1984 the deflections of reinforced and partially

323
University of Wollongong Research Online University of Wollongong esis Collection University of Wollongong esis Collections 1984 e deflections of reinforced and partially prestressed concrete box beams under repeated loading Yen Wen Wong University of Wollongong Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Recommended Citation Wong, Yen Wen, e deflections of reinforced and partially prestressed concrete box beams under repeated loading, Doctor of Philosophy thesis, Department of Civil and Mining Engineering, University of Wollongong, 1984. hp://ro.uow.edu.au/theses/1275

Upload: others

Post on 10-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1984 The deflections of reinforced and partially

University of WollongongResearch Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1984

The deflections of reinforced and partiallyprestressed concrete box beams under repeatedloadingYen Wen WongUniversity of Wollongong

Research Online is the open access institutional repository for theUniversity of Wollongong. For further information contact ManagerRepository Services: [email protected].

Recommended CitationWong, Yen Wen, The deflections of reinforced and partially prestressed concrete box beams under repeated loading, Doctor ofPhilosophy thesis, Department of Civil and Mining Engineering, University of Wollongong, 1984. http://ro.uow.edu.au/theses/1275

Page 2: 1984 The deflections of reinforced and partially
Page 3: 1984 The deflections of reinforced and partially

THE DEFLECTIONS OF REINFORCED AND PARTIALLY PRESTRESSED CONCRETE BOX BEAMS UNDER REPEATED LOADING

A thesis submitted in fullfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

Yen Wen WONG B.E.

DEPARTMENT OF CIVIL AND MINING ENGINEERING 1984

Page 4: 1984 The deflections of reinforced and partially

iii

ACKNOWLEDGEMENTS

This study was conducted in the Department of Civil and Mining

Engineering, University of Wollongong. The author is indebted to

Dr. Y. C. Loo, his major supervisor, for the close supervision,

fruitful discussions and invaluable suggestions he has given for

many years. The author also greatly appreciates the beneficial

training in research skills given by him during the course of this

study.

The author is deeply grateful to Associate Professor R. W.

Upfold, for his guidance at many stages of this study, especially

for the generous help he gave at the most difficult stage of the

study - the setting up of the experiments.

Special acknowledgement is due to Professor C. A. M. Gray for

his encouragements given during the early period of the study.

The author also wishes to express his sincere gratitude to

the Chairman of the Department, Professor L. C. Schmidt, for the

encouragements and convenience he provided at the final stages of

the preparation of this thesis.

Much appreciation is expressed to the entire technical staff

of the Structural Laboratories for their technical and physical

assistance in the experimental work.

Acknowledgement is also made to the staff of the Wollongong

University Computing Centre, for their frequent advice on programming

and the usage of the statistical package SPSS and the document

processing package TEX. The latter package was used to compose this

thesis.

Page 5: 1984 The deflections of reinforced and partially

iv

Thanks are extended to Mrs. J. Fullerton for her typing of

the tables and figures in this thesis.

The author's stay at Wollongong from January 1979 to December

1982 was made possible by a Wollongong University Scholarship. He

greatly appreciates this generous grant.

Finally, the author is indebted to his family for the under­

standing and suffering during the rather long period of this study.

Page 6: 1984 The deflections of reinforced and partially

SUMMARY

v

Several major types of civil engineering structure including

off-shore platforms and road and railway bridges are subjected to

repeated loading. Earlier studies have indicated that such loading

causes higher deflections in concrete structures than static loading.

This thesis is devoted to the study of the deflection behaviour of

reinforced and partially prestressed concrete box beams. In addition

to presenting details and results of a comprehensive experimental

programme, a simple and reliable procedure is proposed for the

analysis of concrete beam deflections under repeated loading.

Thirty reinforced and five partially prestressed concrete box

beams (of i scale) were fabricated and each tested up to 105

repetitions of load. For each beam, the repeated loading range was

kept constant with the lower and upper limits set at 30 percent

and 50 percent of the yield load to simulate the dead load and

service load respectively. For some beams 70 percent or 90 percent

of the yield load was used as the upper limit, simulating overloading

conditions. The deflections at both loading limits were measured

immediately after 1, 10, 102, 103, 104 and 105 cycles of load.

It was found that after the initial loading cycle the bending

rigidity of the beams Qience the instantaneous deflection) was not

affected by further repeated loading. The dead load deflection on

the other hand increased with increasing number of loading cycles

although the rate of increase reduced rapidly as the number of

cycles became larger. This amplification of dead load deflection by

repeated load can be seen as a parallel phenomenon to the time creep

of concrete under sustained loads. Because large deflection can

accumulate in a short time under repeated loads, the accumulated

deflection is referred to herein as the 'intensive creep' deflection.

Page 7: 1984 The deflections of reinforced and partially

vi

For some lightly reinforced beams the intensive creep deflection was

as high as eight times the initial dead load deflection.

The steel ratio, degree of prestressing and the maximum loading

level are found to be the important factors influencing the deflection

behaviour of concrete beams under repeated loading.

A simple procedure is presented for the analysis of the total

deflections of reinforced and prestressed concrete box beams under

repeated loading. The total deflection is obtained by summing

the instantaneous live load deflection and the accumulated dead

load deflection. The latter may be computed as the product of

the initial dead load deflection and the intensive creep factor.

Following a comparative study, the most suitable method is chosen

from 9 well-known procedures for the computation of initial dead

load deflection. Based on the experimental data of the initial

and accumulated dead load deflections an empirical formula for the

intensive creep factor is derived using statistical means. Parallel

to the logarithmic time-creep equation, the formula is considered to

be more realistic than an alternative hyperbolic model. For computing

the instantaneous live load deflection of any loading cycle, a new

equation for the effective moment of inertia is proposed. This

equation is shown to be superior to the existing formulas.

All equations recommended for use are simple and explicit. In

light of the experimental data obtained herein and those by other

researchers, comparisons are made with two other recently published

methods. It is concluded that the proposed procedure is more

versatile in that it accounts for more variables and allows for

the predictions of instantaneous deflection and permanent set in

addition to the total deflection. In most cases it also gives more

accurate results.

Page 8: 1984 The deflections of reinforced and partially

TABLE OF CONTENTS

TITLE PAGE i

DECLARATION ii

ACKNOWLEDGEMENT iii

SUMMARY v

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiv

NOTATION xvii

1 INTRODUCTION 1

1.1 Background 1

1.2 The Characteristic and Application of Box Beams 4

1.3 Objectives and Scope 5

1.3.1 Objectives 5

1.3.2 Scope 5

1.3.3 Outline of thesis 6

2 REVIEW ON REPEATED LOADING TESTS OF CONCRETE BEAMS 7

2.1 General Remarks 7

2.2 Strength Fatigue 9

2.2.1 Plain concrete 9

2.2.2 Reinforcing and prestressing steel 10

2.2.3 Structural members 12

2.2.4 Conservative fatigue design

recommendations 12

2.3 Effects of Repeated Loading on Serviceability 15

Page 9: 1984 The deflections of reinforced and partially

viii

2.3.1 High level repeated load tests 17

2.3.2 Tests at service and other loading levels 19

2.3.3 Comments on previous tests 29

3 THEORETICAL CONSIDERATION 31

3.1 Pilot Study 31

3.1.1 Dead load deflection and Intensive Creep 32

3.1.2 Instantaneous live load deflection 32

3.1.3 Major variables for deflections under

repeated load 33

3.2 Possible Intensive Creep Model 36

3,3 Existing Equations for !r 39

3.4 The Total Deflection Equation 40

4 EXPERIMENTAL PROGRAMME 42

4.1 General Remarks 42

4.2 Design of Test Specimens 43

4.2.1 Number of beams 43

4.2.2 Design of reinforced concrete box

beams 43

4.2.3 Design of prestressed concrete box

beams 44

4.3 Beam Details and Fabrication 49

4.4 Test Equipment and Instrumentation 55

4.5 Test Procedures 60

4.6 Experimental Results 63

4.7 Observations and Analysis of Beam Behaviour 64

Page 10: 1984 The deflections of reinforced and partially

IX

4.7.1 General behaviour 64

4.7.2 Mechanism of deflection accumulation 66

5 INITIAL DEAD LOAD DEFLECTION 71

5.1 General Remarks 71

5.2 Existing Methods for Predicting the

Initial Deflection 72

5.2.1 Moment of inertia methods 72

5.2.2 Bilinear moment-curvature or

moment-deflection methods 76

5.3 Comparative Study 80

6 INTENSIVE CREEP FACTOR 88

6.1 General Remarks 88

6.2 Statistical Analysis 89

6.2.1 The use of SPSS package 89

6.2.2 Selection of parameters 90

6.2.3 Multiple regression 91

6.3 The Proposed Formulae 97

6.4 Effects of Main Variables on Intensive Creep 100

6.4.1 Effect of load repetitions 100

6.4.2 Effect of load level 100

6.4.3 Effect of steel ratio 101

6.4.4 Effect of prestressing 101

6.4.5 Discussion 112

7 INSTANTANEOUS LIVE LOAD DEFLECTION AND THE EFFECTIVE

MOMENT OF INERTIA 118

Page 11: 1984 The deflections of reinforced and partially

7.1 Repeated Loading and Beam Rigidity 118

7.2 Existing Formulae for lrep 121

7.3 The Proposed Equations for lre_ 123

^ 7.4 Comparison of Results 126

8 TOTAL DEFLECTION OF CONCRETE BOX BEAMS

UNDER REPEATED LOADS 137

8.1 The Proposed Computational Procedure 137

8.2 Other Prediction Procedures 138

8.2.1 Balaguru and Shah's method 138

8.2.2 Lovegrove and El Din's formula 141

8.3 Comparison with Experimental Data 142

8.3.1 Reinforced concrete box beams

(150 points) 142

8.3.2 Partially prestressed concrete box beams

(30 points) 142

8.3.3 Sparks and Menzies' reinforced concrete beams

(10 points) 143

8.3.4 Bennett and Dave's prestressed beams

(9 points) 143

8.3.5 Overall accuracy 144

8.4 Comparisons with Other Prediction Methods 154

9 CONCLUSIONS 162

V 9.1 Deflection Behaviour 163

9.2 The Proposed Computational Procedures 165

9.3 Versatility and Accuracy of Proposed Procedure 167

Page 12: 1984 The deflections of reinforced and partially

XI

9.4 Recommendations for Further Study

REFERENCES

APPENDIX III Beam Surface Strains

APPENDIX IV Variations of Maximum Crack Width

APPENDIX V Measured Total Deflections and

Moment-deflection Curves

APPENDIX VI Examples for the Use of SPSS Package

and Equations of Statistical Coefficients

Used in SPSS

APPENDIX VII Numerical Examples and Computer Programs

for the Computation of 8T

Using the Proposed Method

PAPERS PUBLISHED BASED ON THIS THESIS

168

169

APPENDIX I Equations for Computing kd, Mcr. M and M^ 181

APPENDIX II Computer Program for Designing Partially

Prestressed Concrete Box Beams 187

197

216

223

256

274

300

AUTHOR'S CURRICULUM VITAE 301

Page 13: 1984 The deflections of reinforced and partially

LIST OF TABLES

TABLE PAGE

la Permissible compressive stress of Grade 40 concrete 3

lb Permissible tensile stress of mild-steel reinforce- 3 ment

2 A summary of published serviceability tests on 16 concrete beams under repeated loading

3 Details of reinforced box beams 47

4 Details of partially prestressed box beams 48

5 Upper and lower limits of repeated loading moment 62

6 The comparison of measured and computed Mcr, 65 My, and Mu

7 Existing methods for predicting initial deflections 74

8a Calculated and measured initial dead load def lee- 84 tions of reinforced box beams

8b Calculated and measured initial dead load deflec- 85 tions of partially prestressed box beams

9 Deviations of calculated 8^ 86

10 Frequency distributions of calculated dd 87

11 Multiple regression of equations for V 96

12 Correlations of measured kp and computed k_ by 99 Eq. 6.10 with various P values

13 Measured instantaneous live load deflection at 128 mid span of r.c box beams

14 Measured instantaneous live load deflection at 129 mid-span of partially prestressed box beams

15 Calculated and measured irep of reinforced box 130 beams

Page 14: 1984 The deflections of reinforced and partially

Calculated and measured lrep of partially prestressed 131 box beams

Comparisons of Eq. 7.3 with measured l.„ of 132 reinforced concrete box beams

Deviations of calculated lrep of reinforced con- 133 crete box beams

Deviations of calculated lrep for partially pre- 134 stressed concrete box beams

Frequency distributions of calculated I of 135 reinforced concrete box beams

Frequency distributions of calculated lrep for 136 partially prestressed concrete box beams

Properties of beams tested by Sparks and Menzies 148 [1973]

Properties of beams tested by Bennett and Dave 150 C19693

Frequency distribution of the errors of total 152 deflections computed using Eq. 8.1

Prediction accuracy of Eq. 8.1 153

Statistics of correlations presented in Figs. 159 35, 36 and 37

Statistics of correlations presented in Fig. 38 161

j values for reinforced concrete beams 185

\j values of reinforced concrete beams 186

Measured total deflection of reinforced box beams 224 at mid-span

Measured total deflection of prestressed box 225 beams at mid-span

Page 15: 1984 The deflections of reinforced and partially

LIST OF FIGURES

PAGE

Goodman diagram for plain concrete 14

Similar effects of sustained and repeated loads 28

on deflections

Typical load-deflection diagram of beams under 34

repeated loading CWong and Loo, 1980]

Typical load-deflection diagram obtained by Ben- 34

netts and Atkins [1977]

Typical load deflection diagram obtained by 34

Snowdon [1971]

Deflection of concrete beam under repeated loading 35

Test beams series 46

Details of test beams 51

Fabrication of concrete box beams 52

A typical stress-strain curve for concrete 53

Stress-strain curve of mild-steel deformed bars 54

Stress-strain curve of hard-drawn prestressing 54

wires

Page 16: 1984 The deflections of reinforced and partially

XV

10 Test set-up 57

11 Repeated loading control panel of the Dartec 58

System

12 Positions of dial gauges and Demac gauges 59

13 Typical increases of strain and crack width 69

under repeated loading

14 The bond mechanism of deformed bars 70

15 Bending rigidities of reinforced or prestressed 75

concrete beams

16 Idealized bilinear moment-curvature or moment- 78

deflection curve

17 Stress and strain distribution of a cracked 79

section suggested by CP110 [1974]

18 Regression line 95

19 k versus T for Mt/My = 0.53 (R200 series) 102

20a k versus T for Mt/My = 0.5 (R300 series) 103

20b k versus T for Mt/My = 0.7 (R300 series) 104

20c k versus T for Mt/My - 0.9 (R300 series) 105

21 k versus T for Mt/My = 0,53 (R450 series) 106

Page 17: 1984 The deflections of reinforced and partially

XVI

22 k versus moment ratio 107

23 k versus p for Mt/My = 0.53 (R200 series) 108

24a k versus p for Mt/My = 0.5 (R300 series) 109

24b k versus p for Mt/My = 0.7 (R300 series) 110

24c k versus p for Mt/My = 0.9 (R300 series) 111

25 k versus p for Mt/My = 0.53 (R450 series) 112

26 Effect of prestressing on intensive creep factor 113

27 Comparison between measured k and k calculated 116

by Eq. 6.8

28 Comparison between measured kp and kp calculated 117

by Eq. 6.10

29 Load-deflection curve showing change in beam 125

rigidities [see Burns and Seiss, 1966]

30 Moment-deflection curve of concrete beams 125

31 Correlations of measured and computed total 146

deflections for 30 reinforced box beams

32 Correlations of measured and computed total 147

deflections for 5 partially prestressed box beams

33 Correlations of measured and computed total 149

deflections for Sparks and Menzies' reinforced

concrete beams

Page 18: 1984 The deflections of reinforced and partially

XV11

Correlations of measured and computed total 151

deflections for Bennett and Dave's prestressed

concrete beams

Correlations of measured total deflections and 156

computed values using author's Eq. 8.1

Correlations of measured total deflections and 157

computed values using Balaguru and Shah's method

Correlations of measured total deflections and 158

computed values using Lovegrove and El Din's

method (T>105 cycles)

Comparisons between measured total deflections 160

of reinforced and prestressed box beams (105

cycles only) and computed total deflections by

three methods

Typical box section 183

Stress distribution of under-reinforced concrete 184

beams

Increases of surface strain under repeated 198

loading

Variation of maximum crack width at maximum load 217

with number of loading cycles

Moment vs deflection 226

Page 19: 1984 The deflections of reinforced and partially

XV111

NOTATION

intercept of regression line

area of tensile reinforcing steel

area of prestressing steel

overall width of beam section

web width of beam section

slope of regression line

creep strain in micro-strain

creep coefficient at any time t

ultimate (in time) creep coefficient

effective depth of beam section, distance from extreme compression fibre to the centriod of tension steel

distance from extreme compression fibre to the centriod of tensile reinforcing steel

distance from extreme compression fibre the centriod of prestressing steel

napierian base = 2.7183

eccentricity of prestressing steel

modulus of elasticity of concrete

modulus of elasticity of concrete under fatigue loading

modulus of elasticity of steel

concrete compressive stress

concrete tensile stress

yield strength of prestressing steel

tensile strength (modulus of rupture) of concrete under static loading

Page 20: 1984 The deflections of reinforced and partially

XIX

tensile strength (modulus of rupture) of concrete under fatigue loading

yield strength of reinforcing steel

concrete cylinder strength of reinforced beams

concrete cylinder strength of prestressed beams

tensile strength of concrete calculated according to AS1480-1982

moment of inertia of cracked transformed section

cracked transformed moment of inertia calculated using Ee.T

effective moment of inertia as defined in Eq. 5.6a

effective moment of inertia calculated using lcr-p and Mcr,T

moment of inertia of gross section

effective moment of inertia at T th loading cycle

moment of inertia at first yielding of the beam

internal lever arm by the elastic theory

internal lever arm by the ultimate strength theory

intensive creep factor of reinforced beams

depth of neutral axis by the elastic theory

depth of neutral axis by the ultimate strength theory

intensive creep factor of prestressed beams

span of the beam

cracking bending moment

cracking bending moment calculated using fr T

dead load moment or the bending moment caused by the lower limit of repeated load

decompression moment of prestressed beams

Page 21: 1984 The deflections of reinforced and partially

XX

bending moment increment caused by the passage of live load

bending moment caused by the total load, which includes dead and live loads or the bending moment caused by the upper limit of the repeated load

yield bending moment of the beam

ultimate bending moment of the beam

moment for calculating lrep, see Eq. 7.3

modular ratio = Es/Ec

ratio of steel reinforcement = Agt/bd

equivalent steel ratio = (Ast + Asp)/bd

modification coeffcient of intensive creep factor for partially prestressed beams

effective prestressing force

slope of straight line relating k and log^T, see Eq, 6.8

Standard error of estimate

time of loading in case of sustained load

number of repeated loading cycles

an independent variable in a regression

distance from the bottom fibre to the neutral axis of concrete beam

observed value of a dependent variable

estimated value of a dependent variable

multiplication factor for deflection governed by the loading conditions

angle of bilinear moment-deflection curve at the bifurcation point

Pearson's correlation coefficient

Page 22: 1984 The deflections of reinforced and partially

XXI

accumulated dead load deflection after the initial and the first cycle of repeated load

accumulated dead load deflection (permanent set) caused by the initial and the previous T load cycles

initial dead load deflection

the increment of deflection caused by live load passage at the T th loading cycle

total deflection after T cycles of repeated load

initial total deflection

concrete strain, static and cyclic, in micro-strain

steel strain, in micro-strain

degree of prestressing

stress range of concrete expressed as a fraction of the compressive strength

mean fibre stress of concrete expressed as a fraction of the compressive strength

maximum fibre stress of concrete

minimum fibre stress of concrete

curvature

coefficient representing moment ratio in Eqs. 3.8, 3.9 and 5.5a

Page 23: 1984 The deflections of reinforced and partially

1

Chapter 1

INTRODUCTION

1.1 Background

Concrete structural members should be designed not only

for strength but also for serviceability requirements. Better

understanding of the rigidities and deformations of concrete beams

under different kinds of loading will improve the design for

serviceability. Research on serviceability of concrete structures

and structural members is becoming more and more important these

days. This is because of the increasing use of higher design stress

in materials, coupled with many significant changes in the approaches

to design.

The specifications of higher design stresses for concrete members

in many codes of practices have been justified either by better

quality control of existing materials or by the use of new. higher

strength materials.

'A comparison of the current British Concrete Structures Code with

its earlier versions as given in Table 1 is a good example showing

the progressive increases in design stresses for both concrete

and reinforcing steel. Note that the table was compiled from data

given by Scott and Glanville [1934 and 1965]. Bate [1968]. and British

Standard Institution [19721

The use of higher design stresses or higher-strength materials

in concrete structures leads to a lower-cost structure but with

more slender sections or relatively higher deformation.'

The methods used in designing concrete members have also been

changed within the past 20 years. Ultimate strength design procedure

Page 24: 1984 The deflections of reinforced and partially

2

has been widely accepted in many countries as a replacement for the

conventional elastic design methods. This less conservative design

method is based on better understanding of the failure mechanics of

concrete structural members. The use of ultimate strength design

method results in more accurate sections as far as the strength

capacity is concerned. However, such advance is acceptable only

if the design for serviceability is carried out with reasonable

accuracy.

Extensive theoretical and experimental studies on the deflection

of both reinforced and prestressed concrete members over many

years have led to fairly well established methods of design for

serviceability under static loads. However, the effects of repeated

loading on the rigidities and deflections of concrete members are

still scarcely understood.

Loadings on offshore structures, highway and railway bridges

and some other structures are often repetitive in nature. Repeated

loading causes higher deflections than static loads in concrete

structural members. These deflections usually include some con­

siderable permanent sets which increase with the number of load

repetitions. This phenomenon has been observed by many researchers.

However, relevant experimental dataarestill rather scarce especially

for beams under large number of loading cycles. Furthermore, at

the time when this study began there was no reliable procedure for

the prediction of the deflections of concrete beams under repeated

loading. Neither was there any work done on box beams under the

same loading. It appeared that the deflections of concrete mem­

bers under repeated loading deserved detailed investigations. This

thesis project was initiated with the aim of developing simple but

accurate formulae for analysing both the instantaneous deflection

and permanent set of concrete box beams under repeated loading.

Page 25: 1984 The deflections of reinforced and partially

3

TABLE la PERMISSIBLE COMPRESSIVE STRESS OF GRADE 40 CONCRETE

Year of the Codes

CP114-1957

CP114-1965

CPllO-1969

CPllO-1972

Max. Permissible Stress

1500 psi (10.0 N/mm2)

1830 psi (12.2 N/mm2)

2050-2340 psi (13.7-15.6 N/mm2)

2400 psi (16.0 N/mm2)

TABLE lb PERMISSIBLE TENSILE STRESS OF MILD-STEEL REINFORCEMENT

Year of the Codes

DSIR -1934

CP114-1965

Max. Permissible Stress

18000 psi (124 N/mm2)

20000 psi (138 N/mm2)

Page 26: 1984 The deflections of reinforced and partially

4

U2 The Characteristics and Application of Box Beams

The box section is one of the most popular cross sectional shapes

for medium span bridges,As compared to the I-sectionit has better

lateral stability and a much higher torsional rigidity.

Standardized concrete box beams are used for bridge decking

in many countries. In the United States. AASHO-PCI standard box

beams can be used with prestressed strands to span up to 30 metres

[Prestressed Concrete Institute. 1975], As discussed by Somerville

and Tiller [1970], in Britain, standard box beams having a fixed width

of 970mm but with varying depth can be used for bridges of up to

36m span.

Because of their relatively low cracking strength, the behaviour

of box beams under repeated loading can be different from beams

with thick webs. In this thesis, this characteristic is incorporated

in the development of prediction equations for deflections.

Traditionally, bending tests on concrete beams are usually

conducted on I-sections or rectangular beams. Tests on box beams

are often done under torsional or combined loading. Very few reports

can be found dealing only with flexural tests on box beams except the two

programmes reported by Drew and Leyh [1965] and Arthur and Mahgoub

[1975] in which full scale box beams were tested under statical loads

only.

Page 27: 1984 The deflections of reinforced and partially

1.3 Objectives and Scope

5

1.3.1 Objectives

The objectives of the present work may be summarised as follows:

a. To investigate the effects of repetitive loading on

the deflections of reinforced and partially prestressed

concrete box beams', to identify the deflection behaviour

of such beams from results of a comprehensive and

carefully planned test programme.

b. To establish computational procedures for the deflections

of concrete box beams under repeated loading which will

include the effects of all major variables and cover

concrete beams from reinforced to fully prestressed

beams.

1.3.2 Scope

The present study is limited to singly, under-reinforced beams

only. It is believed that the theory of singly reinforced beams is

fundamental to the development of a more general theory. Thus it

should be attempted first.

Similar to beams under static and sustained loading, the

derivations of prediction equations for deflections under repeated

loading are done with the aid of experimental data. A review of

published or related works has been conducted which includes about

150 papers, reports and books. Although the qualitative behaviour

of beams under repeated loading can be understood, to quantify

such behaviour a well planned test programme has to be carried

Page 28: 1984 The deflections of reinforced and partially

6

out. Thirty five box beams were fabricated and tested under a

large number of repeated loading cycles. The deflection results of

these tests are analysed by statistical means through which the

prediction equations are derived. The reliability of the equations

are checked. In light of the test results obtained herein and those

by other researchers, the proposed procedure is compared with two

other recently published approaches. The proposed equations are

shown to be superior.

L3.3 Outline of thesis

In Chapter 2, a historical review on fatigue strength tests

of concrete beams is presented together with a detailed survey

conducted of previous tests on the effects of repeated loading on

serviceability of concrete beams. The analytical models for the

'intensive creep' deflection (or permanent set), the instantaneous

live load deflection and the total deflection of concrete box beams

under repeated loading are expounded in Chapter 3. To bring

the proposed models to a usable stage, deflection data on both

reinforced and prestressed beams are required. In chapter 4 the

experimental programme is described in detail: the test results are

also presented. In Chapter 5 to Chapter 8 the derivation of the

proposed computational procedure is given in detail, and the accuracy

of this procedure is checked using the deflection data obtained

by the author and by other researchers. Finally, conclusions and

recommendations for further work are given in Chapter 9.

In view of the large number of tables and figures, they are

located at the end of sections (or sub-sections as convenient) in

which they are first mentioned. Tables and figures are numbered

separately but consecutively: the two separate lists are given in

page xii to xiii and xiv to xvii respectively.

Page 29: 1984 The deflections of reinforced and partially

7

Chapter 2

REVIEW ON REPEATED LOADING TESTS OF CONCRETE BEAMS

2.1 General Remarks

Research on concrete beams under repeated loads started as

early as in 1906 as noted by Nordby [1958] and the American Concrete

Institute [I960], About 150 technical papers and reports have been

published since then. Because repeated loading tests take so much

time and effort, the early reports are limited to studies on two

or three beams [see Berry. 19081

The effects of repeated loads on concrete beams may be divided

into two major types. Firstly, it is the effect on the strength

capacity. This is usually called strength fatigue. The second type

is the effect on the serviceability conditions of the beam, such

as deflection, cracking and effective rigidity. Strength fatigue

was most important in the early days as in earlier design methods

strength was always a governing criterion. Serviceability problems

under repeated loading were frequently neglected in most of the

early investigations. The negligence might not be a risk then as

the beams were usually stocky. However, the problems are much

more important today and can no longer be overlooked. A review

of available literature indicates that, among the previous research

work only a small portion has dealt extensively with serviceability.

In this chapter previous works on strength fatigue are briefly

described. Emphasis is given to summarizing the reports on

serviceability studies. A total of about 20 papers and reports.

which are fully or partly concerned with rigidity and deflections

under repeated loads, have been reviewed. From these publications

the properties of test specimens, characteristics of the repeated

Page 30: 1984 The deflections of reinforced and partially

8

test loads and the test results are summarised in this chapter

together with brief comments as necessary.

Page 31: 1984 The deflections of reinforced and partially

9

22 Strength Fatigue

*

Interests shown in non-metallic fatigue especially in concrete

and concrete members became evident nearly 40 years later than in

metal fatigue. Unlike metal fatigue, fatigue in concrete is much

more complex. Concrete structural members can fail in a number

of ways such as failure in the compressive zone, diagonal tensile

failure in the shear zone, fracture of reinforcing or prestressing

steel, bond failure between steel and concrete etc. The interaction

of these different failure modes is also very complicated even for

static loading conditions. Needless to say it is more difficult to

fully understand the failure mechanics under fatigue loads.

Strength fatigue tests can be divided into two groups: on

the component materials (concrete and reinforcing and prestressing

steel) and on the structural members. Fatigue tests on structural

members included models of different scales and even on real concrete

structures as reported by Rosli [1968],

Considerable variability always exists in fatigue test results

because too many variables can and do influence the behaviour of the

test specimen. Thus, theories based on these results are usually

very restrictive in applications. However, by analysing large amount

of test results some common conclusions can still be drawn in spite

of the individuality of different test cases as discussed by Nordby

[19581 Based on these conclusions some useful recommendations can

also be given to improve the design for fatigue problems [see ACI

Committee 215. 1974],

2^.1 Plain concrete

Hilsdorf and Kesler [1966] and Ople and Hulsbos [1966] found that

fatigue life of plain concrete is much dependent on the stress level

Page 32: 1984 The deflections of reinforced and partially

10

and stress gradient, while McCall [1958], Murdock and Kesler [1958]

and Struman. Shah and Winter [1965] suggested that the effect of

applied stress range is also significant. A higher maximum stress

level usually gives a shorter fatigue live. The S-N curve has become

a standard expression of the effect of maximum stress level on the

fatigue life of concrete. Note that the maximum stress level. S.

is often given as a percentage of the ultimate stress while the

number of loading cycles to failure. N. is in logarithmic scale. The

influence of the stress range can be represented by the so-called

Goodman diagram [see ACI Committee 215. 19741

Several other variables also affect the fatigue properties of

plain concrete including the rate of loading [see Murdock. 1965:

Awad and Hildorf. 1974: Raithby and Galloway. 1974 and Kesler. 1953],

loading history [see Hilsdorf and Kesler. 1966: Shah and Chandra.

1970], material properties and environment conditions [see Awad and

Hildorf, 19741 An individual fatigue test usually incorporates one

or two variables and neglects or limits the effects of all others.

2.2.2 Reinforcing and prestressing steel

Fatigue tests on reinforcing bars, prestressing wires and

prestressing strands are carried out on steel specimens either in

exposed condition [see Warner and Hulsbos. 1966: Jhamb and MacGregor.

1974] or embedded in concrete [see Hanson. Some and Helagson. 19741

Some test results show that steel embedded in concrete has a longer

fatigue life than the ones exposed. The other results lead to

the opposite conclusion! However, studies by MacGregor. Jhamb and

Nuttall [1971] indicate that for reinforcing bars there was little

difference for the two conditions if good bond is provided between

steel and concrete. ACI Committee 215 [1974] suggested on the other

hand that prestressing steel embedded in concrete with a poor bond

Page 33: 1984 The deflections of reinforced and partially

11

would have a lower fatigue strength than the strength of some wires

exposed in the air.

Most fatigue tests on reinforcing steel used specimens cut from

either hot rolled or cold- worked deformed bars. Different types

of bars have different fatigue properties as discovered by Kokubu

and Okamura [1965.1968] and Snowdon [19711 Jhamb and MacGregor [1974]

suggested that the ribs on the deformed bar can cause high stress

concentration under fatigue loading. The stress range is certainly

a predominant factor on the fatigue life of reinforcing bars. But

Hanson. Some and Helagson [1974] concluded that the effect of stress

range on the strength of the bar becomes insignificant after one

million cycles of load. This means that reinforcing bars have a

practical fatigue limit [see ACI Committee 215. 19741

Other factors affecting the fatigue life of reinforcing steel

are bar size [see MacGregor, Jhamb and Nuttall. 1971 and Kokubu

and Okamura, 1965, 1968]. minimum stress level [see Hanson. Some and

Helagson. 1974 and MacGregor, Jhamb and Nuttall. 1971]. prebending of

bars [see Pfister and Hognested. 1964] and welding on the bars [see

Burton and Hognested. 1967].

Two types of prestressing steel are commonly used in prestressed

concrete. They are the wires and the strands. Even for the

same type of prestressing steel, different countries have different

specifications. The results of fatigue tests on prestressing steel

are highly dependent on the types of steel and the manufacturers.

Furthermore, anchorage type, steel treatment and the degree of

bond also influence the fatigue life of prestressing steel [see ACI

Committee 215, 1974 and Warner and Hulsbos. 1966].

2J2.3 Structural members

Page 34: 1984 The deflections of reinforced and partially

12

Nearly all fatigue tests on structural members were performed

on beams under flexural fatigue loading. The specimens for fatigue

tests were mainly rectangular and T-beams of different sizes. The

common fatigue failure exhibited by the beams which had the fracture

of reinforcing or prestressing steel coupled with severe cracking

in concrete at the tension zone [see Soretz, 1974 and Hankins. 1964],

Fatigue failure caused by the failure of concrete in compression is

very rare. But some examples of shear failure or bond breakdown

have been reported in the past by Hanson. Hulsbos and Van Horn

[1970].

Analyses of available data indicate that stress range is

still the major factor influencing the fatigue behavior of concrete

structural members. Because of the complexity of the behaviour of

concrete structural members and the variety of test specimens and

conditions, more fatigue test data is still needed.

2^.4 Conservative fatigue design recommendations

In view of the lack of generality in published fatigue test

results. ACI Committee 215 [1974] has given some preliminary and rather

conservative recommendations on the design of concrete structures

subjected to fatigue loadings.

For non-prestressed members the Committee recommends that:

a. The maximum stress range in concrete shall be 40% of F'c

when the minimum stress is zero, or a linearly reduced

stress range if the minimum stress is increased. However.

the stress range shall be zero (i.e. static load) if the

minimum stress reaches 75% of F'c. This is shown as the

shaded area in Fig 1.

Page 35: 1984 The deflections of reinforced and partially

13

b. The stress range for straight deformed bars is limited

to 140 MPa for a minimum stress level up to 40 % of the

yield strength of the bars.

c. The stress ranges for prestressing strands (also bars)

and wires respectively are limited to 10 % and 12 % of

their tensile strength. These limitations may be imposed

only on the minimum stress level up to 60 % of the tensile

strength of the prestressing steel.

The Committee also suggests that if the recommended limitations

are not exceeded, the possibility of fatigue failure can be ignored.

Page 36: 1984 The deflections of reinforced and partially

14

* a

4-1 0

X 6

100

80

60

40

20

20

y

IflTjijJJ::::'

\- AC" : 215

20 40 60 80 100

lower stress limit, S . m m

of F') c

Figure 1 Goodman diagram for plain concrete [See ACI Committee 215, 1974]

Page 37: 1984 The deflections of reinforced and partially

15

2.3 Effects of Repeated Loading on Serviceability

Among the rather extensive publications on strength fatigue of

concrete structural members, few reports can be found dealing with

serviceability behaviour. Some researchers treated serviceability

behaviour as a by-product in their fatigue tests while others were

only interested in strength. A small amount of serviceability tests

under repeated loading can be found as the additional features in

some static load tests e.g. tests conducted by Stevens [1969]. and

Bennett and Chandrasekhar [19721

The repeated loading used in these tests usually has a constant

minimum loading level either at zero or the equivalence of dead load:

the upper limit of the loading varied at different levels. These

tests can be divided into two categories according to the maximum

loading level used. The first category has a very high maximum

level, frequently close to or even exceed the static yield load. In

the second category the maximum loading level varied but mainly

at the service load level. Within the same category of tests the

rate of repeated load (i.e. frequency) may vary in different tests.

Generally, most tests in category 1 tended to have slower rate and

less number of repetitions while in category 2 some tests involved

several million cycles of load at a very fast rate. In order to give

a general picture of these two test categories, the serviceability

tests under repeated loading on reinforced and prestressed concrete

beams are summarised in Table 2.

Page 38: 1984 The deflections of reinforced and partially

16

•d 4

a •d 01 4J id 01

p.

« od

<w 0

OJ

u 3

z

01

e E-t

u (fl 4) a) -Q '*-. -1 S O U 3 > Z U

>N

c —* 41 H 3 23

41 U

u.

CO 01 -H 4J •H M

a 01 u

a M

I e •3 X

S B 3

a •3 c

2

Span

(m)

c o •H U U 01 03

OB

CO

O

U

1 3* ao oi

u «W 01 0 41 H

0

z

a e o o —.

• » * ^

s*J 0* .O w

3 a

•0

01

I) u-O

d « q 3 a J

£ H

u

5

°*S 1" M

s « >>

« o .2 u w (4 »

o

« I 1

ai a td

u a)

a n u l a c * O CL U 01

4J

«

vO o — 4

X cn

«*

»X 3

o PT Ok I W-l

4- 0 f~

N xO g <N a.

