8493 12.8496 12.8495 12.8495 14.2727 14.2729 14.2730 14.2731

20.012 20.008 20.001 20.006 20.026 20.036 20.021 20.010 20.041 20.047 20.048 20.044 19.943 19.945 19.947 19.945 19.969 19.959 19.955 19.949 20.001 20.002 20.003 19.994 20.063 20.065 20.050 20.052 20.027 20.025 20.021 20.020 19.987 19.980 19.981 19.985 20.047 20.048 20.038 20.038 20.018 20.023 20.029 20.031

1.0069 1.0072 1.0073 1.0070 1.7027 1.7033 1.7034 1.7035 3.8709 3.8716 3.8713 3.8705 4.9372 4.9365 4.9366 4.9370 5.8927 5.8924 5.8932 5.8928

17.2930 17.2931 17.2926 17.2917 44.2442 44.2432 44.2432 44.2436 101.127 101.129 101.126 101.124 210.614 210.617 210.614 210.605 404.582 404.575 404.576 404.562 727.940 727.916 727.916 727.885

1.0077 1.0079 1.0081 1.0078 1.7040 1.7045 1.7046 1.7048 3.8738 3.8745 3.8741 3.8733 4.9409 4.9401 4.9403 4.9406 5.8971 5.8967 5.8975 5.8971

17.3058 17.3059 17.3054 17.3045 44.2769 44.2759 44.2759 44.2763 101.202 101.204 101.201 101.199 210.770 210.772 210.770 210.760 404.881 404.874 404.875 404.861 728.478 728.455 728.455 728.423

1300.05 1300.07 1300.08 1300.05 1342.33 1342.36 1342.37 1342.37 1414.28 1414.29 1414.29 1414.27 1437.10 1437.09 1437.09 1437.10 1454.17 1454.16 1454.17 1454.17 1567.48 1567.48 1567.48 1567.47 1681.92 1681.92 1681.92 1681.92 1797.49 1797.49 1797.48 1797.48 1914.31 1914.31 1914.31 1914.30 2031.92 2031.92 2031.92 2031.91 2150.92 2150.91 2150.91 2150.90

1235.47 1235.48 1235.49 1235.47 1273.45 1273.47 1273.48 1273.48 1337.74 1337.76 1337.75 1337.74 1358.06 1358.04 1358.05 1358.05 1373.22 1373.21 1373.23 1373.22 1473.31 1473.31 1473.30 1473.30 1573.36 1573.36 1573.36 1573.36 1673.36 1673.36 1673.36 1673.36 1773.38 1773.39 1773.38 1773.38 1873.01 1873.00 1873.00 1873.00 1972.71 1972.70 1972.70 1972.70

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

-0.7 -0.5 -0.1 -0.4 -1.1 -1.5 -0.9 -0.4 -0.9 -1 -1

-0.9 1

0.9 0.9 0.9 0.5 0.6 0.7 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963.51 963.53 963.54 963.51

1001.57 1001.60 1001.60 1001.61 1066.01 1066.02 1066.02 1066.00 1086.37 1086.36 1086.36 1086.37 1101.57 1101.56 1101.57 1101.57 1201.90 1201.90 1201.90 1201.89 1302.23 1302.23 1302.23 1302.23 1402.52 1402.52 1402.52 1402.52 1502.87 1502.87 1502.87 1502.86 1602.83 1602.83 1602.83 1602.82 1702.90 1702.90 1702.90 1702.89

Table 7: Run two on lamp C681 with reference wavelength 650 nm. Measured on 15-07-1999 withlaboratory conditions: t = (23,0 ± 0,5) °C and rh = (43 ± 10) %.(3001999.09)

Page 276: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 10

Ilamp

[A]

tbase

[°C]

i(I)/i(fp)

[1]

i(I)/i(fp)SSE&Lin

[1]

Ttrue

[K]

TR

[K]

8

[nm]

)T dueto tbase

[mK]

TR,88 = 650nm

[°C]

5.5075 5.5079 5.5082 5.5084 5.8202 5.8206 5.8209 5.8211 6.3979 6.3984 6.3987 6.3989 6.5926 6.5931 6.5933 6.5935 6.7429 6.7431 6.7432 6.7433 7.7949 7.7951 7.7952 7.7953 8.9464 8.9467 8.9469 8.9471

