1=numerical relativity simulations of black holes: methodology and

67
Numerical Relativity simulations of black holes: Methodology and Computational Framework U. Sperhake CSIC-IEEC Barcelona Numerical Cosmology 2012 19 th July 2012 U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Fram 19/07/2012 1 / 84

Upload: phunghanh

Post on 04-Jan-2017

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1=Numerical Relativity simulations of black holes: Methodology and

Numerical Relativity simulations of black holes:Methodology and Computational Framework

U. Sperhake

CSIC-IEEC Barcelona

Numerical Cosmology 201219th July 2012

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 1 / 84

Page 2: 1=Numerical Relativity simulations of black holes: Methodology and

Overview

Motivation

Modeling black holes in GR

Black holes in astrophysics

High-energy collisions of black holes

The AdS/CFT correspondence

Stability, Cosmic Censorship

Conclusions

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 2 / 84

Page 3: 1=Numerical Relativity simulations of black holes: Methodology and

1. Motivation

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 3 / 84

Page 4: 1=Numerical Relativity simulations of black holes: Methodology and

What are black holes?

Consider Lightcones

In and outgoing light

Calculate surface

of outgoing lightfronts

Expansion ≡ Rate of

change of this surface

Apparent Horizon ≡ Outermost surface withzero expansion

“Light cones tip over” due to curvature

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 4 / 84

Page 5: 1=Numerical Relativity simulations of black holes: Methodology and

Black holes are out there: Stellar BHs

high-mass X-ray binaries: Cygnus X-1 (1964)

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 5 / 84

Page 6: 1=Numerical Relativity simulations of black holes: Methodology and

Black holes are out there: Stellar BHs

One member is very compact and massive⇒ Black Hole

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 6 / 84

Page 7: 1=Numerical Relativity simulations of black holes: Methodology and

Black holes are out there: galactic BHs

Supermassive BHs found at center of virtually all galaxies

SMBHs conjectured to be responsible for quasars starting in the1980s

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 7 / 84

Page 8: 1=Numerical Relativity simulations of black holes: Methodology and

BHs are strong sources of gravitational waves

BH binaries source of GWs for LIGO, VIRGO, GEO600, “LISA”

Cross corellate model waveforms with data stream

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 8 / 84

Page 9: 1=Numerical Relativity simulations of black holes: Methodology and

Black holes might be in here: LHC

LHC CERN

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 9 / 84

Page 10: 1=Numerical Relativity simulations of black holes: Methodology and

BH generation in TeV -gravity scenarios

Extra dimensions can explain hierarchy problem

Arkani-Hamed, Dimopoulos & Dvali ’98 Randall & Sundrum ’98

Gravity dominant at ∼ TeV ⇒ BH formation in LHC collisions

Signature: # jets, leptons, transverse energy

TODO: determine Cross section, GW loss, BH spin

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 10 / 84

Page 11: 1=Numerical Relativity simulations of black holes: Methodology and

AdS/CFT correspondence

CFTs in D = 4 dual to

asymptotically AdS BHs in D = 5

Study cousins of QCD,

e. g. N = 4 SYM

Applications

Quark-gluon plasma;

heavy-ion collisions, RHIC

Condensed matter,

superconductors

Dictionary: Metric fall-off↔ Tαβ

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 11 / 84

Page 12: 1=Numerical Relativity simulations of black holes: Methodology and

2. Modeling black holes in GR

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 12 / 84

Page 13: 1=Numerical Relativity simulations of black holes: Methodology and

General Relativity: Curvature

Curvature generatesacceleration

“geodesic deviation”

No “force”!!

Description of geometry

Metric gαβ

Connection Γαβγ

Riemann Tensor Rαβγδ

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 13 / 84

Page 14: 1=Numerical Relativity simulations of black holes: Methodology and

How to get the metric?

Train cemeteryUyuni, Bolivia

Solve for the metric gαβ

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 14 / 84

Page 15: 1=Numerical Relativity simulations of black holes: Methodology and

How to get the metric?