( m 'J-

• a r*»

-* O

en

O o en

a m *H

P.

o

<N

OS (A

O

en

o o en X

o »o •4

OS

•* <N

o en

£

cn

* Ok

1) u Cd CO

>. s ? a e a u e « 4J

a <s

u-i

o

Ss CU

u

0 o-

o

CO

-*

IN to

X

r-*

Oi

07-

CTs

OS Ol

•4-o o*>

a •H

^ 5 "d a

41 H

n u 3 4

d

(A

a 01 H

01 u S >»

o u 0)

•o J= 01 JJ to

=! * a oi >

to i en

p

>s CU 1 u 01 0 p*

o

F-*

-•

IN to

X AC

r»*

a.

en

en

a*

to -o at

41 ~4 U (0

u

s •a e id

d

5 >H t$

S td 00

a

cn 01

01 <J

S >. 0 O CO

•d J3 0) 4J D) •H U S 01

> 41 U

• &

t tn

i

>, PT I 4J CD O

ft<

o

r-.

*n

-* to eM X o o (N

a.

*n

03 •-4

B. Q

SO

*o Ol

to

n 41 TA

Ol •d d id

M

S 3 M

>. 9 ? S s 0

u a a u 08 C

<3

vO O - 4

* »o

«»

J tJ lO

CM 1 J -J

o

o to

IO en vO X o o CM

M

^

•*

S3

VO M9 Ok

•d «t 4J 01

1 T3

a o a u a

3

>. 0

? 01

c 0

4J d ca *J (0 d o

M3 O

X <f 1 «n

CM

en

) m r-.

O

3 PT M O m

3 Cu

to CM

cn

•«

cn o CM X r* CM

"*

Oti

Ot

o »»

a o« '-O

(0

1 d cd

U u 01

§ ca

>* s t 01 d o u c cd u ca d o u

'tf-CM

( »o

vO

o o

M 3 O P4

o -* VM

l O

•* CO

o

>o m

en

o 00 CM X cn o CM

OS

r»*

CM

"*

01

to m

<n

O 00 CM X cn O CM

pi

s *

vO

g

o* vO o»

cu w d 3

• d

d <d

N

i

H

fn

OS 01

>s

s ? 01 d o u d cd u to d

s

vO o X

I f*

>» o

1

CO p.

in Cu

O lO

o M»

-*

r*. to

*» X vO o -»

H

cn

tx>

a* P*

H

CM

Oi

o» vO ON

CO

S > CU u 01

M d •H CO cd 01 M a d •H

a 0) u VI

VO

o X CM

l-»

«*

3 OH

B* 3-IO f

o\ ^

o

o o< to

p*»

*o ST X o* CM CM

M

vO

vO

£

a r«. o* — i

0

0

a a 5 •a d td

CO

o -O 01 H 3

a d o CO

d

a

00 d •H tn td CD M O d -H

a at u Ol

cu h 3 rH •H d *4

0 u

f .

•>*

<a cu

cn b tn cn o

r» kO

cn ao m X

•* o CM

06

_ i

CM

Ok cn

PS Ol

^ r» Ok r~*

d 0

•9 0

a

M

5 (0

a 41

u o d «H

a cu u 01

vO o X

• *

—i

cn

3 PT »MI

m to

3 CU

ao CM

o -1

VO

to o cn X CM IO

"*•

06

tn

CO

"

cu

CM

r«. Ok

-*

M

41 (0 cd tj •d

3 fl -d d td

u u V

a 4)

00 d •H CO cd 0) M

u d •H

a V Ol

en

l

3 P-N O r*.

en to

O

o vO

»»

o o e*j X O »o "•

pi

vO

to

0-. Cd

CM t*^

Ok — •

d 0 CO d cd U

a •d

§ a

3 cd >< m u a a « a •H

ji

>. 0

T 41 d o u d cd 4J 0) d

3 vO O

—< X CO

CM ?

to

o ~ 4

X

-*

o

•"*

3 P> M O Ok

» to cn

3 C-, 8M:

o 'J-

( o CM

o

en

o o CM X o o CM

06

CM

"*

O CM

CA

cn f*. Ok

^

cn 01 •r4 N d

•d d cd

M u cd

>. c«

1 at d o u d cd u CO d o u

vO o X

I to o —> X en

t

*•! O CO

( to CM

3 PT »M! O cn

CO

en

o o en l O to CM X CM IO

""•

otf

o -*

o -»

p< Cu

»* r* Ok • • *

3 33

"9 d c«

! o u PQ

3 "3 3

CL

u cn •d d ed

•d u a) d ca cd cd U 4) CO u

a u o d

o o — 1

t 00

CO

o o

>* cu tM! to Ok

) O to

>. cu

o CM

to O

en

o to X o vO

**

PS

vO

"

cn CM

PS Ol

i .

r*. Ok

3

< -d d td

01 u 01

1 pq

X

a ^ 91

a 0

u a cd *-i 01 C o u

vO o X CM

o r-

3 Cu. iM! •~t

«* t to cn

3 CU e vO tn I en CM

O tn

O o cn X o o CM

PS

to

CO

s Ok

r« Ok

*"*

00 'A

1 cd

d *»H U

3 H •J

>> cd

T 41 C 0

4J d <d u cn d o

o m

t

P? •M>

r-vO ( o to

o

CM tn

o o cn X o vO ~ 4

06

M

CO

00

cu cu

Ok n«. Ok — •

>. 41 d id

OJ X

-d d id

•H

a cd H

U 41 C U

s

>, cd

? u d 0

u d cd Li cn d

a

o cn

I

3 PT iM r*«.

<o ( o to

O

CM

en

to o cn X o vO "*

PS

CO

CO

cu -J

o CO Ok — 1

2 d

1 3 •o

a a M CU

G 3

>. ca 3 1 OJ

c 0

u c ca u ca c o

U-l

o

to

-•

d cu iM! en to

d Cu •M!

O en

r*«

m

to o cn X to o en

a

o — i -

o

OS Ol

o CO Ok

—>

0

3 "3 a n 0

§

>. cd

1 cu c 0

u c id u CO

c o u

r*. o I

to o

o

-*

3

P-t at (D Ov vO

d cu « CO

r •-H

^ kO

tn

O to -T X CN i-t

CM

OS

CM — 4

CM

OS VI

CM 00 Ok

"*

d •H

a b l

- d d cd

OJ

> cd u 00 cu

> 2

>. cd c o 3 d 1 -H v -o d d 0 01

JO u d a) cd u d U 3 0 to a - n d oo O 0 01

o o o IO • *

o m

d cu M to to

d cu tM! vO CM

en DO

-*

r^

cn X o vO -H

OS

CM

en

as

CM

oo Ok

~*

td M td J3

cn i-t

CO

e

• n

H •

5 *

00 A

5 8 3 J

Page 39: 1984 The deflections of reinforced and partially

17

2.3.1 High-level repeated loading tests

The main aim of this category of tests is to study the post-

elastic or post-yield behaviour of the structural members. This is

needed for ultimate strength design and the design for earthquake

and cyclone conditions. Most of the beams in this group were tested

under high intensity "one way" repeated loads. But some of them

also have a reversed loading component.

Sinha, Gerstle and Tulin [1964a] tested 9 singly-reinforced

concrete beams with deformed bars. Time creep of concrete in their

tests was eliminated by using a high rate of repeated load (0.5Hz).

Beams were tested up to 30 cycles of load, having the maximum load

at a post-yield level. The writers suggested that a shakedown limit

exists and the intersection between an unloading curve and the

corresponding reloading curve gives a point on the shakedown limit.

They also believed that, if the maximum repeated load level is below

this limit, the load repetition will not cause additional curvature

of the beam. A prediction procedure was established which was

based on the envelopes obtained from the repeated loading tests

of plain concrete conducted by the same writers [1964b]. However.

the shakedown limits are considerably lower than the experimental

results.

Later, Agranal. Tulin and Gerstle [1965] tested 3 doubly reinforced

concrete beams using the same method but included some reversed

loading components. Similar conclusion was drawn as in the tests

of singly-reinforced beams. In addition, they also found that the

beams exhibited highly nonlinear behaviour when subjected to load

reversals which were at the post yield level.

Burns and Siess [1966] studied the behaviour of under-reinforced

concrete beams subjected to both one-way and reversed cyclic loadings.

Page 40: 1984 The deflections of reinforced and partially

18

They tested 18 beams under one-way repeated load: three additional

beams were under reversed loads.

In the one-way repeated load tests the beams were unloaded:

a. shortly after first cracking.

b. at about 50% of the yield load.

c. immediately following first yield and

d. at several points within the plastic range.

They observed that the rigidity of the beams was gradually reduced

as the repeated load level increased: it was also related to the

amount of plastic deformation.

The results of the three beams tested under repeated reversed

loads were compared with those of a control beam loaded repeatedly in

one direction only. The ultimate strength of the beams after repeated

reversed loading was not reduced but a significant reduction in

ductility was evident. It was also found that the concrete confinement

due to closed stirrups substantially increased the ductility of the

beams.

Ruiz and Winter [1969] carried out high-level repeated loading

tests on 18 reinforced concrete beams. The beams were grouped

into five series namely A, B, C. D and E. Beams in series A and

B fabricated with compression reinforcements and closed stirrups

were called bonded beams.The remaining three series having no closed

stirrups and compression steel at mid-span region were referred

to as unbonded beams. Within each series all beams were similar.

The first beam of each series was tested statically to failure in

one cycle. The remaining beams were tested at repeated load levels

ranging from 85% to 100% of the static ultimate load (obtained from

Page 41: 1984 The deflections of reinforced and partially

19

the first beam). One complete cycle of load took approximately 15

minutes. Small numbers of load repetitions, from five to ten cycles.

was applied at each maximum load level. The maximum number of load

cycles on one single beam was 26.

It was observed that repeated loading always caused some in­

creases in deformation in consecutive cycles. However the increments

of deflection with repeated loads were always found to decrease and

becoming almost negligible after a few loading cycles. The total

increase in deflection after as many as ten cycles of load ranged

from 5% to 25% of the initial deflection in series A.B.C and D and

from 20% to 45% in series E.

Bennetts and Atkins [1977] investigated 23 reinforced concrete

beams under four types of repeated loading. The minimum and maximum

loading levels respectively were about 20% and 90% of the beams'

static yield load. The four types of repeated loading included three

square functions and one ramp function. The maximum number of

cycles was 100 and the frequency of loading was on average 0.5 cycle

per minute. The beams were reinforced by two 16 mm deformed bars.

No significant effects were noted on the ultimate strength of the

beams under repeated loads. On the other hand substantial increases

in deformation were observed. Increases in residual deflection were

recorded and they varied between 20% to 200% of the corresponding

static deflections. A slight increase in rigidity was also noted as

a typical effect of repeated loading.

2.3.2 Tests at service and other loading levels

While post-yield level repeated loading tests provide basic

information for ultimate strength design, tests at service and

other levels facilitate the study of deformation behaviour which

Page 42: 1984 The deflections of reinforced and partially

20

are important for serviceability design. The tests in this category

often have a maximum load at service load level, but some of the

tests also deal with over-loading. Although tests of beams at

different maximum load levels (i.e. upper limits) were reported, no

systematic investigation on the effects of cyclic loading range on

deformation was evident. Comparing all the available test data from

different tests it is obvious that they are far from being mutually

supportive. Further, the prediction procedures proposed thus far

for the effects of repeated loading on deformation of beams are

usually unsatisfactory. A summary of the works reviewed is given

in the following pages.

Bate [1963] made a comparison between reinforced and prestressed

concrete beams tested under repeated loading. He conducted tests

on two series of reinforced and six series of prestressed concrete

beams. The latter included one series cast with high- alumina cement.

The total number of beams tested was 42 for which three types of

loading were used namely:

a. Static load

b. Repeated load with an increasing loading range, failure

occurred.

c. Repeated loading with a constant loading range.

The following conclusions were drawn by the writer:

a. Repeated loading within the working load range did not

lead to cracking of fully prestressed beams.

b. Repeated loading within the working load range caused

only slight deflection both in prestressed and reinforced

Page 43: 1984 The deflections of reinforced and partially

21

concrete members. However, reinforced concrete beams

cracked under repeated loading at this loading range.

c. Under repeated over-loading the increase in the propaga­

tion of cracks was more rapid in prestressed beams than

in similarly over-loaded reinforced beams.

d. Repeated loading did not have a more adverse effect

on the behaviour of prestressed beams of high-alumina

cement concrete than on that of Portlant cement concrete.

Magura and Hognested [1966] tested four full-sized partially

prestressed concrete beams with concrete slab decking. Two beams

were post-tensioned and the other two were pretensioned. The beams

were designed using partial prestress so that the maximum concrete

tensile stress under design load would be approximately one half of

the modulus of rupture. The maximum repeated load varied from 1.0

to 2.5 times of the design live load. The beams were tested up to

about 5 million cycles. Deflection and crack results indicate that

the pretensioned beams with a tensile stress of about 700 psi (4.8

MPa) in concrete suffered no significant detrimental effects from

flexural cracks under repeated loading. On the other hand, similarly

stressed and cracked post-tensioned beams showed serviceability

deterioration and reduced flexural capacity by load repetitions.

Stevens [1969] tested three partially prestressed concrete beams

under repeated loading as one of the features of his research

programme which included five other partially prestressed, two

fully prestressed and three reinforced concrete T-beams. One beam

sustained one million cycles, while the other two beams failed after

750,000 and 470,000 cycles of load respectively. Failure was caused

by snapping of the prestressing wires or the steel reinforcement.

He observed that the central deflection increased as much as 44%

over the initial value after one million cvcles of load. He also

Page 44: 1984 The deflections of reinforced and partially

22

found that the change of stress in the non-prestressing steel in

partially prestressed beams when subjected to repeated load can be

much larger than that in a reinforced beam.

Hanson. Hulsbos and Van Horn [1970] looked at the fatigue life of

six fully prestressed concrete I-beams which had been overloaded (to

80% of the flexural strength) to cause flexural and shear cracking

prior to repeated loading. These six beams were identical in all

details except for the vertical shear reinforcement.

Repeated loading test on each beam was carried out in two

stages. First, the upper limit was set within 19% and 45% of the

ultimate strength. This was referred to as the design repeated

load. At this stage all the beams sustained 2 million cycles of

load and the total deflection tended to increase only slightly.

Repeated loading was then applied again on each beam, this time

with the maximum load increased to between 48% and 54% of the

strength. This was referred to as the above-design repeated load

and it invariably caused fatigue damage; in flexure and shear. The

deflection measurements were sensitive to such fatigue damage. Hence

they may not be reliable for use as the basis for the establishment

of empirical formulae.

Kripanarayanan and Branson [1972] conducted a test programme

consisting of 15 fully prestressed concrete beams, six of which were

tested under repeated loading. Each of the six was tested under

only three cycles of load with constant or increasing upper limit

at up to 70% of the ultimate load. Note that the upper limit was

always greater than the cracking load. Some of the beams were with

a cast in-situ slab.

For the instantaneous deflection under repeated loading the

writers proposed a formula for the equivalent moment of inertia.

lreo. After comparing with their own test data and those of Burns

Page 45: 1984 The deflections of reinforced and partially

23

and Siess [1966] (i.e. from three reinforced beams, see Section 2.3.1).

they concluded that their prediction procedure would be accurate.

provided that the maximum load is around the working load level.

Discussion on the shortcomings of this prediction procedure is given

in Section 7.2.

Sparks and Menzies [1973] carried out an extensive test programme

aimed at comparing the results of repeated loading tests on reinforced

concrete beams to those of sustained loading tests on similar

beams. They reckoned that repeated loads may produce both time-

and cyclic-dependent creep whilst a sustained load normally only

produces the former effect. They observed that at service load

level a beam under repeated loading increases its deflection by

about the same amount as a similar beam subjected to a sustained

load at the maximum level of the repeated load. At greater repeated

loading level the increase of deflection is more rapid in the early

stage. However, after about one million cycles of load, a beam under

sustained load at the maximum level of the repeated loading and

for the same length of time has developed a similar increase in

deflection. A linear relationship was found to exist between the

logarithm of the increase in maximum deflection and the logarithm

of the number of cycles of load or of the length of time under

loadings.

More details about Sparks and Menzies' tests will be given in

Section 8.3 in which some of their results are used to check the

accuracy of the prediction procedure developed in this thesis,

Abeles, Brown and Hu [1974] reported on a huge fatigue test pro­

gramme which covered 40 fully prestressed and partially prestressed

concrete beams. The minimum load used constantly in the tests

was 30% of the static failure load, which was considered to be the

dead load of a bridge. The maximum load ranged from 50% to 90% of

Page 46: 1984 The deflections of reinforced and partially

24

the failure load which corresponded to the design service load and

design over-load of a bridge respectively. The plotted deflections

under repeated loading were much higher than the values of static

deflections.

Kulkarin and Ng [1979] tested 8 partially prestressed concrete

beams with the degree of prestressing n=0.3 under various levels of

repeated load. The main aim of their investigation was to study

the effects of repeated loading on deflections (including permanent

set), and on the ultimate load.

Enormous increase in deflections caused by repeated load was

found. However, the effects of repeated loading were apparent mainly

in the first one million cycles, after which the rate of increase in

deformation was reduced considerably.

The effects of repeated loads on the cracking and ultimate

strength of the beams were also investigated. It was found that

once the crack spacing is "stabilized" further addition of load

repetitions had little influence on the widening and deepening of

the cracks. It was also observed that up to two million cycles of

load, the loading repetitions had very little or no effect on the

ultimate load carrying capacity of the beams.

Warner and Pulmano [1980] described two serviceability testing

programmes conducted at the University of New South Wales by Tansi.

Heaney and Warner [1979] and Pulmano and Warner [1980]. One of

these programmes has included 8 limited prestressed concrete beams

(with only prestressing steel) while the other programme involved 8

partially prestressed beams (with non-prestressing steel as well).

Thirty cycles of repeated load up to the service load level were

applied on each beam. Increases in deflection due to repeated loading

were measured. These increases were expressed as a percentage of

Page 47: 1984 The deflections of reinforced and partially

25

the corresponding initial deflection. The highest increase was about

30% of the initial value.

Warner and Pulmano also found that the unloading-reloading

curves were near-linear with near-constant slopes which can be

approximately predicted by modifying the lreD equation given by

Kripanarayanan and Branson [19721 The two writers claimed that the

increase in the permanent set caused by the early load repetitions

is a significant phenomenon. However, they have not attempted to

predict this permanent set. In their report they had suggested a

method for predicting the static initial deflection. This is done

by finding the moment-curvature relationship. The method is but a

bilinear method offering certain advantage in that besides giving

more accurate results, it integrates well into the overall design

procedure for partially prestressed members. More details on this

method will be given in Chapter 5.

At about the same time as Warner and Pulmano published their

report, the author in collaboration with Loo [1980] presented the pilot

test results of ten reinforced concrete box beams under repeated

loading. The minimum and maximum loading levels were set at 30%

and about 55% of the static yield load respectively. Each beam was

tested up to 105 cycles. The effects on the bending rigidity was

found to be similar to that found in Warner's tests [see Warner and

Pulmano, 19801 In addition, it was also found that the permanent set

or accumulated deflection caused by repeated loads could be related

to the steel content of the beams and the number of load repetitions.

A hypothesis called 'intensive creep' was established with an aim

to predict the accumulated deflections. The intensive creep concept

forms the backbone of the prediction procedure developed in this

thesis for the total deflection of concrete beams under repeated

loading.

Page 48: 1984 The deflections of reinforced and partially

26

Bennett and Dave [1969] presented the test results of 40 partially

and limited prestressed concrete beams. Nine of the beams were

tested under repeated loading with the objectives of discovering

whether fatigue failure of wires would occur and of examining the

effects of this form of loading on the deflection and crack width.

Each beam was tested under at least three million cycles of load in

which the upper limit was the design load (i.e. 50% of the ultimate

load) and the lower limit was one half of the design load. The

increase of central deflections were recorded as being from 60%

to 100% of their initial values. The effects of both repeated and

sustained loads on deflections were tabulated and plotted. Very

similar effects have been found on the deflections under these two

types of loading. Fig. 2 shows an example of the similarity of the

two effects.

A similar experimental program, but with a smaller number of

beams, was conducted few years later by Bennett and Chandrasekhar

[19721 The programme involved 12 partially prestressed concrete

beams. The repeated loading had 55% of the ultimate load as the

maximum load and half of this value as the minimum load. Each beam

was tested up to 4 million cycles at the rate of 190 repetitions per

minute. It was found that in beams subjected to repeated loading

the final total deflection including the effects of time creep and

permanent set was up to 60% greater than the initial value. It was

also observed that the deflections increased rapidly at first but

after a million cycles of load, there was hardly any further change.

Snowdon [1971] published the test results of a massive program

of fatigue tests on reinforced concrete beams. His main interest was

to investigate the influence of the type of reinforcing steel .such as

reinforcing bars with different surface characters, on the fatigue

behaviour of the beams. Sixteen different types of reinforcement

were used. For each type of reinforcement at least two beams were

Page 49: 1984 The deflections of reinforced and partially

27

cast, one each was tested under static and repeated loads. Both

constant range and step-increased repeated loadings were applied

in his tests. Fatigue life, deflections and other behaviour of the

beams were recorded. Significant increase in deflections caused by

repeated loads were found. He concluded that for a given type of

loading the crack width and deflection of reinforced concrete beams

are controlled entirely by the upper level of the repeated loads:

they vary only very slightly even for bars of radically differing

degrees of surface deformation.

More recently, Lovegrove and El Din [1982] tested 12 reinforced

concrete rectangular beams under repeated loading. The loading

range was varied for different beams but was kept constant for

each beam. The long-term cyclic deflection at maximum loading level

was found to increase with the number of loading cycles. These

increases were as high as 35% , 57.5% and 80% at 106. 107 and 108 load

cycles respectively comparing to the initial deflections. The writers

have also given a simple logarithmic equation for predicting the

cyclic deflections. The empirical equation has shown good agreements

with their own test results and the results obtained by Sparks and

Menzies [1973] and Snowdon [1971]. The reliability of their equation

is discussed in Section 8.4.

Bishara [1982] presented the results of thirteen rectangular

reinforced concrete beams subjected to cyclic loading within service

load level. His study was aimed at finding the effects of concrete

area, amount of tensile steel and the ratio of compression to tension

reinforcements on crack width under repeated loading. However.

during the investigation of crack width, the increases in deflections

caused by 50,000 cycles of repeated load were also recorded. He

found that the maximum increase of mid-span deflection was about

10% and the variation of the compression reinforcement had vary

little or no effect on the deflection.

Page 50: 1984 The deflections of reinforced and partially

100 Days

(a) sustained loading

1000

50

25

_ — — • " " "

1

5R -

8R

I AR ^X^.P3R

/ ^ 3 R

9R

i<r ioH

Number of repetitions of load

(b.) repeated loading

10

Figure 2 Similar effects of sustained and repeated loads on deflections [See, Bennett and Dave, 1969]

Page 51: 1984 The deflections of reinforced and partially

29

2.3.3 Comments on previous tests

From the above review and the summary in Table 2. one can note

that the trend of research on serviceability under repeated loading

has changed from the use of high loading level and a small number

of cycles to the use of service load level and a large number of

repetitions.

The selections of the type of test specimens, loading procedure.

loading range, frequency etc are dependent on the researcher's

interests and the time, financial support and laboratory facilities

available to him. Thus, it is understandably difficult for any single

investigation to include all the important variables. However.

amongst the 21 investigations scrutinized in this review only those

of Bate [1963]. Abeles. Brown and Hu [1974] and Wong and Loo [1980]

can be considered to have included the major variables. They are

the maximum loading levels, loading range, number of cycles and

steel ratio. All the other investigations were merely noting or

discovering the existence of the effects of the repeated load on

serviceability. In addition, only selected variables were included

in their studies.

Thin-walled sections and flanged beams, although very popular in

practice, have not been investigated as extensively as rectangular

sections. The sizes of test beams in nearly all the above studies

were of one sixth to one quarter scale.

When repeated loading is continuously applied for a long period

of time, the time-creep effect would creep in. It is very difficult

to separate this time dependent effect from the cyclic effects in

the experiment. This left no other alternative but to select high

loading frequencies. In previous tests except those for a few cycles.

the frequency used were as high as 0.5 to 4 Hz.

Page 52: 1984 The deflections of reinforced and partially

30

All the investigations invariably concluded that repeated loading

caused increases in deflections of concrete beams. Several of the

researchers noted that the rate of increase was very high in the

early load cycles but it slowed down as the number of repetitions

increased [see Bennetts and Atkins. 1977: Kulkarin and Ng. 1979: Warner

and Pulmano. 1980: and Wong and Loo. 1980]. Bate [1963]. Kripanarayanan

and Branson [19721 Warner and Pulmano [1980], and Wong and Loo [1980]

also discovered that the permanent set or the residual deflection

was increased by load repetitions.

The rigidity of cracked concrete beams was found to have

increased by the first cycle of repeated load [see Bennetts and

Atkins, 1977: Kripanarayanan and Branson. 1972: Warner and Pulmano.

1980: and Wong and Loo. 19801 However further repetitions of load

would have very little effect on the rigidity provided that the

loading range and the maximum load level remain constant. As

reported by Bennetts and Atkins [1977] and Wong and Loo [1980] the

increase of maximum load level appeared to reduce the rigidity.

The observations made in this section have influenced the work

of the author which forms the main part of this thesis.

Page 53: 1984 The deflections of reinforced and partially

31

Chapter 3

THEORETICAL CONSIDERATIONS

3.1 Pilot Study

It is evident that repeated loading causes higher deflections

than static load in concrete beams. However, it can not be found in

the literature as to how to quantify such increase in deflection.

In view of this, a comprehensive experimental programme possibly

including all the major variables should be conducted. With the

results from these comprehensive experiments, one may be able to

formulate a computational approach for predicting the effects of

repeated loading. Before attempting the comprehensive programme

preliminary studies are advisable so as to identifying the major

variables.

A pilot test programme was carried out by the author in

collaboration with Loo [1980]. It involved a total of 10 singly-

reinforced box beams of gross section 305x305 mm (see Table 2). The

beams were tested up to 10 cycles of service load.

A typical plot for load versus deflection is given in Fig.

3a which is similar to those presented by Bennetts and Atkins

[1977] and Snowdon [1971] (see Fig. 3b and 3c). These together with

earlier findings of Sparks and Menzies [19731 Bennett and Dave [1969].

Kripanarayanan and Branson [1972] and Warner and Pulmano [1980] (see

Section 2.3.2) led the author to believe that:

a. there is an analogy between the residual beam deflection

under repeated loading and the time creep of concrete:

b. repeated loading does not affect the instantaneous (live

load) deflection: and more importantly,

* short-term 3tatic load

Page 54: 1984 The deflections of reinforced and partially

32

c. • the major variables are identifiable thus the effects

of repeated loading may be quantifiable.

3.1.1 Dead load deflection and Intensive Creep

For clarity. Fig. 3a may be idealized as Fig. 4, It is evident

that the repeated loading has an accumulative effect on the minimum

or dead load deflection. That is. the dead load deflection increases

as the number of load repetitions increases. It can also be seen

that the rate of increase is higher in early load cycles but rapidly

reduced as the number of cycles becomes greater. Thus, there

appears to be a parallel between the accumulation of dead load

deflection and time creep of concrete with T. the number of loading

cycles being analogous to the time in time creep. Depending on

the frequency of the repeated loading, the residual deflection may

accumulate in a very short time. Thus it is referred to herein as

the 'intensive creep' deflection.

Creep in concrete as a phenomenon has been widely studied for

over five decades. Many well tried analytical models have been

developed. In view of the above-mentioned analogy, such models may

be suitably modified for the analysis of the accumulated dead load

deflection under repeated loading.

3.1.2 Instantaneous live load deflection

The parallel (repeated live load versus deflection) lines in Figs.

3a, 3b and 3c clearly indicate that the instantaneous response of

the beam remains unchanged after the initial cycle. This means

that the live load deflection is not affected by repeated loading.

It should be noted that in these and the idealized Fig. 4. single

lines are used to approximate the hysteresis loop of the unloading

Page 55: 1984 The deflections of reinforced and partially

33

and reloading sequence. This is based on the assumption that the

fast rate of live load passage on the structure does not cause any

significant time creep effect and that the average of the unloading

and reloading loops can be reasonably represented by a straight

line. This assumption is close enough in real structures such as

bridge decks through which live loads passes within a very short

period.

From Fig. 4 it can be concluded that the instantaneous live

load deflection can readily be computed if an equivalent moment of

inertia. lrep can be determined.

3.1.3 Major variables for deflections under repeated loading

Very obviously, the number of loading cycles is the first

major variable. In addition, the following which affect the cracking

strength, bending rigidity and the extension of cracking, thereby

influencing the deflection, are considered to be important variables:

a. steel ratio.

b. repeated loading range, and

a cracking and yield moments of the beam.

Page 56: 1984 The deflections of reinforced and partially

o

34

Figure 3a Typical load-deflection diagram of beams under repeated loading [Wong and Loo,

1980]

Mid-span deflection

25

a < o

B E A M 24

20

15

monotonic loading before cyclic loading

duration of • mechanical strain

gauge readings

' load to failure after cyclic loading (zero shifted to remove residual)

response during cyclic loading.

Figure 3b Typical load-deflection diagram obtained by Bennetts and Atkins [1977]

10 20

CENTRAL DEFLECTION mm

Figure 3c Typical deflection diagram obtained by Snowdon

[1971]

T ~

8 10 MuKp.-in rl.-fl.-rt.nn m m

"T —

12 14 "™l If

Page 57: 1984 The deflections of reinforced and partially

35

c c -2 .2 o o -2 » « c "S f -2 "o _ o

O <D T) » C o o oi _o — -o « .2 "5

II H H

5" <^"o

c o OJ

**-OJ •a

•a

•a

a OJ •o

o ^ c

II _ "O

c o *_ CJ OJ

OJ

TJ O o

T3

a OJ -a

a> o

</>

II ^ T3

C o *_ o OJ »-OJ T3

•o

o o

"O a OJ •a

•o OJ

o

F 3 U

< II

a •n

o^o^

a •H T3 CO O H T3 OJ u cfl cu a 01

u u CU T3 C 3

e cfl 01 ,C

0) 4-1 CU r-l

O a o a M-l 0 fi 0 •H +J U OJ H 4-1 0) Q

St

CU M 3 bO •H Pn

/—s

en cu H a >> o 60 C •H T3 (d 0 H 4-1 O • O 13

II

H V—•

" -~

I/] ' JU8UJ0I/J

Page 58: 1984 The deflections of reinforced and partially

36

3.2 Possible Intensive Creep Models

As discussed earlier, the amplification of dead load deflection

caused by repeated loads may be seen as a parallel phenomenon to

the time creep of concrete under sustained loading. Similar to time

creep, an amplification factor may be defined as

Sri* k = - ^ (3.1)

where k is referred to as the "intensive creep" factor and dda and 5dj

are the initial and accumulated dead load deflections respectively.

Thus the time creep equations may be suitably modified for the

analysis of intensive creep, with the number of loading cycles. T

corresponding to the time in time creep.

In Eq. 3.1, 5dj may be computed by many published methods. The

choice of a suitable approach is discussed in Chapter 5 in light

of the box beam test results presented in Chapter 4.

There are many equations developed for calculating the creep

factor in time creep. Most of them were based on extensive

experimental studies. Generally, time creep equations fall into two

categories: equations with and without an ultimate creep. The first

category assumes that after a certain period of time the effect

of the sustained load will no longer increase with time. In this

category, ihe exponential equation given by Ulitskii in 1962 [see

Branson. 1977] has the form

Ct = (1-e-Bt)Cu (3.2)

Page 59: 1984 The deflections of reinforced and partially

37

where. Cu is the ultimate creep factor, t is the loading time in

days, and B is an experimental constant. The hyperbolic equation

originally takes the form [see Neville.1977]:

C = — — (3.3) a + bt

Later it has been modified by Branson and Cristiason [1971] and

Branson and Kripanarayanan [1971] as

tc

Ct = —- Cu (3.4) d + tc

where, Cu is the ultimate creep factor, and c and d are experimental

constants.

In the second category no ultimate value is assumed to exist.

although creep diminishes with time. In this category, the logarithmic

equation as formulated by the US Bureau of Reclamation [1953] can

be expressed as:

C = FOO logp(t + 1) (3.5)

where. K is the age at which the load is applied. FflO is a function

representing the rate of creep deformation with time, and t is the

time under load in days. A power equation [see Shank. 1936].

Page 60: 1984 The deflections of reinforced and partially

38

C = Kt1/r (3.6)

can also be expressed in a logarithmic way as

logC = log K + (1/r) log t (3.7)

where. C is the time creep strain, t is the time under load in days.

and r and K are experimental constants.

In view of the analogy between the repeated loading effects

on dead load beam deflection and time creep and with adequate

repeated loading test data the above analytical models may be

suitably calibrated. This would yield the equation for the intensive

creep factor, k.

Page 61: 1984 The deflections of reinforced and partially

39

3.3 Existing Equations for I

For evaluating the equivalent moment of inertia of rectangular

reinforced and prestressed beams under a limited number of load

cycles, Kripanarayanan and Branson [1972] presented the following.

Irep=^e+(1-tf')lg

_ M u~M t

Iv -M (3.8)

cr

where, le is the effective moment of inertia. lg is the moment of

inertia of gross section, M c r is the cracking moment. M u is the

ultimate moment, and Mt is the moment caused by the upper limit of

the repeated loading.

For partially prestressed solid beams. Warner and Pulmano [1980]

recommended an equation similar to Eq. 3.8. except that.

Mt " Mcr = _J 21 (3.9) M y - M c r

The suitability and accuracy of the above equations are discussed

in Chapter 7 in light of the box-beam deflection data presented in

Chapter 4. An improved formula is also proposed.

Page 62: 1984 The deflections of reinforced and partially

40

3.4 The Total Deflection Equation

From Fig. 4. for a beam under Tth cycle of load, the total

deflection can be expressed as

5 T = d d a + d l f3-l°>

From Ea. 3.1

Sda=kSdi (3.11)

In Eq. 3.10, d can be expressed in terms of the beam rigidity

and the external moment due to live load. As discussed in Section

3.1.2, the instantaneous live load deflection is inversely proportional

to the equivalent beam rigidity (Fig. 4), i.e..

OCM.L2

5t = — J — o.i2) Ec'reD

where a is a multiplication factor governed by the loading and

support conditions, L is the span. Ec is the initial modulus of

concrete and lrep is the equivalent moment of inertia at Tth loading

cycles. Thus- Eq. 3.10 can be rewritten as.

* Time creep and shrinkage deflections may be additive but are beyond the scope of this study.

Page 63: 1984 The deflections of reinforced and partially

41

OfM.L2

cc'reD

In Eq. 3,13 the following are the unknown quantities:

a. the initial dead load deflection. 5di.

b. the intensive creep factor, k. and

c. the equivalent moment of inertia under repeated loading,

'rep*

To help quantify these unknowns, a total of 30 reinforced and

5 partially prestressed box beams have been tested. Details are

given in Chapter 4. The selection of an accurate and reliable method

for computing 8da from amongst 9 published works is discussed in

Chapter 5. With the experimental data, calibrations of the intensive

creep methods (Section 3.2) are carried out in Chapter 6. A formula

for the intensive creep factor, k is recommended after an in-depth

and wide-ranging comparison of results. Chapter 7 compares the two

formulae for lrep published by Kripanarayanan and Branson [1972] and

Warner and Pulmano [1980] (see Section 3.3) and that proposed by the

author. Finally in Chapter 8 the accuracy of Eq. 3.10 for computing

the total deflection is checked.

Page 64: 1984 The deflections of reinforced and partially

42

Chapter 4

EXPERIMENTAL PROGRAMME

4.1 General Remarks

The purpose of the experimental programme was to observe the

behaviour of the reinforced and partially prestressed box beams

and to obtain deflection data for use in the establishment of the

computational procedure.

The programme involved three major variables, namely the number

of loading cycles, steel ratio and repeated loading range (or maximum

loading level) for the reinforced concrete beams. In addition, the

degree of prestressing is added for the tests of prestressed

concrete beams.

Details of all the box beams, fabrication, instrumentation and

test procedures are presented in this Chapter. Observations and

analysis of some beam behaviour are also given. For reference

purposes, the measured cracking, yield and ultimate moments are

compared with the corresponding values computed using procedures

given in the Australian Concrete Structures Code, AS1480-1982.

Page 65: 1984 The deflections of reinforced and partially

42 Design of Test Specimens

43

4.2.1 Number of beams

Three series of reinforced and one series of prestressed box

beams were designed for the programme: these included 30 reinforced

and 5 partially prestressed beams.

Each series designated by a code started with letter R (for

reinforced) or PP (for partially prestressed) followed by 200. 300. or

450 denoting the gross beam width . A beam in series R200. R450

and PP300 is identified by a number attached to the series code, for

example R200-1. However.series R300 contains five sub-series from 1

to 5. Thus the first number following R300 denotes the sub-series

and the second number denotes the beam, for example R300-1-4.