10.1817 10.1820 10.1824 10.1826 11.4855 11.4859 11.4861 11.4863 12.8502 12.8504 12.8505 12.8506 14.2720 14.2722 14.2723 14.2723

20.022 20.012 19.999 20.014 20.039 20.039 20.030 20.036 19.955 19.957 19.964 19.950 19.963 19.960 19.958 19.962 19.969 19.958 19.951 19.954 20.014 20.016 20.012 20.008 19.967 19.970 19.965 19.965 20.018 20.028 20.027 20.021 19.983 19.976 19.975 19.976 20.034 20.041 20.038 20.040 20.013 20.019 20.025 20.021

1.0045 1.0054 1.0062 1.0062 1.7045 1.7040 1.7039 1.7040 3.8707 3.8714 3.8714 3.8718 4.9368 4.9373 4.9374 4.9369 5.8967 5.8962 5.8960 5.8961

17.2970 17.2973 17.2973 17.2971 44.2289 44.2284 44.2280 44.2280 101.129 101.128 101.129 101.128 210.511 210.506 210.504 210.500 404.533 404.530 404.527 404.520 727.981 727.970 727.972 727.968

1.0053 1.0062 1.0069 1.0069 1.7058 1.7053 1.7051 1.7053 3.8736 3.8742 3.8743 3.8747 4.9404 4.9410 4.9410 4.9406 5.9011 5.9005 5.9004 5.9005

17.3097 17.3101 17.3101 17.3099 44.2616 44.2611 44.2607 44.2607 101.204 101.203 101.204 101.202 210.667 210.661 210.660 210.656 404.832 404.829 404.827 404.819 728.519 728.509 728.510 728.506

1299.86 1299.93 1299.99 1299.99 1342.42 1342.40 1342.39 1342.40 1414.27 1414.29 1414.29 1414.30 1437.09 1437.10 1437.10 1437.10 1454.23 1454.22 1454.22 1454.22 1567.51 1567.51 1567.51 1567.51 1681.88 1681.87 1681.87 1681.87 1797.49 1797.49 1797.49 1797.49 1914.23 1914.22 1914.22 1914.22 2031.90 2031.90 2031.90 2031.89 2150.93 2150.93 2150.93 2150.93

1235.30 1235.36 1235.41 1235.41 1273.53 1273.51 1273.50 1273.51 1337.74 1337.75 1337.75 1337.76 1358.05 1358.06 1358.06 1358.05 1373.28 1373.27 1373.27 1373.27 1473.33 1473.33 1473.33 1473.33 1573.32 1573.32 1573.32 1573.32 1673.36 1673.36 1673.36 1673.36 1773.31 1773.31 1773.31 1773.31 1872.99 1872.99 1872.98 1872.98 1972.72 1972.72 1972.72 1972.72

661.20 661.20 661.20 661.20 661.17 661.17 661.17 661.17 661.14 661.14 661.14 661.14 661.13 661.13 661.13 661.13 661.12 661.12 661.12 661.12 661.08 661.08 661.08 661.08 661.05 661.05 661.05 661.05 661.02 661.02 661.02 661.02 661.00 661.00 661.00 661.00 660.98 660.98 660.98 660.98 660.97 660.97 660.97 660.97

-1.4 -0.7 0.1 -0.9 -1.6 -1.6 -1.3 -1.5 0.9 0.9 0.8 1.1 0.6 0.7 0.7 0.7 0.5 0.6 0.7 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

963.34 963.40 963.46 963.46

1001.65 1001.63 1001.62 1001.63 1066.01 1066.02 1066.02 1066.03 1086.36 1086.37 1086.37 1086.36 1101.63 1101.62 1101.61 1101.62 1201.92 1201.93 1201.93 1201.92 1302.19 1302.19 1302.19 1302.19 1402.52 1402.52 1402.52 1402.52 1502.80 1502.79 1502.79 1502.79 1602.81 1602.81 1602.81 1602.81 1702.91 1702.91 1702.91 1702.91

Table 8: Run three on lamp C681 with reference wavelength 650 nm. Measured on 16-07-1999 withlaboratory conditions: t = (23,1 ± 0,5) °C and rh = (43 ± 10) %.(3001999.10)

