2. circuit implementation of the transfer function

40
2. Circuit implementation of the transfer function Kanazawa University Microelectronics Research Lab. Akio Kitagawa

Upload: others

Post on 26-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

2. Circuit implementation of the transfer function

Kanazawa UniversityMicroelectronics Research Lab.Akio Kitagawa

2.1 Block diagram of continuous-time circuit

2

3

Linear elements for continuous-time circuit

s

/s

In1

In2

Out

Out

Out

In

In

Adder and subtractor

Differentiator

Integrator

The parameters , , and are the gain of an amplifier, a differentiator, and an integrator, respectively.

OutInConstant multiplication

4

)()()(1)(

outinoutinoutinout

inout

in

out

VVs

VcVbs

VcVbs

V

VbVcscsb

VV

Block diagram of 1st-order LPF

csbVin Vout =

scsb

VVsHin

out)(

cb

Transfer function

/s VoutVin

NOTE: A feedback of a constant introduces a constant term in a denominator.

Block diagram of transfer function

5

Block diagram of 1st-order HPF

cssa

Vin Vout =

s

scssa

VVsHin

out)(

ca

/s VoutsVin

)()()(1)(

outinoutinoutinout

inout

in

out

VVss

VcVsas

VcVsas

V

VsaVcscssa

VV

Transfer function Block diagram of transfer function

6

)()()(1)()(

outininoutininoutininout

inout

in

out

VVVss

VcVbVsas

VcVbVsas

V

VbsaVcscsbsa

VV

Block diagram of 1st-order transfer function

csbsa

Vin Vout=

ss

csbsa

VVsHin

out)(

cba

/s Vout

sVin

Transfer function

Block diagram of transfer function

7

})({})({

})(1{1)(1)(

1001

10101

01

2

2

2

outoutinoutoutin

outoutinoutoutinout

inout

in

out

VVVss

VdVeVcss

VdVeVcss

VeVsdVcs

V

VcVesds

esdsc

VV

Block diagram of 2nd-order LPF 1esds

c2Vin Vout

010112

102)(

ssesds

cVVsHin

out

010

11

10

edc

/s VoutVin/s

NOTE: A feedback element 0 introduces a constant term in a denominator, and 1makes a design flexibility.

8

Block diagram of 2nd-order LPF 2esds

c2Vin Vout

010112

102)(

ssesds

cVVsHin

out

010

10

10

edc

11Vs

Vout

/s VoutVin

/s

V1

)()(

)()(1)(

01101

011

001

01

011001

012

2

2

outinoutin

outoutinoutoutinout

inout

in

out

VVVss

VeVdVcss

VeVsdVcss

VeVsdVcs

V

VcVesds

esdsc

VV

NOTE: This is another solution of 2nd-order LPF.

9

Block diagram of 2nd-order LPF 3esds

c2Vin Vout

1010

210

2)(ssesds

cVVsHin

out

10

10

10

edc

Vout

s

/sVin/s

)(

)(

)(1

10

101010

10

2

outoutin

outoutin

outoutinout

VVsVss

VeVsdVcss

VeVsdVcs

V

10

)()(

)()(

)(1)(1

0010

111

010

1010

10

11

1

10

10

22

2

2

2

outoutininin

outoutininin

outoutinininout

in

out

VVsss

VVss

Vss

VeVsdss

VbVsas

Vcss

VeVsds

VcVsbVsas

V

esdscsbsa

VV

Block diagram of 2nd-order transfer function

010

110

010

11

11

edcba

esdscsbsa

2

2

VoutVin

Vout

s

/sVin /s

s

11

Stability of higher order transfer function

β€’ A 2-stage-cascade connection of the integrators or differentiators can cause instability of the circuit with the feedback loop, because of the phase rotation > . In the worst case, the circuit unexpectedly oscillates.

log

-

|HI()|(dB)

-20dB

Bode diagram of integrator

The feedback loop with the phase shift > causes the negative feedback (NFB) or positive feedback (PFB).