All the beams tested and the associated variables are shown

in Fig. 5.

4^2 Design of reinforced concrete box beams

The design includes the strength and rigidity of the beams.

The strength characteristics of a beam can be represented by the

cracking, yield and ultimate moments. The rigidity of- a beam is

reflected by of the (initial) modulus of elasticity and the effective

moments of inertia at different loading stages.

For the test beams, the design procedure follows that adopted

by the Australian Code [Standard Association of Australia. 1982]. The

equations used are given in Appendix I. Load factors and capacity

factors, were not included in the design calculations. Note that

* All beams were 305 mm high.

Page 66: 1984 The deflections of reinforced and partially

44

yield moment is not a significant value in practical design. However.

it is an important parameter for under-reinforced concrete beams

as far as research is concerned since yielding always occurs before

collapse.

The properties and the calculated values of beam strengths of

all reinforced concrete box beam are given in Table 3. Note that for

the heavily reinforced (but still under-reinforced) beams the value

of ultimate moment could be lower than the value of yield moment.

The calculation of the ultimate moment in the Australia Code is

based on the Whitney stress block which is rectangular, replacing

the actual parabolic stress block. This approximation causes the

anomaly (also see Appendix I).

42.3 Design of prestressed concrete box beams

In the design of prestressed concrete box beams, a trial and

error method based on strain compatibility [see Warner and Faulkes.

1979] is used instead of the simplified method adopted by Australian

Code [Standard Association of Australia. 1978], The trial and error

method is more accurate but the procedure is rather lengthy.

The prestressed concrete box beams in Series PP300 were designed

to have the degree of prestressing varied from 25% to 100%. The

term of "Degree of Prestressing" (DOP) was first used by Bachmann

[1979,1980]: it is used in order to be consistent with CEB/FIP Model

Code [CEB-FIP 1978. Hill 1980]. The DOP is defined as the ratio of

moments at decompression and at full service load i.e.

_ Decompression Moment Service Load Moment

Page 67: 1984 The deflections of reinforced and partially

45

In Series PP300 all the beams have the same yield strength as

the beams in sub-series R300-3. Therefore the value of n for Series

R300-3 can be considered as zero. Thus combining PP300 and R300-3

we have n varying from 0 to 100%.

The amount of non-prestressing steel and the effective prestress­

ing force were determined by the trial and error method. A computer

program was written to implement the rather tedious calculations.

Table 4 gives the properties of the prestressed concrete box beams.

More details and some design examples are presented in Appendix

II.

Page 68: 1984 The deflections of reinforced and partially

R200

STEEL RATIO VARIES

R200-1

R200-2

R200-3

R200-4

R200-5

WIDTH OF BEAM VARIES

R300 R450

V STEEL RATIO

VARIES

R300-1

R300-2

R300-3

R300-4

R300-5

DEGREE OF PRE­STRESSING VARIES

J2L

PP300-1

PP300-2

PP300-3

PP300-4

PP300-5

STEEL RATIO VARIES

R450-1

R450-2

R450-3

R450-4

R450-5

I LOAD LEVEL VARIES *

R300-1-1

R300-1-2

R300-1-3

R300-1-4

I LOAD LEVEL VARIES

R300-2-1

R300-2-2

R300-2-3

R300-2-4

I LOAD LEVEL VARIES

R300-3-1

R300-3-2

R300-3-3

R300-3-4

I LOAD LEVEL VARIES

R300-4-1

R300-4-2

R300-4-3

R300-4-4

1 LOAD LEVEL VARIES

R300-5-1

R300-5-2

R300-S-3

R300-5-4

* Note: last digit, 1 = static load, 2 = 30%-*50% yield load,

3 = 30%~70% yield load, 4 = 30%-"90% yield load.

Figure 5 Test beam series

Page 69: 1984 The deflections of reinforced and partially

47

m

«

X o « Q W

u psi

o z H W P* Pn

o w HJ

H

ES w Q

en

w

pq

Ultimate*

Moment

kNm

Yield*

Moment

kNm

Cracking

Moment

kNm

«i

4)

-. O

c 0 u

T 1

41 4* U a eo c •H

u M O tw

C -H

41 OS

•a a

£ & 41 "

X x

tn ai eg

\ O i J CL,

f*. X JJ

eg

01

>> eg •a

eg \ u c o eu b CN S

4J

eg >» •a rH 01

«i a a "H 41 PH >* U X

U • o

? is 2 rt ^Sl1^ 41 4i a 4-1 CA

VW

o a u

o pa z

Number

of

Beams

Beam

Series

in

ON

00 •H

!•••

ST

00 VO

o

vO

•er en

CM

VO

en

en <N

en

rH

rH

O

O

vO

CA 1

en

i-t

<± o CN

iH CO

d 00

CO m oo

co vO

o

m

cn cn

o •a*

cn

cn CM

cn

eo F-l

o o

O vO CN r-i (A C/l 1 1

CN CN

CN

4 o CN

OS

o o

en

vO

cn

•a-cn

CO vO

o

cn

r-l

cn

in

cn CN

cn

o cn CN

o o

o CN t/1 1

ST

cn

o CN PS

CN CN

m r-l rH

rH rH

00 VO

o

vO

cn

cn cn

m cn

cn CN

cn

CO cvl

O O

O ST CN CN CA CA 1 1

CN CN

•a*

i o CN PS

cn vO

cn rH

rvi

m

co vO

o

co

o cn

rH

vO cn

en CN

cn

en cn cn o

o

•a* CN CA

m

i o CN

PS

cn

CN

o <-< cn

o cn

ON

en

•a*

cn

cn 00 CN

en m o o o

CN

CA 1

«a-

rH

4 o

2

m CN

vO

m

m <n >n

a ON

00

cn CN

•4"

en

CN

ON

o o o

vo'

CA

CN

4 o en BE

VO 00

r* 00

en

m ao

O ON

vO

CN

cn

VO

cn

vO 00 CN

o m o o

o CN CA 1

cn

4 o cn PS

«n cn

o

en

cn O

o cn

00

CM

O •or

vO en

vO m CM

CO

CN

O O

CN CA 1

4 o cn OS

o o m m

rH

cn vO

o ON

cn

o cn

cn

00 cn

r-t CO CN

o o en O

o

CO Oi CA

•4-

m

4 o

s

ao CN

m

cn

o i-K

CN

cn

m cn

CN

vO

en

en CN

cn

m rH rH

o o

vO i-i

CA 1

r—

r-t

4 m PS

rH

m o vO

00

vO in

vO CN

CN

vO

•-> en

CO

cn

m

en CM

cn

m CO rH

o o

vO rH CA 1

O i-

CN

ci m •a-PS

co 00

m ON

cn ON

vO CN

CN

cn CN

O •ar

cn

cn CN

en

«ar O CN

O o

o CN CA 1 00

en

i m •a* PS

•J"

o

m

cn m CN vO CN

vO CN

CN

en

rH

en

m >ar

r-t

en CN

cn

rH CO CN

c o

o CN CA 1 i-i rH

m •a-

PS

o

CN

CM 00

ON o en

vO CN

CN

O cn

ON

cn

m en

en CN

en

en cn en

o o

•a-CN CA 1

ON

m

i m •a-

PS

cu -o o u rl ej

a o o CM 30 O 00

-a

a o •a (U

cn eg 03

Page 70: 1984 The deflections of reinforced and partially

48

CO

w m x o pq Q

W CO CO

w Pi H CO

w Pi PH >H

rJ H H Pi <fl PH PH

O CO rJ H EH

W O

W rJ

H

cr

M a

S

r ^

CU PH

4-00

c •H O rH

u cu

o cu MH 4J C CO •H

cu Pi

•K 00

c •H CO rH CO CU

cu cu )H 4-1 4-1 CO

ca cu u PH

cu 4-1 CU iH CJ

c o o

g 0

a (X

/* S z -vs v-

^"N

s z .is v—'

z r*

No. of

Bars

/*-v 4-1 CM

co e < %

v-

<4H O CO

<u u O -H Z 3

CU r-S CO CM

< | v_•

r-\ CO

w o rH X \—'

4J CO ^ CU Ct)

- O 4-1 PH

fa s 4J w CO

J 1 i

1

o

o av . en rH

o

o

o CN CO sr

o S3-CN rH

1

1

vO • r-. CN

O •

sr CO

.

d> o en oi

m CN • O

r- m •

ST CN

r vO • a rH

vO LO

vo o sr rH CN CN CO CO CO rH rH rH

st O <y\

m -e-CN

C?v en

O • 00

CN

m •

cn CN

rH

d> o CO PH PH

O •<f

• o

00 ON. • o cn

00

o • i< rH

vO C3N

vO rH CO ST

Sf O 00

m -e-sr

cn r-»

vo • o cn

sr •

CN cn

CN 1

o o cn PH PH

O vO

o

rH LO . cn cn

iH vO •

LO CN

rH st rH

vO rH CO cn

en O vO

LO

-e-vO

00 rH rH

rH • 00

CN

rH . cn cn

en

4 o cn PH PH

O 00

o

cn o . 00 S3"

m H *

si-cn

rH

o CN

vO rH CO CN

CN O sf

in •e-00

r»-m rH

r-» . r»» CN

O •

rH cn

st

<A o cn PH PH

O

° ; . •H

ON m •

V0

m

ON vO .

CN S3-

m S3-CN

vO rH

, CO rH

rH O CN

m -e-o rH

vO ON rH

rH • r CN

m • m CN

m l

o o cn PH PH

CN

cn

s • #1

e

vO 00

r«. 00

II

3 s • *.

e

r». cn •

m 00

II >*

S ft CO B crj ai rQ

H H cO rJ O 4-1

4J cfl A 4J

0 CO H CO

OJ 4J 0 z

cd % o 1—1

vO i — I

II

!>N OH

VH

«* CO cu u •H & 00

c •H CO CO CU r4 4-1 CO CO M a.

1 m IH 0

CO CO cu u 4J CO

T3 H CU •H >H

*

cO Pi " cn CN c n II

>N CO

4H

n

H CU cu 4J CO

00

a •H a u o M-t C •H CU rH

MH 0

CO CO CU u 4J CO

-a H cu •H >H

+-

Page 71: 1984 The deflections of reinforced and partially

49

4.3 Beam Details and Fabrication

The sectional dimensions of the reinforced and prestressed box

beams are given in Fig. 6. They may be considered as a quarter

scale to those of standard box sections described by Somerville and

Tiller [19701 Stirrups were placed between the loading points and

the supports to prevent possible shear failure. Two 6mm bars were

also used in the top flange area to hang the stirrups. Between

the loading points, that is pure bending region, only tensile steel

was provided.

All beams were cast in steel moulds with ready-mixed concrete.

The concrete mix proportions were 1 : 1.5 : 3.2 (cement : sand :

aggregate) by weight and the maximum size of aggregates was 10

mm. Type A cement (ordinary Portland) was used, and the water-

cement ratio was 0.5. For each batch of concrete delivered to the

laboratory a slump test was carried out before the casting of the

beams. Average slump was between 80 mm to 100 mm. For the identical

beams in each group the same batch of concrete was used in order to

limit the variation on strength properties. The void in each beam

was created by embedding polystyrene prisms. The bottom flange of

the beams was first cast and then polystyrene prisms were placed

in position. Small concrete spacers and wires were used to fix the

polystyrene prisms to the mould to avoid possible movements and

floating of the prisms. After fixing the prisms, more concrete was

placed for the webs and the top flange of the beam. An electrical

internal vibrator was used to ensure proper compaction.

All the prestressed beams were pretensioned in a self-contained

steel prestressing rig. An IBISONET 4-ton monowire jack with a 41-mm

piston and a 200-mm stroke was used for the pretensioning. After

tensioning, the prestressing force in each wire was anchored by

a grip having three split-cone wedges. Strains in the wires were

Page 72: 1984 The deflections of reinforced and partially

50

first checked by a 50mm demountable mechanical (Bemec) strain gauge

to ensure there is no slip between the wires and the grips. Then

concrete was poured. After concrete had the required strength.

transfer was made by cutting the prestressed wires (using an oxygen

cutting torch). The tensioning of wires and placing of concrete

into moulds may be seen in Fig. 7. To reduce possible variation in

the loss of prestressing forces in different beams, each was tested

immediately after transfer.

All beams were cured under moist hessian for at least seven

days after casting. At least twelve cylinders were cast from

each batch of concrete for the strength and elastic modulus tests.

Four of the cylinders were kept in a standard fog room and were

tested at 7 days and 28 days. The rest of the cylinders were

kept beside the beams and then tested during the repeated loading

tests. The cylinder tests were according to SAA Concrete Test Codes

[19781 A typical stress-strain curve of concrete obtained from the

cylinder tests is shown in Fig. 8. Samples of reinforcing bars and

prestressing wires were also tested for their strengths. Fig. 9

shows typical stress-strain curves of steel plotted automatically

by the plotter on an AVERY testing machine. All reinforcing bars

used were hot-rolled mild-steel deformed bars. The yield plateau of

these bars can be clearly seen from the stress-strain curves. The

yield stresses of these bars averaged about 300 MPa. The actual

values of the yield stress are given in Table 3. The prestressing

wires were 5 mm hard-drawn wires having the 0.2% proof stress as

the yield stress. All prestressing wires used in Series PP300 were

from the same batch and the yield stress was 1610 MPa.

Page 73: 1984 The deflections of reinforced and partially

51

250

1450 14. (1900)

E (19Q0)

1450 (1900)

f

4350 (5700) 250

4850 (6200)

Note: Figures in brackets are for series R200 and R450

200 305 450

R300

305

) • o o o •

m ~o en

• • . ) • o • o • o •

PP300-1 PP300-2 PP300-3

o reinforcing bars

• prestressing wires

• o • • o • V f

• • • o • * •

PP300-4 PP300-5

Figure 6 Details of test beams (See Tables 3 and 4 for other information)

Page 74: 1984 The deflections of reinforced and partially

^tV^^;Sfe^:W5;9l ^^SiNCjN«^"-'-""~' ran

m ^^^^« -Jill

(a)

MMHm • m

I mum

(b)

Figure 7 Fabrication of concrete box beams

Page 75: 1984 The deflections of reinforced and partially

53

0.001 0.002 c

strain

Figure 8 A typical stress-strain curve for concrete

Page 76: 1984 The deflections of reinforced and partially

500.00

431.32

400.00

300.00

v—'

CO

cu 4J CO

272.05

200.00

54

100.00

16mm deformed bar cross 2

section area: 201.1mm

0 0.05 0.10 0.15 0.20 0.25 Strain

Figure 9a Stress-strain curve of mild steel deformed bars

2000 r-

co

co CO

cu u 4-1 CO

Diameter 5.00mm 2

Cross section area 19.63mm

0 0.200 1.000 2.000 Strain (%)

Figure 9b Stress-strain curve of hard-drawn prestressing wires

Page 77: 1984 The deflections of reinforced and partially

55

4.4 Test Equipment and Instrumentation

Beams were tested under third point loading provided by a

steel I-beam distributor. The tests were carried out in a massive

self-contained space frame. The set-up can be seen in Fig. 10.

The repeated loading was applied through a Dartec testing

machine. The machine is a servo-hydraulic feed back system including

a 600 kN actuator, a 75 Hp pump unit and an electronic fatigue

control panel M1000/R. (see Fig. 11). Provided that the input data

such as the mean load, frequency and the command input are correctly

set on the control panel, the Dartec system would give accurate

control for the repeated loading tests. The accumulated numbers

of loading cycles were also recorded by the fatigue control panel.

The fatigue rated load cell of the machine was calibrated to 0.01 kN

accuracy. During the repeated loading tests the upper and lower

limits of the load were also checked by a dual-beam oscilloscope on

the control panel.

Deflections of the beams were measured by dial gauges with

0.01mm graduation. An independent supporting system not connected

to the loading frame, was used to mount the dial gauges. Deflections

were measured at seven positions along each beam as shown in Fig.

12a,

Surface strains of the beams were also measured. A Demac

strain gauge having gauge length of 200 mm was used to measure the

strains. Stainless steel reference discs were glued on both sides

of the beam at the mid-span region. The positions of the strains

measured are also shown in Fig. 12b.

All box beams were painted with white wash for easier discovering

of cracks. Crack widths were also measured in the pure bending

Page 78: 1984 The deflections of reinforced and partially

56

region. A microscope with 40-time magnification and an accuracy of

0.02 mm was used.

Page 79: 1984 The deflections of reinforced and partially

57

Figure 10 Test set-up

Page 80: 1984 The deflections of reinforced and partially

58

6 cu 4-1 CO CO CJ

cu 4-1 U CO p CU rC 4J

CU

a CO CX

o u 4J C!

o CJ 60

C •H T3 CO O

T3 CU 4J CO CU P-. CU Pi

cu JH

00 •H fa

Page 81: 1984 The deflections of reinforced and partially

59

L/3

^

L/: L/3

L/ 6 J L / 6 I L/6 I L/6 I L/6 l L/6

(a)

Dial gauges

m o cn

o

o vO

to

m ID

200

^-L±

200

i

Stainless steel Demec points

(b)

Figure 12 Positions of dial gauges and Def&ec gauges

Page 82: 1984 The deflections of reinforced and partially

60

A3 Test Procedures

For the beams in series R300. different levels of repeated

loading were applied. The first beam of each group in this series

was tested statically to failure to check the accuracy of the design

equations for Mcr. My and Mu. The remaining three beams were tested

under repeated loads having a lower limit at 30% of the yield load

(to simulate the dead load) and with the upper limit set at 505s. 70%.

and 90% of the yield load respectively. The five beams in series

PP300. being the extension of series R300-3. were only tested with

the upper limit at 50% of the yield load. In the tests in series R200

and R450. the lower and upper limits respectively were set at 30%

and 53% of the corresponding yield loads. The minimum and maximum

loads for beams tested under repeated loading are summarised in

Table 5.

All beams under repeated loading were each tested up to 100.000

repetitions of load. In view of the fact that the frequency of

a structure member such as a main bridge girder being subjected

to full service load is low. a test up to 105 cycles is believed

to be sufficient in serviceability studies. Before the start of

the repeated loading test, the beam was tested up to the upper

load limit statically. Referred to as the initial loading test

(see Fig. 4) it was to facilitate the determination of the initial

response of the beam which would form the basis for comparisons

with post-repeated loading behaviour. It should be noted that the

repeated load variation was of a sinusoidal nature and the frequency

was between 100 and 150 cycles per minute depending on the upper

limit of the load. In order to detect changes in beam behaviour.

unloading then reloading was carried out immediately after 1. 10. 10".

103, 104 and 10 cycles of load. Deflections, strains and crack widths

at various specified points were measured during these static tests.

The increments of static load depended on the maximum load level.

Page 83: 1984 The deflections of reinforced and partially

61

After the static load test further load repetitions were applied.

To minimize possible effects of time creep, all tests for a beam were

carried out continuously and completed within twenty four hours.

Page 84: 1984 The deflections of reinforced and partially

TABLE 5 UPPER AND LOWER LIMITS OF REPEATED LOADING MOMENT (kNm)

Beam

R200-1

R200-2

R200-3

R200-4

R200-5

R300-1-2

R300-1-3

R300-1-4

R300-2-2

R300-2-3

R300-2-4

R300-3-2

R300-3-3

R300-3-4

R300-4-2

Minimum Moment

(Md)

14.15

23.51

28.31

34.33

40.27

9.30

9.30

9.30

16.07

16.07

16.07

25.61

25.61

25.61

32.80

Maximum Moment

(Mt)

25.01

41.54

50.01

60.65

71.15

15.51

21.71

27.91

26.79

37.50

48.21

42.69

59.76

76.83

54.67

Beam

R300-4-3

R300-4-4

R300-5-2

R300-5-3

R300-5-4

R450-1

R450-2

R450-3

R450-4

R450-5

PP300-1

PP300-2

PP300-3

PP300-4

PP300-5

Minimum Moment

(Md)

32.80

32.80

48.93

48.93

48.93

33.28

47.06

57.96

78.77

92.95

25.61

25.61

25.61

25.61

25.61

Maximum Moment

(Mt)

76.54

98.41

81.55

114.16

146.78

58.79

83.13

102.37

139.17

164.20

42.69

42.69

42.69

42.69

42.69

Page 85: 1984 The deflections of reinforced and partially

63

4.6 Experimental Results

The raw data from the tests conducted in this study are the

surface strain, crack width and deflections. Strains were recorded

over the depth of beam at initial loading and after the repeated

loading cycles. Crack widths were also recorded in the same way.

Results of strain and crack width are given in Appendices III and IV

respectively. The initial dead load deflections ddj were measured on

each beam before the repeated loading tests started. After 1. 10.

102, 103, 104 and 10 cycles of loading the dead load deflections were

also recorded. Plots of mid-span deflections against the bending

moments are presented in Appendix V. The values of total deflection.

8T, at the initial loading and after the repeated loading cycles

were also recorded. They are tabulated in Tables AV-1 and AV-2 for

reinforced and prestressed box beams

Two types of derived results were obtained from the raw results

of deflection data. The first is the intensive creep factor, k = ^

(see Eq. 3.1). The difference between total deflection and dead load

deflection at the same loading cycle gives the instantaneous live

load passage deflections, i.e. d = 8T - 5da. Using d the second

quantity can be derived. This is the effective moment of inertia

of the beam under repeated load i.e. lrep = g£g- .

Page 86: 1984 The deflections of reinforced and partially

64

4.7 Observations and Analysis of Beam Behaviour

4.7.1 General behaviour

Under repeated loading the beam deformations accumulate with

increasing number of loading cycles. The increases in strain and

crack width resulted in the increase in the deflection. Typical

examples of strain and crack-width increases are illustrated in Fig.

13 (for more records see Appendices III and IV respectively).

The static behaviour of all box beams tested was typical of any

under-reinforced concrete beam. Bilinear M - S relationship with

cracking point as a bifurcation point was observed. As sufficient

shear reinforcements were provided, beams tested statically were

all failed in tension mode. This means that yielding occurs in the

steel prior to the crushing of concrete in the compressive zone.

Comparisons of observed Mcr, My and Mu and their computed values

are given in Table 6. In general the correlations are close.

Both dead-load and total-load deflections accumulated under

repeated loading. After 105 cycles of load the total increase in

dead-load deflections ranged from 40% to 300% of the initial value.

For total deflections the increases were lower, from 1% to 60%. The

increases were significant in earlier loading cycles but tended to

slow down in later cycles. For example, for beam R300-3-2. which

was tested under constant repeated load with maximum load at 50%

of the yield load, the increase in dead load deflections after 105

cycles was 76%. Of the 76% increase. 66% occurred in the first 10

cycles of load. All beams tested followed a similar pattern.

Page 87: 1984 The deflections of reinforced and partially

65

XI

C CO

u CJ

p w H P

1 u o p w PC!

P CO

<3 w S O is o CO H U

w p H vO

w p « <! H

1 a3

1 r* v—'

! >—•

r4

/— V

in \ v—' N

XI

cu cu 4-» 3

/-v 3 rH vO p* CO

w g > O XI

cu cu U 3

/-N 3 iH

m co co ^ co >

CU

a

XI cu CU 4-1 3

•-s 3 rH si- p. CO

w g > o CJ XI

cu cu U 3

•-v 3 rH

cn co co *-* CO >

CU

S / — V

\ ^

i-H \

XI

cu cu /-v 4J 3 CN 3 rH w p. cfl

e > o CJ

XI

cu cu '-s U 3 rH 3 rH ^ CO CO

CO > CU

a

1 CU PQ

o cn r-H

cn •

CN

cn

o •

CN

O

i—i

i—i

o .

i-H

en

00 CN

• cn cn

CO •

o

o cn cn . — i

m CN .

rH i—1

i—1

1 i—1

1

o o cn oi

i—i

r—1

m CN

m vO

r-1

cn m vO

cn o r-l

vO

m •

cn m

vO

m <oo m

cn 00 •

o

o cn •

cn i—i

o m .

r—i r H

F H

1 CN 1

o o cn oi

cn CN

rH

vO 00 •

00

O O •

cn r-l

O .

i-H

cn •

m 00

00 CN

i-H

cn

00 00 •

o

o cn •

cn i—i

m CN

CM rH

rH

1 cn 1

o o cn Pi

r-H r-H

. r-H

m cn *

o rH 1—1

00

o »

cn CN i-H

m o .

rH

<* cn •

cn o i-H

00 S3-

• st i—4 i-H

cn 00 •

o

o cn *

cn I—I

o m .

rH i—1

r-H

1 S3-

1 O O cn Pd

cn o .

r-H

o o m m r-H

00

m •

cn vO

00

cn «

o

o rH

. cn vO rH

VO rH .

o vO i-H

cn 00 •

o

o cn •

cn i-H

o vO .

i-H i-H

r-H

1

m l

o o cn P4

CO

u 3 4-1 CJ

3 U 4-J CO CU 4-1 CJ

u o a o CJ

c CO •H l-i CO

u 4J

co

3

00

c •H XI

u o a a co x cu 4J cfl rH 3 U rH CO CJ CU

U cfl CO •

cu /-v 3 CN rH 00

co cn > rH

I XI o CU 00 W S3-3 rH

& <

o CJ at x o CJ

w H o

Page 88: 1984 The deflections of reinforced and partially

66

Significant differences have been found between the results of

the tests under different ranges of repeated loads. Provided that

the dead load (minimum load) is constant, a higher maximum load gave

a higher increase in dead load deflections. For example, in the tests

of the three identical beams in Series R300-5. with maximum load at

50%, 70% and 90% of the yield load the increases in deflections were

found to be 29%, 47% and 79% respectively after 1000 cycles of load.In

other series of beams, which included tests under different ranges

of repeated load, a similar trend was found.

If other conditions remain unchanged, it was observed that

heavily reinforced or highly prestressed beams tended to have a

smaller increase in deflections under repeated loading. For instance.

Beam R200-1 had a steel ratio of 1%. After 105 cycles of repeated

load a 200% increase in dead load deflections was recorded, whereas

only a 62% increase was found in Beam R200-5. which had a 3% steel

ratio. For prestressed concrete beams. Beam PP300-1 with n=0.25. a

138% increase of dead load deflection was recorded after 10 cycles

of repeated load. On the other hand, only 61% increase was found

in Beam PP300-4 having n=0.80.

4.7.2 Mechanism of deflection accumulation

The deterioration of bond between reinforcing bars and the

surrounding concrete is the main reason for the increase in

deflections under repeated loads. The behaviour described in the

previous section can be explained by scrutinizing the nature of bond

resistance in concrete beams especially under repeated loading.

The bond mechanisms of deformed bars may be illustrated in Fig.

14. Bond between steel and concrete is initially provided by chemical

adhesion between mortar paste and bar surface. Even low stresses

will cause sufficient slip to break the adhesion between the concrete

Page 89: 1984 The deflections of reinforced and partially

67

and the steel. Further bond will be provided by friction and the

wedging action of small dislodged sand particles between concrete

and steel, and also by the interlocking of ribs with surrounding

concrete in the case of deformed bars.

Under repeated loading, bond deterioration occurs between steel

and the surrounding concrete. The mechanisms of bond deterioration

have been observed by Bresler and Bertero [1968] in repeated loading

tests on steel bars embedded in cylindrical concrete specimens which

may be used to explain qualitatively the deflection behaviour of

the beams tested in this thesis:

a. During loading the deterioration is mainly caused by:

i. failure in concrete 'boundary layer' adjacent to the

steel-concrete interface (breaking of adhesion):

ii. slippage of steel relative to concrete:

iii. inelastic deformation and local crushing (or con­

solidation of mortar paste) at the steel-concrete

interface: and

iv. inelastic extensional deformation in concrete result­

ing from microcracking and release of shrinkage.

b. During unloading:

i. Reverse motion between steel and concrete is

resisted primarily by the wedging action of the

rugged surfaces in the boundary layer. This

results in the resistance to slip being greater

than that during the preceding loading stage.

Page 90: 1984 The deflections of reinforced and partially

68

ii. Further unloading will overcome the wedging action.

Resistance to slip (due to friction) is about the

same as that during loading.

iii. After loading is removed, full recovery of steel

elongation is prevented by the shear resistance

at the interface between concrete and steel.

Residual state of tension in reinforcing steel

and of overall net compression in concrete remain.

Local cracks in the boundary layer, as well as

those extending fully through the section do

not close completely after unloading, this causes

irrecoverable deformation.

c. During the reloading procedure and the further loading

cycles, further disruption of bond occurs. But (for a

constant maximum loading level) the rate of disruption

diminishes and the process appears to stabilize after

a certain large number of loading cycles.

The deterioration of the adhesive bond under repeated loading

contributes to the increase in dead load deflection (or permanent

set) in concrete beams. The stabilization or consolidation of the

mechanical bond resistance, on the other hand, is responsible for

the diminishing rate of increase in this irrecoverable deformation.

Page 91: 1984 The deflections of reinforced and partially

(IJ > CJ

CJ

cu 4J CO •-v 60 6

51 o 6 rl UH I

c o •H rH

cu X

CO rl 4J

co

1000.

900"

800

700

69

10 10 10

Number of loading cycles

(a)

10 10-

c •H CJ rl O

>4H

c •H CU -U 4J < CO rS CJ 4J > X CJ

Jd CJ CJ CJ CO 4J rl cn

a e 3 6 •H X CO

2

0.20-

0.10 10 10 10

Number of loading cycles

10 10"

Figure 13. Typical increase of strain and crack width under repeated loading, Beam R300-2-3

Page 92: 1984 The deflections of reinforced and partially

70

Nominal diameter -

Figure 14 The bond mechanism of deformed

bars [see Park and Paulay, 1975]

Page 93: 1984 The deflections of reinforced and partially

71

Chapter 5

INITIAL DEAD-LOAD DEFLECTION

5.1 General Remarks

With the initial deflection data obtained in Chapter 4 it is

possible to determine the most suitable computational procedure for

concrete box beams from amongst published methods. In this Chapter.

a review is first made of the existing methods of calculation. This

is followed by a comparative study involving nine more popular ones.

In the comparisons, statistical approaches are adopted.

Page 94: 1984 The deflections of reinforced and partially

72

52 Existing Methods for Predicting the Initial Deflection

Many methods have been established to predict the initial

deflection for reinforced and prestressed concrete beams. The key

step of calculating initial deflections is to find, with reasonable

accuracy, the bending rigidity which is the product of the initial

concrete modulus of elasticity. Ec and the effective or nominal

moment of inertia of the cracked composite section. In existing

methods there are two major approaches for finding the moment of

inertia:

a. to introduce a factor to modify either the moment of

inertia of the gross section or that of the "fully"

cracked section (i.e. cracking up to the neutral axis):

b. to calculate curvature from the idealized moment-curvature

curve, the bending rigidity being the moment divided by its

corresponding curvature.

A chronological listing of published methods together with the

originators (or the Codes which adopted them) is given in Table 7. In

addition to these two basic approaches many simplified or graphical

methods have also been established [see Lutz 19731 Moreover, some

methods predict the plastic deflections after the beam has yielded

[see for example Baker. 1965: Institute of Civil Engineers. 1962: Corley.

1966: and Hsu and Mirza. 19741 As neither of these two latter groups

of methods is relevant to the present work, they are not discussed

herein.

5.2.1 Moment of inertia methods

Page 95: 1984 The deflections of reinforced and partially

73

The deflection calculations for the two extreme cases. i.e. the

moments of inertia of uncracked and "fully" cracked cross sections.

are very straight-forward.

The moment of inertia of an uncracked cross section is usually

denoted as I . It is calculated using the entire cross sectional area y

ignoring or including the steel area. In most cases the difference

between these two values is very small. Therefore, for consistency.

the steel area is ignored in this thesis.

The moment of inertia of "fully" cracked section is denoted as

LP. In reality most cracked beams are not "fully" cracked. The cr

cracks usually do not reach the neutral axis. Also, along the length

of the beam only a certain number of cracks will occur. Concrete

between the cracks are still taking some tensile stress. Therefore

the moment of inertia of these sections should be a value between

I and Icr. This moment of inertia is referred to as the effective

moment of inertia and denoted by le.

With the bending rigidity of the beam given as Ecle. the initial

dead load deflection may be given in general as.

6d = ^ (5„ cc'g

The formulae or procedures for computing le given by the various

authors may be found elsewhere (see Table 7 for sources). Some of

the more renowned methods are used in Section 5.3 for a comparative

study. Moments of inertia lg. lcr and le may be represented by the

polar lines in the moment-deflection curve as shown in Fig. 15.

Page 96: 1984 The deflections of reinforced and partially

74

TABLE 7 EXISTING METHODS FOR PREDICTING INITIAL DEFLECTIONS

Authors

Meney

Swain

ACI Committee 307

Murasher

PCA

Dunham

Yu & Winter

CEB

Branson

ACI 318-63

Burus

Corlay & Sozen

BPR

Beeby

CEB

ACI 318-71

CP110 or Unified Code

ACI Committee 443 AASHO

AS1480-1974

Filing

ACI 318-77

Warner

Direct Bilinear

Year

1914

1924

1931

1940

1947

1953

1960

1961

1963

1963

1964

1966

1966

1968

1968

1971

1972

1974

1974

1974

1977

1980

Moment of Inertia Method

Icr

/

/

/

Method A

pfy>500

/

P50.005

M>2M cr

X8

/

Pfy*500

°SfsSfy/3

M<M cr

^Icr

/

Method B

*Ig

M <M<2M cr cr

^lIcr+^2Ig

/

fy/3*Vfy

/

/

/

/

Bi­linear m-cf)

Method

/

/

/

p<0.005

/

/

/

Page 97: 1984 The deflections of reinforced and partially

75

Deflection, 6

Figure 15 Bending Rigidities of Reinforced or Prestressed Concrete Beams

Page 98: 1984 The deflections of reinforced and partially

76

5.2.2 Bilinear moment-curvature or moment-deflection curve methods

These methods adopt an idealized bilinear moment-curvature or

moment-deflection curve, such as the one shown in Fig. 16. The

deflection calculations in this category take a general form:

8 = c51 + S2 < d3 (5.2)

where.

81 = <XL2<*~1

52 = cci_2c*~1

in which £, and 4>2 are the curvatures of the beam at different

stages of loading.

By calculating the curvatures of the beam. <£=M(Ecl)~ .- the

deflections can be computed without any difficulties. Different

values of angle B at the bifurcation point (see Fig. 16) may be

adopted in the curvature calculations [see CEB. 1968 and Bate. 19681

Alternatively, curvatures and deflections can be calculated by

determining the co-ordinates of the bifurcation points on the curve

(i.e. A, C and D in Fig. 16). Beeby [1968] and Warner [1980b] methods

adopt this procedure. Their equations are given in the following

Section.

Page 99: 1984 The deflections of reinforced and partially

77

Note that in the CP110 method [1972], the tensile stress of

concrete between the cracks (known as tensile stiffening effect) is

taken into account. The magnitude of this tensile stress may be

obtained by assuming a triangular tensile stress block with 1 MPa

at the steel level and zero at neutral axis of every section along

the beam, this is illustrated in Fig. 17.

Page 100: 1984 The deflections of reinforced and partially

78

4-1 ti CJ

e o

4>c (fic)

B =0.75 to 0r85 E I

Curvature (Deflection)

(9 <f>u

(5J

Figure 16 Idealized bilinear moment-curvature or moment-deflection curve

Page 101: 1984 The deflections of reinforced and partially

79

Section Strain Stress

Figure 17 Stress and strain distribution of a cracked section suggested by CP110 [1974]

Page 102: 1984 The deflections of reinforced and partially

5.3 Comparative Study

80

The more popular amongst the methods reviewed in 5.2 are used

in the present comparative study with an aim to select the most

suitable method of computing $dj as required in Eq. 3.13. The methods

and their respective equations are listed below.

a. I Method [PCA, 1947].

«M d L2

Sri, = -=-2— (5.3) 'di E c'g

b. Lr Method [Meney. 1914: Swain. 1924: ACI Committee 307. 1931].

sdi = y i - (5.4)

c. Yu & Winter's Method [I960].

2

8dj = -^- (5.5) cc'e

where, Jcr

'e *1

in which

and

Md

M1 = 0.1(F'c)3bw(h-kd)

d. Branson's Method [1963],

tfMHL 2 2

c'e

(5.5a)

SHi = — (5.6) di g i

Page 103: 1984 The deflections of reinforced and partially

where,

'e^N^-'^'crS

CEB Method [1968],

5 .. = «l-_[_cr + 4 _d cr 3 (5J)

"PI 3 I t c 'g J cr

The direct bilinear method [see Branson. 1977].

d" E c 'g 'or

The CP110 Method [1972],

*di = " i f " = a<t,L (5'9)

where 4>. or L r is calculated assuming a concrete tensile cr

stress of 1 MPa between cracks (see discussion in Section

5.2.2). The solution is obtained by a trail and error

method.

Beeby's Method [1968].

dl " 5Wi = — - - L - (5.10)

-c'e

where.