Page 277: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 11

Table 9 presents the final results of the calibration on lamp C564. The results were calculated witha polynomial fit; t = 3ai·Ln(I)i with i = 0..5. Because of the large drift between run one and two anadditional run was measured. The final results were calculated with run two and three.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

4,480 4,721 5,169 5,322 5,441 6,272 7,194 8,189 9,242 10,347 11,502

964.07 1002.08 1066.24 1086.66 1102.10 1202.04 1302.11 1402.38 1502.61 1602.88 1703.33

964.16 1002.26 1066.41 1086.80 1102.22 1202.06 1302.14 1402.48 1502.71 1602.92 1703.36

964.26 1002.29 1066.41 1086.79 1102.22 1202.06 1302.13 1402.47 1502.72 1602.98 1703.41

-0.09 -0.18 -0.17 -0.14 -0.12 -0.02 -0.03 -0.10 -0.10 -0.04 -0.03

-0.10 -0.03 0.00 0.01 0.00 0.00 0.01 0.01 -0.01 -0.06 -0.05

964.21 1002.28 1066.41 1086.80 1102.22 1202.06 1302.14 1402.48 1502.72 1602.95 1703.39

0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.02

Table 9: Final results C564 with reference wavelength 650 nm.

Table 10 presents the final results of the calibration on lamp C681. The results were calculated witha polynomial fit; t = 3ai·Ln(I)i with i = 0..5. Because of the large drift between run one and two anadditional run was measured. The final results were calculated with run two and three.

tnominal

[°C]

Ilamp

[A]

tR,8run 1

[°C]

tR,8run 2

[°C]

tR,8run 3

[°C]

ªtrun 1,2

[°C]

ªtrun 2,3

[°C]

tR,8final

[°C]

F

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

5,508 5,822 6,399 6,594 6,745 7,795 8,948 10,183 11,487 12,852 14,273

963.50 1001.79 1066.11 1086.49 1101.90 1202.02 1302.37 1402.77 1503.09 1603.21 1703.12

963.50 1001.76 1066.07 1086.46 1101.86 1201.97 1302.28 1402.63 1502.90 1603.00 1702.90

963.43 1001.76 1066.08 1086.45 1101.84 1201.92 1302.26 1402.62 1502.86 1602.92 1702.97

0.00 0.03 0.04 0.03 0.04 0.05 0.09 0.14 0.19 0.21 0.22

0.07 0.00 -0.01 0.01 0.02 0.05 0.02 0.01 0.04 0.08 -0.07

963.47 1001.76 1066.08 1086.46 1101.85 1201.95 1302.27 1402.63 1502.88 1602.96 1702.94

0.04 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.02 0.04 0.04

Table 10: Final results C681 with reference wavelength 650 nm.

Page 278: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 12

Table 11 and 12 and figure 1 present the drift of lamp C564 and C681 since the initialmeasurements in 1997.

tnominal

[°C]

tR,8

final 1997 [°C]

tR,8

final 1998 [°C]

tR,8

final 1999 [°C]

ªt1997 to 1998

[°C]

ªt1997 to 1998

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

964.05 1002.08 1066.21 1086.60 1102.04 1201.91 1301.99 1402.32 1502.58 1602.85 1703.31

964,02 1002,05 1066,19 1086,59 1102,02 1201,89 1301,97 1402,32 1502,59 1602,87 1703,32

964.21 1002.28 1066.41 1086.80 1102.22 1202.06 1302.14 1402.48 1502.72 1602.95 1703.39

0.03 0.04 0.03 0.01 0.03 0.02 0.02 0.00 -0.01 -0.02 -0.01

-0.16 -0.19 -0.20 -0.20 -0.18 -0.15 -0.15 -0.15 -0.14 -0.10 -0.08

Table 11: Drift of lamps C564 since initial measurements

tnominal

[°C]

tR,8

final 1997 [°C]

tR,8

final 1998 [°C]

tR,8

final 1999 [°C]

ªt1997 to 1998

[°C]

ªt1997 to 1998

[°C]

T(Ag)1000 T(Au)T(Cu)1100 1200 1300 1400 1500 1600 1700

963.55 1001.81 1066.13 1086.52 1101.92 1202.04 1302.38 1402.72 1503.01 1603.13 1703.01