1st stage2nd stage

log-/2

∠𝐻 πœ”

12

Stability and distribution of pole

You can simply cheek the stability of the circuit with the pole arrangement of the transfer function. The poles on the imaginary axis and right half plane cause the instability of the circuit.

s-plane

Re

Im

Stable

Instable

Pole Impulse responsepositive real number exponential growthconjugate complex number divergent vibrationpure imaginary number steady‐state vibration

2.2 Block diagram of discrete-time circuit

13

14

Integrator and differentiator (1)Integrator by BET Differentiator by BET

)(1

)()(

1)()(

)()()(

1

1

1

zVzTzVTzV

zzVzV

zVzzVzV

inS

XSout

inX

XinX

)(1)(1

zVTzzV inS

out

)(

1)( 1 zV

zTzV inS

out

)(1

)}()({1)(

)()(

1

1

1

zVTz

zVzVzT

zV

zVzzV

inS

ininS

out

inY

z-1

Vin(z) Vout(z)VX(z)

TS

z-1

Vin(z) Vout(z)

VY(z)

1/TS

-

οΌ‹

15

Integrator and differentiator (2)Integrator by bilinear transform Differentiator by bilinear transform

)(11

2)(

2)(

)()1()()1(

)()()1()(

1

1

11

11

zVzzTzVTzV

zVzzVz

zVzzVzzV

inS

XS

out

inX

XinX

)(112)( 1

1

zVzz

TzV in

Sout

)(11

2)( 1

1

zVzzTzV in

Sout

)(112)(2)(

)()1()()1(

)()()1()(

1

1

11

11

zVzz

TzV

TzV

zVzzVz

zVzzVzzV

inS

XS

out

inX

XinX

z-1

Vin(z) Vout(z)VX(z)

TS/2z-1 z-1

Vin(z) Vout(z)VX(z)

2/TS-

οΌ‹

z-1

-

-

16

IntegratorIntegrator by FET

)(1

)( 1

1

zVzzTzV in

Sout

TSz-1

1-z-1 Vout(z)Vin(z)

The FET integrator is equivalent to the BET integrator + the delay element of Ts.

z-1Vin(z) Vout(z)VX(z) TS

NOTE: The integrator and delaying integrator show the same characteristic except for delay time. The delaying integrator does not output the hazard generated by the adder.

Block diagram of variable s and z

17

Examples of 1st-order LPF

variable s

variable z

Continuous-time analog circuits

Discrete-time analog circuits and digital circuits

2.3 Continuous-time analog implementation

18

Implementation methods of analog circuits

19

Signal Circuitry Components FeaturesContinuous time RC R, C, OPA High precision, low

power consumptiongm-C C, OTA High speed, low power

consumptionDiscrete time Switched

capacitorC, CMOS-switch, OPA

Very high precision

Switched Current

Current mirror, CMOS-switch

Very high speed

2 types of OPA

)(2

inind

out VVAV

Function

)(2

inind

out VVAV

Ad = Differential Gain

Symbol of Single-end OPA

Symbol of Full-differential OPA

)( inindout VVAV

Ad = Differential Gain

outoutout VVV

20

AC characteristic of OPA

21

1st pole

2nd pole

0dB

Open loop gain

f

f

|Ad(f)|

f)0deg.

-90deg.

Unity gain frequency fu or GBP

Slope = -20dB/Dec.

Linear operators

22

cs

a/s

In1

In2

Out

Out

Out

In

In

Addition and subtraction

Derivation

Integral

(Current summing)

a, b, c : circuit constants

Linear operation elements in the analog circuits

(Capacitor)

(OPA or OTA)

b OutIn (Resistor)Constant factor

(Typical implementation)Operation Symbol

Continuous-time analog operators

23

𝑖 π‘‘π‘‘π‘ž 𝑑𝑑𝑑 𝐢

𝑑𝑣 𝑑𝑑𝑑

β„’β‡’ 𝐼 𝑠 𝑠𝐢 Β· 𝑉 𝑠

𝑖 𝑑1𝑅 𝑣 𝑑 𝐺𝑣 𝑑

β„’β‡’ 𝐼 𝑠 𝐺 Β· 𝑉 𝑠

𝑣 𝑑1𝐢 π‘ž 𝑑

1𝐢 𝑖 𝜏 π‘‘πœ

ℒ⇒𝑉 𝑠

1𝑠𝐢 𝐼 𝑠

q -q

Constant multiplication

Voltage differentiation

Current integration

q -q

Continuous-time analog integrator (CAI)

24

𝐻 𝑠𝑉 𝑠𝑉 𝑠

𝐺𝐢𝑠

Transfer function of CAI:

I(s)