The metric must obey the Einstein Equations

Ricci-Tensor, Einstein Tensor, Matter Tensor

Rαβ ≡ Rµαµβ

Gαβ ≡ Rαβ − 12gαβRµ

µ “Trace reversed” Ricci

Tαβ “Matter”

Einstein Equations Gαβ = 8πTαβ

Solutions: Easy! Take metric

⇒ Calculate Gαβ

⇒ Use that as matter tensor

Physically meaningful solutions: Difficult! ⇒ Numerics

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 15 / 84

Page 16: 1=Numerical Relativity simulations of black holes: Methodology and

A list of tasks

Target: Predict time evolution of BBH in GR

Einstein equations: 1) Cast as evolution system

2) Choose specific formulation

3) Discretize for computer

Choose coordinate conditions: Gauge

Fix technical aspects: 1) Mesh refinement / spectral domains

2) Singularity handling / excision

3) Parallelization

Construct realistic initial data

Start evolution and waaaaiiiiit...

Extract physics from the data

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 16 / 84

Page 17: 1=Numerical Relativity simulations of black holes: Methodology and

3+1 Decomposition

GR: “Space and time exist as a unity: Spacetime”

NR: ADM 3+1 split Arnowitt, Deser & Misner ’62York ’79, Choquet-Bruhat & York ’80

gαβ =

(−α2 + βmβ

m βjβi γij

)3-Metric γijLapse αShift β i

lapse, shift⇒ Gauge

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 17 / 84

Page 18: 1=Numerical Relativity simulations of black holes: Methodology and

ADM Equations

The Einstein equations Rαβ = 0 become6 Evolution equations

(∂t − Lβ)γij = −2αKij

(∂t − Lβ)Kij = −DiDjα + α[Rij − 2KimK mj + KijK ]

4 Constraints

R + K 2 − KijK ij = 0

−DjK ij + DiK = 0

preserved under evolution!

Evolution

1) Solve constraints

2) Evolve dataU. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 18 / 84

Page 19: 1=Numerical Relativity simulations of black holes: Methodology and

Formulations I: BSSN

One can easily change variables. E. g. wave equation

∂ttu − c∂xxu = 0 ⇔ ∂tF − c∂xG = 0

∂xF − ∂tG = 0

BSSN: rearrange degrees of freedom

χ = (det γ)−1/3 γij = χγij

K = γijK ij Aij = χ(Kij − 1

3γijK)

Γi = γmnΓimn = −∂mγ

im

Shibata & Nakamura ’95, Baumgarte & Shapiro ’98

BSSN strongly hyperbolic, but depends on details...

Sarbach et al.’02, Gundlach & Martín-García ’06

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 19 / 84

Page 20: 1=Numerical Relativity simulations of black holes: Methodology and

Formulations I: BSSN

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 20 / 84

Page 21: 1=Numerical Relativity simulations of black holes: Methodology and

Formulations II: Generalized harmonic (GHG)

Harmonic gauge: choose coordinates such that

∇µ∇µxα = 0

4-dim. version of Einstein equations

Rαβ = −12gµν∂µ∂νgαβ + . . .

Principal part of wave equation

Generalized harmonic gauge: Hα ≡ gαν∇µ∇µxν

⇒ Rαβ = −12gµν∂µ∂νgαβ + . . .− 1

2 (∂αHβ + ∂βHα)

Still principal part of wave equation !!! Manifestly hyperbolic

Friedrich ’85, Garfinkle ’02, Pretorius ’05

Constraint preservation; constraint satisfying BCs

Gundlach et al. ’05, Lindblom et al. ’06

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 21 / 84

Page 22: 1=Numerical Relativity simulations of black holes: Methodology and

Discretization of the time evolution

Finite differencing (FD)

Pretorius, RIT, Goddard, Georgia Tech, LEAN, BAM, UIUC,...