,.=.,-[1-1 JilL^SL (5.10a) 'e 'g u,g 'crjM _ M

mu cr

Page 104: 1984 The deflections of reinforced and partially

82

Warner's Method [1980b].

where.

caM-.L2

SHi = — — (5.11) dl ££ |

MH - Mor

"e = 'a ~ C'q " •v3— ~ (5-11a) e ^ 9 v M y - M c r

Note that Warner's method closely resembles that of Beeby's

except that, for reinforced concrete beams, lcr and Mu in Beeby's

equation are replaced by ly, the moment of inertia at yield, and My

respectively. The calculation of ly is based on the assumption of

elastic behaviour of the beam at the first yield stage. For the

cases tested, the two methods also give almost identical results

but the latter is more convenient to use for partially pretsressed

beams.

Dead load, which is represented by the lower limit of the

repeated loading, caused cracking in most of the reinforced beams

tested except Series R300-1. All the prestressed beams tested did

not crack under dead load. For beams, which were not cracked under

dead load, the initial dead load deflections can only be calculated

using the lg method.

The comparisons of measured and calculated dead load deflections

are presented in Tables 8a and 8b respectively for reinforced and

prestressed beams. Tables 9 and 10 give the deviations and frequency

distribution of the calculated 5dj for the reinforced beams. It can be

seen in Table 8a that both the direct bilinear method and Branson's

method give the best average accuracy. On average, the lcr method

is the most conservative followed by the CEB 1968 method. Beeby's

and Warner's methods give values only slightly higher than the lg

method. By examining in Tables 9 and 10. it is clear that all except

the l„ and Lr methods have low deviations and/or reasonably sharp u cr

Page 105: 1984 The deflections of reinforced and partially

83

distribution curves. The lcr method tends to be over-conservative

and as expected, the lg method does not perform well for beams

cracked under dead load. However, it is quite apparent that from an

engineering point of view Branson's method is the most satisfactory.

being consistent and slightly on the safe side. For these reasons.

the author recommends the use of this method in calculating the

initial dead load deflection. §dj. as required in Eq. 3.13,

For all the partially prestressed beams the cracking moments

were greater than corresponding dead load moment. As a result

Branson's equation for initial dead load deflection reverts to the I

method. However, the validity of Branson's procedure for computing

the initial deflection of cracked prestressed beams has been well

established [see Branson. 19631

Page 106: 1984 The deflections of reinforced and partially

TABLE 8a CALCULATED AND MEASURED INITIAL DEAD LOAD DEFLECTIONS (IN MM) OF REINFORCED BOX BEAMS

Bean

IUOO-1

R20O-2

rUOO-3

R200-4

R200-5

B300-1*

R300-1-2*

R300-1-3*

WOO-1-4*

R300-2-1

R300-2-2

1300-2-3

R30O-2-4

R30O-3-1

RJOO-3-2

B300-3-3

R30O-3-4

R30O-4-1

R30O-4-2

R300-4-3

R300-4-4

uoo-s-i

R30O-S-2

R30O-5-3

R300-5-4

8450-1

R450-2

R450-3

R450-4

M50-3

Daad Load

Banding Hoaanc

14.13

23. SI

28.31

34.33

40.27

9.30

9.30

9.30

9.30

16.07

16.07

16.07

16.07

23.61

25.61

23.61

25.61

32.SO

32.90

32. SO

32.80

48.93

48.93

48.93

48.93

33.28

47.06

57.96

78.77

92.95

-

Heaaured Initial Dead Uad

Deflections Sdl

4.42

6.85

9.03

9.74

12.57

0.70

0.84

0.90

0.78

2.10

2.21

1.83

1.B0

4.74

5.24

4.25

5.15

4.83

4.57

4.81

4.66

5.79

6.44

5.94

6.24

7.20

8.97

9.35

12.36

13.43

Calculated Initial Dead Load Deflections

Effective Moment of Inertia Method!

\ Sdl

3.69

6.12

7.37

8.94

10.49

1.09

1.09

1.09

1.09

1.88

1.88

1.88

1.S8

2.99

2.99

2.99

2.99

3.83

3.83

3.83

3.83

5.71

5.71

5.71

5.71

4.35

6.16

7.58

10.30

12.16

Meal Cal

1.20

1.12

1.23

1.09

1.20

0.64

0.77

0.83

0.72

1.12

1.18

0.97

0.96

1.58

1.75

1.42

1.72

1.26

1.19

1.26

1.22

1.01

1.13

1.04

1.09

1.66

1.46

1.23

1.19

1.10

Xcr

Sdl

8.84

10.07

10.66

11.38

12.08

4.35

4.35

4.35

4.35

5.06

5.06

5.06

J.06

5.08

5.08

5.08

5.08

6.28

6.28

6.28

6.28

9.07

10.01

10.73

12.08

12.99

Mea Cal

0.50

0.68

0.85

0.86

1.04

0.48

0.51

0.42

0.41

0.94

1.04

0.84

1.02

0.95

0.90

0.95

0.92

0.92

1.05

0.95

0.99

0.79

0.90

0.87

1.02

1.03

Yu 4 Winter.

5di

3.03

6.49

7.66

8.87

9.91

2.27

2.27

2.27

2.27

3.67

3.67

3.67

3.67

4.10

4.10

4.10

4.10

5.54

5.54

5.54

5.54

6.59

8.22

9.27

10.98

L2.04

Mea Cal

1.46

1.06

1.18

1.10

1.27

0.93

0.97

0.81

0.79

1.29

1.43

1.16

1.40

1.17

1.11

1.17

1.14

1.05

1.16

1.07

1.13

1.09

1.09

1.01

1.13

1.12

_

Branson

6dl

5.52

9.49

10.41

11.29

12.04

2.35

2.35

2.35

2.35

4.56

4.56

4.56

4.56

4.96

4.96

4.96

4.96

6.27

6.27

6.27

6.27

7.07

9.46

10.52

12.04

12.90

Mea Cal

0.80

0.72

0.87

0.86

1.04

0.89

0.94

0.78

0.77

1.04

1.15

0.93

1.13

0.97

0.92

0.97

0.94

0.92

1.03

0.95

1.00

1.02

0.95

0.89

1.03

1.03

Bilinear Methods

CEB

Jdi

5.67

10.11

11.63

13.24

14.61

2.40

2.40

2.40

2.40

4.71

4.71

4.71

4.71

5.53

5.53

5.53

5.53

7.62

7.62

7.62

7.62

7.15

10.10

11.84

14.54

16.14

Mea Cal

0.78

0.68

0.78

0.74

0.86

0,87

0.92

0.76

0.75

1.01

1.11

0.90

1.09

0.87

0.83

0.87

0.84

0.76

0.83

0.78

0.82

1.01

0.89

0.79

0.85

0.83

Direct Bill

5di

4.95

8.27

9.42

10.62

11.65

2.21

2.21

2.21

2.21

3.94

3.94

3.94

3.94

4.55

4.55

4.55

4.55

6.12

6.12

6.12

6.12

6.06

8.27

9.58

11.60

12.80

Mea Cal

0.89

0.83

0.96

0.92

1.08

0,95

1.00

0.83

0.81

1.20

1.33

1.08

1.31

1.06

1.00

1.06

1.02

0.95

1.05

0.97

1.02

1.19

1.08

0.98

1.07

1.05

CP110

*di

6.96

8.97

9.76

10.66

11.47

3.19

3.19

3.19

3.19

4.31

4.31

4.31

4.31

4.57

4.57

4.57

4.57

5.91

5.91

5.91

5.91

7.60

8.98

9.91

11.47

12.47

Mea Cal

0.64

0.76

0.93

0.91

1.10

0.66

0.69

0.57

0.56

1.10

1.22

0.99

1.19

1.06

1.00

1.05

1.02

0.98

1.09

1.01

1.06

0.95

1.00

0.94

1.08

1.08

Warner

Sdl

3.90

6.61

7.89

9.40

10.83

1.94

1.94

1.94

1.94

3.20

3.20

3.20

3.20

4.02

4.02

4.02

4.02

5.84

5.84

5.84

5.84

4.68

6.64

8.09

10.68

12.36

Mea Cal

1.13

1.04

1.14

1.04

1.16

1,08

1.14

0.94

0.93

1.48

1.64

1.33

1.61

1.20

1.14

1.20

1.16

0.99

1.10

1.02

1.07

1.54

1.35

1.16

1.16

1.09

Beeby

4dl

3.89

6.60

7.87

9.40

10.84

1.93

1.93

1.93

1.93

3.20

3.20

3.20

3.20

4.02

4.02

4.02

4.02

5.84

5.84

5.84

5.84

4.66

6.63

8.08

10.70

12.38

Mea Cal

1.14

1.04

1.13

1.04

1.16

1.09

1.13

0.95

0.93

1.48

1.64

1.33

1.61

1.20

1.14

1.20

1.16

0.99

1.10

1.01

1.07

1.54

1.35

1.16

1.16

1.08

Average 1.16 0.84 1.13 0.94 0.85 1.03 0.92 1.19 1.19

Beaa aerlaa I 300-1 ia uncracked under H^

^ Mae m Heaaured value ' Cal Calculated value

Page 107: 1984 The deflections of reinforced and partially

TABLE 8b CALCULATED AND MEASURED INITIAL DEAD LOAD DEFLECTIONS OF PARTIALLY PRESTRESSED BOX BEAMS

(M = 25.61 kNm)

Beam

PP300-1

PP300-2

PP300-3

PP300-4

PP300-5

Measured Initial Dead Load Deflection,

<5,. (mm) di

2.47

2.60

2.23

2.12

2.37

Calculated Initial Dead Load Deflection,

6 1 ^mm)

2.99

2.99

2.99

2.99

2.99

NOTE: The depth of neutral axis 'kd' are calculated using trial and error method.

Page 108: 1984 The deflections of reinforced and partially

TABLE 9 DEVIATIONS OF CALCULATED 6 di

Methods

I Method g

I Method cr

Yu & Winter's Method

Branson's Method

CEB 1968 Method

Direct Bilinear Method

CP 110 Method

Beeby's Method 2

Warner1s Method

Maximum Deviation

- 0.66

+ 0.52

- 0.46

+ 0.28

+ 0.25

- 0.33

+ 0.44

- 0.64

- 0.64

Average Deviation

- 0.16

+ 0.16

- 0.13

+ 0.06

+ 0.15

- 0,03

+ 0.08

- 0.19

- 0.19

Standard Deviation

0.32

0.26

0.20

0.12

0.17

0.13

0.19

0.27

0.27

Note: 1. Maximum Deviation = the maximum value of (Calculated 5,. - Measured 6,.)/Measured 6,.

di ai di

Average Deviation = the average value of (Calculated <5,. - Measured 6 .)/Measured 6 di

Standard Deviation = Cal.6,. - Mea.5,. .

[EC fe-s ~) ] Mea. 6 di

|/N

Page 109: 1984 The deflections of reinforced and partially

87

TABLE 10 FREQUENCY DISTRIBUTIONS OF CALCULATED 6

Method

I Method g

I Method cr

Y & Winter's Method u

Branson's Method

CEB 1968 Method

Direct Bilinear Method

CP110 Method"

Beeby's Method 2

Warner's Method

Over-estimating

40-60%

0

19%

0

0

0

0

8%

0

0

20-40%

10%

8%

4%

11.5%

34.5%

0

15%

0

0

0-20%

10%

50%

11.5%

54%

50%

38%

23%

11%

11%

Under-estimating

0-20%

37%

23%

65%

34.5%

15.5%

54%

50%

65%

65%

20-40%

23%

0

11.5%

0

0

8%

4%

8%

8%

40-60%

10%

0

8%

0

0

0

0

8%

8%

60-80%

10%

0

0

0

0

0

0

8%

8%

Page 110: 1984 The deflections of reinforced and partially

88

Chapter 6

INTENSIVE CREEP FACTOR

6.1 General Remarks

As defined in Eq. 3.11. the dead load deflection accumulated

under repeated loading may be computed as the product of the

intensive creep factor k. and the initial dead load deflection. §dj.

In this chapter the most suitable equation for calculating k will be

derived by calibrating the creep models (see Section 3.2) against the

test results. The variables which have major influence on k. such as

the loading cycles, steel ratio, loading range and maximum loading

level are included in the study. Because of the variability of the

test results of concrete beams, statistical methods are necessary

for the calibration and establishment of the suitable formulae for

k.

Page 111: 1984 The deflections of reinforced and partially

6.2 Statistical Analysis

89

6.2.1 The use of SPSS package

A statistical package called SPSS (Statistical Package for the

Social Sciences) developed by Nie. Hull and Bent [1975] was used in

the analysis of the test results. The package was first developed

in 1965 at Stanford University in the form of several individual

statistics programs. It was to serve the research and teaching needs

of the political scientists. By 1970 it became an integrated system

which can handle normal statistical analyses as well as various

other data processing tasks. The package used in this study is

the second edition published in 1975.

The used of SPSS has been successful for the social scientists.

In the engineering field it was also found to be an effective tool in

some areas such as in hydraulic engineering. The author believes

that this is the first time the package is used to analyse the

test results of concrete engineering.

The statistical procedures in SPSS selected for this study

included the correlation analysis, scattergram plotting, multiple

regression and frequency distribution. These procedures were used

in an attempt to find the relationship between the deflections of

the beams and the major variables which influence such deflections.

The correlation analysis provides the researcher with a means

for measuring the linear relationship between two variables and

produces a single summary statistic describing the "strength of

the association; this statistic is known as Pearson's correlation

coefficient 'r' or simply the correlation coefficient.

Page 112: 1984 The deflections of reinforced and partially

90

While the correlation analysis provides a single summary

statistic describing the relationship between two variables, the

'scatterplot' shows graphically such relationship in detail.

As mentioned previously, there are more than one variable

affecting deflections under repeated loading. A multiple regression

procedure is therefore needed for deriving the relationship between

the deflection and the various variables. The multiple correlation

and regression programs in the SPSS package allow the study of

the linear relationship between a set of independent variables and

a dependent variable, at the same time taking into account the

interrelationship amongst the independent variables. The basic

goal of multiple regression is to produce a linear combination of

independent variables which will correlate as closely as possible

with the dependent variable. This linear combination can then be

used to "predict" the value of the dependent variable.

An example of the operation of the SPSS package is presented

in Appendix VI.

d22 Selection of parameters

A regression analysis only gives the closest linear relationship

between two variables. From the test results and the pilot study

it has been noted that the relationship between the intensive creep

factor, k and other influential variables are not in linear forms.

To be able to use the regression procedure, it is necessary to

transform the original variables. For each variable, parameters in

different forms have been selected for the trials in the preliminary.

single-variable regression process. Correlations were compared in

order to find the most accurate regression line.

Page 113: 1984 The deflections of reinforced and partially

91

In searching for the relationship between the intensive creep

factor, k and the number of cycles, T, the latter has been transformed

into logarithmic and hyperbolic forms. Single-variable regression

analyses had shown that both forms gave reasonable accuracy where

other variables were held constant.

For the steel ratio, p, the plots of k versus D [see Wong and

Loo, 1980] showed an inverse relationship. Therefore parameters such

as - \ 4r -T, \i —• -• etc have been tried in the regression P p ' P p! p3 P P

with k. It was shown that both -1 and \ aave reasonable results. P P "

However for simplicity but without sacrificing accuracy, only - was retained eventually.

Similarly, several parameters representing the repeated loading

range or the maximum loading level were tried in different forms.

For example J , ^ ^ and ^*±L. The last form, which not onlv My My Mv-Mp.

represents the loading range and level but also reflects the strength

properties of the beams, gave the best results.

The trial of each parameter using SPSS gave a scattergram

allowing the closeness to the linear line to be shown clearly.

Regression of k with single parameters can not give the inter­

relationship between the independent variables. To find a usable

prediction equation incorporating all the variables, the multiple

regression procedure has to be used.

6.2.3 Multiple regression

From single regression analyses three parameters have been

chosen, they are:

a. for steel ratio, 1, P

Page 114: 1984 The deflections of reinforced and partially

92

b. for number of cycles. T. loqinT or -L=B. and ",u a+T

c. for loading range or maximum loading level. Mt"M". My-Me.

Due to the interdependence between the different parameters.

good correlation in single regression does not necessarily give good

correlation in multiple regression. In simple bivariate-regression

analysis, values of the dependent variable (k in this case) are

predicted from a linear function in the form of

Y' = A + BX (6.1)

where Y' is the estimated value of the dependent variable. Y. B is

a constant by which all values of the independent variable X are

multiplied and A is a constant which is added to each case. The

difference between the actual and the estimated value of Y for each

case is called the residual i.e. the error in prediction, and my

be represented by the expression: Residue= Y - Y\ The regression

strategy involves the selection of A and B in such a way that the

sum of the squared residues is smaller than any possible alternative

values.

S(Y - Y'r = minimum (6.2)

The regression line is shown as in Fig. 18. Since the sum of squared

residues is minimized, the regression line is called the least-square

line of best fit.

Page 115: 1984 The deflections of reinforced and partially

93

The basic principles of regression analysis used in bivariate

regression may be extended to situations involving two or more

independent variables. This procedure is called multiple regression.

The general form of multiple regression is.

Y' = A +B1X1 + B2X2 + ... + BjXj (6.3)

Again, A and Bj are selected in such a way that the sum of squared

residues 2(Y' - Yr is again the minimum.

The goodness of fit of the regression equation can be evaluated

by examining the correlation coefficient, r or its squared form r .

The SPSS package used here on an UNIVAC 1102 main-frame computer

carries out the regression calculation in considerable speed. More

equations of regression coefficients, correlation coefficient and

worked examples of multiple regression are presented in Appendix

VI.

Numerous regression calculations were carried out to find the

best equations for k. The calculation and comparison tasks were

proceeded in two parallel ways. One aimed at producing a hyperbolic

equation for T, the other, a logarithmic equation.

The hyperbolic equation takes a general form as.

1 M t - M d Tb 1 P 2 M y - M c r -

3a + T b

or

Page 116: 1984 The deflections of reinforced and partially

94

k = A + B., (-!•)(•—* 2-1—! (6.5) P " M v - M c r - a + T b

The logarithm equation has the form.

1 M t - M H

k = A + B 1 ( - ) + B 9 ( — 3-) + B3(log10T) (6.6) P M y - M c r '

or

1 Mi — M-i 1 M t — M_i k = A + B H C ^ - X — ^ 2_1 + B,(I)f — I -Vlog10T) (6.7)

1 0 My-Mcr' 2 O My-Mcr-

10

For Eqs. 6.4 and 6.5 different values of a and b had also been

tried. The comparisons of the correlation coefficients for the four

multiple regression equations are shown in Table 11. It is concluded

that, Eqs. 6.5 and 6.7 give the best predictions as they gave a

value of r closest to 1.

Page 117: 1984 The deflections of reinforced and partially

95

• • • . • Regression line

• • 6 • • • •

iX.Y) . . " * • • • •

• •

X CD

' . » • • •

• • tx.r)

• • • •

• •

Xaxis

Figure 18 Regression line

Page 118: 1984 The deflections of reinforced and partially

TABLE 11 MULTIPLE REGRESSION OF EQUATIONS FOR 'k'

• - — • • • -

Equations

6.4

6.5

6.6

6.7

Constants

Correlation Coefficient, y

Constants

Correlation Coefficient, y

Constants

Correlation Coefficient, • y

Constants

Correlation Coefficient, y

A

-1.79060

-

1.184150

-

-0.393309

-

1.189640

-

Bl

0.024218

0.90764

0.014608

0.95148

0.024218

0.90872

0.001490

0.95310

B2

1.824430

0.93603

-

-

1.824430

0.93709

0.028837

0.94830

B3

0.732744

0.09174

-

-

0.092446

0.10193

-

-

Page 119: 1984 The deflections of reinforced and partially

97

6.3 The Proposed Formulae

Substituting the relevant coefficients in Table 11 to Eq. 6.7.

the logarithmic equation becomes.

k = k1 + R log T (6.8)

where, T is the number of loading cycles.

1 Mi — M_i k1 = 1.18 + 0.029X- —- — (6.8a)

P My - MCf

and

1 Mi - Md R =0.0015x- — (6.8b)

DM -M • ,v,y m c r

In Eq. 6.8, k., represents the ratio of dead load deflection to initial

dead load deflection after the 1st cycle of repeated loading. As

in time creep calculations, the logarithmic equation does not have

an ultimate creep value.

Similarly, the hyperbolic equation can be obtained as,

k=11 8 +0£343, M t - M d T0.6 ^

p My ~ Mcr 0.3 + T0"6

Page 120: 1984 The deflections of reinforced and partially

98

The equations for intensive creep factor k can be modified to

suit both reinforced and prestressed beams with a smooth transition

between these two. From the test results it is noted that an

increase in the degree of prestressing reduces the intensive creep

effect. If we denote the intensive creep factor of prestressed beams

as k_, using the abovementioned regression procedures a best-fit

curve can be found for kp. We have

k„ = - (6.10) o p

in which k is given by Eq. 6.8 or 6.9. and

P = 1 + 3.2T>3,0 (6.10a)

where the degree of prestressing.

Decompression Moment _ 2_P_ (6.10b) Full Service Load Moment Mi,

The regression analysis and values of r for the trials of different

n are presented in Table 12. The factor 3.2 and index 3.0 in Eq,

6.10a are chosen for the comparatively favourable values of r. A. B

and Se they given.

Page 121: 1984 The deflections of reinforced and partially

99 TABLE 12 CORRELATIONS OF MEASURED k AND COMPUTED k

BY EQ. 6.10 WITH VARIOUS P VALUES P

p

1+2.3n2,5

1+2.4n,2-5

1+2.5n2-5

1+2.6n2*0

1+2.6n2'5

1+2.6n3'°

1+2.6n3-5

1+2.8n2-0

1+2.8n2*5

1+2.8n3-0

1+2.8n3*5

1+3.On2-0

1+3.on2-5

1+3.on3*0

1+3.on3-5

1+3.2n2-0

1+3.2n2-5

1+3.2ri3*0

1+3.2n3-5

1+3.4n2-0

1+3.6n2-0

1+3.8n2-0

Correlation Coefficient

Y

0.88616

0.89181

0.89437

0.82201

0.89507

0.88438

0.82912

0.84083

0.89362

0.88060

0.83175

0.85077

0.89060

0.87697

0.83325

0.85588

0.88717

0.87377

0.83426

0.85827

0.85909

0.85901

Intercept A

-1.64682

-1.40533

-1.19009

-0.95224

-1.00070

-0.87776

-0.66388

-0.73798

-0.68912

-0.56.963

-0.40503

-0.54322

-0.44790

-0.33785

-0.20719

-0.37468

-0.25790

-0.15819

-0.05186

-0.23101

-0.10873

-0.00420

Slope B

1.97466

1.85491

1.74681

1.74600

1.65093

1.48423

1.29496

1.65030

1.49223

1.33014

1.17095

1.55844

1.36905

1.21444

1.07634

1.47710

1.27220

1.12513

1.00235

1.40721

1.34776

1.29729

Std.Err. of Estimate

se

0.16818

0.16420

0.16236

0.20669

0.16185

0.16941

0.20292

0.19647

0.16290

0.17199

0.20149

0.19074

0.16507

0.17442

0.20067

0.18771

0.16748

0.17652

0.20012

0.18627

0.18577

0.18582

Page 122: 1984 The deflections of reinforced and partially

100

6.4 Effects of Main Variables on Intensive Creep

The accumulation of dead load deflection and the underlying

reasons for such phenomenon have been discussed in Section 4.7. The

effects of the various variables on the intensive creep factor are

presented herein.

6.4.1 Effect of load repetitions

One of the main concern of this study is to investigate the

effect of repeated loading on the accumulated dead load deflection

of reinforced and prestressed concrete box beams. The results for

the intensive creep factor, k. are plotted against the number of

load cycles for the three beam series respectively in Figs. 19. 20

and 21. It may be noted that the relationship between k and log10T

is generally linear for various beams tested. From Fig. 20c it is

also obvious that the linear relationship holds for r-r ratio of uo My

to 90*.

6.4.2 Effect of load level

Fig. 22 shows the results for k for the beams in series R300

under the three levels of repeated loading. As described earlier.

the lower limit of each level was set at 30% of the yield load: the

upper limits were 50%, 10% and 90% respectively. For convenience, k

is plotted against the moment ratio. *~ d instead of the customary My-M^

J£. For clarity, onlv results at the 1st, 10th. I03th and I05th and My

those for R300-1, R300-2 and R300-4 are presented. Those for the

I02th cycle are bounded by those for the 10th and I03th. and those

for the I04th, by I03th and io5th; the points for beams R300-3 and

R300-5 are very close to but on either side of those for beams

R300-4. It may be seen in Fig. 22 that k largely varies linearly with

Page 123: 1984 The deflections of reinforced and partially

101

the moment ratio or the load level. The linearity is particularly

obvious for the early few cycles and for beams with higher steel

content. As expected the higher the load level the larger the

accumulated dead load deflection.

6.4.3 Effect of steel ratio

The results for k plotted against steel ratio, D in Figs. 23.

24 and 25 are respectively for the beams in series R200. R300 and

R450. It is apparent that the relationship between k and D follows

a hyperbolic trend. The higher the steel ratio, the lower is the

aggravation by repeated loading: this is true up to p=2* beyond

which the aggravation remains constant with k equals to about 2

or lower. On the other hand, for a beam with a low steel ratio of

0.5%, the accumulated dead load deflections can be as high as 7 or

8 times the corresponding initial values, if the repeated load is

about 90* of the yield load (see Fig. 24c). However, if it is at about

the service load level (50*). the value of k stays at 4.5 or lower. It

may thus be concluded that for box beams under repeated loading.

the steel ratio should not be lower than 2%. if serviceability is

an important consideration.

6.4.4 Effect of prestressing

The prestressed concrete beams in series PP300 can be seen as # k

an extension of beam Series R300-3. A plot of measured -£ versus the degree of prestressing is given in Fig 26 which clearly shows

that a higher degree of prestressing results in a smaller intensive

creep effect. However, even for fully prestressed beams (i.e, n = 1.0)

the intensive creep effect may not be ignored.

* k for reinforced beam R300-3-2 and k for prestressed beams.

Page 124: 1984 The deflections of reinforced and partially

102

o o

CVJ I

O o CM

ro <r m o o OJ

cc

o

00 G)

6" cr u u

o o

o o

E o <u CO

c w

E '»_ <u D . X

in

o o CM CVJ

cr cr E o « CD

x D

o o CVJ cr

CVJ

O o CVJ

cr

ro o o CVJ cr

E e i o o o £ <u «> CD CD CQ

2° O O CVJ CVJ

cr cr i

<•

< •

1 i o\ \

-i o

\

\1 \ !

i

\

D

1

I

in 4>

o u

o< c

a o

a> JO

E 3 Z

a

IO

ro cvj

Is-co

o o

)) ' JOJDDJ dsajD 3AjSua;ux

Page 125: 1984 The deflections of reinforced and partially

103

CO O)

o w. w. .cr .cr

I

cu

-** If) I I

© s ° £ CO CO

E £ 0) CD

QQ CQ

ttXD c Ol

£ CL — CN CO X I I I LU O O O

o © o CO CO CO os: c* oi

E £ E (0 fl (fl CD CD O QQ CQ CQ

o

O

o s

I

o o CO Q£

CN P5 t ^ I I I I

o o o o o o o o CO CO CO CO

o; cc; oi oi

sO

u DJO

c •5 0

-Q

E z

cn co •H S-l OJ

cn

o o co Pi d

S-l

o

Cfl

CQ

u OJ >

cfl

o CN CO

&0 •H

>| 'JOPBJ daaJD aAjsuaiui

Page 126: 1984 The deflections of reinforced and partially

104

o Ol -C 1—

00 CD wD vb

D- & LU LU

I

I

O o co cz

CN 1

O

o CO

an

CO

o o CO Qi

-t o o CO

in i

o o CO

, c CD

E "Z. Oi a X UJ

"*

o o CO an

E tflj 0) CQ

If)

| O o CO at

E S3 OJ CQ

XD

r-

1

g CO oc:

E (fl CD CQ

CN 1

O o CO an

E re o> CQ

CO 1 o o CO cz

E 8 o> CQ

< B O

o o GO

"b

*o

h-;/) _o u u DO c TD ra O M—

0 0J jQ

E 3

z

CO 01 •H Li 0) CO

o o co Pi

r-~ o

4-1

O

CO

CO

CO

>

42

o CN 01 r ^

3 00 •H P

^'JOIDEJ; daajD 8AI;SU8J,U|

i

Page 127: 1984 The deflections of reinforced and partially

105

r-

CO CD

cr cr

CN I

o o CO at

c Oi

£ •—

o H

X

"t

o o CO

at E r3 0) CQ

in

o o CO at £ ra 0) CQ XD

o o CO

at E ro CD CQ

CN

o o CO at E ro CD CQ

CO

o o CO

at E CD CQ

o

o o

CO

o o CO at

•t m

Q o o o CO CO at at

Of •

c< •

ox •

IQXD I I

CKD

-1 o

o o CO

txo-

u

DO C

*© ^ ^ re

O

O

E z

o o

to D •H r-J

CO CO

o o co Pi

d n

u o 4-1

CO

3 CO CO

>

CJ

o CN CO U 3 00 •H PH

>) ' JOIDFJ daaJD aAjsuawi

Page 128: 1984 The deflections of reinforced and partially

106

o 0)

00 Oi 10 vb

cr cr U Id

c OJ

E w » a. X UJ

<* 1

O If) <T

cr E a 0) CD

X

— 1

O m * •

cr E a ai CD

if)

1

O m <r cr E a « CD

a

CVJ 1 O m T cr E • at CD

ro i

O

<r cr E o a> CD

o q ro

ro ro CVJ

_ o

oo-

. r— • </) a

o

a o o k-

9) X) E 3 Z

CO CO •H r-l CO CO

o U~l ST Pi - co m • o n

s!

•i

o M-l

H CO 3 CO u CO >

CN

CO

u 3 00 •H PH

O O

)| * JOpDJ (J39J3 9AISU3JUI

Page 129: 1984 The deflections of reinforced and partially

107

Beam

R300-

n

h-

gno"g u H u

h- \- \-

o -1 OJ

>% 1-

o 0) c 1-

00 to c o a 3 CX LU

c <u

E sV

a. x LJ

CD OJ

O

o

CO Is-

d

CD

o

o o

c cu

E o

O

u cfl J-l

3 CO

I e CO

>

CN CN

CO H 3 00 •rl PH

II II H

I-

II 0 + 0

a <] o +

CM

d

0J CD fO

M • JOPDJ daajo aAisuajui

Page 130: 1984 The deflections of reinforced and partially

108

>» l_

o 0) 1-

00 to c o 'C o J CT LU

c CU

E w CD

a X Id

u

r-

cvj m f m

o o o o o II II II

a <] x o + +•«]

+ IK <3

4«CX<1

+ •o«r] g n

»-

o II

(-

IO CM

o o n n

r- 1-

O

n

1-

u

»-

in

ro O

in OJ

o

m o

a. M

o '.!_ a i_

"55 CU •4_«

cn

CO CO •H M 01 CO

O o CN

Pi ro

m d II s

4-2 M O 4-J

a. co >

ro CN

OJ U

3 00 •rl PH

o o ro

ro ro cvJ

CD O O

m o o

)j ' J0J3DJ 6BBJ0 aAjSUdjUJ

Page 131: 1984 The deflections of reinforced and partially

109

00 to

o S 4) a JC 3 I — CT

r~ LU

c cu E CD Q. X UJ

u

1-

g H

K

<

CM

g u

i-

X

IO

g M

i-

0

g u

i-

•n

g n

i-

+

+w

ro O d

CNJ

o

a o a

to

O d

m * " eu _

o oo 22_ u II u it " "

i— i— i— i— i— »—

CO 01 •rl

u CO CO

o o CO Pi in

* o II

75 3= cu

>,

u — X

u o

CO

>

cfl

<r CN CO

u 3 00 •rl PH

o o

ro ro CVJ

>l * JOJODJ daajo aAjsuajui

Page 132: 1984 The deflections of reinforced and partially

110

>s w O 4) SZ h-

00 CO

c a .•_

a 3 cr LU

-mxn

c cu

E <u Q. X LJJ

CM

o o II

r-

II

!—

u

ro O

OJ

O

o o

m * »o cvi

O O O O O _

CO CO •H U CO CO

o o ro Pi

d n

co h

o

^

CO

>

J3 •sf CN

11 U

3 00 •rl PH

o q ao

ro ro m

to

y\ ' JOPDJ d39J3 3AISU31UI

Page 133: 1984 The deflections of reinforced and partially

Ill

-ffld -i ro O

>\-1_

o cu h-

00 to c o '^ o 3 cr LU

m C CU

E tZ

cu o. X UJ

CM !*> '

o g g g o II II

i- H

II II II

H I- H-

• < X O +

ICXD

CM

O

co CO •rl M 01 CO O O CO Pi

4«54CD

o

o

c^

d

w * " ^ ~

o g o o o _ H II H

r- r- r-

II II

CU CO

to o 4-1

CO

>

o O 0)

O O CD

o o ro q • JOPDJ, daajo aAisua ui

u CN

01

u 3 00 •H PH

Page 134: 1984 The deflections of reinforced and partially

112

00 to

>» c

o £ cu a .c 3 ^ LU

X<] D

C cu

E w 0) CL X LU

CM ro t m

O O O O O u u

I- I-u u n

a < x o

•DO a

o o o oo

m ro

o

in CM

o

o

o o

at) CU CO

co CO •rl Li CO CO

o m <j

Pi ro m o n >>

u o 14-1

*I o.

ox< a

CO

>

m CN

0! !-i

3 00 •rl PH

O o ro

ro ro CM

CD O O

in

o o

H4J0430J; daajo aAisuajui

\

Page 135: 1984 The deflections of reinforced and partially

113

1.20

1.00

0.80

0.60

0.40

0.20

0.20 0.40 0.60 0.80

Degree of prestressing n

1.20

Figure 26 Effect of prestressing on intensive creep factor

Page 136: 1984 The deflections of reinforced and partially

6.43 Discussion

114

Comparisons are made between the two analytical solutions and

the measured k in Figs. 19. 20 and 21 showing the effects of T.

It may be seen that the two solutions are close to each other

especially for beams with higher steel ratios (or lower k). However.

it may be seen in Figs. 19. 20 and 21 that the hyperbolic equation

gives very little change in k value after about 103 cycles. This does

not reflect the observed trend which shows a continuous increase.

For this reason, the logarithmic model is considered superior and

will be retained for further discussions below.

It may be seen in Fig. 19 that Eq. 6.8 underestimates all but

the most heavily reinforced beams 03200-5): in general the predicted

values are around 20% below the measured ones. For the R300 series,

the correlations between the computed values and the measured ones

are very satisfactory for the beams under repeated loading at 70%

and 90% of the yield loads (see Figs. 20b and c). For those under 50%

of the yield load, the formula underestimates the intensive creep

for the lighter beams but reverse for the heavier beams (Fig. 20a).

The correlations for beams of R450 series are generally good to

slightly conservative as may be seen in Fig. 21.

In Fig. 22 the computed k values (Eq. 6.8) are compared with

the measured ones for the R300 series beams emphasizing the effects

of moment ratio (load level) and load cycles, the comparison may be

considered satisfactory.

The computed k values are superimposed on Figs. 23. 24 and 25

which demonstrate the effect of steel ratio. Comments made in the

second paragraph of this section are similarly valid here as these

figures are another version of those given in Figs. 19. 20 and 21

respectively.

Page 137: 1984 The deflections of reinforced and partially

115

The overall performance of Eq. 6.8 may be represented by the

scattergram shown in Fig. 27.

Using a modified form of Eq, 6.8 i.e. Eq. 6.10 to calculate

k for prestressed beams, the effects of prestressing are taken

into account. The accuracy of calculated k in comparison with to

measured values obtained from 5 prestressed box beams is given by

a scattergram shown in Fig. 28. It can be seen in this scattergram

that most of the correlation points are well within ±20%.

On reviewing the comparisons made in this section between

the computed and measured values of k. it is concluded that Eqs.

6.8 and 6.10 while by no means perfect are able to reflect the

complicated nature and trend of the intensive creep of reinforced

and prestressed concrete box beams.

Page 138: 1984 The deflections of reinforced and partially

116

M Tj CO 4-1 Cfl

H 3 a H cfl CJ

OO VO ro

5[ paansBaw

Page 139: 1984 The deflections of reinforced and partially

117

OJ 4-1 Cfl

H 3 o H cfl U

CO CN

^ psansBa^

Page 140: 1984 The deflections of reinforced and partially

118

Chapter 7

INSTANTANEOUS UVE LOAD DEFLECTION

AND THE EFFECTIVE MOMENT OF INERTIA

7.1 Repeated Loading and Beam Rigidity

In many major structures such as bridge decks live load is

a portion of the total load and only acts on the structures for

a very short period of time compared to dead or sustained load

which in many cases is permanent. The passage of live load causes

further deflection in addition to the dead load deflection. This

additional deflection is defined herein as the instantaneous live load

deflection, St. It may be seen from Fig. 4. that the instantaneous

live load deflection is but the deflection due to the increment of

load from the lower to upper limit of the repeated loading. Further.