Implementation example 1

25

𝑉1

𝑠𝐢2 𝑠𝐢1 Β· 𝑉1𝑅1𝑉

1𝑅2𝑉

𝐻 𝑠𝑉𝑉

𝐢1𝐢2

𝑠 𝐺1𝐢1

𝑠 𝐺2𝐢2

π‘Žπ‘  𝑏𝑠 𝑐

G1-1sC2

Vin(s) Vout(s)++

G2sC1

++

++

Full-differential implementation

26

𝐻 𝑠𝑉𝑉

𝐢1𝐢2

𝑠 𝐺1𝐢1

𝑠 𝐺2𝐢2

𝐻 𝑠𝑉𝑉

𝐢1𝐢2

𝑠 𝐺1𝐢1

𝑠 𝐺2𝐢2

Implementation example 2

27

C2G1Vin

+ Vout+

G4

C2

G4

+- +-Vin

- Vout-+

- +-

G1

G3

G3

C1

C1

G2

G2

𝐻 𝑠𝐺1𝐺2𝐢1𝐢2

𝑠 𝐺4𝐢2 𝑠

𝐺2𝐺3𝐢1𝐢2

2.4 Discrete-time analog implementation

28

Delay element

29

1

00

)()(

)()()(

)()()(

zTxeTx

dteTttxdteTtx

TttxTtx

SsT

S

stS

stSd

SSd

S

z-1 Vout(z)Vin(z)

𝑣 𝑑 𝑣 𝑑 𝑇Time shift for 1-cycle

Discrete-time analog operators 1

30

𝐼 𝑠 𝑠𝐢 Β· 𝑉 𝑠 𝐼 𝑧 𝐢 1 𝑧1𝑇 V z

𝑉 𝑠1

𝑠𝐢 𝐼 𝑠 𝑉 𝑧1𝐢

11 𝑧 𝐼 𝑧 𝑇

Voltage differentiation

Charge integration

i(t)

𝑄 𝑧 𝐼 𝑧 𝑇 𝐢 1 𝑧

i(t)

𝑉 𝑧1𝐢

11 𝑧 𝑄 𝑧

Discrete-time analog operators 2

31

Constant multiplication (Switched capacitor)

π‘ž 𝑑 𝐢 Β· 𝑣 𝑑𝑇2

β‡’ 𝑄 𝑧 𝐢 Β· 𝑉 𝑧 𝑧

π‘ž 𝑑 𝐢 Β· 𝑣 𝑑⇒𝑄 𝑧 𝐢 Β· 𝑉 𝑧

q -q

-qq

Non-overlapping clock generator

32

Delay

Delay

1

2

The two-phase clocks 1 and 2 are required to drive the switched capacitor. The edge of clocks 1 and 2 must not overlap, because the leak of the charge stored in capacitors causes the error of the signal processing.

DAI: discrete-time analog integrator 1

33

Positive phase integrator

+- +-

1

1

CM

1

1

CM

in+

in-

out+

out-

Q(z)

𝐻 𝑧𝐢1𝐢2

𝑧1 𝑧

DAI: discrete-time analog integrator 2

34

Opposite phase integrator

+- +-

1 1

CM

1 1

CM

out+

out-

in+

in-

𝐻 𝑧𝐢1𝐢2

11 𝑧

Q(z)

Implementation example

35

+- +-

C11

1

VCM

C11

1

VCM

C2

C3

Vin+

Vin-

Vout+

Vout-

C21 1

VCM

C11 1

VCM

-C1ο½₯z-1/2Vin(z) -1C3(1 – z-1)

Vout(z)

C2

++

+

𝐻 𝑧𝑉 𝑧𝑉 𝑧

𝐢1𝐢2 𝐢3

𝑧

𝑧 𝐢3𝐢2 𝐢3

𝑉1𝐢3

11 𝑧 𝐢1𝑧 𝑉 𝐢2 Β· 𝑉

(LPF)

Poles in s-plane and z-plane

36

Re

Im

Re

Im

ff

s-plane z-plane

2 1 π‘Ž

a

a2π‘Ž

1 - a

𝑓2

𝑓4

3

CornerCorner

2.5 Digital implementation

37

Digital operators 1

38

Delay

Differentiation (BET)

𝑉 𝑧 1 𝑧 𝑉 𝑧

=

Subtractor

Digital operators 2

39

Integration (BET)

Integration (FET)

𝑉 𝑧 𝑉 𝑧 𝑧 𝑉 𝑧

𝑉 𝑧1

1 𝑧 𝑉 𝑧

𝑉 𝑧 𝑧 𝑉 𝑧 𝑉 𝑧

𝑉 𝑧𝑧

1 𝑧 𝑉 𝑧

Adder

NOTE: The FET integrator does not output the hazards, because the digital delay element is the same as an register.

Implementation example

40

𝑉 𝑧 𝑧 1 𝑧 𝑉 𝑧 𝑧 𝑉 𝑧

𝑧 1 𝑧1 𝑧 𝑉 𝑧

Re

Im

f

z-plane

𝑓2

𝑓4

3

Resonator

Comb filter

BPF