Spectral Caltech-Cornell-CITA

Parallelization with MPI, ∼ 128 cores, ∼ 256 Gb RAM

Example: advection equation ∂t f = ∂x f , FD

Array f nk for fixed n

f n+1k = f n

k + ∆tf nk+1−f n

k−12∆x

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 22 / 84

Page 23: 1=Numerical Relativity simulations of black holes: Methodology and

Initial data

Two problems: Constraints, realistic data

Rearrange degrees of freedom

York-Lichnerowicz split: γij = ψ4γij

Kij = Aij + 13γijK

York & Lichnerozwicz, O’Murchadha & York,

Wilson & Mathews, York

Make simplifying assumptions

Conformal flatness: γij = δij

Find good elliptic solvers, e. g. Ansorg et al. ’04

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 23 / 84

Page 24: 1=Numerical Relativity simulations of black holes: Methodology and

Mesh refinement

3 Length scales : BH ∼ 1 M

Wavelength ∼ 10...100 M

Wave zone ∼ 100...1000 M

Critical phenomena

Choptuik ’93

First used for BBHs

Brügmann ’96

Available Packages:

Paramesh MacNeice et al. ’00

Carpet Schnetter et al. ’03

SAMRAI MacNeice et al. ’00

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 24 / 84

Page 25: 1=Numerical Relativity simulations of black holes: Methodology and

The gauge freedom

Remember: Einstein equations say nothing about α, β i

Any choice of lapse and shift gives a solution

This represents the coordinate freedom of GR

Physics do not depend on α, β i

So why bother?

The performance of the numerics DO depend strongly on thegauge!

How do we get good gauge?

Singularity avoidance, avoid coordinate stretching, well posedness

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 25 / 84

Page 26: 1=Numerical Relativity simulations of black holes: Methodology and

What goes wrong with bad gauge?

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 26 / 84

Page 27: 1=Numerical Relativity simulations of black holes: Methodology and

What goes wrong with bad gauge?

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 27 / 84

Page 28: 1=Numerical Relativity simulations of black holes: Methodology and

What goes wrong with bad gauge?

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 28 / 84

Page 29: 1=Numerical Relativity simulations of black holes: Methodology and

What goes wrong with bad gauge?

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 29 / 84

Page 30: 1=Numerical Relativity simulations of black holes: Methodology and

A brief history of BH simulations

Pioneers: Hahn & Lindquist ’60s, Eppley, Smarr et al. ’70s

Grand Challenge: First 3D Code Anninos et al. ’90s

Further attempts: Bona & Massó, Pitt-PSU-Texas

AEI-Potsdam, Alcubierre et al.

PSU: first orbit Brügmann et al. ’04

Codes unstable!

Breakthrough: Pretorius ’05 GHG

UTB, Goddard’05 Moving Punctures

Currently about 10 codes world wide

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 30 / 84

Page 31: 1=Numerical Relativity simulations of black holes: Methodology and

3. BHs in GW and astrophysics

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 31 / 84

Page 32: 1=Numerical Relativity simulations of black holes: Methodology and

Free parameters of BH binaries

Total mass M

Relevant for GW detection: Frequencies scale with M

Not relevant for source modeling: trivial rescaling

Mass ratio q ≡ M1M2, η ≡ M1M2

(M1+M2)2

Spin: ~S1, ~S2 (6 parameters)

Initial parameters

Binding energy Eb Separation

Orbital ang. momentum L Eccentricity

Alternatively: frequency, eccentricity

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 32 / 84

Page 33: 1=Numerical Relativity simulations of black holes: Methodology and

BBH trajectory and waveform

q = 4, non-spinning binary; ∼ 11 orbits

US, Brügmann, Müller & Sopuerta ’11

Trajectory Quadrupole mode

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 33 / 84

Page 34: 1=Numerical Relativity simulations of black holes: Methodology and

Morphology of a BBH inspiral

Thanks to Caltech, Cornell, CITA

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 34 / 84

Page 35: 1=Numerical Relativity simulations of black holes: Methodology and

Gravitational recoil

Anisotropic GW emission⇒ recoil of remnant BHBonnor & Rotenburg ’61, Peres ’62, Bekenstein ’73