8t is inversely proportional to the post-initial load equivalent

moment of inertia. irep. Therefore to be able to predict the value

of lreD is vital for computing 8t.

For beams under a few cycles of repeated load. Kripanarayanan

and Branson [1972] concluded that repeated loading with a constant

level of maximum load does not change the bending rigidity of the

beam. This conclusion was made on the basis of their observation on

the behaviour of prestressed concrete beams under repeated loading

in tests conducted by themselves and by Paranagama and Edwards

[19691 They also incorporated similar observations made by Burns

and Siess [1966] on reinforced concrete beams.

Kripanarayanan and Branson's conclusion has been corroborated

by Warner and Pulmano's [1980] from tests of 16 prestressed concrete

beams for up to 30 cycles of load. Wong and Loo [1980] from tests

of 10 reinforced concrete box beams have found that while the

Page 141: 1984 The deflections of reinforced and partially

119

beams underwent considerable permanent set. the rigidity remained

unchanged for up to 100.000 load cycles.

The effects of repeated loading range and maximum loading level

on beam rigidity varied for different observations. Most of the

test results however indicate that the increase of maximum load

level or the range of repeated load would reduce the rigidity. This

definite trend was observed in the test results obtained by Burns

and Siess [1966] and Soretz [1957] as well as those in the present

study. As an example, a typical load deflection curve obtained from

Burns and Siess is reproduced in Fig. 29 showing the change of

rigidity caused by the change of maximum repeated loading levels.

Similar curves have also been produced by Soretz. These curves show

very clearly that the rigidity reduces as a result of an increase

in maximum load level.

Kripanarayanan and Branson however reported in their 1972

paper that they observed an opposite trend. They suggested that

the increase of maximum loading level will also increase the rigidity

of the beam under repeated loading. They further suggested that

the severely cracked beams (under very high level of repeated load)

will have the same rigidity as the uncracked beams. This suggestion

was the basis of their proposed equations for computing ireD which

could not be corroborated by their test results. More discussion

is given in subsequent sections.

Page 142: 1984 The deflections of reinforced and partially

120

Q <

3

25

20

10

0.

/FIR

J

/,

ST C

/ '

RAO

/

EING

/

YElLDIIs G — —* *> . /

0.10 0.20 0.30 0.40 0.50 0.60 0.70

MIDSPAN DEFLECTION-inches

Figure 29 Load-deflection curve showing change in beam rigidities

[see Burns and Siess, 1966]

Page 143: 1984 The deflections of reinforced and partially

121

72 Existing Formulae for reo

The prediction of the bending rigidity of reinforced and

prestressed concrete beams under repeated loads was first given by

Kripanarayanan and Branson [19721 They defined the beam rigidity

as Eclrep, where Ec is the initial modulus of elasticity of concrete

and lrep, the moment of inertia of the cross section of the beam

under repeated loading at a given upper limit.

Kripanarayanan and Branson proposed that the value of ireD

after any number of loading cycles should be interpolated between

the effective moment of inertia of the cracked section under static

load. Ie and the moment of inertia of the uncracked gross section.

la. Their recommendation is as follows:

lreD = le+C1-tf)lg <7.1)

where.

* = M u ~ M * (7.1a) M u-M c r

in which, le may be calculated using Eq. 5.6a. Ig is based on the

gross section neglecting the steel area. Mt is the bending moment

caused by the upper limit of repeated loading, Mu is the ultimate

bending moment of the beam, and Mcr is the cracking bending moment.

The reliability of Eq. 7.1 was checked by the two writers with

the test results of six prestressed concrete beams under three

cycles of repeated load and of three reinforced concrete beams (of

Page 144: 1984 The deflections of reinforced and partially

122

Burns and Siess ) under two cycles of repeated load. They claimed

that the results predicted by Eq. 7.1 normally agree with the test

results to within ±20% percent for loads up to 60 to 70 percent of

the ultimate load for non-composite prestressed beams and up to

75 to 85% for composite prestressed beams. For reinforced concrete

beams the loading was up to only 30 to 40 percent. The accuracy

would be generally better than ±20% for normal working load levels.

Such claims were also corroborated by the author in his pilot study

[1980] for beams tested at service load level.

Despite the apparent reliability of Kripanarayanan and Branson's

approach, there are certain discrepancies. According to Eq. 7.1. for

a given value of Mu and Mcr. a higher value of Mt. i.e. the total

moment, gives a lower rp which in turn, yields a higher value of lreD.

This contradicts the observed trend (see Fig. 29). which indicates

that the higher the total moment, the lower the value of lreD.

An alternative equation has been presented by Warner and

Pulmano [1980] in which </> in Eq. 7.1a is replaced by

M y -M c r

for partially prestressed beams. However, no detailed comparison

with experimental results has been carried out. It is shown in

Section 7.4 that this alternative equation leads to an improvement

in accuracy at higher load levels, but the accuracy deteriorates

somewhat at the service load level.

Page 145: 1984 The deflections of reinforced and partially

123

7.3 The Proposed Equations for I

For better accuracy at all levels of load, the author proposes

a new equation for lrep. The basis of Kripanarayanan and Branson's

equation is to interpolate for lrep between l_ and le by proportion

of moment ratios. There are many different moment ratios for such

a purpose. The author suggests that lreD should be interpolated

between ig and le as follows:

'r.p-<SE>f,VC,-<SEyX <™>

where.

(Mt - M o r )2

M = —* £!— + M_. (7.3a) * M y - M c r

cr

and m=2. 3 or 4. Other quantities are defined in Fig. 30 and the

derivations are given in the following paragraphs. The choice of

an appropriate value for m is discussed in Section 7.4.

Referring to Fig. 30 line DE representing irep can be moved

to intercept point 0 and be represented by the parallel line. OC.

Consequently, line OC is an interpolation line between line OA (for

lg) and line OD (for le). Note that, line OD is the interpolation line

between line OA and line OB (for lcr) and according to Branson [1963].

»e = Tr^'a + Cl-<Tr5fin3lor (5.6a)

Page 146: 1984 The deflections of reinforced and partially

124

For L „ on the other hand we can easily obtain: rep

reD M X 'g L M X

J e (7,3)

By working out the moment segments as illustrated in Fig. 30.

finding Mx is not a difficult task. There are two possible moment

ratios to be used:

M x -M c r = M v - M t

Mt-Mc r M y -M c r

(7.4)

and

Mx " Mcr _ Mt"Mcr (7 5)

M t-Mc r M y - M c r

Eq. 7.4 is similar to the moment ratio used hy Kripanarayanan and

Branson which is shown to contradict the observed trend. Eq. 7.5

is more logical and is adopted for Eq. 7.3. Rearranging terms Eq.

7,5 gives

(Mt - M o r )2

= —i 2 L _ + M _ (7.3a) My- Mcr ""Cr

The index m in Eq. 7.3 can be calibrated using relevant experimental

data. This is done in the next section.

Page 147: 1984 The deflections of reinforced and partially

125

<o v.

c o 4—»

u cu 77— <D Q

c 0 4->

u CD C/l

W) cn

O ^-t—

O .2 4-J

!— CD C

M —

O 4-J

C CD

E 0 2

II ox

C O U CD C/l

1

03

4-»

U M —

O

.5 4-> 1—

CD C

M —

0 4-J

c CD E 0 5 11 u CJ

"Q. rd O

— •

.(2 +-» 'g

"CD > _CD

• * *

2 II 5 4-J

a .22 4—1

u_ CD #C

M —

O 4—> C CD

E 0 5 11

<u

T) ro* _o -a CD 4-J

ra CD Q_ CD 1—

"CD >

2 11 5 1 •

rC _fd 4_J i

CD c M —

O 4-1

C CD

E 0 5 11 ex a

CD

E cfl 0) rO

01 4J 0) 14 u 3 O CJ

O

01

> u 3 U

3 0 •rl 4J U 0) rH 4-1 0) •3 1 4J

3 01 B 0 2

0 CO

01 1-1 3 00 •rl fa

3 >•>

2 2 2 2 2

W' ;uaujow

Page 148: 1984 The deflections of reinforced and partially

7.4 Comparisons of Results

126

The mid-span deflections of the 30 reinforced and 5 prestressed

box beams due to the passage of live load 5, are given in Tables

13 and 14 respectively for the 1st. 10th. I02th. I03th, I04th and I05th

repeated loading cycles. It may be seen that the changes in live

load deflection are not significantly affected by repeated loading

cycles even up to 105 cycles. As a result, the mean values of the

'measured' lrep can be obtained by substituting the average measured

8t into Eq. 3.12. The results are given in column 3 of Table 15 and

column 2 of Table 16 respectively for the reinforced and prestressed

concrete box beams.

The 'measured' values of lrep are also compared with the computed

values obtained by Eqs. 7.1. 7.2 and 7.3. These are included in

Tables 15 and 16 for the two types of beams respectively. In the

applications of Eq. 7.3 three values of m are found to give reasonable

results as evident in Tables 16 and 17. In order to find the best

prediction equations, statistical analyses have been carried out.

The deviations of the ratios of calculated ireD to measured irep

for all the three methods are tabulated in Tables 18 and 19. The

frequency distributions of errors which give an indication of the

accuracy of the predictions are presented in Tables 20 and 21 for

all the prediction equations.

In the various comparisons it was observed that Eq. 7.1 gives

the worst overall accuracy amongst the three methods. While giving

reasonable accurate predictions at service load level. Eq. 7.1 is

seen to have considerably over-estimated lrep at higher levels of

repeated load i.e. at rr=0.7 and 0.9. Eq 7.2 imoroves the accuracy My

at higher loading levels, but gives less accurate lrep at service

load level. Both Eq. 7.1 and 7.2 are generally overestimating.

Page 149: 1984 The deflections of reinforced and partially

127

Comparing to Eqs. 7.1 and 7.2. the equation proposed by the

author (Eq. 7.3) gives better predictions for all levels of load

regardless of the different values used for m. This can be clearly

seen in Tables 15. 16 and 17. Further evidence may also be found in

Tables 18. 19. 20 and 21 where various error statistics are tabulated.

With m=3 and m=4 Eq. 7.3 gives the smaller deviations for

reinforced beams (see Table 17) which appear to be more desirable

then with m=2. However, a different conclusion may be reached

with regard to reliability when carefully examining the frequency

distributions of errors. It is shown in Table 20 that with m=2 the

equation gives the highest probabilities in the accuracy ranges

of ±5% ±10% and ±20%. Similar trends may be found in Table 21 for

partially prestressed beams. For these reasons. m=2 is concluded

to be the most satisfactory.

In view of the above discussion Eq. 7.3 with m=2 is recommended

for the evaluations of lrep which is required in Eq. 3.13 for computing

the total deflections.

Page 150: 1984 The deflections of reinforced and partially

TABLE 13 MEASURED INSTANTANEOUS LIVE LOAD DEFLECTION AT MID SPAN OF R.C. BOX BEAMS, <$0 (in mm)

Beam

R200-1

R200-2

R200-3

R200-4

R200-5

R300-1-2

R300-1-3

R300-1-4

R300-2-2

R300-2-3

R300-2-4

R300-3-2

R300-3-3

R300-3-4

R300-4-2

R300-4-3

R300-4-4

R300-5-2

R300-5-3 '

R300-5-4

R450-1 *

R450-2

R450-3

R450-4

R450-5

No. of Loading Cycles

1

4.25

6.28

7.34

9.37

10.10

1.30

3.01

5.34

1.90

4.04

6.89

2,67

5,95

10.76

2.91

6.44

9.90

3.85

7.71

13.07

4.24

6.40

8.82

10.73

12,08

10

4.43

6.32

7.26

8.65

9.54

1.33

3.35

5.55

1.88

4.08

6.95

2.64

5.89

11.20

2.88

6.45

10.00

3.74

7.71

13.09

4.08

6.37

8.09

9.73

10.99

IO2

4.42

6.29

7.22

8.69

9.41

1.30

3.30

5.51

1.89

4.27

7.44

2.65

5.95

11.00

2.88

6.59

10.12

3.67

7.71

13.17

4.23.

6,25

8.16

9.81

11.05

103

4.50

6.30

7.20

8.72

9.42

1.29

3.43

5.70

1.86

4.38

7,32

2.65

6.07

11.21

2.91

6.60

10.18

3.69

7.70

13.61

4.29

6.43

8„34

9.81

11.23

• 10"

4.49

6.27

7.54

8,84

9.25

1.29

3.44

5.88

1.89

4.63

7.20

2.65

6,08

10.89

2,93

7,04

9.78

3.70

8.07

13.46

4.26

6.42

8.30

9.96

11.23

10s

3.88

6.10

7,38

9.01

8.64

1.30

3.54

5,89

1.88

4.40

7,11

2.60

6,02

11,07

2.89

6,91

10.89

3.68

7.77

13.49

3.96

6.39

8.38

9,95

11.11

Ave.

4.33

6.26

7.32

8.88

9.39

1.30

3.34

5.65

1,88

4.30

7,15

2,64

5.99

11.02

2.90

6.67

10,15

3.72

7.78

13.32

4.18

6.38

8.35

10.00

11.28

Page 151: 1984 The deflections of reinforced and partially

129

TABLE 14 MEASURED INSTANTANEOUS LIVE LOAD DEFLECTION AT MID-SPAN OF PARTIALLY PRESTRESSED BOX BEAMS

$£ (mm)

Beam

PP300-1

PP300-2

PP300-3

PP300-4

PP300-5

Number of Loading Cycles

1

2.59

2.34

1.92

1.69

1.55

10

2.58

2.47

1.89

1.68

1.64

102

2.63

2.29

1.96

1.68

1.63

IO3

2.69

2.69

2.06

1.71

1.62

IO4

2.73

2.62

2.19

1.70

1.63

105

2.65

2.47

2.04

1.74

1.60

Average

2.65

2.48

2.01

1.70

1.61

Page 152: 1984 The deflections of reinforced and partially

130

TABLE 15 CALCULATED* AND MEASURED Ir OF REINFORCED CONCRETE BOX BEAMS

Beam

R200-1

R200-2

R20O-3

R2Q0-4

R200-5

R300-1-2

R30O-1-3

R300-1-4

R300-2-2

R300-2-3

R300-2-4

R30O-3-2

R30O-3-3

R300-3-4

R30O-4-2

R300-4-3

R300-4-4

R300-5-2

R30O-5-3

R300-5-4

R450-1

R450-2

R450-3

R450-4

R450-5

M y

<*)

53

53

53

53

53

50

70

90

50

70

90

50

70

90

50

70

90

50

70

90

53

53

53

53

53

Measured I rep

(xlO9 mro")

0.251

0.297

0.322

0.324

0.369

0.311

0,275

0.212

0.398

0.308

0.332

0.464

0.410

0.323

0.582

0.476

0.424

0.607

0.483

0.477

0.558

0.619

0.620

0.675

0.712

Calculated I r e p

by Branson's (Eq. 7.1)

I rep

(x 10s mm")

0.274

0.326

0.346

0.369

0.388

0.507

0.427

0.521

0.411

0.474

0.558

0.473

0.528

0.586

0.536

0.569

0.604

0.594

0.607

0.620

0,581

0.653

0,698

0.768

0.804

Calculated I •

A v e r a g e Measured 1 rep

,c*l- lrep

Measu. I rep

1.09

1.10

1.07

' 1.14

1.05

1.63

1.55

2.46

1.03

1.54

1,68

1.02

1.29

1.81

0.92

1.20

1.42 '

0.98

1.26

1.30

1.04

1.05

1.13

1.14

1.13

1.28

Calculated Ire p

by Warner's (Eq. 7.2)

I rep

(xio'inm")

0.328

0.343

0.356

0.373

0.389

0.612

0.470

0.297

0.524

0.423

0.324

0.524

0.462

0.400

0.559

0.523

0,487

0.598

0.585

0.573

0.656

0.684

0.713

0.768

0.801

Measu. I r e p

1.31

1.15

1.11

1.15

1,05

1,96

1.71

1.40

1.32

1.37

0.98

1.13

1.13

1.24

0.96

1.10

1.15

0.99

1.21

1.20

1.18 •

1,11

1.15

1.14

1.12

1.21

Calculated I_„ rep

by Authors' (Eq. 7.3) I rep

(xlO'mm'')

0.288

0.285

0.306

0.335

0.365

0.621

0.500

0.344

0.499

0.370

0.313

0.450

0.397

0.380

0.502

0.480

0.474

0.572

0.568

0.567

0.553

0.572

, 0.617

0.715

0.777

Cal- ^ep

Measu. I rep

1.15

0.96

0.95

1.03

0.99

2.00

1.82

1.62

1.25

1.20

' 0.94

0.97

0.97

1.18

0.86

1.01

1.12

0.94

1.18

1.19

0.99

0.92

1.00

•1.06

1.09

1.14

* E used were obtained from concrete stress-strain curves,

Page 153: 1984 The deflections of reinforced and partially

sr

II

E en

m

r-. e

cr w

cn

II

e cn r>.

e

cr w

CN

II

E cn e

i-

• cr til

CN •

r»»

. cr w u CO c t-i 0) S

*—( •

i-*

* cr

o CO « CO iH CQ

T3 (IJ J-l 3 CO cd OJ a

*M 0) JH M •

rH cd

a CU u H » cd cu S

cr sr o E •—I s X a CD u

M

a. CJ u M .

rH cd cj

a cu >H M . cd CU

cr. sr o E •—' E X Ou cu U

M

a cu u M •

rH cd CJ

a cu u

H • cd cu S

cn sr o E "—' B X a CU u

M

(X cu u M •

rH cd U

a cu iH H • cd cu S

cr. sr o g •—' E X a CU

a. cu S-J M •

cd CJ

P. cu H

H • cd

cu se

cr sr o S •—• E X a. cu u

H

0.CT. OJ O M rH

H

CQ

E 3 CU PQ

St O * rH

CN CO si-• o

cr o . r-H

r o cn • o

vO I—I

• I—I

cr cn in • o

r»» i—i

• rH

vO sT m • o

sr cr • o

cr cn sr • o

LO vO sr

o

i-H

1 o o en

PH PH

m CN . rH

r vo m e O

r CN .

i-H

o 00 m • o

o cn .

. — i

.cn cr in • o

r~» CN .

rH

00 r-» m • o

o o .

i-H

r-. m sr

e

o

in

m sr • o

CN 1 o o cn

PH PH

CN O .

i—l

CN CN vO •

O

CN O .

rH

CN CN VO •

O

CN O .

i—t

cn CN vO » o

r-l

o .

I—I

00 rH VO • o

o cr • o

o m m • o

i-H

.-H vO •

o

cn 1 o

- o en P* PU

r-~ 00 • o

m cn vO

d

vO 00

e

o

CN cn vO • o

vO 00 • o

cr CN vO • o

CN 00 • o

r cr m • o

sr i-H

. i—l

m cn 00 » o

rH

m r>» » o

sr i o o en

PH PH

cr O .

z—i

m LO 00

d

CN

o .

i — 1

vO O 00

d

vO

cr . o

CN in r-~ • o

o sr • o

sr rH

cn • o

i-

cr .

rH

o m m .

i-H

r 00

r-. • o

m l o o cn

PH PH

in o rH

m o .

I—I

vO O .

•—1

cn cr • o

cr I—I

. rH

a cu u H •

rH cd CJ

O-a> u

H • cd

cu

cu 60 cd u CU > <

131

Page 154: 1984 The deflections of reinforced and partially

TABLE 17 COMPARISONS OF EQ. 7.3 WITH MEASURED I REINFORCED CONCRETE BOX BEAMS

Beam

R20O-1

R200-2

R200-3

R20O-4

R200-5

R300-1-2

R300-1-3

R300-1-4

R30O-2-2

R300-2-3

R300-2-4

R300-3-2

R300-3-3

R300-3-4

R300-4-2

R300-4-3

R300-4-4

R300-5-2

R300-5-3

R300-5-4

R450-1

R450-2

• R450-3

R450-4

R450-5

Measured

^ep (xlO9 mm")

0.251

0.297

0.322

0.324

0.369

0.311

0.275

0.212

0.398

0.308

0.332

0.464

0.410

0.323

0.582

0.476

0.424

0.607

0.485

0.477

0.558

0.619

0.620

0.675

0.712

Calculated I

Measured Irep

Eq. 7.3 (m»4)

(xlO9 mm")

0.233

0.261

0.291

0.328

0.361

0.618

0.422

0.260

0.425

0.308

0.281

0.399

0.374

0.370

0.478

0.471

0.470

0.567

0.567

0.567

0.462

0.525

0.590

0.706

0.775

Cal. Mea.

0.93

0.88

0.90

1.01

0.98

1.99

1.53

1.23

1.07

1.00

0.85

0.86

0.91

1.15

0.82

0.99

1.11

0.93

1.17

1.19

0.83

0.85

0.95

1.05

1.09

1.05

Eq. 7.3 (m=3)

(xlO9 mm")

0.255

0.268

0.295

0.329

0.362

0.619

0.457

0.290

0.457

0.328

0.289

0.417

0.380

0.372

0.485

0.473

0.470

0.569

0.567

0.567

0.495

0.539

0.597

0.708

0.775

Cal. Mea.

1.02

0.90

0.92

1.02

0.98

1.99

1.66

1.37

1.15

1.06

0.87

0.90

0.93

1.15

0.83

0.99

1.11

0.94

1.17

1.19

0.89

0.87

0.96

1.05

1.09

1,08

Eq. 7.3 (m=2) (xlO9 mm")

0.288

0.285

0.306

0.335

0.365

0.621

0.500

0.344

0.499

0.370

0.313

0.450

0.397

0.380

0.502

0.480

0.474

0.572

0.568

0.567

0.553

0.572

0.617

0.715

0.777

Cal. Mea.

1.15

0.96

0.95

1.03

0.99

2.00

1.82

1.62

1.25

1.20

0.94

0.97

0.97

1.18

0.86

1.01

1.12

0.94

1.18

1.19

0.99

0.92

1.00

1.06

1.09

1.14

Page 155: 1984 The deflections of reinforced and partially

133

"TABLE 18 DEVIATIONS OF CALCULATED I„a OF rep

REINFORCED CONCRETE BOX BEAMS

Method

Eq. 7.1

Eq. 7.2

Eq. 7.3 (m=2)

Eq. 7.3 (m=3)

Eq. 7.3 (m=4)

Maximum Deviation

+ 1.46

+ 0.97

+ 1.00

+ 0.99

+ 0.99

Average Deviation

+ 0.2813

+ 0.2124

+ 0.1355

+ 0.0802

+ 0.0802

Standard Deviation

0.4387

0.3035

0.3059

0.2686

0.2527

NOTE: 1. Maximum Deviation = the maximum value of (Calculated I - Measured I )/Measured I

rep rep rep

Average Deviation = the average value of (Calculated I - Measured I )/Measured I

rep rep rep

3. Standard Deviation = /[£(-

Cal. I - Mea.I rep rep_ Mea. I

rep )2]/N

Page 156: 1984 The deflections of reinforced and partially

TABLE 19 DEVIATIONS OF CALCULATED Ir e p FOR PARTIALLY PRESTRESSED CONCRETE BOX BEAMS

Methods

Eq. 7.1

Eq. 7.2

Eq. 7.3

m =

m =

m =

2

3

4

Maximum Deviation

+ 0.97

- 0.60

+ 0.30

4- 0.27

+ 0.25

Average Deviation

+ 0.19

- 0.07

+ 0.06

+ 0.05

+ 0.05

Standard Deviation

0.44

0.32

0.17

0.14

0.13

NOTE: 1. Maximum Deviation = the maximum value of (Calculated I - Measured I )/Measured I

rep rep rep

Average Deviation = the average value of (Calculated I - Measured I___)/Measured I

rep rep rep

/ C a l . I - Mea.I 2 ,

[Z( zS—i ^ ]/ rep '

N

Page 157: 1984 The deflections of reinforced and partially

a. cu u

Q Cd

52

CJ

Pn O CO

S3 O H H & PH

H Pi H CO H

o CJ

w c w PH PH

O CN

59

B-S o ^ i

+ 1 &-« o rH

+ 1 B-8 Ln, + 1

00

•H 4-1 cd

E •H

4-1 CQ CU 1

u cu T3 C P

00 c •H 4J

cd E •H 4J cn cu l u cu > o

s-e o sr (H

OJ > 0

B-S o sr i o cn

S-9 o cn I o CN

6-S O CN 1 O rH

B-9 O r-i

1 m

B»S in i O

B-9

m I o

B-« O r-< 1 m

B-S o CN 1 o rH

6>« O cn l o CN

B*S O sr i o cn

B*« O sr

u cu > 0

Tj o Xi 4-1

.2! S

r>S o VO

B-S o sr

B-S sr CN

O

o

o

o

B>8 sr

6>8 sr

B*8 O CN

B-8 CN rH

B>8 O CN

&•« vO •-H

B*8 CN i-i

B*8 CN rH

rH

• r> e

cr w

B«S vO r>.

6-S 00 CN

&•? vO •—I

O

o

o

o

o

B-S CN i-l

BS sr

B«S CN rH

6*9 CO sr

6-5 vO i-i

O

B-« 00

CN • r

cr w

B-S oo 00

B-S vO m

6-S vO cn

o

o

o

B-S sr

B-8 CN rH

B-S sr CN

B>8 CN rH

S-8 CO

B-S 00 CN

O

B-S sr

B-S 00

-\ CN II E <>-/

cn • r*.

cr Id

B-S 00 00

B-S 00 sr

B^ sr CN

o

o

o

B-S sr CN

B-S CN i-4

S-S CN r-l

B-S CN rH

B-S CN rH

B-8 vO •-H

S-S sr

B-S sr

B-S sr

/—\ en M S >»/

cn • r*« • cr w

B-S sr 00

B-S 00 sr

B-S sr CN

o

o

B-8 00

B-S o CN

B-S CN rH

B-S CN i—l

B-S CN rH

B-5 CN rH

B-8 vO rH

o

B-8 sr

B-8 sr

/—N

sr !L e >—>

cn • r-~ • cr Ed

135

Page 158: 1984 The deflections of reinforced and partially

136

TABLE 21 FREQUENCY DISTRIBUTIONS OF CALCULATED I FOR PARTIALLY PRESTRESSED CONCRETE BOX BEAMS

Method

Eq. 7.1

Eq. 7.2

Eq. 7.3

m=2

m=3

m=4

Over-estimating

>30%

20%

20-30%

20%

20%

20%

20%

10-20%

20%

20%

20%

0-10%

20%

20%

20%

60%

60%

Under-estimating

0-10%

40%

20%

10-20%

20%

20%

20%

20%

20-30% >30%

20%

Page 159: 1984 The deflections of reinforced and partially

137

Chapter 8

TOTAL DEFLECTION OF CONCRETE BOX BEAMS UNDER REPEATED LOADS

8.1 The Proposed Computational Procedure

The formula for computing the total deflection at the Tth cycle,

of load may be rewritten from Eq. 3.13 as.

UJVJiL

cc reD

where §dj and lrep can be computed using Eqs. 5.6 and 7.3 (with

m=2y. k is given by Eq. 6.8 for reinforced beams and by Eq. 6.10

for partially prestressed beams. Note that all the equations are

simple and explicit and manual calculations can readily be carried

out. Numerical examples for both reinforced and prestressed box

beams are given in Appendix VII. However, because of the large scale

investigation in this study, requiring the results of 5T for many

dozens of beams at various loading cycles, computer programs have

been written for carrying out the calculations. Details of the

programs are also given in Appendix VII.

The accuracy of Eq. 8.1 is checked in Section 8.3 in light of the

box beam data and those available in the literature. Section 8.2

reviews in detail two other prediction methods published by Balaguru

and Shah C1982] and Lovegrove and El Din [19821 Comparisons with

these two prediction procedures are made in Section 8.4.

Page 160: 1984 The deflections of reinforced and partially

138

8.2 Other Prediction Procedures

Two other methods for predicting the total deflections of

reinforced and prestressed concrete beams have been published very

recently. They are due to Balaguru and Shah [1981.1982] and to Lovegrove

and El Din [1982]. Balaguru and Shah developed their procedure

based on published methods for predicting fatigue properties of

the component materials including concrete, prestressing and non-

prestressing steel. They did not carry out any experimental study.

Lovegrove and El Din on the other hand derived their equation from

their own test results on 12 reinforced concrete beams,

8.2.1 Balaguru and Shah's method

Balaguru and Shah introduced a concept of cyclic creep. They

suggested that concrete beams under fatigue loading not only undergo

time creep but also 'cyclic creep'. Cyclic creep is cyclic or repeated

loading dependent. The two main steps of their procedure are the

calculations of the concrete strain considering both time creep and

cyclic creep, and the 'cracking moment under fatigue load'. The

cracking moment of concrete beams in Balaguru and Shah's proposal

is also cyclic dependent. The cyclic strain in concrete is.

£c = 129amt3 + 17.8c7mc7T

3 (8.2)

where, ec is the cyclic creep strain in micro-strain, a is the

stress range expressed as a fraction of the compressive strength

=(amax-aminVF'c, am is the mean fibre stress expressed as a fraction

of the compressive strength =(o\„a + o\„:_V2F' , T is the number of

cycles, and t is the duration of loading in hours.

Page 161: 1984 The deflections of reinforced and partially

139

According to Balaguru and Shah, the cracking moment under

fatigue load is dependent on the tensile strength of concrete under

fatigue load. They suggested that the tensile strength of concrete

under fatigue load.

loa1flT 'r.T"rt1-io55r) ^

where, fr is the static tensile strength of concrete.

Thus, the cracking moment.

M 0 , T = !ail (8.4)

where yt is the distance form the bottom fibre to the neutral axis.

After calculating the cracking moment the effective moment of

inertia is calculated by the ACI equation [1963]. as follows.

k T ^ . T + C ^ 1 ) V'cr.T'S « *

Balaguru and Shah indicated that the calculation of lcrT is the

same as calculating lcr only that E c is now replaced by E c T , where

p _ = g m a x (8.6) CC,T rt

Ec c

Page 162: 1984 The deflections of reinforced and partially

140

which is a function of the creep strain. ec (given by Eq. 8.2) and

the maximum stress level. o"max.

Finally, the total deflection under fatigue load is computed as.

GCM+L2

5 = I (8.7) T Ec.T'e.T

The accuracy of Eq. 8.7 is compared in Section 8.3. In the mean

time the following comments are relevant:

a. Cracking moment should not be cyclic dependent as a

concrete beam would crack in the initial load cycle if

the load exceeds the cracking moment capacity of the

beam. Thus, how can repeated loading influences the

cracking moment if the beam was already cracked?

b. If T>1011. Eq. 8.3 gives negative tensile strength of

concrete.

c The basis for calculating lcr#T is not clear. Balaguru and

Shah suggested that lcr#T shall be calculated as lcr but

using E c T instead of Ec. However, the calculation of lcr

needs to use the depth of the neutral axis. kd. They did

not say whether Ec or Ec T shall be used to calculate

kd. If E c T is to be used, because it is dependent on

the creep strain ec (Eq. 8.6) then to calculate this ec.

the depth of the neutral axis is needed. Needless to

say, we would have a chicken and egg situation! In the

subsequent comparisons in Section 8.4. Ec is used for

computing kd and E a T for lcrT.

Page 163: 1984 The deflections of reinforced and partially

141

8.Z2 Lovegrove and El Din's Formula

Lovegrove and El Din [1982] proposed a very simple method. They

ignore all variables except T and simply relate dT and the initial

total deflection 5Tj as follows:

8T = 0.225STi tog10T (8.8)

where STi is defined in Fig. 7 and can be calculated using any

equation listed in Section 5.2.

The validity of Eq. 8.8 is checked in Section 8.4 and some

comments are offered herein:

a. The equation is not valid for T< 27826 cycles as it would

yield ST < djr

b. The proposed procedure by Lovegrove and El Din is very

rough. In their paper [1982], test results of Snowdon.

[1971] were used to compare with Eq. 8.8. However,

in Snowdon 's tests, there were two types of repeated

loads i.e. with constant and step-increasing loading

ranges. In the comparisons they failed to distinguish

the difference of these two types of loading.

Page 164: 1984 The deflections of reinforced and partially

142

8.3 Comparisons with Experimental Data

In order to verify the proposed prediction method, the author

not only made comparisons with his own experimental data but also

with those obtained by other researchers. However, despite the

large amount of published work on repeated loading tests, only a

few results are acceptable for comparisons. This is due to the

fact that most published materials lack the beam details, material

properties and/or loading histories. Furthermore, tabulated results

of deflections can not always be found. As a result, apart from

the author's own data, only the total mid-span deflections of the

beams tested by Sparks and Menzies [1973] and Bennett and Dave

[1969] are included. The calculated total deflections are compared

with the corresponding measured values. A total of 199 data points

are compared and the correlations are analysed statistically.

8.3.1 Reinforced concrete box beams (150 points)

The measured total deflections at mid-span of all the reinforced

concrete box beams tested by the author are plotted in Fig. 31

against the values calculated using Eq. 8.1. Note that different

symbols are used for the different series of beams. In total. 150

points are included. It may be seen that a good correlation exists

between the calculated and the measured values. The scattering is

reasonably low. Most of the correlation points are well within the

±20 percent limits. In general, the prediction tends to be slightly

conservative.

8.3.2 Partially prestressed concrete box beams (30 points)

A total of 30 measured values of total deflection were obtained

from the author's repeated loading tests on 5 partially prestressed

Page 165: 1984 The deflections of reinforced and partially

143

box beams. The calculated deflections are compared with the measured

values in Fig. 32. The correlation, in general, is not as good as for

the reinforced box beams although the majority of the points are

still within ±20 percent limits and the scattering is acceptably low.

It may be seen from Fig. 32 that the proposed method gives better

predictions for the beams with a lower degree of prestressing.

8.3.3 Sparks and Menzies' reinforced concrete beams (10 points)

The test results obtained by Sparks and Menzies [1973] are used

here to check the accuracy of the proposed method of analysis.

Details of the 10 reinforced concrete beams are given in Table 22. All

the beams had the same rectangular sections and were tested under

repeated loading of constant range. Only the total deflections for

10° cycles of load were recorded (except for beam T. it was for 10

cycles). Plots of the calculated deflections versus the measured

values are presented in Fig. 33. As can be seen, the agreement is

favourable, with all except two correlation points fall within the

±20 percent limits. However, the prediction generally tends to be

on the underestimating side.

8.3.4 Bennett and Dave's prestressed beams (9 points)

The details of the 9 partially prestressed concrete beams

tested by Bennett and Dave [1969] are given in Table 23. All the

beams had the same rectangular section of 127 mm x 203 mm. The

combined amount of prestressing and non-prestressing steel was

different for different beams. Thus the degree of prestressing also

varied. Note that the measured total deflections were reported

only at 3x106 cycles of repeated load. They are compared in Fig. 34

with the calculated values using Eq. 8.1. It is clear in Fig. 34

that the method underestimates most the of beam deflections. It

Page 166: 1984 The deflections of reinforced and partially

144

is difficult to attribute the exact reasons for such discrepancy.

However, the time required to apply 3X10? cycles of load could be

quite long. Thus Bennett and Dave's deflection results contain a

component of time-creep. If such time dependent deflections are

included in the computed values, the correlation would be improved.

It should also be noted that the proposed method is derived from

beam tests up to 105 cycles only. From 105 to 3X106 cycles represents

a considerable and may be inaccurate extrapolation. Fortunately, as

discussed in Section 4.5. the number of full service loads experienced

by a main bridge girder, for example, is more likely to be in the

hundred-thousand level than in the million level.

8.33 Overall accuracy

An overall picture of the accuracy of the proposed prediction

method can be seen in Tables 24 and 25.. where the frequency

distributions of the errors and four statistical coefficients are

presented respectively. The four coefficients are the correlation

coefficient, r, the intercept, A the slope. B and the standard error

of estimation. The correlation coefficient, r indicates the spread

of the correlation points: the closer the value of r to 1 the smaller

the scattering. Intercept, A and slope. B denote the closeness of

the regression line of the correlation points to the perfect 45°

line. Therefore the smaller the value of A and the -closer B to

1 indicate a better accuracy of the prediction. The equation for

the standard error of estimation is given in the footnote of Table

25. All other being equal, the smaller the standard error the more

accurate is the prediction method.

It may be seen in Table 24 that if presented graphically the

frequency distributions would generally have a tall and narrow bell

shape. This indicates that the probability of the proposed method

in giving accurate prediction is high. The possible reasons for the

Page 167: 1984 The deflections of reinforced and partially

145

method to perform poorly for the beams of Bennett and Dave have

been discussed in the preceding section. Table 25 shows that, except

for Bennett and Dave's results, the regression lines are close to

the 45° line which further confirm the reliability of the proposed

method of analysis based on Eq. 8.1.