963.43 1001.73 1066.05 1086.44 1101.84 1201.96 1302.30 1402.67 1502.95 1603.08 1703.08

963.47 1001.76 1066.08 1086.46 1101.85 1201.95 1302.27 1402.63 1502.88 1602.96 1702.94

0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.04 0.05 0.04 -0.07

0.09 0.05 0.06 0.07 0.07 0.09 0.11 0.09 0.13 0.16 0.07

Table 12: Drift of lamps C681 since initial measurements

Page 279: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 13

-0.3

-0.2

-0.1

0

0.1

0.2

Dev

iatio

n fro

m 1

st ru

n /°C

800 1000 1200 1400 1600 1800 Temperature /°C

C564 - 2nd run C564 - 3th run C681 - 2nd run C681 - 3th run

Figure 1 Drift of lamps C564 and C681 since initial measurements

Page 280: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 14

Table 13 presents the uncertainty budget for the scale realization at 650 nm.

Source of uncertainty Type Uncertainty (2F) /°C

tAg tAu 1300 °C 1500 °C 1700 °C

Fixed point

Realization of fixed point B 0,017 0,020 0,027 0,035 0,043

Emissivity of fixed point B 0,001 0,001 0,001 0,001 0,002

Pyrometer

Response A+B 0,016 0,013 0,017 0,022 0,027

Linearity B 0,002 0,002 0,003 0,004 0,005

SSE B 0,003 0,003 0,005 0,006 0,007

Wavelength B 0,000 0,008 0,033 0,059 0,089

Drift B 0,100 0,117 0,163 0,207 0,257

Lamp

Positioning B 0,105 0,123 0,171 0,217 0,268

Current A+B 0,109 0,106 0,117 0,135 0,154

Emissivity B 0,006 0,007 0,010 0,012 0,015

Transmission of window B 0,001 0,001 0,002 0,002 0,003

Quality of polynomial fit A 0,052

Total (2F) 0,19 0,21 0,27 0,34 0,42

Total (1F) 0,10 0,10 0,14 0,17 0,21

Table 13: Uncertainty budget for scale realization at 650 nm

Page 281: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 15

Results of Measurement of ambient resistance of lamp

Table 14 presents the results of the ambient resistance measurements.

Lamp Resistance[mS]

Temperature[°C]

C564 - before

C564 - after 40,3026 ± 0,00440,3026 ± 0,004

23,59 ± 0,0223,57 ± 0,02

C681 - before

C681 - after 34,4566 ± 0,00434,4486 ± 0,004

23,83 ± 0,0223,76 ± 0,02

Table 14: Ambient resistance measurements of lamp C564 and C681.

Page 282: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference

CCT-Key comparison, 3th measurements on C564 and C681 NMi/VSL 16

References

[1] CCT - Key comparison : Comparison of the Local Realizations of the ITS-90 between Silverpoint and 1700 °CInitial measurements on C564, C681 and C680NMi/VSL - contributionMarch 1999Not published.

[2] Protocol to the comparison of local realizations of the ITS-90 between the silver point and1700 °C using vacuum tungsten-strip lamps as transfer standards.Not published.

Page 283: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 284: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 285: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 286: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 287: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 288: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 289: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 290: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 291: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 292: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 293: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 294: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 295: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 296: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 297: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 298: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 299: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 300: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 301: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 302: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 303: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 304: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 305: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 306: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 307: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 308: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 309: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 310: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 311: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 312: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 313: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 314: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 315: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 316: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 317: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 318: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 319: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 320: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 321: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 322: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 323: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 324: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 325: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 326: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 327: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 328: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 329: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 330: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 331: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 332: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 333: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 334: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 335: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 336: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 337: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 338: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 339: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 340: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 341: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 342: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 343: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 344: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 345: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 346: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 347: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 348: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 349: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 350: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 351: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 352: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 353: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 354: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 355: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 356: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 357: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 358: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 359: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 360: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 361: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 362: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 363: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 364: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 365: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 366: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 367: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 368: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 369: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 370: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 371: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 372: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 373: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 374: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 375: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 376: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference
Page 377: 2. Description of the equipment utilised for the ...kcdb.bipm.org/appendixb/appbresults/cct-k5/cct-k5_instrumentation... · and for the effective wavelength of the utilised interference