Escape velocities: Globular clusters 30 km/s

dSph 20− 100 km/s

dE 100− 300 km/s

Giant galaxies ∼ 1000 km/s

Ejection / displacement of BH⇒

Growth history of SMBHs

BH populations, IMBHs

Structure of galaxies

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 35 / 84

Page 36: 1=Numerical Relativity simulations of black holes: Methodology and

Superkicks

Kicks from non-spinning BHs up to ∼ 180 km/s

González et al. ’06

Kidder ’95, UTB-RIT ’07: maximum kick expected for

Kicks up to vmax ≈ 4 000 km/s

González et al. ’07, Campanelli et al. ’07

“Hang-up kicks” of up to 5 000 km/s Lousto & Zlochower ’12

Suppression via spin alignment and Resonance effects in inspiralSchnittman ’04, Bogdanovicz et al. ’07, Kesden, US & Berti ’10, ’10a, ’12

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 36 / 84

Page 37: 1=Numerical Relativity simulations of black holes: Methodology and

Gravitational Wave observations

Accelerated masses generate GWs

Interaction with matter very weak!

Earth bound detectors: GEO600, LIGO, TAMA, VIRGO

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 37 / 84

Page 38: 1=Numerical Relativity simulations of black holes: Methodology and

Some targets of GW physics

Confirmation of GR

Hulse & Taylor 1993 Nobel Prize

Parameter determination

of BHs: M, ~S

Optical counter parts

Standard sirens (candles)

Mass of graviton

Test Kerr Nature of BHs

Cosmological sources

Neutron stars: EOSU. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 38 / 84

Page 39: 1=Numerical Relativity simulations of black holes: Methodology and

Matched filtering

Long, accurate waveforms required

⇒ combine NR with PN, perturbation theoryU. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 39 / 84

Page 40: 1=Numerical Relativity simulations of black holes: Methodology and

Template construction

Stitch together PN and NR waveforms

EOB or phenomenological templates for ≥ 7-dim. par. space

Community wide Ninja2 and NRAR projects

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 40 / 84

Page 41: 1=Numerical Relativity simulations of black holes: Methodology and

4. High-energy collisionsof black holes

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 41 / 84

Page 42: 1=Numerical Relativity simulations of black holes: Methodology and

Experimental signature at the LHC

Black hole formation at the LHC could be detected by the properties ofthe jets resulting from Hawking radiation.

Multiplicity of partons: Number ofjets and leptons

Large transverse energy

Black-hole mass and spin areimportant for this!

ToDo:Exact cross section for BH formation

Determine loss of energy in gravitational waves

Determine spin of merged black holeU. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 42 / 84

Page 43: 1=Numerical Relativity simulations of black holes: Methodology and

Does matter “matter”?

Matter does not matter at energies� EPlanck

Banks & Fischler ’99; Giddings & Thomas ’01

Einstein plus minimally coupled, massive, complex scalar filed

“Boson stars” Pretorius & Choptuik ’09

γ = 1 γ = 4

BH formation threshold: γthr = 2.9± 10 % ∼ 1/3 γhoop

Model particle collisions by BH collisionsU. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 43 / 84

Page 44: 1=Numerical Relativity simulations of black holes: Methodology and

Initial setup

Take two black holes

Total rest mass: M0 = MA, 0 + MB, 0

Initial position: ±d2

Linear momentum: ∓P[cosα, sinα, 0]