Page 168: 1984 The deflections of reinforced and partially

146

-

-

1/5

E re (D _Q cn <D i_

CD tn

o o CN ca •

tn

E 03 CD -O cn CD i_

CD LO

O O CO C£L

<

in

E $ CD _Q in CD i_

CD CVi

O i-0 "* Q£

_l <

o m CO

q 00 CN

O r—

CN

O "fr

O

K

E E

CD 4-1

3 Q.

E 0

u

SH

o UH CO

C o •H 4-> O CU r-l MH CU t) rH Cfl 4-> 0 4-1 T3 CU 4-1 3

red and comp

ed box beams

3 U CO U cfl O CU MH

ations of m

30 rein

H 0) H

10 CO

CO CN

•o

CN

O O

u o U cn cu U 00 •H PH

UIUI lg pajnseayv

Page 169: 1984 The deflections of reinforced and partially

147

o o •

C>

o CN • r~-

o vj •

LO

o vO •

cn

o 00 .

r-H

g g H <o T3 CU 4-1 3 P. B o CJ

m u o <4H CO

C O •rl 4J

a 0) rH MH

ted total de

beams

3 X Cu O B rO O CJ -rJ

CU T 3 CO C « Cfl CU

u T 3 4J CU CQ u cu 3 rH CO P. cfl cu >,

lations of m

partiall

cu rH rH

o CJ

CN

cn OJ u ao •H Cn

m <n mm Lg paansBan

Page 170: 1984 The deflections of reinforced and partially

148

4-1

c cu B o S

cu 4J 01 rH CJ

C o CJ

rH CU CU 4J CO

00

a •H O >H

o <4H

C •H CU Pi

E 4-1 Z

a ^

^1 a J»S

/~s CN Cfl

vs /—\ CN ^ 4J Cfl

* g /"-\ rH w r , cfl

P,Ug

>> cfl CO 04

MH S

cfl OJ

CQ § W cn

o i-H

X ,—.. cn —"O B

g

4-1 CN CQ g < 1

e o •H 4J

cu CO

E Cfl CI) pq

o o cn CN

m r*. CO rH

r vo m en en

rH i-H

<r

CO o «

st st

m i-H

-3"

CN o CN

00 vO

st vO

CJ

ON i-H

r CN

cn vO

<r I-H

r vo m en en

rH T—|

st

00 o ,

st st

m r-H

St

CN O CN

00 vO

st vO

st st

00 st

cn ON

o CN

cn 00 st CN cn

00 ON

cn

en CN .

i—i < •

m i-H

sf

CN O CN

O r*

st vo

ON VO

st cn

m CN

CN CN

cn oo st CN cn

00 o\ en

00 CN .

i—l

st

m i-H

st

CN o CN

O r>

st vO

ooz I

1 t 4 t

' P

a O M

o o m CN

o m CN •-H

r vO O r-H

cn

.—4

00

cn

vO r-~ • r cn

m I—I <t

CN O CN

i-H

r~-

st vO

O o CN

&

o o m CN

o m CN r-H

r-» vo O i—<

en

rH

00

cn

vO i-~ •

F^ cn

in rH

St

CN O CN

r~» r*.

vO r*

hJ

o o m CN

O m CN i-H

r vO O i-H

cn

rH

00

cn

vO r». •

r«s cn

i—i

o st

cn ON rH

VO r

m m 00

— o o in

s

o o m CN

o m CN i—i

o r~ m o cn

m r en

vO m .

vO cn

rH

o st

cn ON rH

vO r

m m 00

i • I w

i fc,

pi

ON vO

st en

m CN

CN CN

O l-~ in o cn

m rv.

cn

vO m

vO cn

r-H

o st

cn ON rH

vO r*»

m m 00

o o o cn

CO

st st

00 st

cn ON

o CN

O r~» m O cn

m Is-

en

vO m •

vO cn

r-H

o st

cn ON r-H

vO r

m m 00

H

O r-o> •-H

1 i—l

00 00 i-H

m pq

o 4-1

60 3 •H T3 U O u a cfl

x. 4J 60 0 CU U 4J CO

SH

cu T3 p •H H >> O

o 4J

JC 4J

60

a cu u 4-1 CO

cu £i 3 CJ

E o u MH

X) 0) 4-1 (H CU > a 0 CJ

• CN 00 ON i-H

1 o 00 sr i—i

m < O 4J

60

a •rl T3 SH 0 O CJ Cfl

-a CU 4-1 Cfl H 0 O iH cfl CJ

•t

(H CU PH Cfl P, r-l Cfl P •H bO •H U O

c •H

P CU > •H 60

4J

O 2

C •H

C CU > •H 60

CO C 0 •H 4J

a cu rH 14H CU XI

TJ CU 4J

3 0, E 0 a

E 0 u l*H

T3 CU 4J

cfl rH 3 CJ H cfl CJ •

)H rr. CU U (X CU Cfl P. P. cfl P. r-l

cfl rH C Cfl -H C 60 •H -H 60 SH

•H O rH

o cu rC

a 4J •H

MH C O cu > CN •H 60 OJ

rH 4-1 HO O cfl 53 H

CN en

w H O 2.

Page 171: 1984 The deflections of reinforced and partially

149

o o • m m

o o

00 CN

o o

r-H

CN

O O

st i-l

O o , r-~

o o

I H <o X QJ 4-1 3 P. E O u

SH

O >4H

CO

3 o •rl 4J

a cu H 14H CU

ed total d

rete beams

4J CJ 3 P P. O E O O cj X

cu X o P u cfl 0

MH X 3 CU «H M CU 3 H CO cfl -CU CO E cu

lations of

s and Menzi

CU rX

u u U cfl

gure 33

Co

Sp

•rl fH

ami 9 painsBajq

Page 172: 1984 The deflections of reinforced and partially

ON vO ON

Ed

% P

O

H H Pd Z Z Ed pq JH pq Q Cd H CO Pd H CO pq

PH

o CO Pd H H PS1

Ed 04

O OH PH cn CN PH rJ pq

<! H

4-J

3 CU

E 5 a

CU 4-1 CU rH

o 3 O CJ

rH CU CU 4-1

m 60 3 •H CO CQ CU M 4-> CO CU (H PH

r~\ CU CU 4-1 CO

oo 3 •H CJ Li O <4H 3 •H CU Pi

. J +J 55

a *x

* a •"\

CNJ «

^ Pd

y-^s

CN Cfl v—<• p. 4J § PH

^ rH v — ' s cfl PHPH

y a P»H

>N Cfl D. PH

MH a

^ — V

cn w 2;

CU rX PH

CU g g

P. E X E

P*CN

<5 E

>> Cfl CO O H

cfl

§ cn

CO o Pd ^ X

co E X E

4JCN CO S

< 1

3 0 •H 4-1 CJ CU CO

s cfl 0) PQ

st o ON rH

CN in ON

st vO rH 00

cn

00 VO

st

1 .

m

o m vO

st r-H

r m r-H

m cn VO

m vO

st O Is*

m i-H

o m vO

vO ON

r CN i-4

vO CN

ON

cn

P!i CN

o rH

00 r-H

m o ON

o o 00 vO cn

•-I

m st

cn m

o m vO

vO 00

r»» i-H r-H

m r-« vO

ON vO

00

r-~ r rH r-1

o m vO

vO ON

o st T-A

VO in •

00

r

ON

st 00 rH

m CN

OS

CN

m st vO cn

r st

st

CN

m

o m vO

rH vO

00

r*.

m cn vO

m vO

vO m oo i-*

o m vO

vO ON

CN

m •-I

oo r-. . r-» i-H

r-H

- m n a -

P

o> CN

00 1—1

m rH

ON

ON 00 st

r cn

O vO

st

m m

o m VO

ON CN

ON

en

m vO

r

00

r«.

VO CN

os cn

o m vO

vO ON

CN

m I-A

st O • r*» m r-4

s 1

ON

m cn rH

o 00

vO

CN

m st vO cn

r-~. st

st

CN

m

O m vO

i^

m 00

r~-

m ON VO

rH I-.

CN

m 00

r-»

O m vo

vO ON

CN

m r-H

VO CN •

ON

cn

c c c

0 3 si

1

P 06 en

Pi St

oi m

Pi r~*

O ON

CN •-H

m st

vO

o o rH vO

cn

cn st

st

i-H

m

o m vO

ON CN

ON

cn

m vO

r-

00

r-

vO CN

ON

cn

o m vO

vO ON

ON

m rH

CN m • oo r

st

cn

Pi 00

00 vO

m

st 00

CN

CN

m st vO cn

r*» st

st

CN

m

o m vO

ON CN

ON

cn

m vO r>.

00 r-v

vo CN

<y\

cn

o m vO

vO ON

o

o

r: w

Pi o\

st rH

|-~ i—l

i-

m 00

CN m st VO cn

r-> st

st

CN

m

o m vo

vO 00

r r-H r—t

m

o m CN

m

00

r»-r«. r-i rH

o m vO

vO ON

m vO i-H

CN m •

00

r-

vC CN

PSi cn PH

O r~~ en rH

in 00

vO

<r vO r-l 00 cn

00 vO

st

r m

o m vO

r. m 00

r-

m r~-m

ON

m

CN

m 00

r-

O m vo

vo ON

00

r r—1

VO CN

ON

cn

od p» PH

150

o I-* ON r-H

i-H 00 CO rH CO pq

O 4-1

60

3 •rl X u O o o cfl rC 4-1 60 3 at u 4-1 CO

u CU X 3 •H H >> CJ

O 4-J

rP 4-1 60 3 CU u 4-1 CO

CU HO

3 o E 0 u MH

X CU 4-1 U CU > 3 O CJ

• CN 00 ON i-i

1

o 00 st i-H

m <

o 4J

60 3 •H X U O o CJ cfl

X CU 4-1 cfl rH 3 CJ

Cfl

o A

U rjj PH

cfl P. rH Cfl

3 •H 60 •H U O

3 •H

3 CU > •H 60 4J 0 z

ft ca CO O rH

r>S l~» •

St

H3 4-1 •H >

CN g § ^^

z o m o i-H

Pd

H O Z

CN cn

Page 173: 1984 The deflections of reinforced and partially

151

o c st

O o .

CN cn

o o *

st CN

O O »

vO i-H

o o .

00

o

I H

<<3

X cu 4J 3 P-E O U

u o 14H

CD 3 O •rl 4-1

a cu H 14H CU CD

x E

ed total

crete bea

4J P 3 O PH CJ

E pass

oo p

3 CU 3 U

4-1 X CD CU CU

u u 3 P-CD cfl co cu -E di

lations of

ett and Dav

cu p l-i 3 u cu

igure 34 Co

B

Pl4

una io paansnaj-j

Page 174: 1984 The deflections of reinforced and partially

152

p Ed H P

8 CJ CO

z o H H U PH

•J PH

Ed P

H O H co" Pii

o psi OH

H Z Ed CJ PH

Ed Ed PH

Ed ^ 33 • PH 00 O

z o-O Cd

H P eq H PH

H CO H P tH CJ Z Ed P

cr Cd PS1

fa

st CN Ed

CJ

z H CO P

60 3 •H 4-1

1 •H 4-1 CQ

CU 1 U CU >

o

60 3 «H 4-1

3 E •H 4-1 CQ CU

u CU X

5

Over

30%

o cn l

O CN

r>5

O CN 1

r>«

O rH r>8

o 1-1

I

o r>«

o rH 1

o O CN

1 O rH

Bs>

o en 1

r>S

O CN u s< Oj o

£cn

3 4J

3 P iH

3 4J

3 3 S •H (H

CU

a XI Cd

o •

o

o •

st

o •

00 CN

o •

o cn

o •

00 CN

r-» •

00

en

rH

o d

R.C. Box Beams

(1 to 10-> cycles

150 points)

o d

o •

st

O

00

o st st

O

CN en

o CN r-l

o d

o •

o

R.C. Box Beams

(105 cycles 25 points)

cn •

cn rH

cn

cn rH

• vO cn

st

cn CN

cn

cn

o •

o

o •

o

o •

o

P.P.C. Box Beams

(1 to 10-* cycles

30 points)

o d

o d

o •

o 0 4

O •

o

o d cn

o d st

O •

o r-H

o •

o

Sparks and Menzies'

R.C. Beams

(IO6 cycles 10 points)

o

o

o

o

i-H

r-H

o

cn •

cn cn

st •

st st

Bennett and Dave's

P.P.C. Beams

(3 x 106 cycles,

9 points)

Page 175: 1984 The deflections of reinforced and partially

153

u o U 3 U 4J Pd 3

B O X> -H S JH 4-1 g 3 CO w X Pd 3 CO <4H 4J O CO

CQ

0\

3 PH O rH CO

<

A

4-1 P. /- 3 S O E VH w 3 4J 3 M

?-3 O • •H 4J 4-> 3 3 3 rH «H 3 O VH «H VH <4H O MH CJ 3

O a

3 •M 3 P

rH 3 4-1 3 3

s •3 V4 3 PH X w

o CN rH

o vO .

rH

cn rH CN r-H

o . rH

rH

vO rH St 00 • o I

m ON en r~» ON • o

CQ xi E 3 3 CJ fJJ VH pq O M-4 X! "-v 3 O CO •H pq 4-i 3 3 3 11 rl

4-J O CO 3 PH - V< VH O O O 3 m J: O H 4J O ^ 3 <

CN ON O 00 st

d

rH 00

o ON CN .

•-H

OO CN ON CN VO •

CN 1

r-H VO ON

en ON • o

*~\ 3 CQ 4-> 4-J 3 3 VH -H

>N O O rH 3 PH rH O 3 CJ O •H en 4-1 X s~' VH 3 3 CQ CO PH CO E

3 3 CO VH CU - 4-J CQ VH CO O 3 X! rC U O 4J PH PQ 3 <d

vO cn 00 a\ CN *

CN

i — i

CN ON rH 00 • o

VO rH

m .-H rH

. cn

CN

o vO 00 00 * o

cu - 4-J CO CU /-\ 3 VH CQ •H CJ 4-1 N 3 3 3 O -H CU CJ O a PH

X X 0) O 3 O -H 3 VH ^

O <4H Cfl

co 3 E ^J -H 3 VH 3 3 3 PH PQ P. CO

st 00 cn st rH •

St

O o r^ CN i-H

. CN

r-H 00 00 ON r-•

00 1

00 cn cn cn ON • o

X 3 CQ CQ 3

CO VH ^^ - 4-J CQ 3 CO 4-1

> 3 3 3 VH -H P PH O

PH X >N 3 rH ON 3 H ^

3 4J -H CO

4-1 u E 3 VH 3 3 3 3 3 PH PQ 3 pq

Page 176: 1984 The deflections of reinforced and partially

154

8.4 Comparisons with Other Prediction Methods

In light of all the available test results (a total of 199 points)

the proposed method is also compared with the methods proposed by

Balaguru and Shah [1981.1982] and Lovegrove and El Din [1982], The

details of the two methods have been given in Section 8.2. In order

to have a fair comparison, Lovegrove and El Din's method was used

only for deflections at or over 105 cycles. Figs. 35. 36 and 37

respectively give the correlations of the measured total deflections

and those computed using Eq. 8.1. Balaguru and Shah's method and

Lovegrove and El Din's formula.

It may be seen in Fig. 36 that Balaguru and Shah's method

generally underestimates the reinforced bos beam deflections and it

does not correlate well at all with Bennett and Dave's test results.

For Lovegrove and El Din's formula, the predictions tend to be

slightly unsafe as evident in Fig. 37, Despite these observations,

it is not easy by comparing Figs. 35 36 and 37 to identify the best

amongst the three prediction procedures. However, the superiority

of the proposed Eq. 8.1 is revealed from a statistical scrutiny.

Table 26 gives the correlation coefficients and the intercepts and

slopes of the regression lines of the three correlations. It is

evident that Eq. 8.1 is statistically more reliable than Balaguru

and Shah's method. The probability of Eq. 8.1 in giving accurate

results for 199 points is as high as Lovegrove and El Din's method

for only 49 points. For the same number of predictions. Eq. 8.1

would be better.

A further comparison of the three methods is made in Fig.

38 in light of the author's own deflection data for T=105 only

(i.e. 30 points). The correlation statistics are given in Table 27.

Predictions by Eq. 8.1 appears to be the most satisfactory, closely

followed by Lovegrove and El Din's method. The method of Balaguru

Page 177: 1984 The deflections of reinforced and partially

155

and Shah, the most complicated amongst the three, again ranks third

in this comparison.

Page 178: 1984 The deflections of reinforced and partially

156

X 3 4J

3 PH

I CJ

X <JJ 4J

3 PH

E 0 CJ X

s 3 CD

3 O •H 4J CJ CU

3 OO X

r-\ cr' 3 Pd 4J O CO 4J-

VH

X O CU ,3 VH 4J

3 3 co 3 3 CU 00

E P •H

<4H CD O 3 CD CO 3 CU O 3 •H 4-1 3

cfl

> CU

u u o CJ m cn cu V4 3 OC •H Pn

mm 9 paansBaj^

Page 179: 1984 The deflections of reinforced and partially

157

st m

cnhn

CN m

H <o X CU 4J

3 % O CJ

x cu 4-1

3 P-E o a x 3 cd CD 3 o •rl 4-1

a cu H C4H

CU X

3 4-J

O 4-J

X cu V4 3 CD CO CU

E

x 0 H3 4J

CU

E CD

33 3 rfl

CO X p 3 3 M 3 00 3

3 C4H «

° 00 CO ^

•H 3

Si O > CJ

vO cn cu V4 3 00 •H En

mm ^9 pa-insBan

Page 180: 1984 The deflections of reinforced and partially

158

st m

cn|m

II

3 A

CO E 3 cu rO

X! O rO

• a » u CO

I-

VH O rG 4-1 3 <3

3 A

CD E 3 CU IO

XI O rO

• CJ • p.

p.

CO mm

u O rC 4-1 3 <

E 3 3 rO

• a • u CO — cu •H N 3 3

a X 3 3

CO rX VH 3 P. CO

3 CU rQ

• a • p. • 0-

CD » CU > 3 P

X 3 3 B 4J E

4J O cu r-3 3 II CU pq 3

3 cn|m

<o

X CU 4-1

3

I CJ

U 3

CO r>. 3 cn 3

H 3 3 VH > 3 00 •H PH

st m cn|m CN m

mm 9 paansBan

Page 181: 1984 The deflections of reinforced and partially

159

cn

vO

cn

cn

co CJ H PH

a Cd H 25 Cd CO Pd PH

04 CO

Z

o H

3 Pd

O U PH

O CO CJ H

H CO H

H < H co vO CN

Pd

CU u m o VH « V4 CU Pd 4-1

3 '-^

? 6 i VH >H E 3 4-1 v-/ X CD 3 Pd 3 4J 14H CO o

pq

* cu p-O rH m

<

A

4-1 P. /-s 3 E O E VH W 3 4-1 3 M

?^ 3 O « •H 4J 4J 3 3 3 rH -H 3 CJ VH -H VH MH O tw CJ 3

0 CJ

X O 43 4-1 3

a

m r 00 m st .

CN

r-v 00 r O o . rH

m r st 00 cn * o 1

vO O ON st ON * o

vO O rH ^-s X! co en 4J

8 •> O i-l

H 4J O PH

00 i-4 II ON

• H 0> a4*—' i—i

pa m ••»

co cn co 3

VH • rH o 60 y Xi Ti >^ •W Pn O 3 <ti

00 m st m ON •

cn

vO ON st vO oo • o

00 i-H

ON i-H

i—i

. cn

vO o CN vO 00 • o

• ** CO 3 rH O >>

CO o •-• 9

43 vOvO 3 cn o J3 rH CO •

60 X! <--X -H CD p pc4 cn +J 3 3

•> O -H 3 X 4-J O VH 0 PH 3 43 -H 60 4J || ON 3 3 H ON H S ^ r l 3 pq

CN cn o o r-~ .

r-H

CN cn p^ ON r-H •

r-H

cn rH st 00 VO . o 1

rH

m 00 r- ON . o

CO •» 3 •H Q • •*

r-» CD rH cn CU Pd rH

• O X 60 >, G T4 O s^ 3 PH CO

m 4-J 3 « 0 3 > X r-" T, O O 0 VH 43./* PH 60 4-J <U 3 H ON > a ^<f o rJ

in CN

cu H 42 3 H P •H X CU •H VH •H CJ CU P. CD CD •H OJ 4-1

3 4J Cfl Pd C4H

o U O H V4 Pd X U 3 X

P 3 4-1 CO VH

o UH

3

o •H 4J

3 3 cr cu 3 43 H

Pd H O 53

Page 182: 1984 The deflections of reinforced and partially

(a) Eq. 8.1

44

s

H <o X cu u 3 CD 3 OJ a

^

'/.

/* /**•/

i • - 1 •

f / A

/ */

/ / A / / / /^

/ A /

i i

/at

X" -

(b) Balaguru and Shah's Method

Computed 6T (mm)

Computed 6 (mm)

(c) Lovegrove and El Din's Method

Computed 6 (mm)

(c) Lovegrove and El Din's method

160

44

Figure 38 Comparisons between measured total deflections of reinforced and partially prestressed box beams (10^ cycles

Page 183: 1984 The deflections of reinforced and partially

161

oo cn

ci H fa SS H

a Pd H S3 td CO Pd OH PH

CO IS O H H <U r-l Pd

M o CJ

fa O CO CJ H H CO M H < H CO

r. CN

Cd H

/—V

CO H a H o PH

O en P

CO Cd

CJ >H

u m o r-H

II

H v—'

A

x y-4 3 VH O 4-» 3 3 /—s X VH E <1) fi 3 0 i-t co E 3 U 4J s-' 4J VH CO co Cd Pd

pq

A

CU

a o rH CO

<ci #N

4J P. x-s cu E o E VH W CU 4-1

3 H

>-

3 « O 4-1 •H 3 4J CU 3 "H iH O 3 i-l VH VH VH VH O 3 CJ O

CJ

X o rC 4J

.2J a

o st st ON st .

rH

CN cn ON cn o . 1-1

r~ m vO m vo • o i

cn st cn 00 ON • o

I—I

. 00

• cr Cd

CO m

u o rC 4J

3 <

st st CN ON O •

CN

m m ON CN rH

. rH

cn st O r. rH

. rH

1

m CN r-» vO ON • o

CO

43 3 43 CO

X) 3 3

X 3 O VH 43 3 4J 60 3 3 a rH 3 pq

cn vO r r-m .

rH

1-

o rH

00 rH

. rH

rH

o st O CN *

O 1

CN m rH

CO ON • o

X O 43

X.-U fl OJ

3 a 3 3 > >W

o o VH 60 rH 3 Pd

> 0 rJ

CN

X cu VH 3 CQ 3 CU

a i

H •=0

X CU 4-J 3 rH 3 a rH 3 CJ

CO cu 3 rH 3 > UH O

VH OJ 43 E 3 S3

w

CU 4-1

1 •H 4J CO CU <H O VH

O VH

VH

CU X VH

3 X 3 3 4-J CO

Pd H O S5

Page 184: 1984 The deflections of reinforced and partially

162

Chapter 9

CONCLUSIONS

Conclusions of this study are mainly drawn in the following

three areas:

a. the deflection behaviour of reinforced and prestressed

concrete box beams under repeated loading:

b. the derivation of the proposed analytical procedure for

the total deflections under repeated loading: and

c. the accuracy of the proposed procedure.

They are given in Sections 9.1. 9.2 and 9.3 respectively with

recommendations for further study listed in Section 9.4,

Page 185: 1984 The deflections of reinforced and partially

9.1 Deflection Behaviour

163

It is obvious from the test results that while the live load

deflection remains constant after the initial loading, the dead load

deflection accumulates under repeated loading. The increase of

dead load deflection is significant in the early loading cycles but

it slows down rapidly as the number of loading cycles increases.

The accumulation of dead load deflection can be seen as a parallel

phenomenon to the time-creep of concrete under sustained loads. The

similarity of the effects of repeated load and sustained load have

been observed by the author as well as by some other researchers.

However, the author's is the first attempt to make use of such

parallel to establish a prediction procedure. It is the recognition

of this analogy between the repeated loading and time-creep effects

that led to the development of the proposed analytical procedure.

Live load deflection is caused by the fluctuating part of the

applied load. It was observed that this portion of the deflection

remained constant throughout the repeated loading cycles provided

that the maximum level and the range of the repeated load are kept

constant. This is because the bending rigidity of the beam is not

affected by the number of loading cycles after the initial loading.

However, the increase in maximum loading level or repeated loading

range leads to a deduction in the beam rigidity. These were

consistently observed in the author's tests.

Steel content in both reinforced and prestressed concrete beams

affects the amplification of the dead load deflection. It was found

that the higher the steel ratio the smaller the effects of the

repeated loading. Depending on the steel content, the intensive

creep factor can be as high as about 8. This represents a seven-fold

increase in dead load deflection due to repeated loading. However.

Page 186: 1984 The deflections of reinforced and partially

164

with a steel ratio of 2%. the increase was found to be limited to

about 100% or less for most of the reinforced box beams tested.

In addition to the steel content, the higher the degree of

prestressing the lower the increase in dead load deflection under

repeated loads.

Page 187: 1984 The deflections of reinforced and partially

165

9.2 The Proposed Computational Procedures

A simple procedure is presented for the prediction of the

total deflection of concrete box beams under repeated loading.

The procedure involves the computations of the initial dead load

deflections. §dj. the intensive creep factor, k and the instantaneous

live load deflections. St.

For computing 8dj. many proposals have been published previously

by other reseachers. Nearly all proposals are ssmi-empiricai. In light

of the author's own test results on box beams, a comparative study

is carried out involving 9 well-known methods. It is concluded

that, Branson's effective moment of inertia method gives the most

satisfactory results. Thus, his method is recommended for computing

the initial dead load deflections, 8dj.

Multiple regression analyses have been carried out on the

results of dead load deflections at various loading cycles. This

led to the establishment of a logarithmic equation for

calculating the intensive creep factor, k. This logarithmic equation

is found to be more realistic than a similarly derived hyperbolic

formula. To account for the effects of prestressing. a modified

formula is recommended for k.

A reliable evaluation of the live load (instantaneous) deflection.

8( is dependent on the accurate assessment of the effective moment

of inertia of the beam under repeated loads, lreD. A new formula

for lreD is proposed, which gives better all-round accuracy than

the existing methods due to Kripanarayanan and Branson [1972] and

Warner and Pulmano [19801

The combined use of Branson's procedure for §dj. the logarithmic

equation for k and the new formula for lreD allows the total deflection

of reinforced and prestressed concrete beams at any number of

Page 188: 1984 The deflections of reinforced and partially

166

repeated loading cycles to be calculated. All equations are simple

and explicit which are suitable for adoption in design codes.

Page 189: 1984 The deflections of reinforced and partially

167

9.3 Versatility and Accuracy of the Proposed Procedure

The proposed procedure covers directly the effects of all major

variables which influence the deflections of concrete beams under

repeated loading. In comparison. Balaguru and Shah's method ignores

the steel ratio and the degree of prestressing while Lovegrove and

El Din's formula only accounts for the number of loading cycles

(which must be greater than 27826).

The proposed method is also more versatile in that it may be

used for computing the instantaneous deflection and/or the permanent

set as necessary. The other two methods only calculate the total

deflections.

Based on experimental data obtained herein and published by

other researchers, a detailed comparison is made between the proposed

procedure and the methods of Balaguru and Shah, and of Lovegrove and

El Din. Statistical analyses of the correlations between measured

and predicted total deflections indicate that the probability of the

proposed procedure in giving more accurate results is the highest

amongst the three procedures.

Page 190: 1984 The deflections of reinforced and partially

168

9.4 Recommendations for Further Study

In future attempts to study further the deflection behaviour

of concrete beams under repeated loading, the following should be

investigated:

a. the effects of compressive reinforcement:

b. the effects of negative reinforcement at supports of

continuous beams:

c, the effects of repeated loading range particularly the

influences of the lower load limit: and

d. the applicability of the proposed procedure for beams

reinforced with plain bars, especially the case of

overloading conditions.

Page 191: 1984 The deflections of reinforced and partially

169

REFERENCES

1. American Association of State Highway and Transportation Officials

(1973). Standard Specification for Highway Bridges Washington

D.C. 496pp.

2. Abeles.P.W.. Brown.E.1. and Hu.C.H. (1974). "Fatigue Resistance of

Under-reinforced Prestressed Beams Subjected to Different

Stress Ranges: Miner's Hypothesis". AJbeles Symposium: Fatigue

of Concrete. ACI Publication SP41. pp237-277.

3. Abeles,P.W.. Brown.E.1. and Hu.C.H. (1974). "Behaviour of Under-reinforced

Prestressed Concrete Beams Subjected to Different Stress

Ranges". Abeles Symposium: Fatigue of Concrete. ACI Publication

SP41. pp279-313.

4. ACI Bibliography No.3 (1960), Fatigue of Concrete. ACI Committee 215.

36pp.

5. ACI (1963). Building Code Requirement for Reinforced Concrete ACI

318-63. American Concrete Institute. Detroit. 144pp.

6. ACI (1977). Building Code Requirement for Reinforced Concrete ACI

318-77. American Concrete Institute. Detroit. 101pp.

7. ACI Committee 435 (1968). "Subcommittee 1 Allowable Deflection".

Journal of ACI. Proceedings, Vol.65 No.6 June, pp433-444.

8. ACI Committee 215 (1974). "Considerations for Design of Concrete

Structures Subjected to Fatigue Loading". Journal of ACI.

Proceedings Vol.71 No.3 March. pp97-120.

Page 192: 1984 The deflections of reinforced and partially

170

9. ACI Committee 443 (1974). "Analysis and Design of Reinforced Concrete

Bridge Structures" Journal of ACI. Proceedings. Vol.71. No.4.

April. pp!71-200.

10. Agrawal.G.L.. Tulin,L.G. and Gerstle.K.H. (1965). "Response of Double

Reinforced Concrete Beams to Cyclic Loading". Journal of ACI.

Proceedings. Vol.62. No.7. July. pp823-834.

11. Arthur.P.D. and Mahgoub.M.O. (1975). "Shear Tests on Full-scale

Prestressed Concrete Box Beams" Proceeding of The Institution

of Civil Engineers (London). Part 2. Vol.59. September. pp535-540.

12. Awad,M.E. and Hildorf.H.K. (1974). "Strength and Deformation Charac­

teristics of Plain Concrete Subjected to High Repeated and

Sustained Load". Abeles Symposium: Fatigue of Concrete. ACI

Publication SP-41. 1974 ppl-13.

13. Bachmann.H. (1979). "Partial Pretsressing of Concrete Structures".

IABSE Survey Sll/79, International Association for Bridge and

Structural Engineering, November.

14. Bachmann,H. (1980). "Ten Theses on Partial Prestressing" FIR

Symposium on Partial PrestressingProceeding Part 1. Bucharest,

Sept. pp92-103.

15. Baker,A.L.L. (1965). Ultimate load Theory Applied to Design of Rein­

forced and Prestressed Concrete Frames. Concrete Publications

Ltd, London.

16. Balaguru,P.N. (1981). "Analysis of Pretsressed Concrete Beams for

Fatigue Loading", Journal of Prestressed Concrete Institute.

proceedings. Vol. 26, No. 3. May-June, pp70-94.

Page 193: 1984 The deflections of reinforced and partially

171

17. Balaguru.P.N. and Shah.S.P. (1982). "A Method of Predicting Crack

Widths and Deflections for Fatigue Loading". ACI Publication

SP75, ppl53-175.

18. Bate.S.C.C. (1963). "A Comparison between Prestressed Concrete and

Reinforced Concrete Beams under Repeated Loading". Proceedings

of ICE Vol.24. March, pp331-358.

19. Bate.S.C.C. (1968). "The Control of Deflection in the New Unified

Code". Building Research Station Simposium. Concrete(GB). Vol.2.

No.12. December. pp511-513.

20. Beeby.A.W. (1968). Short-term Deformations of Reinforced Concrete

Members. Cement and Concrete Association. Technical Report TRA

408. London. March. 32pp.

21. Bennett,E.W. and Chandrasekhar.C.S. (1972). "Supplementary Tensile

Reinforcement in Prestressed Concrete Beams". ConcreteCGB).

October. pp35-39.

22. Bennett,E.W. and Dave.N.J. (1969). "Test Performance and Design

of Concrete Beams with Limited Prestress". The Structural

Engineer. December. No.12. Vol.47 pp487-495,

23. Bennetts,I.D. and Atkins.K.J. (1977). "Repeated Loading of Rein­

forced Concrete Beams". Symposium - Concrete for Engineering.

Engineering for Concrete. Institution of Engineers, Australia.

Brisbane, 30th August, ppl-5.

24. Berry,H.C. (1908). "Some Tests of Concrete Beams under Repeated

Loading" Proceedings. ASTM, Vol.8. pp454-459,

25. Bishara,A.G. (1982), "Some Aspects of Dynamic Response of Rectangular

Reinforced Concrete Beams". ACI Publication SP75. pp235-252.

Page 194: 1984 The deflections of reinforced and partially

172

26. Branson.D.E, (1963). "Instantaneous and Time-Dependent Deflections

of Single and Continuous Reinforced Concrete Beams". HPR

Publication 7, Part l Alabuma Highway Department Burean of

Public Roads. August, ppl-78.

27. Branson.D.E. and Christiason.M.L. (1971). "Time-Dependent Concrete

Properties Related to Design-Strength and Elastic Properties.

Creep and Shrinkage". ACI Publication SP27. pp257-277.

28. Branson.D.E. and Kripanarayanan.K.M. (1971). "Loss of Prestress. Cam­

ber and Deflection of Non-composite and Composite Prestressed

Concrete Structures". Journal of PCI. Vol.16. September-October.

pp22-52.

29. BransonJXE. (1977), Deformation of Concrete. MaCraw-Hill. New York.

546pp

30. Bresler.B. and Bertero.V. (1968). "Behaviour of Reinforced Concrete

Under Repeated Load". Journal of Structural Division. ASCE Vol

94. ST6. June, ppl567-1588.

31. British Standard Institution (1972). Code of Practice for Structural

Use of Concrete, Part 1. CP110. BSI. London. 152pp.

32. Burean of Public Roads (1966). Reinforced Concrete Bridge Members.

Strength and Serviceability Criterion, Ultimate Design. U.S.

Department of Commerce. Burean of Public Road. August. 81pp.

33. Burton,K.T. and Hognest'ad.E. (1967), "Fatigue Test of Reinforcing

Bar - Tack Welding of stirrups". Journal of ACI. Proceedings.

Vol.64, No.5, May. pp244-252.

34. Burns.N.H. and Siess.C.P. (1966), "Repeated and Reversed Loadings

in Reinforced Concrete", Journal of the Structural Division.

ASCE, Vol.92, ST5. October, pp65-78.

Page 195: 1984 The deflections of reinforced and partially

173

35. CEB-FIP (1970). International Recommendations for The Design and

Construction of Concrete Structures. FIP Sixth Congress. Prague

English Edition. June 80pp.

36. CEB-FIP (1978). Model Code for Concrete Structures -International

Recommendations 3rd Edition. Paris. 348pp.

37. Corley.W.G. (1966). "Rotational Capacity of Reinforced Concrete

Beams". Journal of Structural Division. ASCE. Vol.92. ST5. October.

ppl21-146.

38. Corley,W.G. and Sozen.M.A. (1966). "Time Dependent Deflections of

Reinforced Concrete Beams". Journal of ACI. Proceedings. Vol.

63. March. pp373-368.

39. Drew.F.P. and Leyh.G.F. (1965). "Through-Voided Box Beams for Railway

Bridge Construction", Report Mo. ER-53. Association of American

Railroads Research Department. February, pp39-53.

40. Dunham,G.W. (1953), The Theory and Practice of Reinforced Concrete

3rd Edition, McGraw-Hill N.K.

41. Fling,R.S. (1974). "Simplified Deflection Computation". Deflection of

Concrete Structures. ACI Publication SP-43. pp205-223.

42. Hanson.J.M.. Hulsbos.C.L. and Van Horn.D.A. (1970). "Fatigue Test of

Prestressed Concrete I-Beams" Proceedings ASCE Vol.96, ST11.

November, pp2443-2464.

43. Hanson.J.M.. Somes.M.F. and Helagson.T. (1974)f "Investigation of Design

Factors Affecting Fatigue Strength of Reinforcing Bars - Test

Program". Abeles Symposium: Fatigue of Concrete. ACI Publication

SP-41, pp71-105.

Page 196: 1984 The deflections of reinforced and partially

174

44. Hawkins.N.M. (1964). "An Evaluation of Work on Fatigue Strength of

Prestressed Concrete Beams". Civil Engineering Transactions,

The Institution of Engineers, Australia. March, ppl-14.

45. Hill.A.W, (1980). Partial Pretsressing - A report on FIB Symposium

Bucharest and Recommendations

46. Hilsdorf.H.K. and Kesler.C.E. (1966). "Fatigue Strength of Concrete

under Varying Flexural Stress". Journal of ACI Proceedings.