Impact parameter: b ≡ LP

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 44 / 84

Page 45: 1=Numerical Relativity simulations of black holes: Methodology and

Head-on: D = 4, b = 0, ~S = 0

Total radiated energy: 14± 3 % for v → 1 US et al. ’08

About half of Penrose ’74

Agreement with approximative methods

Flat spectrum, multipolar GW structure Berti et al. ’10

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 45 / 84

Page 46: 1=Numerical Relativity simulations of black holes: Methodology and

Grazing: D = 4, b 6= 0, γ = 1.52

Zoom-whirl orbits Pretorius & Khurana ’07

Immediate vs. Delayed vs. No merger

US, Cardoso, Pretorius, Berti, Hinderer & Yunes ’09

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 46 / 84

Page 47: 1=Numerical Relativity simulations of black holes: Methodology and

Gravitational radiation: Delayed merger

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 47 / 84

Page 48: 1=Numerical Relativity simulations of black holes: Methodology and

Scattering threshold bscat in D = 4

b < bscat ⇒ Merger

b > bscat ⇒ Scattering

Numerical study: bscat = 2.5±0.05v M

Shibata, Okawa & Yamamoto ’08

Independent study by US, Pretorius, Cardoso, Berti et al. ’09, ’12

γ = 1.23 . . . 2.93:

χ = −0.6, 0, +0.6 (anti-aligned, nonspinning, aligned)

Limit from Penrose construction: bcrit = 1.685 M

Yoshino & Rychkov ’05

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 48 / 84

Page 49: 1=Numerical Relativity simulations of black holes: Methodology and

Diminishing impact of structure as v → 1

Effect of spin reduced for large γ

bscat for v → 1 not quite certain

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 49 / 84

Page 50: 1=Numerical Relativity simulations of black holes: Methodology and

Radiated quantities: b−sequence with γ = 1.52

Final spin close to Kerr limit

Erad ∼ 35 % for γ = 2.93; about 10 % of Dyson luminosity

Diminishing “hang-up” effect as v → 1

US, Cardoso, Pretorius, Berti, Hinderer & Yunes ’09U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 50 / 84

Page 51: 1=Numerical Relativity simulations of black holes: Methodology and

Black-hole head-on collisions in D = 6

Witek et al. in prep.

Dimensional reduction, SO(D − 3) symmetry

d/rS = 6

QNM ringdown agrees with close-limit Yoshino ’05U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 51 / 84

Page 52: 1=Numerical Relativity simulations of black holes: Methodology and

Boosted collisions in D = 5

Okawa, Nakao & Shibata ’11

Take Tangherlini metric; boost, translate, superpose

Use SO(D − 3) symmetry via CARTOON√

Rabcd Rabcd

6√

2E2P

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 52 / 84

Page 53: 1=Numerical Relativity simulations of black holes: Methodology and

Scattering threshold in D = 5

Okawa, Nakao & Shibata ’11

Numerical stability still an issue...U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 53 / 84

Page 54: 1=Numerical Relativity simulations of black holes: Methodology and

5. The AdS/CFTcorrespondence

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 54 / 84

Page 55: 1=Numerical Relativity simulations of black holes: Methodology and

The AdS/CFT conjecture

Maldacena ’98

“strong form”: Type IIb string theory on AdS5 × S5

⇔ N = 4 super Yang-Mills in D = 4

Hard to prove; non-perturbative Type IIb String Theory?

“weak form”: low-energy limit of string-theory side

⇒ Type IIb Supergravity on AdS5 × S5

Some assumptions, factor out S5

⇒ General Relativity on AdS5

Corresponds to limit of large N, g2N in the field theory

E. g. Stationary AdS BH⇔ Thermal Equil. with THaw in dual FT

Witten ’98

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 55 / 84

Page 56: 1=Numerical Relativity simulations of black holes: Methodology and

The boundary in AdS

Dictionary between metric properties and

vacuum expectation values of CFT operators.

E. g. Tαβ operator of CFT↔ transverse metric on AdS boundary.

The boundary plays an active role in AdS! Metric singular!