Vol.63. No.10. October. ppl059-1076.

47. Hsu.C.T. and Mirza.S.M. (1974). "A Study of Post-yielding Deflection

in Simply Supported Reinforced Concrete Beams". ACI Publication

SP43. pp333-340.

48. ICE Research Committee (1962). "Ultimate Load Design of Concrete

Structures", Proceedings of ICE Vol.21. February. pp399-442.

49. Jhamb.I.C. and MacGregor,J.G. (1974). "Effect of Surface Charac­

teristics on Fatigue Strength of Reinforcing Steel". Abeles

Symposium: Fatigue of Concrete. ACI Publication SP-41. ppl39-167.

50. Jhamb.I.C. and MacGregor,J.G. (1974). "Stress Concentration Caused

by Reinforcing Bar Deformation". Abeles Symposium: Fatigue of

Concrete ACI Publication SP-41, ppl69-182.

51. Kesler.C.E. (1953). "Effect of Speed of Testing on Flexural Fatigue

Strength of Plain Concrete". Proceedings. Highway Research

Board, Vol.32. pp251-258.

52. Kokubu.M and Okamura.H (1965), "Fundamental Study on Fatigue

Behaviour of Reinforced Concrete Beams Using High Strength

Deformed Bars". Transaction. Japan Society of Civil Engineers.

Tokyo. No.122 October, pp29-42.

Page 197: 1984 The deflections of reinforced and partially

175

53. Kokubu.M and Okamura.H (1968). "Fatigue Behaviour of High Strength

Deformed Bars in Reinforced Concrete Bridges". ACI Publication

SP2J pp301-316.

54. Kripanarayanan.K.M. and Branson.D.E. (1972). "Short-Time Deflection

of Beams under Single and Repeated Load Cycles (Part 1 and

Part 2)". Journal of ACI. Proceedings. Vol.69, No.2. February.

ppllO-117.

55. Kulkarni.G.G. and Ng.S.F. (1979). "Behaviour of Limited Prestressed

Beams under Repeated Loads". Canadian Journal of Civil En­

gineering Vol.6. pp544-556.

56. Levi.F. (1961). "Work of The European Concrete Committee". Journal

of ACI. Proceedings. Vol. 57. No.9. March. ppl041-1071.

57. Lovegrove,J.M. and Salah El Din (1982). "Deflection and Cracking of

Reinforced Concrete under Repeated Loading and Fatigue", ACI

Publication SP75. ppl33-152.

58. Lutz,L.A. (1973). "Graphical Evaluation of Effective Moment of Inertia

for Deflection". Journal of ACI. Proceedings. Vol.70. No.3. March.

pp207-213.

59. MacGregor.J.G., Jhamb.I.C. and Nuttall.N. (1971). "Fatigue Strength

of Hot-Rolled Reinforcing Bars", Journal of ACI Proceedings.

Vol.68, No.3, March. ppl69-179.

60. Magura.D.D. and Hognested.E. (1966), "Tests of Partially Prestressed

Concrete Girders", Journal of Structural Division. ASCE. Vol,92.

ST1, February, pp327-350.

61. Maney.G.A. (1914), "Relation Between Deformation and Deflection in

Reinforced Concrete Beams". ASTM Proceedings. No. 14 Part II.

Page 198: 1984 The deflections of reinforced and partially

176

62. McCall.J.T. (1958), "Probability of Failure of Plain Concrete". Journal

of ACI. Proceedings. Vol.55. No.13. August. pp233-258.

63. Murdock.J.W. and Kesler.C.E. (1958). "Effect of Range of Stress on

Fatigue Strength of Plain Concrete Beams". Journal of ACI.

Proceedings. Vol.55, No.12. August, pp221-231.

64. Murashev (1940), "Theory of Appearance and Opening of Cracks.

Computation of Rigidity of Reinforced Concrete Members". Stroiteluaya

Promishlenost. Moscow Nov.

65. Murdock.J.W. (1965). "A Critical Review of Research on Fatigue of

Plain Concrete". Bulletin Ho.457. Engineering Experiment Station.

University of Illuions. Urbana. 25pp.

66. NAASRA (1976). Bridge Design Specification. National Association

of Australia State Road Authorities. Sydney.

67. Neville.A.M. (1977). Properties of Concrete. Pitman. London. 687pp.

68. Newmark.,N.M. (1943), "Numerical Procedure for Computing Deflections.

Moment and Buckling Load". ASCE Transaction. Vol.108. ppl!61-1188.

69. Nie.N.H., Hull.C.H. and Bent J). (1975), SPSS Statistical Package for

The Social Sciences. 2nd Ed„ McGraw-Hill, 675pp.

70. Nordby,G.M. (1958), "Fatigue of Concrete - A Review of Research".

Journal of ACI. Procedings. Vol.55, No.9. August. ppl91-218.

71. Ople.F.S. and Hulsbos,C.L. (1966). "Probable Fatigue Life of Plain

Concrete with Stress Gradient". Journal of ACI. Proceedings.

Vol.63, No.l January, pp59-82.

Page 199: 1984 The deflections of reinforced and partially

177

72. Paranagama.D.D.O. and Edwards.A.D. (1969). "Moment Deformation

Characteristics of Pretensioned Concrete Beams Subject to

Fluctuating Load". Journal of PCI. Vol.14. No.4. August. pp62-74.

73. Pfister.J.F. and Hognested E. (1964). "High Strength Bar as Concrete

Reinforcement - Part 6: Fatigue Tests". Journal of PCA Research

and Development Laboratories. Vol.6. No.l, January. pp65-84,

74. Portland Cement Association (1974). "Deflection of Reinforced

Concrete Members". Bulletin ST70. Portland Cement Association.

75. Prestressed Concrete Institute (1975). Precast Prestressed Con­

crete Short Span Bridges. PCI. Chicago, 34pp.

76. Pulmano V.A. and Warner.R.F. (1980). "Serviceability Tests of

Prestressed Concrete Beams". Uniciv Report No.R-198. December,

University of NSW.

77. Raithby,K.D. and Galloway,J.W. (1974), "Effects of Moisture Condition.

Age and Rate of Loading on Fatigue of Plain Concrete", Abeles

Symposium: Fatigue of Concrete. ACI Publication SP-41. ppl5-34.

78. Rosli,A (1968). "Experiences from Fatigue and Rupture Tests on

Prestressed Concrete Bridges" ACI Publications SP23. pp601-623.

79. Ruiz,W.M. and Winter.G. (1969). "Reinforced Concrete Beams under

Repeated Loads". Journal of ACI. Proceedings, Vol.95. ST6, June.

ppl!89-1209.

80. Scott,W.L. and Glanville.W.H. (1934). Explanatory Handbook on The

Code of Practice for Reinforced Concrete. Concrete Publication.

81. Scott,W.L. and Glanville.W.H. (1965). Explanatory Handbook on the

B.S. Code of Practice for Reinforced Concrete CP114 1957. C &

CA Publications. Second Edition. 203pp.

Page 200: 1984 The deflections of reinforced and partially

178

82. Shah,S.P. and Chandra.S. (1970). "Fracture of Concrete Subjected

to Cyclic Loading". Journal of ACI. Proceedings. Vol.67. No.10.

October, pp816-824.

83. Sinha.B.P.. Gerstle.K.H. and Tulin.L.G. (1964). "Response of Single

Reinforced Beams to Cyclic Loading". Journal of ACI. Proceedings.

Vol.61. No.8. August. ppl021-1037.

84. Sinha,B.P.. Gerstle.K.H. and Tulin.L.G. (1964). "Stress-strain Relations

for Concrete under Cyclic Loading". Journal of ACI. Proceedings,

Vol.61. No.2 February, ppl95-212.

85. Snowdon,L.C. (1971). "The Static and Fatigue Performance of Concrete

Beams with High Strength Deformed Bars". Building Research

Station Current Paper. CP 7/71. March. 32pp.

86. Somerville.G. and Tiller.R.M. (1970). Standard Bridge Beams for Spans

from 7 m to 36 m. Cement and Concrete Association. 32pp,

87. Soretz.S. (1957), "Factors Affecting the Stiffness of Reinforced

Concrete Beams". International Association of Testing and

Research Laboratories for materials and Structures, Riem

Simposium on Bond and Crack Formation in Reinforced Concrete.

Stockholm. Vol.1, pp251-271.

88. Soretz,S. (1974). "Contribution to the Fatigue Strength of Reinforced

Concrete", Abeles Symposium: Fatigue of Concrete KCl Publication

SP-41, pp35-69.

89. Sparks,P.R. and Menzies.J.B. (1973). "The Deflection of Reinforced

Concrete Beams under Fluctuating Load with a Sustained

Component". The Structural Engineer. No.ll Vol.51. November.

pp413-420.

Page 201: 1984 The deflections of reinforced and partially

179

90. Standard Association of Australia (1982). AS1480-1982 SAA Concrete

Structures Code. Standard Association of Australia. Sydney.

100pp.

91. Standard Association of Australia (1978). A SI481-1978 SAA Prestressed

Concrete Code. Standard Association of Australia , Sydney. 68pp.

92. Standard Association of Australia (1978). AS1012-1978 Method of

Testing Concrete. Standard Association of Australia . Sydney.

46pp.

93. Stevens.R.F. (1969). "Test on Prestressed Reinforced Concrete Beams".

ConcreteCGB). November. pp457-462.

94. Sturman.G.M.. Shah.S.P. and Winter.G. (1965). "Effects of Flexural

Strain Gradients on Microcracking and Stress-Strain Behaviour

of Concrete". Journal of ACI. Proceedings. Vol.62, No.7. July.

pp805-822.

95. Swain,G.F. (1924). Structural Engineering. Strength of Material.

McGraw-Hill Book Co, New York.

96. Tansi.P.. Heaney.A.C. and Warner.R.F. (1979). "Serviceability Tests on

Partially Prestressed Concrete Beams". Uniciv Report No.R-184.

May, University of New South Wales. 32pp.

97. Warner,R.F. and Faulkes.K.A. (1979), Pretsressed Concrete. Pitman.

Cartron, 336pp.

98. Warner,R.F. and Hulsbos.C.L. (1966). "Fatigue Properties of Prestress­

ing Strand", Journal of PCI. Vol.11. No.l. February. pp32-52.

99. Warner,R.F. and Pulmano,V.A. (1980), "Post Cracking Behaviour and

Deflections of Partially Prestressed Concrete Members". Proceed-

Page 202: 1984 The deflections of reinforced and partially

180

ings. 7th Australiasian Conference on the Mechanics of Struc­

tures and Materials. May. Perth. ppllO-115,

100. Warner.R.F. (1980). "Serviceability of Cracked Partially Prestressed

Concrete Members: Tests and Analysis". FIR Symposium on Partial

Prestressing. Proceedings. Part 1, Bucharest, ppl5-27,

101. Wong,Y.W. and Loo,Y.C. (1980), "The Accumulative Effects of Repeated

Loading on the Deflection of Reinforced Concrete Box Beams",

Proceedings. 7th Australiasian Conference on the Mechanics of

Structures and Materials, May. Perth, pp97-102.

102. Wong,Y.W. and Loo.Y.C. (1983). "A Study of Deflection Behaviour of

Reinforced Concrete Box Beams under Repeated Loading", AIT

Research Report No.153. Asian Institute of Technology. Bangkok.

40pp.

103. Yu.W.W. and Winter.G. (1960). "Instantaneous and Long-Term Deflection

of Reinforced Concrete Beams Under Working Load". Journal of

ACI. Proceedings, Vol.57, No.7. July. pp29-50.

Page 203: 1984 The deflections of reinforced and partially

181

Appendix I

EQUATIONS FOR COMPUTING kd, Mcr, M AND Mu

Page 204: 1984 The deflections of reinforced and partially

182

EQUATIONS FOR COMPUTING kd. M . M AND M * cr ' y '»"*' t

Depth of Neutral Axis, kd

For the box section detailed in Fig. AI-lfit can be shown that

kd =/[np-r(8-l)r]2 + 2[np +(B-l)r2/2 ] - [np + (8-l)r]d (Al)

where

n = E /E , p = A /b d, 8 = b/b and r = t/d s c' *i st w ' w

After computing kd, jd can be determined by simple statics.

Cracking, Yield and Ultimate Moments

The formulas used in this paper are those given in the Australian Code, The cracking moment,

M = FT /y<. (A2) cr t g Jt

where

F is the tensile strength of concrete « 0.62 /IP MPa, t c

I is the moment of inertia, neglecting reinforcement, of gross concrete section about the centroidal axis, and

Y is the distance from centroidal axis of gross cross-section, neglecting reinforcement, to extreme fibre in tension.

The yield moment,

i y sy st M__ = f___ A _ j d ( A 3 )

where

f is the yield or proof stress of reinforcing steel,

A is the cross sectional area of tensile reinforcement, and st

jd is depicted in Fig. Al-land can be obtained via Eq. (Al) ,

Page 205: 1984 The deflections of reinforced and partially

183

The ultimate moment,

M

0.6 A , f = A f d[i-__2£.«Z]

st sy bd F c

(AA)

if A < 0.85 F' bt/f 11 st c sy

And if Ast > 0.85 F^ bt/fgy, then

V f Mu = 0.85 fj t(b-bw)(d-0.5t)-rfsyAht d [ l - 0 . 6 n - f ]

w c

(A4a)

where F' c A - A - 0.85 -£- (b-b )t

Tit st f w sy

and the variables b, b , d and t are illustrated in Fig. AI-1 w

N.A.

Figure AI-1 Typical box section

Page 206: 1984 The deflections of reinforced and partially

The Explanation of M < M for Heavily Reinforced Beams — u y ~ .

184

f.

kd

r f„

hkd 'C

jd

+-T

0-85F;

rkd -a\

fsy

<r^~C

jud

->r

(a) Stress distribution (b) Stress distribution at at first yield failure, using Whitney

rectangular stress block Figure AI-2 Stress distribution of under-reinforced concrete beams

Assumptions:

(i) My is taken as the moment when, steel first yields. Measured My is usually obtained from the Moment-deflection or Moment-curvature curves.

(ii) M^j is taken as the maximum bending moment the beam can take before it collapses.

(iii) In both stages tensile stress in reinforcement are taken as f . sy

(iv) For under-reinforced beams when it first yields the concrete stress fc should be less than maximum stress 0.85 F .. The compressive stress block is a triangle.

(v) When the beam collapses, compressive concrete stress block is taken as the so called Whitney stress block (rectangular stress

block with depth yk^d less than the depth of N.A.).

In both stages tension force:

T - f A sy st

A M = f A jd y sy st

M = f A j d u sy st u

Provided p ^ p , the beam is still under-reinforced If i > i , then M > M . " " y u

Page 207: 1984 The deflections of reinforced and partially

185

Tabulated j values and j u values for rectangular beams are given in TablesAI-1 and AI-2Jt can be seen from the Tables that j > j u for beams having p close to pma x. Note that comparisons between j and j u

shall be made for beams with same np values. Therefore, for these beams M > M .

y u

TABLE AI-1 j VALUES FOR REINFORCED CONCRETE BEAMS

pn

0010 0020 0030 0040 0050 0060 0070

0072 0074 0076 0078 0080

0082 0084 0086 0088 0090

0092 0094 0096 0098 0100

0102 0104 0106 0-108 0110

0-112 0114 0116 0-118 0120

0122 0-124 0126 0128 0130

k

0132 0181 0-217 0-246 0-270 0-291 0-311

0-314 0-318 0-321 0-325 0-328

0-332 0-336 0-338 0-341 0-344

0-347 0-350 0-353 0-356 0-358

0-360 . 0-363 0-366 0-369 0-372

0-375 0-378 0-380 0-382 0-384

0-387 0-389 0-392 0-394 0-396

./'

0-956 0-940 0-928 0-918 0-910 0-902 0-896

0-895 0-894 0-893 0-892 0-891

0-889 0-888 0-887 0-886 0-885

0-884 0-883 0-882 0-881 0-881

0-880 0-879 0-878 0-877 0-876

0-875 0-874 0-873 0-872 0-872

0-871 0-870 0-870 0-869 0-868

pn

0-132 0134 0136 0138 0140

0142 0144 0146 0-148 0150

0152 0154 0156 0158 0160

0162 0164 0166 0168 0-170

0172 0-174 0176 0178 0180

0182 0184 0186 0188 0-190

0192 0194 0196 0198 0-200

0-210

k

0-398 0-401 0-403 0-405 0-407

0-410 0412 0-414 0-416 0-418

0-420 0-422 0-424 0-426 0-428

0-429 0-431 0-433 0-435 0-437

0-439 0-440 0-442 0-444 0-446

0-448 0450 0-452 0-453 0-455

0-457 0-458 0-460 0-462 0-463

0-471

./

0-867 0-867 0-866 0-865 0-864

0-864 0-863 0-862 0-861 0-861

0-860 0-860 0-859 0-858 0-857

0-857 0-856 0-856 0-855 0-854

0-854 0-853 0-852 0-852 0-851

0-850 0-850 0-849 0-849 0-848

0-848 0-847 0-847 0-846 0-846

0-843

Page 208: 1984 The deflections of reinforced and partially

186

TABLE AI-1 (Cont'd)

pn

0-220 0-230 0-240 0-250

0-260 0-270 0-280 0-290

k

0-479 0-485 0-493 0-499

0-506 0-513 0-519 0-525

0-840 0-838 0-836 0-834

0-831 0-829 0-827 0-825

pn

0 300

0-350 0-400 0-450 0-500

A

0-531

0-557 0-580 0-600 0-618

/

0-823

0-815 0-807 0-800 0-794

TABLE AI-2 j VALUES OF REINFORCED CONCRETE BEAMS

*sy (MPa)

230

410

450

F ' rc (MPa) 20 25 30 40

20 25 30 40

20 25 30 40

p max

0.034 0.042 0.051 0.061

0.016 0.020 0.024 0.028

0.014 0.017 0.021 0.025

np

0.323 0.357 0.383 0.397

0.152 0.170 0.180 0.182

0.133 0.145 0.158 0.163

Ju (mm)

0.770 0.773 0.770 0.794

0.807 0.807 0.807 0.831

0.815 0.820 0.815 0.835

Page 209: 1984 The deflections of reinforced and partially

187

Appendix II

COMPUTER PROGRAM FOR DESIGNING

PARTIALLY PRESTRESSED CONCRETE BOX BEAMS

Page 210: 1984 The deflections of reinforced and partially

188

r\ •0 hi *J

Z co M CO UJ

a •

*N

r

E

LU LO CJ 0.

a

a UJ VI to

UJ cr 1-co UI cr a. V

J -1

< M r-cr

« a.

u. O

z 13 M W Hi a

Ui

z t-

• « « • * . . * « «

< * * « « « * « « « « . « * « . VI i-4 UJ Hi

X

o m u

>-IJJ u z O LJ

£ O £ 1-

. Z cn a ui

_l £ _l £ •-U l < H O • Z LULU u SI fl 1 UJ •- CD >• 1 a Z £ to o O Z « O

x \ J O < UI E j o <j) UJ fl ae Z 03 £ >-< OC -1 a rt < V H U Z LO Ui UJ CO * -J <

tn h- CQ UH ui a: cn UJ Ui I M h < W oca: • (- oc » h- <J f - u z ui O w ac C 0 Z c u O t 0 Z 3 O Ui O > r- — to "-lt O M Z to a. O -J rl CO 4 X | o < UJ t-z u o i 3 « i r o o O M H o r i - z c D Z CO LU < 1/1 '-'

UJ Cfl U LU LL. >

UJ OC Z UJ CO OC U.

I K H IQ a. O co 1- CO CO UJ r- rl

UJ CO O K u. Ij-

m o : i i J r - L U O a < Z li. QC LC UJ CO J h- O CJ UJ CO • H V U I Z Z U J 3 0 w J o : < O Lt t-

LU _j a- u o v i L3 < Z UJ H 4

H I L u j a a UJ E l - O > u l o OC 4 OC n CJ Z o 4 or < UJ to oc UJ x 13 a. UJ o > t- K-o ac O u. r< UJ z C C U U I V I Z U E U J I O I I I J M £

n < LU < LC LU LO 4 OC O <-" M aj UJ LU ac oc oc

I K i m O K O L - < h < O U - U U -

. £ 3 n OC OJ -H -1 •H

3 a LU

o -* «- o w. a ui -Ui ** CO o Q. r-Uj *-*

r> t-O to

w. *^

a. a l/l «-a. -J UJ a » I—

r* ••

o *> .- o

• H-rx u O to «- a. w CU r- » O **

•% - a O '"» «~ i- CJ v

CQ ^^ r- UJ Z -J «* o-

z a. to o co a. M LA < UI

* * K X Z Z UJ ui o O h h M M cj CJ to to

4 < Z Z ac ac uj UJ <* 4 :c K I X rl rl l_J CJ A Q

<t

tt Ltt

tt a

» a

It

tt «

CJ

o -1

3 0.

z n

a it a: tt a LU n

it

n

z o

* CO

< LU ac

i Uj

>-» £

.. a. o

ca z

. a o

in w

o 4 LU OC

> •

0. u.

» >-to u.

U u » CJ

< u-

— — o u - u.

o •• o a. - LU

r- •

3 UJ

CD • - o CD UJ

« «

< < LU UJ oc ac

II c n -z

o .-

II

a <r

O C3

rn r(

^ CU

^ r<

>-O • ^ HH

v CL

to •a.

^ rl

^ -1 Z

^ a CM

II O

z Ui

» CJ ro

CO

Q

< LU

oc

+

=) Z II

c 3 Z

UJ

Z

1-

z o CJ

o r-

LU 3

rl

> -Z o CJ

O CM

*N CM

. o u.

* K CM

" a IO

<

4 JL

re o "-a D

rs

ru

. u.

X r-

* ro

CO

<

< mZ.

rr o Ik

a hi

>-CD LU

CJ OC

o U.

CD

z CO

CO LU

I-co u Ui z ac n a. to

CO Ui LU > cr r« r-1— to CJ LU

LU a u. a.

u u.

o UJ X UJ 1- uJ

oc UJ C9 Z uJ n o £ oc z UJ LU h- > UJ n

a u

UJ CO ac UJ < CJ

oc LU O CD Lu

z < Ui

L3 2

3 LU

^ r^

o a

« cn

. a « hH

^ LU +

< >» t~i ca

£ « 3 ^ Z *

<— >H II ^ rl a.

LO a «t LO ^ r- +

re O II Q OC

LU

3

rl 1-Z CD L_>

a

a:

>-rs O o

« CO

. o « £ C3

^/ * ro O

o r-

* K1

+ Ui

. r. II UJ a.

ac to u. UJ

r Z 1-ri

u-to o UI CJ to ac UJ

o o u. z

< UJ 1-l- to LU rl

ac a CJ Z UJ O X CJ 1-

LU O

X z I- <

UJ < h- ui < oc -1 4 3 CJ CD _J UJ < "I CJ

O Z 1- <

Ui LU­LL] rl u.

a. o i-

-* 3 Z CD a * 1 ~ <3 r-

w Z 1-•^ o * ^. 1 »-. K Q 1-1 y *

z -» • o z IO « o 1

• « z CM Z O w Q •»

w w . « « HJ .^ ^* VJ

to to ^ LU LU ^ ^ »» 1-

>- >- * to to • LL. u. rg

« * 1 CJ CJ Z ui UJ a W W ,

« * • un co ro . . *J

O O II II II r-r- fM ru U U O

«—

z a

« ' . rO

**. . r-

" II CM ^J

o

LU OC a.

z 1-4

to CU CJ

cr o u.

a z < 1-to Z Z UJ n k. 4 O 0C £ 1-co a

_j

LU rl 1- LU

4 > -I 3 h-CJ 4 -J 4 _l CJ LU

UJ

O »-1- to

3 i - ^ ^ ^ t t O O r ^ r ^ ^ O r ^ H ^ S « I . O ^ S H C O ^

u u u u u o o o <J (J o O »J

^ m ' f l N o o ^ O ' - N H ^ i o O

Page 211: 1984 The deflections of reinforced and partially

189

» •» to C » rl z • u. r-o » o 4 w z co I- o z <£ M O LO Z I- « 4 l-H •-* I — \

I-I ro -> + LU CU

** r» A CU ^ Z - H -Q W W H 1 « 0- «-• O A ui iu

wy 4 0. •* K) * CO r\ -o a. a. Z . UJ UJ Q t> « • 1 i- ro r. ^ < t> >H H U • w ^ w u O u H h u r g w CJ \ v Ui u

u « \ l i / | * ri . uj u. r* w rl + uj U l L v n 1

UI to Q, n Q. £ ^ 4 to w UJ 3 > * 4 r- « Z tO Ui « O A * LL U. LU UI H

«- w w Q_ 0_ i-i II II II II Ui o. M ^ ~ ~ || CO

H H H « < Q w w w „ M

• O H UJ U J V r L i> rvj CJ w 0. o, n 0. CO CO CO CO w i- o o. a a. Q. n. *• a LU LU LU LU h

*> M w

a. K • a. H r-u a. i-r-

LU 3 Z rl 1-Z o CJ

a a CM

Ui OC 4

-1 Ui UJ y-co

w

z n to to cu ac r-co UJ oc a. II z o z

UJ H 4 _l 3 U _J 4 CJ

O 1-

>: 3 n OC M -J CD ri

3 CJ LU

LU CJ ac o u_

> LL.

4

r-4 to

o >-

>-CO u. • -, o. 1-1-1 CM CJ •

,— CJ >J.

II

to 4

4 LU or 4

-J UJ UJ 1- £ CO 3

ri

<s> n. Z ri n _l to m to rl cu -1 OC n 1- 3 LU a or. cu a. I H-z z o cu Z £

o UJ £ z l-l >. £ u. ac co cu n I- r-UJ 4 a to

O O 1- t-

o II £ CD a.

£ 3 Z

•• i—

II n

a o 1*1

o a

« ri

*H

h-a « * M ^J

a. t-

* £ •) a. II E ITJ

a.

LU 3 Z M 1-z o CJ

O a ro

L*-w

* r*

CM M a * CM CJ

H-

«— ru O

* r— CJ • »

£ CD Cu.

1 £ 'D > •

« •o • UJ

. r-*J

II CM LO

4

CM to 4

O •-

•— LO

4

CJ z n ac 4 0-E O CJ

CJ o

CM CO 4 1 r-to 4 II CO 4 a

CJ

z LU

i-

a o . o

CM

^ H C3

" .-* CO 4 a w CO CD 4 w

u_ ri

o a •j-

o i—

o L9

Z LU X I-

o o CO

. H o " . to

4 o a ** o to CO CD 4 O

u_ n O

O LU CO

-1 LU

Ui

to

-J UJ

CM

O h-

O L3

» z o C M I M

• > • -

4 u_ ru . to . Z n o

Z CO O 4

CO tO CM 4 4 O -o a i u- ^

z a. LCI c j x I-

a ro

r_ . o a o H . f\ . to O U T - • • + z

u. z o z a n o I- O ^ a n H z z o z u. UJ a eg o H

r* ac » o I U.

w C3 O Z O ri

oc a O r-ac u. a: •• LU X \ o X • CM CM

CO rl _l o: ui 3

o CJ

o o O tn

a

3 u. a •

. Ui x , a

I- 4 Z » 4 to UJ ru O t i: . H oc to O O O 4 £ .— O U. \ \ U. CD

«t tt It a

to n - X o to x a 0. O CU CM

a. » -LU c \ ru x - • • i- ru 3 o

K O u- > o • UJ ^ ^ Z "•» CM »

i 4 .cut- I /-» CJ »v

4 \ 0C *•*• J Ui I O - O O- » U. » O 4 v^ CO r-

O O 4 » _l O Z •»• LU v- M tw -ILI « > O N

- I— -^ u- . J CO » CO OC O

» n o «-. O * K OC U. . Z * 4 0L • • rl « tO CU X .CO * » O CO * tO -r-UJ « 4 X • ac * \ CM CM

. I— « » » . > to « x « a J UJ * CM • I-- DC * " 3 d . -a. » a • . I • • UJ x ' Z 4 4 O o • • »- «-

- z z z z -C UJ CM

a oc z o

o o o o o

. > » \ « u-It It tt tt It

tt -It

o _l ID

3 a .

3 O

LU

o a CO

^ « c » o r ^ l l n ^ l n < J ^ « f ^ o ^ N M » l n < > ^ » o . o r N M ^ ^ < l ^ • l l ^ c > D l -N M J U 1 « N m t > a ^ f M M - » U - . > O | V - 0 0 O O ^ C M r O

L>i>00>t>00>00_)-J^>-'';jt3,-):-,0«~'~'~*I

Page 212: 1984 The deflections of reinforced and partially

190

» X CJ

\ o oc Z CO o O u. rl OC H O U 4 uu Z *» _l n *-3 _l toe CJ CU CO 1 J U K I 4 r- r- u» CJ to to O

CU O OC C3 OC .-O Z OL -ac — "•» or to UJ • CU CO > *

0. u»

O I-o o I A [Q n J- w • 0. IX to Z 4

E ^ ^ 3 A

O O Z O r CM •>» CO 00 r- CO • » II • O <J -H O

o Ui Ui IO UJ K t- OO I-M M rl

oc oc o oc 3 3 O 3

CM a r- Z - 4

O u. o o

X -J r- 3

UJ >-• CO

3 ui Zl-ct •H 4 r- E UJ

z oc x o o H-ui c l

OC I- z l-UUJ to Ui E Ui u. o DC U. £ a. UJ z z z O U J H Z > <D

rl Z LU w LU Z ID n x E •- O OC n _| UJ 3 UJ r- n UJ Ul Jr

a E 4 a

o UJ z »- CO 4

tt at it tt

o a io c oo co

-L - O

» >u ac | <u. kk •

> • » UJ \ UI CU

O J UJ u - O uj LJ ac

\ <- UJ z o E » I- 4 u. II »u to r-Z • to C3 uC V C3 n Z » M Z O « »\ n » to l\J "to » l/l • o to X UI o . UJ tn ac u. s» ac - r-- u_ k- * to

> - tO _J CU II X UJ Ui OC

II a- UJ a.

i- o. r-z O to cu LU Z LU. > E M O 13 rl O to Z (-E to to «-l u

CU UJ CO cu o OC n co u. J t - h L U L u

UJ to 0. oc cu M I U O I - I >• OC OC to m \ Q. LL LU X

» » oc cn O it . 0 . * ro o ru » < r- u. ul - LU • o ac •%. cu •>. ca UJ OC UJ 4 n

CO ui u. r- cu I- ac 4 a 4 4 a. E » £ » O ac - ac • »-o x O CM LU rj Lu h L

tt tt tt

o a «- (M 00 CO

- LU ~u * C CJ • II C3 OC \ l/l

Z O Z CO « LL. » CU

to » ex co ru » H-UJ \ . \ to

oc » a £ I- -s. ru £ « o to - u- s x z uj \ • » ro n OC X (M "tO

r\ a. UJ IO • » to (M £ n - O II UJ • ajcclaci CM -J ac

o a. » 3 II u. cu i-r~ . _ (M » Ul tO U. l l - I U X H U I • f. u CJ io to ac x i- u i < » a O » u. Ui » » C3 r- CM u. - II Z u. » rsi Ui z * cu n o N V) a ri z rsi to • < - w v a u i i -•O o «- » » oc z u. - IUJ •• Z cu r-ui . I M O s l i •» to 2. JU

,xto •• •> a • u o « , 0 < f M o »CU \ K E > . rj . u > CM u- £ 0- I

. ^ . | . - £ _l \ I N tylrl O X » Z 4 u<

• < ._. w .- Ki .. n k- o O . . O i k »IM O O I- Z U J O •» • Ul l - r U - O Q . T - X I I O < - > •

. . ro «- ru oc ">. U L U O L »

• Ii. - » r- II X -•. E

I UJIUKl J * E r- 0. I- - 4 » I w CU \ r- Z Z

CU OC II O > V - u- K u u r K * "

d < ui U l < QC Z N CMCM O S L K - r - Z O O O • • t-aennacu-cj \ CJ CJ » r> OC OC O »CJCJ

U. * \ \ ^ U_ LL. tt « It It tt tt

o D O

r\j ^> ^^ **•

»- o a • r- o a

,-, w O o

•». U. 3 3 It

a

LO

to LU OC

3

L3

z ^H to to cu ac 1-

CO

UJ

OL

0.

Z rl

to

to

LU

ac

1-to

£ 3 E rl

X 4 E C3

rl

X

CJ

CU

x CJ

CJ UJ

_J LU

> LU

- J

r-z UJ

E O E a -J M

LU

>-

4

CJ

r.

uj 1-CJ to 0_ ui H-

1— CJ UJ Q_ to a. UJ •

ru

to

>J r-UJ to CJ

to ** a. tu­tu o u* a « r-

a. • UJ -a II ^ r-t*

to 1-to

CJ

Ui

r— n oc

3

^ D ~ O r-

uj

Ui

Z 1-LU n

X OC r- 3

r.

> 0. u.

. UJ -1

. ru r-uu

to

|_ U.

n

r* O CM

a

uj w<

Ui 1-UH OC 3

UJ to

-1 UJ

ac u 111 o OC

>- »» O 4 - V

"• _l > \ 4 Ui • £ a- oc

X o £ n 4 t- \ 3 E 1- •

O X 13 L3 H M Z Z » rl M Ik IVJ l/l

u o *CO UJ o CU LU CO .- OC X UJ u. t- ' CJ oc • to

n \ cu 3 ac

v a. » L3 II

S Z K l Z » rl to rl

~ to CU \ to oc to 1 UJ r- CO

« OC CO UJ

UJ H a O to 1-O uj \ to < - OS •

«• a. . .- • \ X Z /•» -t— n \ u» w | w

to » h- to uJ H

u. 4 uj O 4 n X OC O E Q OC 1— r- OC

z o to * O UJ I k l uu U.

tt u

o a O T-O CJ

r- ^

— \ A UJ

ac n 3 C3 Z M CO .

to \ Ui

^ oc > •-

CO

u: cu o ac

a. 1 _

1 n

1 to 1 to 1 cu 1 cc

r-

to to m Ul uc \ 1- * tO -u

UJ ca _l 1-rl 4 UJ E >- OC

o C u.

u a r-j

a r-

-1 n 4 LU

1 1 1 1 1 1 1 1 1 1

to L0

LU

ac

1-to

a _ i

UJ

>-

it

cu ac OJ

n u.

CL

o 1-

UJ

E UJ

ac I-X cu

Z

to tn UJ ac r-VI

LU 1-LU ac u

z o CJ CO

z kH

vc CJ LU

X CJ

CJ tJ

_l LU

> LU _l

1-

z LU E O E o -1 n ul

>-1-<

CJ

rs

\ z o I Q UJ -U.

z a o us CJ * CO

1~* 1-

to to Ui

>- o to a LU O *-- CM

* * CJ UJ LU UJ II O Ui CJ »-to n 1- OC tn 3

CJ

^ o r~ o CM UJ UJ

CU Z 1-Uj n

X OC r- 3

UJ

Lu

. UJ _l

a CJ

to

LO

LU

kH

CO

LU

ac • I- » to a.

O LU I-

Z ^ O to cj CU

ac cs I-z to u/ CU

<-• I-cu cu X 01 CJ CJ

z o

\ CJ

O OS

M UJ 0.

oc o 3 I- H"

u. 4 rl £. Z a I C H

z o LU LU *

o a o

^ ^ ^ r - ^ ^ « j r u A j o j o i c M P U i u . j i ^ ' O K > i o r o r o r O r O f 0 ^ r o ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ T - ^ ^ ^

Page 213: 1984 The deflections of reinforced and partially

191

X - -- X £ u * » o O II

oc o V

Lu OC m M

« u. I < 0. 0. o

CJ u.

A

UJ a CQ kH

k\ u. r\

« 0.

J^ u

\ | t

UJ

I o a E I- \ r \ UJ

• z o z X M O n ru • to

ru to • cu

r-

o ^ • x.

• • to » •-. to • cu

O K I oc r k-u. to

* X CM*

• * > V II w

UJ OC K CO 4 « Jc u. ac

a > u. tt O r-

o ru

y-X tO O

r» i • 1 N. 1 kJ

1 1 k-1 4 1 E 1 OC O u.

tt a CJ CJ IM

-1 u .

4 u.

I tt

UJ kH

OC 3

z r.

UJ U ac o u.

C3 Z kH

to to cu at D-to UJ oe a. UJ -1 O 4 3 a -i - j

4

to to CJ oc t-to

cu 1-LU OC z o CJ

Ui oc Q j

kH

u.

a. o K

13 Z i-i

* CJ uj X u

a* cn

oc ui U. l/l z 4 oc r-1-4

E 3 Z

• ^ II n

O CJ o

CJ ro H «- O to o

*u

4

. r-1 ^ u

r-t CD x. O o

« CO

. a « r* kH

u*

CU UJ

s^

« *u kH UJ

0. to 4 U J

+ f—

to II r-to

Ui 3 Z kH

1-Z o CJ

o a o IO

w-

tn

*u u a. CJ u. u.