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 56 / 84

Page 57: 1=Numerical Relativity simulations of black holes: Methodology and

Collision of planar shockwaves in N = 4 SYM

Dual to colliding gravitational shock waves in AADS

Characteristic study with translational invariance

Chesler & Yaffe ’10, ’11

Initial data: 2 superposed shockwaves

Isotropization after ∆v ∼ 4/µ ∼ 0.35 fm/c

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 57 / 84

Page 58: 1=Numerical Relativity simulations of black holes: Methodology and

Cauchy (“4+1”) evolutions in asymptotically AdS

Characteristic coordinates successful numerical tool in AdS/CFT

But: restricted to symmetries, caustics problem...

Cauchy evolution needed for general scenarios? Cf. BBH inspiral!!

Cauchy scheme based on generalized harmonic formulation

Bantilan & Pretorius ’12

SO(3) symmetry

Compactify “bulk radius”

Asymptotic symmetry of AdS5: SO(4,2)

Decompose metric into AdS5 piece and deviation

Gauge must preserve asymptotic fall-off

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 58 / 84

Page 59: 1=Numerical Relativity simulations of black holes: Methodology and

Cauchy (“4+1”) evolutions in asymptotically AdS

Scalar field collapse

BH formation and ringdown

Low order QNMs ∼perturbative studies,

but mode coupling

CFT stress-energy tensor

consistent with thermalized

N = 4 SYM fluid

Difference of CFT Tθθand hydro (+1st , 2nd corrs.)

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 59 / 84

Page 60: 1=Numerical Relativity simulations of black holes: Methodology and

6. Stability, Cosmic Censorship

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 60 / 84

Page 61: 1=Numerical Relativity simulations of black holes: Methodology and

Stability of AdS

m = 0 scalar field in as. flat spacetimes Choptuik ’93

p > p∗ ⇒ BH, p < p∗ ⇒ flat

m = 0 scalar field in as. AdS Bizon & Rostworowski ’11

Similar behaviour for “Geons” Dias, Horowitz & Santos ’11

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 61 / 84

Page 62: 1=Numerical Relativity simulations of black holes: Methodology and

Bar mode instability of Myers-Perry BH

MP BHs (with single ang.mom.) should be unstable.

Linearized analysis Dias et al. ’09

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 62 / 84

Page 63: 1=Numerical Relativity simulations of black holes: Methodology and

Non-linear analysis of MP instability

Shibata & Yoshino ’10

Myers-Perry metric; transformed to Puncture like coordinate

Add small bar-mode perturbation

Unstable for rotation parameter q & 0.75

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 63 / 84

Page 64: 1=Numerical Relativity simulations of black holes: Methodology and

Cosmic Censorship in D = 5

Pretorius & Lehner ’10

Axisymmetric code

Evolution of black string...

Gregory-Laflamme instability

cascades down

in finite time

until string has zero width

⇒ naked singularity

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 64 / 84

Page 65: 1=Numerical Relativity simulations of black holes: Methodology and

Cosmic Censorship in D = 4 de Sitter

Zilhão et al. ’12

Two parameters: MH, d

Initial data: McVittie type binaries McVittie ’33

“Small BHs”: d < dcrit ⇒ merger

d > dcrit ⇒ no common AH

“Large” holes at small d : Cosmic Censorship holds

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 65 / 84

Page 66: 1=Numerical Relativity simulations of black holes: Methodology and

7. Conclusions

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 66 / 84

Page 67: 1=Numerical Relativity simulations of black holes: Methodology and

Conclusions

NR breakthroughs in 2005

Typical simulations: 128 cores, 256 Gb RAM, ∼ weeks

Explicit discretization, MPI parallelized, OpenMP

Astrophysics, GW physics

High-energy collisions of black holes

AdS/CFT correspondence

BH Stability, Cosmic Censorship

... ?

U. Sperhake (CSIC-IEEC) Numerical Relativity simulations of black holes: Methodology and Computational Framework19/07/2012 67 / 84