*-ac a tn

* IM <o . o « fl 1 Ui

. r-

* ro •O

. o ^ UJ

II

_ a

LU r^

ac 3

z kH

Ui CJ ac O it

CD z kH

to to CU oc r-tn Ui oc a.

UJ _i ca 4 3 O -J J 4

to to UJ oc r-CO

LU r-LU oc z o CJ

Ui oc CO n Ik

£" O K •-O CD

w

Z kH

* CJ cu X CJ

>-co

ac cu u. CO

z 4 oc k-

r-4

S 3 Z

• r" II kH

a • «— o

o ro n CM o Ul Q

ru 4

^ . H> u n 13 ku

o CU

« cn

• O HI ^u

kH

UJ.

Ui

\^ UJ

« ^U

rl

\^ a. to 4 U J

• CM to II CM CO

Ui 3 Z r. 1-Z o CJ

o r-O ro

CM to ku

r> 0. CJ Ik

< ro 1 UJ

. T—

« ro o . o 1-

w

II CM kH

a.

Z cu X t-

r\ OJ kH

0.

. cu _j

. r-ri

a. UJ

u. kH

o CM o ro

o 1-

o C3

UJ to -J cu

a. o l-to

u_ ri

a z cu

r-n 0,

• • CM «u rM •

0. ~

• \ «- * kH \ a. UJ o

~ o o «->» • o«-rO X • v-

UJ UJ UJ

r-LU 4 1- E n OC oc o n u.

o o CM ui-

o o ro KI

4 Ui

z rl

Ui uJ OC o Ik

CO z kH

to to Ui oc 1-co UJ oc a.

cu -i CD 4 3 O -1 -I 4

t

tt

a. o I-

Z kH

to CO CU oc 1-to

cu r-LU ac CJ z o CJ

co z *-t u CJ CU X CJ

>-CD

% tt

— 4 \ UJ II % Z UJ r*

o CJ cu r- uJ • OC *u O • u.

« Z CD ^ Z » n • to x to

• CO cu \ • oc OC IM 1-

LU • CO Ik O LU to r- ac

z u. a. 4 • DC \ Ui 1- II _J

r- CD 1- kH 4 4 0-3

« O UJ » _l C C O J S i r < n I-u. • \ M tt tt tt

H-1-o CD

Z ri

to to CU ac tj-

to

cu I-UJ ac CJ z o CJ

o z r* iC CJ UJ X w

>-m

\ «

.-u 4 \ Ui II » z UJ n O CJ Ui T- CJ • OC

»» o • Ik

c Z CD ^ z \ n • to x to

• tfl LU C • OC OC IM k-LU • tO LU O UJ to r- OC

z u. a 4 • OC V UJ

*u C

*

O o T -

• uu

S

• \ z vc % • X Ul

• CM

. o r-u.

• »- II _l » IM CD

k M < 4 a. 3 * o

LU • _) OS o _J CU r- 4 n 1-u. • \ *uS tt tt tt

II i-t

a. \ • o

T -

I—

• U.

It

CU 3 a

tn tn CU oc 1-to cu oc a.

u. O

k-

to o _l

cu X k-

LU 1-4 -I 3 CJ _J 4 CJ

»-< CD Z kH

Z LU I— ac o X to

CJ l-t

I-co 4 _l cu

ui 1— LU oc CJ z o CJ

o k-

oc cu u. to z 4 oc r-

£ 3 z • r-II n

O O o ur

o n

x u

kH

CO

^u

kH

UJ

CU

« ^u

n UJ

CU U*

H-^U

4 u u

. r-UJ

UJ

UJ

+

• r-UJ

* Ui a. II

* kH

.^ o a.

/ ru CJ CU •u. a CU

« /*u i-t

UJ

0. to 4

« tt

UJ 3 Z n 1-Z o CJ

o o o >»

0-.

o IM o u»

• -a ^ J

cu •-kH

OC 3

£ 3 Z

• ^ II n

O

»— O -Jf

o a

^ N

rl

UJ

o a. • ru

kH

u -J z r. CJ IO O uf

• •o UJ

cu 1-kH

OC 3

CU 3 z kH

k-

z o LJ

kH

to to CtJ ^ oc "> 1- • CO ru CU > OC II 0. *

u *

o » o • .-- • •u. >u

• • ^u % ' o: « LU \ Ik

w tO o z O 4 r- a: • r-r-x o r- r-UJ

OC •- o 4 n £ OC ac a. o u. \

tt O O r-U u»

cu o u»

u u u u u u u u u u u u u u u

Page 214: 1984 The deflections of reinforced and partially

192

IO ru -O O

IO « 4 > • UJ » O

o r- r-4 •

CD Z

CJ «

Hi 3 z

CJ \ 4 . CU IM

CJ X o: •»

o • ik \

oc CO UJ to V UJ 4

»OC J •«. I-

*» to £ ui o

I- OC I-4 0. k. E » O oc • co o m CV H «

tt It

o ro CJ

ur

E •" 4 O UJ o CD «-

% •

E O E

CD Z

o II oc CJ

E 3 Z

• ^ II n

O O O IO

O

a

CO

• o * ru r-A \s Ui • r\ 4 uu

• «— UJ

UJ

• OC CJ II OC CJ

Ui 3

z r^ r-

z o CJ

O

o CJ

. o •

*% oc CJ

* ro • ui

• r— HI Ui 0. UJ

<^ UJ

II E OC CJ

•o 1 UJ

. •-« kH CD < tt

<u Z

• * *u

\ « E « -OC \ CM CJ UJ •

o o * O r-O «- u.

.— • • o «- » VO X II

• UJ UJ k. k- z

1- LU UJ 4 E 1- E O rl OC E OC O 3 Ik *

tt o r-O

4 I-4

U C J U

*•' O O r l M I O ^ ' i r K I N R I O ' O r M I O NlMUMfOrOMUlMrOrOlOut ufufuf MviMiMrgiMiMnjrgcunjrururgNiM

a a.

ac a. ca

~> -\ -s ^

Page 215: 1984 The deflections of reinforced and partially

193

*\ r

ru \ j

r 4

H 4 a u\ . « o r O w . E O 4 r UJ CO

u 0. OL

< 3 »-3

O fu • M UJ • uf IA CM Otl UJ

-I O IA • O su O .

• a o «-

O O uj O CO t-. UJ

O IO . IM O

O O CJ ro

r* r- • cu r- o oc ru >o n 3 O • O o

E . ro E u\ U\ CJ . U K I O r- O

o CO

. <M rj

r-

I o a o O o o o o . o " O N a. uj a. . O o

E O o

. CO Pu r\J

UJ 4 • o ru Ui o o . U I M O O

f- CM X

o o . co o a

• o CJ Ul o a. o o 0. ro IM

CM *0 ut

f l

r- cu to O «- cu

ta

LO UJ

Z CD kH

to LU a • E 4 UJ ca CJ a. a

to 4

u. o

oc o oc oc UJ

. 3 a UJ

k-

Z UJ

E o E

CD Z kH

>-Ik

to n H-4 to

CO 4

. 3 a cu

UJ CJ oc o ik

co z kH

>-Ik

to kH

K-4

</! CO 4

. 4 . z

Ik

o

z o kH

k-

1/1 o a.

CM OO

. o ul-

*— «~ 1

CM

^ . r-ro CO

O r-. o

o ro 1

o o

,_ r—

tn 4

Ik

O

oc o oc ac cu

. 3 a Ul

1-Z Ui £ o E

CD z kH

>-Ik

to kH

lr 4 to

to 4

. 3 a cu

cu CJ oc o Ik

C9 z kH

Jr Ck

to kH

k-

4 tn

tn 4

. 4 • z

Lk

o

z o kH

1-

to o a.

,-o . r—

ut

.-

.-1

st p -

. r-ro oo

00 CM

. ro O rO 1

O o

CM r-

to 4

Ik

o

ac o oc oc cu

. 3 1 a

ui

•-z Ui

1 E O E

CD Z kH

>-tk

to

o o . to

ro v— 1—

1

-O Kl .

00 ro

rt to r-4 to

to 4

. 3 a cu

UJ CJ ac o u.

CD Z kH

>• Ik

to 1-1 H-4 to

to 4

. 4 . Z

Lk

o

z o kH

k-

to o a.

ro p-

. UJ o IM 1

C j

o

ro w-

tn 4

lk

o

or. o oc oc Ui

. 3

a LU

•" Z CU

E o E

CD Z i-t

>-lk

to kH

K 4 to

to 4

# 3 a cu

ul CJ oc o u.

to z kH

>• Ik

to n k-

4 to

ul 4

. 4

• z

Ik

o

z o n k"

to o a.

UJ

o • o

CM r-

«-* 1

o o> . ao ro ao

r-O . o o> eg 1

O o

ut r-

to 4

ik

o

oc o oc oc UJ

. 3 a UJ

H-Z CU

E o E

CD Z 1-1 V Ik

CO

kH

r-4 to

to 4

. 3 a UJ

UJ CJ ac o u.

CO z I-t

>-Ik

to kH

1-4 to

to 4

. 4

. z

Ik

o

z o kH

1-

to o a.

CU o» . CM

CM

^ .-1

ut

UJ . O to oo

on CM . ro

00 IM

1

o o

l/l

r-

to 4

Ck

O

OC

o oc oc cu

. 3 o ul

r-

Z UJ £ o E

CD Z M

>-Ik to kH

1-4 to

to 4

. 3

a cu

UJ CJ

oc o Lk

CD

z M

>-Ik to kH

I-4 to

to 4

. 4

• Z

Ik

o

z o kH

I-

co o a.

UJ

-O • HJ

r-r-T -

1

o CU

. o ur 00

aj IO

. uj

r-fM

1

o cj

-O .-

to

4

uu

O

ac o O CM

oc oc Ui

. 3

a cu

I-z Ui E o E

to z kH

>-Ik to I-t

k-

4 Ul

Ul

4

. 3 C5 Ui

Ui CJ OC

O Ik

CO

z kH

>-Lk to i-t

t-4 to

tn

4

# 4

. Z

u.

o

z o kH

r-

to o a.

. o »— .-T-1

to

o . o

ut 00

CO

ro . Ok

•o IM

1

o u

ru. r—

to 4

Uk

O

oc o oc oc LU

. 3

o LU

1—

z LU

£ o £

CO

z rl jr

tk

to i-t

r-4 to

Ul

4

. 3 a cu

Ui CJ

oc o Ck

CD

z kH

jr

u. to kH

1-4 to

to

4

, 4

. z

Ik

o

z o n r-

CO o a.

,_ 00

. ro a u— r-1

r—

u j

_ . r-ut 00

O CM . cu

UJ IM

1

o CJ

uO r—

tn 4

lk

o

oc O CM OC OC

cu

. 3 a Ul

H-Z UJ

E O £

to z n >-u. to

. ru. Ou O r-1

O CM

. CM ut

i-H C O

1-4 to

to 4

. 3 a CU

UJ CJ

ac o Lk

LD

Z t-t

jr

Ck

CO kH

k-

4 to

to

4

. 4

. Z ik

o

z o n

K-

Ul

O a.

CM O

. ut CO IM

1

O o

(> 1—

tn 4

lk

O

oc o ac ac UJ

. 3

a UJ

r-z UJ

E O £

CD Z kH

>-Ik to i-t

k-

4 to

to 4

. 3 CJ CU

ui CJ

oc o u.

CD

z l-A

> •

Ik

CO kH

H 4 to

ul

4

. 4 • Z

u.

O

z o

o to . o

O 1 o .— 1

oo o-. CM

ut uO

CM

to . ru Ut IM 1

i-l o 1- O

I to CJ 1 o a

CM

to 4

Ck

O

ac uj O uj oc • oc ro Ul 00

o r-

• 1 3 a Ui

1—

z Ui E o E

to z oo kH UJ V • u. ro to ur uH CO I-4 CO

CO 4

. 3 a Ui

LU Cj o

a: c> o • u. o

ro CD 'M

Z 1 I-t

> •

Lk

to n k-

4 to

to

4

. 4 • Z

Lk

o

z • o 1 n O 1 1- 'J

1 to r-1 O OJ

a.

3 O

E O E

CO

z

CD Z

z o

o a.

Page 216: 1984 The deflections of reinforced and partially

194

ac cu a rvj

cr o UJ in

E O E

13 Z 00 rl <J

> • lk OO Ul CO uu O

3 a LU

LU CJ O oc s> O • u. ru

O LD CO Z

z o w O k- a M . to -t o o a.

a. to O IA

13 Z ut kH 00

LO UJ •HI 0>

CJ O oc cu o • lk UJ

CM CD O

z o w a k- CJ rl . to to

O O a.

oc ft a to oc • OC ut

Z c-n O

> • Ik to CO UJ r-l O

UJ SI OC IA

o • u. O

to CD tO

Z o kH O

I- o kH . tO uj

o o a.

DC

a oc ac LU

. 3 C3

a CM

. ro O 1

E O E

CD Z fk-n ro

>- . ik oo to UJ *-t o>

CJ CO oc «-

o • lk to

r-LD 0O

Z

o ri O I- O kH . to r» O t> a.

OC r-LU ru.

I

tO Pu rl 0>

CJ o OC T-

o .« u. O

o CD O

o n a r- J •—1 •

O O a.

OC

o ac oc cu

. 3

a LU

k-

z Ui E

o E

CO

O •a

. o ut 1

z o kH > •

Ik to kH

IM

. to c-O

CJ O OC UJ o . Ik CO

CM CD t>

Z o n o k- O rl . CO O-

o o a.

ac o ac ac cu

. 3

a

CM IO

ru. CM

1

£ O

LD Z i-t

>• Lk

to kH

ro r-. CO

ru. o

tJ o ac sf O •

CD O z

z o n a i- o to o o cj a. T-

Page 217: 1984 The deflections of reinforced and partially

195

o ID

O ik

CD

CD Z

oc E < I- O l to

OC CD 1

a. z i I H I

z at o z I z

oa< Ui I

z o< E

Ui O I

a z<

Z oc t o o<

3 "-I I CJ CO 1 -I to< 4 OC I o k-<

to< OC CU I o act oc a. i ac i ui uu I

>< a r-t 1

4 UJ I

ac < r- Z I

ui | u. > I O M l

O l

_l I- I 3 kH I

UJ 4 I X I- CO"

a.

ik

o LU cj Lk 4 lk LU

£ O £

LU OC

E E

I O

a. D.

E 4

X o

a. o

o ac

z 4

CI

o

LO

z

a. ik

o

a. o

1 « 1 1 « 1 1 « 1 1 « 1 1 * 1 1 « 1 1 « 1 1 « 1 1 * 1 1 * 1 1 * 1

1 . 1 1 4 1 1 • 1 1 Z 1

1 u. | 1 O 1

1 Z 1 1 O 1 1 rl | 1 k- | 1 kH | 1 to | 1 O 1 1 Ok. 1

1 UJ 1 1 X 1 I r-

l a 1 z 1 4

1 4 1 ui 1 oc 1 4

1 -J 1 UJ 1 UJ I r-1 to

1 CO I z 1 r-t

I to 1 to 1 UJ 1 ac 1 I-1 to 1 UJ 1 oc I a. I l 1 z 1 o 1 z

i Ck 1 o

1 z 1 o 1 n I 1— 1 4 1 Z 1 rl 1 >~ 1 OC 1 Ui 1 r-1 ui 1 o

1 -1 1 4 1 Z 1 rl 1 u.

I « I * 1 * 1 * 1 HI j HI

to 1 4 1 U. |

O 1

ac 1 O 1 oc 1 OC CM 1 LU p- |

. | ur I • 1 I 3 1 a l LU I

k- 1

z I ui 1 E 1 O 1 E 1

CD 1 Z 1 M 1 > 1 ik ro 1 to IO 1

n • 1 k- CM 1 4 CO 1 to O 1

CO 1 4 1

. 1 3 1 CJ 1 UJ 1

1 UJ 1 1 CJ 1 1 oc 1 1 O 1 i lcr 1 1 uj 1 1 CD • 1 1 Z N 1 1 n r- 1 1 > o 1 1 Lu | 1 to 1 1 I-t 1 1 1- 1 1 4 1 1 to 1

1 to 1 1 4 1

1 * 1 1 4 1 1 * 1 1 Z 1

1 u- 1 1 O 1

1 u~ 1 1 O 1

1 Z 1 1 O 1 1 ri o 1 1 1- O 1 1 rl . | 1 Ul O 1 1 OIJ 1 I a.«- I

z 00

n ac 3

X CJ 4 LU

Z II n ru w CJ

z v: Z ro o CM 00

. . CM P-ru to

uj

E £ ro ro . ro to

E E; |

z z o o IO o

. . UJ ru. o to O tu­tu, •a to fu-

to

.—

N II UJ a -J ac

IU to

LU E to CO CJ «- Z

ac r- co n o . z to lk CO kH tO

ru to LU co H to ac Z r- ac h-H U t- tO to to IU Ul cu oc uu ui oc a. ac I- a. k- LU lk ui ac z o LU CJ n OC Z r-0. O ui Z

CJ CJ cu LU OC E

> z o o CJ cu _l —I LU CJ II 4 4 u. ac «- I- r-L U O N O O LU cu uJ h- r-

C I

Page 218: 1984 The deflections of reinforced and partially

196

IC

o 4 -I

E O

o to

3

13

« OC « UJ « Ik * to « z * 4 HI OC

« I-* 4

* « CU « ac « m « n * u.

* « a. « o * r-

« « CO « to « CU * ac * t-* to

« cu « ac « CJ

« z « O « CJ

* « CO

« z * I-t

k * * u * cu

a:

a. 4 a. E

O V

3

CD

0. E

ut ut

a. o t- II

Ui

z oc n CD

M tO LU

X

o

CD

z

X

u

a. z

a. o

uj to oc tn

CJ to

to cu z »-—I cu * oc CJ CJ UJ z X o

II ac o

ac ca

a.

o

« cu < —I

* oc * 3

* « X Hi CJ « 4 « UJ

« « Z « n « UJ Z « CJ lk « ac * o « u.

* « CD * Z «-I M r O « Ul . « tO «-« Ui tO « ac «-« i-« ui « UJ « oc « o. II « r-* UJ M < J l « CD « 4 « 3 « O

OC UJ lk

IA

II II II II II

E O

II CD II Z II n

CJ II cu II X II CJ II

II >- II OJ II

II CU II n II OC II 3 II

II X II CJ II 4 II Ul II

II Z II n II

II CU Z II CJ lk II ac II

o II u. II

H II

CM II n to II

CO

to O II LU r- II oc ro II I- II to

* _i

II

n UC II a. II II

CM II Ui kH II

_J a. ii cu II 4 II

CU CJ z OC uC

o

** r- *

tn ro * to . * Ui r- « oc ro « I- r- «

UC a.

II Ui ft -j a. CD 4

II

* « « « « * « « II HI

* « * * * «

II II II II II II II II II II II II II II II II

ul II CJ II

O "

CO z ft

tn tn cu oc 1-ul UJ ac a.

II II II II u II II II II II II II II

II II n II II II II II II II II II

or II UJ II Lk ||

CO || Z II

4 II OC II 1- II

II O II r- II

II OC II

-J

u;

o r-t-o m

i-to T—

t-4

LU OC ft

3

X t j

* * ¥

* * * « « * « * * « « « * « * « « « « * * «

;,, v

Page 219: 1984 The deflections of reinforced and partially

197

Appendix III

BEAM SURFACE STRAINS

Page 220: 1984 The deflections of reinforced and partially

ca ca

Ca IS

ca CS

ca ca 198

£ £

£ £

CD !

ca

CE QZ I— CO

co I

o o cs Pi % cu PQ GO

c-•H •U cd

o T3 CD 4J Cfl

cu ex CJ

u u CD TJ

C 3 cfl

CD

a cfl 4-1 U cn

B cfl CD rO 4-1 O cn CD cn cfl

a) u a C H

CD M

00 •H

LO CS

cn OJ OD

OJ OJ CD

i^) 3ygu wonog woyj 33NUISIQ

Page 221: 1984 The deflections of reinforced and partially

eg ts

CS ca si

ca CS CS

rs cs

199

CS CS

CS CS CS .—I

1

CS CS LO 1

• CS

CS CS LO

£ £ \ £ £

CD | cs T—1

X

jZ 1—1

<x az 1— cn

LO

o o CM Pi

R cfl CD pq

oo C •rl TJ cfl O rH T3 CD •U

cfl CD

CD U

u CD T3 3 3

3 •H Cfl S-I +J OJ

<IJ a cfl 4-1 U 3 cn 6 cfl CD iD

cn CD

cn Cfl

CD

u a G H CN

a) u 3 00 •H

LO CS cn CNJ

CO ao

CNJ CM CD

(UJW) 3ygu W01109 WQyj 33NU1SIQ

Page 222: 1984 The deflections of reinforced and partially

200

£ £

£ £

CD I

cn l

i — i

l

o o cn Pi

I CD pq

oo 3 •H

-a Cfl

o CD 4J Cfl CD p, CD ^ M 0) T)

3 3 3 •r-t Cfl r-J

CD CJ Cfl

CS CS LD

ca ca ca r—t

> — i

ex DC I— CO

H 3 cn

1 CD

cw 0

cn (D cn cfl CD U CJ

3 H

cn l

CD U

3 00 •H

LO

ca cn

•«u-

OJ

cn OJ OJ CD

(«"«) 3y9I3 H01109 woyj 33NU1SIQ

Page 223: 1984 The deflections of reinforced and partially

201

£ £

CD I

.—I

x

cr co \— CO

ca ca ca

T 1

*—1

ca ca cn cr

s: cr UJ QQ

-ac:

cn r-CNJ cn u r—

z LU x o x

UJ UJ UJ UJ UJ _1 -J —I —I

U UJ J u u u u

CJ >- >- >-J u >- u u u u cr >- 0 M u x x x x

X H- h-1— CNJ cn •*• m

z co cs cs ca ca ca 0 < ! + X O <- K

ca ca _

LO ca cn

cs cs

•"ST •«kf

OJ

CS

cs cn co

ca ca

OJ OJ

ca ca

CD

1 1—1

1

o o cn Ptu

B cfl CD pq 00

3 •rl T) Cfl O T) CD 4J cd CD P. CD U U CD X)

W 3 •rl Cfl U 4J

cn CD O cfl 4-1

M 3 cn

s CD cn CD

cn Cfl CD CJ

3 H

H <

CD U

3 00 •H

(ww] 3yai3 wonoa woyj 33Nbisra

Page 224: 1984 The deflections of reinforced and partially

ca cs

-ut •^~

C\J

CS cs

cn oo

cs cs

CM CM

CS CS

CD

CS CS

202

cs cs cs

UJ LU

cn to

r_j

cc a

CN I CN

I O o cn ei CI OJ pq

CS

cs LD I

LU

ac ca ca LO 1

OO

3 •rl XI Cfl

0

UJ

cs

cs cs LO

ca

£ £

CD I 53

d CC r-CD

CM I

CNJ I

ca cs cn x

-j£

CO

r-CD CM

n

UJ _i CJ

cs cs LO LU LU LU UJ

X LU X X LU O OO X

CJ LU _l CJ CJ CJ CJ _J CJ >->->- >-

_I CJ >- CJ CJ CJ CJ

X >- o >-t CJ X X X X (— X r- r— t— t— •-« r— r—CM CO T LO z co cs cs ca cs cs

X • <- »<

C9

caL_

LO

cs cn

ca cs

CM

cs cs

cn GO

cs ca CM CM

cs cs

CO

cs cs

TJ CD 4J cfl ID P-CD U U CD X) 3 3 3 •rl cfl U

u cn CD

a Cfl 4-J

u 3

§ CD J-J

cn CD

cn Cfl

cu u a 3 in l H

CD U 3 00 •H

(ww) 3ygiJ W01I09 W0y3 33NU1SIQ

Page 225: 1984 The deflections of reinforced and partially

C3

ca cs cs

ca ca ca

ca ca

ca ca

203

£ £

CD I CS

cr oc i— CO

m l

CM

I O

o cn Pi

B cfl CD pq oo 3 •rl X) Cfl

O X) CD 4-1 cfl CD P-CD U U CD X

3 3 cfl U

u cn CD

a cfl 4-1

u 3 cn cd CD rO

cn CD cn cd CD u a 3

I H M

CD U 3 00 •H

LO CS cn

*u-

CM

cn oo

CM CM CD

(uiui) 3yyrj wonoa woyj 33Nuisia

Page 226: 1984 The deflections of reinforced and partially

204

ca ca

ca ca

ca ca

ca ca

ca ca

ca ca

£ £

£ £

CD 1

ca ca LO cr

co (— CO

ca ca ca

•f

1 CM

ca ca cn X

X CE UJ X

-ii

I—I

CNJ

CO «ut II

r—

Z UJ X o X

CJ LU UJ UJ UJ >- UJ _ CJ LU _J CJ CJ CJ CJ

J U >->->- >-_l O >- CJ CJ CJ CJ X >- CJ I-I CJ X X X X t— X r— I— I— r— I-H h- r- CM Cn "uf LO z co ca cs cs ca ca 0 HJ + x *> «- X.

ca ca

na i

LO

ca cn

ca ca

ca ca ca

CM

ca ca cn oo

ca ca

CNJ CM

ca ca

CD

(ww], 3yard wonoa uoyj 33NHISIQ

Page 227: 1984 The deflections of reinforced and partially

cs ts

ca ca

cs cs

ca ca

ca ca

ca .ca

205

£ £

£ £

CD I CS

cr co \—

cn

cs ca LO cn

i cn i cs ca cn X

X X LU CD

Z _«c CD r-*

OJ LO (i

r— Z LU X o X

LU _I CJ r—

CJ

-J X r-H

t —

r—t

z

0

LU _J CJ >-CJ

r— CD

<J

LU LU _1 _I CJ CJ >->- CJ CJ

X X r— 1—CM ca ca

-+• X

LU _i CJ >— CJ

X p —

cn ca

*

UJ _i CJ >-CJ

X r—

""uT

CS

••

LU _! CJ >-CJ

X 1—

LO CS

X

CS

ca

• LO CS

cn

cs ca

CM

CS

ca «

cn co

cs cs

CM CM

ca cs

CD

ca

csP

cn l cn I

o o cn Pi

B Cfl (D pq

oo 3 •H X Cfl 0 X CD 4J Cfl CD Pu CD U

u CD X

3 3 3 •H Cfl U CD CJ Cfl 4-j U 3 cn

E cfl CD

cn CD cn cd CD U V 3 H 00 I H M H

< CD

U 3 00 •H

(ww) 3aarj wonoa woaj 33Nbisia

Page 228: 1984 The deflections of reinforced and partially

ca cs

cs cs

ca ca

ca ca

ca ca

cs ca

206

ca ca ca r-t

I

CS

ca LO i

ca

£ £

£ £

CD I CS

cr co !— 01

CM 1

-ui-

I ca cs cn X

X X LU X

-JJC

r-CO

T LO II

r—

Z LU X a X

cs cs LO

CJ LU _J CJ CJ CJ CJ _J CJ >—>—>- >-_J CJ >— CJ CJ CJ CJ X >- CJ H CJ X X X X r— X r— r— t— r->-• r— r-CM CO -«uf LO Z CO CS CS CS CS CS

-fes •

LO cs cn

cs cs

•sr •<u-

CM

C9 cs *

cn CD

cs cs CM CM

cs cs

CD

cs _ cs

cs^

CN I

<f I

o o cn PS CD pq 00 3 •rl X cd

o X CD 4J cd CD Pu CD

u u CD X 3 3 cd

u 4J

cn CD CJ Cfl 4J

u 3 cn

I rkJ

4-1

o cn CD

cn cfl CD

u a 3 H

I H H H < CD

u 3 00 •H

(w«j) 3aai3 wonoa woyj 33NHisra

Page 229: 1984 The deflections of reinforced and partially

207 ts is

ca ca

ca ca

ca ca

ca ca

ca ca

CD I CS

cr co \— CO

ca ca ca

cn 1 -ur i ca ca cn X

X X LU GD

T LD .

CD r-II

r— Z LU X o SI

LU LU LU

CJ LU _l CJ CJ CJ CJ _J CJ >->—>— >-

J u >- u u u u X >- CJ H U X X X X I— X r— r- r— r-—> t— r— CM cn ^r LO z co ca ca ca cs ca

ca ca

"Is i

LO CS

cn

ca ca

CM

ca cs cn CD

ca ca CM CM

cn l <r I o o cn OH

I CD pq

oo 3 •H X cfl O X CD 4J

3 CD Pu

CD U U CD X

3 3 3 •H 3 U

cn CD

o 3 4-1 U 3 cn

§ CD

cn CD

cn 3 CD U cj

3

I H H H <! CD M 3 00 •rl

Pn

CD

(ww) 3aarj wonoa woyj 33NHisra

Page 230: 1984 The deflections of reinforced and partially

ca ca

cs cs

ca ca

ca ca

ca ca

ca ca

208

cr co i — C O

-uT I

<r l

o o cn Pi

S CD PQ

oo 3 •rl X 3 O X CD 4J 3 CD (X CD U £

F £

CD 1 CS

u 0) X 3 3 3 •H 3 U u

CD

a 3 4-1 M 3 cn

I CD rP 4-1 0

cn 3 cn 3 CD

u a 3

CD U 3 00 •H Pn

LO CS

cn Hut

CM

cn CO

CM CM CD

(ww) 3ygiJ WOllOa WOyj 33NU1SIQ

Page 231: 1984 The deflections of reinforced and partially

ca ca

ca ca

ca ca

cs ca

ca ca

209

CNJ

cn CD

CM CM CD

ca LD

LU

CO

C3

ca

ca ca LD

s ca ca

ca s tn

i

ca ca ca

cn i

s LD <5T X

2:

cr LU

m

r~ cn .

OJ

ca 1—1

11

p—

z LU X O 21

_l CJ >-CJ

_J

cr 1—1

1— 1—1

z

0

LU _] CJ

>-CJ

t—

CO

HI

LU _l CJ >-CJ

X 1—

cs

+

LU _J CJ >-CJ

X r— OJ

ca

X

LU _l CJ

>-CJ

X r—

cn cs

LU _J CJ

>-CJ

X r— TT

ca

< •

LU _J CJ

>-CJ

X r— LD CS

X

ca ca

ca £ £

£

CD I CS

CO

s s s

ca ca

ca ca

ca ca

ca ca

cs ca

cs^ ca^

cn 1 o m <r Pi B 3 3 pq

00

3 •rl X 3 O X 3 •U 3 3 P. CD U U 3 X 3 3 3 U 4J CO CD CJ

3 4-1

u s s LO

jZ 1—1

cr CO r—

3 CO

R 3 CD

-a 4-1

0 CO

3 cn 3 3 u cj

3 CN .-H I

3 U

3 00 •H Pn

LO CS

cn "3-OJ

cn CD

CM CM CD

(ww) 3ygi-j wonoa woyj 33NUlSia

Page 232: 1984 The deflections of reinforced and partially

ca ca

cs ca

s ca

ca ca

s s

s s

210

£ £

CD

CS

ca ca LO

cr cr: i —

co

LU _J CJ LU LU LU LU

ca ca ca

T ! ca LD r X

2: X LU CD

. CO cn r-H

11

r—

z LU X O 21

CJ LU _J CJ CJ CJ CJ _J CJ > - > - > — >-

_J CJ >- CJ CJ CJ CJ

cr >— CJ 1-1 CJ X X X X r— X r— r— I— t— r-l I— f— OJ CO - T LO

z co cs ca ca ca ca

ca ca

la

LO

ca cn

ca ca *J-

^r CM

ca ca cn co

ca ca CM CM

ca ca

CD

ca ca

ca^ ca

•uj-

1

o 10 <r od

I CD pq 00 3 •rl X 3 O X 01 4J 3 CD P, CD M U CD X 3 3 3 U

3

a 3 4-1

u 3 cn

g CD -P 4-4 0

cn 3 cn 3 3 U a 3

cn

H <

3

3 00 •rl

Pn

(ww) ^ygij W01108 WOad 33NU1SI0

Page 233: 1984 The deflections of reinforced and partially

211

LD I CS • — i

x

cr co r—

CO

LO

ca cn

sr •sr CM

cn x

CM CM CD

(ww) 3yau wonoa woyj 33NbiSI0

Page 234: 1984 The deflections of reinforced and partially

212

CD ! CS

CO

CN I

o o cn Pu PH 3 CD pq

00 3 •rl

X 3 O X CD U 3 3 P. 3 U U Oi X 3 3 3 •H 3 U CD U 3 4-1 H

s s ID

-z. 1—1

cr CO r—

3 cn f= s 3 4-1 O cn 3 cn 3 3 U u 3 H

LO r-l I H H

3 U 3 00 •H Pn

LO

ca cn

•sr sr CM

cn x

CM OJ CO

(ww) 3yau wonoa woyj 33NHISIQ

Page 235: 1984 The deflections of reinforced and partially

ca ca

ca ca

ca ca

cs ca

ca cs

ca cs

213

£ £

£

CD I CS

ca ca cr

cr i— CO

ca ca ca

cn i

ca ca cn X a_

X X LU X

-Jr-

O) CD

CM sa­il

r—

Z LU X o X

LU LU LU LU 1 I I 1

CJ LU _l CJ CJ CJ CJ _l CJ >->->- >-

_J CJ >— CJ CJ CJ CJ X >- CJ r-( CJ X X X X

X r— I— I— t— i—• r- I— CM cn "ST LD z co ca ca ca ca ca

ca ca

Is ca ca

ca ca

ca ca

ca ca

ca cs

IST*

cn l o o cn PH.

PU

B 3 CD pq oo 3 •H X 3 0 X CD 4J

3 CD P. CD U

u CD X 3 3 3 •H 3 U 3

a 3 4-1

U 3 CO

s cu 4-1

0 cn 3 cn 3 3 U a 3

M3 rH

1 H H

3 M 3 00 •H Pn

LO CS

cn

sr sr OJ

cn x

CM CM CD

(ww) 3yau wonoa woyj 33Ntiisra

Page 236: 1984 The deflections of reinforced and partially

cs El

CS CS

CS CS

ca cs

cs cs

cs cs

214

CD 1 CS

ex CO r —

CO

cs LO CM sr

l cs cs cn X X

X X UJ X

z _j£

OD CD

CNJ sj" II

r— Z UJ y O JE

UJ _i CJ >-CJ

_J X 1—1

r— r-i

z

e

LU _i CJ >— CJ

r-CO

S

LU LU _J _J CJ CJ >->- CJ CJ

X X 1— 1—CM CS cs

+ X

LU _J CJ >-CJ

X r— cn cs

UJ _J CJ >-CJ

X Y— si­rs

«-

UJ _J CJ >-CJ

X r— LO ca

X

cs cs

ca •

ca CO

ca ca

•ST

•sr CM

cs cs

cn x

cs cs CM CM

ca ca

CD

i

o o cn PH PH

B 3 CD pq 00

3 •rl

X 3 0 X CD U

3 CD Pi

CD U U CD X 3 3 3 •rl 3 u 4J

cn CD CJ

3 4-1 U 3 CO

B 3 3 JP 4-1 0 cn 3 CO

3 3 u 3

r-u rH

I

H < 3

3 00 •rl Pn

(ww) 3ygu wonoa woyj 33iMuisra

Page 237: 1984 The deflections of reinforced and partially

ca cs

cs cs

cs cs

ca ca

ca ca

cs cs

215

CD I CS

ex CO r— CO

LO l

o o cn PH PH

B 3 3 pq oo 3 •rl

X 3 0 X CD 4J

3 CD

P. 3 U U 3 X 3 3 3 •rl

3 r-4

CD CJ

3 4-1 r-4

3 CO

§ 3 J-J

4-1

O Cfl CD Cfl

3 3 U cj

3 H

00

3 U 3 00 •H Pn

LO

ca cn

sr sr CM

cn x

CM CM X

(ww) 3ygu wonoa woyj 33Nuisra

Page 238: 1984 The deflections of reinforced and partially

216

Appendix IV

VARIATIONS OF MAXIMUM CRACK WIDTH

Page 239: 1984 The deflections of reinforced and partially

217

<r o

u CD

3 3

f*

cn o i-H

CN O r-l

CO 3 i-H CJ >, CJ

00 3 •H X 3 O •J

4-1 O

U 3 rO

B 3 S3

t maximum load

s R200

cfl CD •rl

x: u 4-1 CD x cn •rl

3 B 3 X 3 CJ pq 3 U -o cn

CD 6 rH 3 CJ

•rl CJ

X 3 00 B 3

•rl 4-1 X O Cfl

o 3 rH O •rl 4-1 4J O

3 •rl U 3 > > H

3 M 3 00

•H Pn

(IUUI) mpjt\ ^[OTBJ.0 UiniUXXBH

Page 240: 1984 The deflections of reinforced and partially

218

OJ

<r o o cn OH

CN

in

o o cn Pd

CN

cn

o o cn Pd

CN

CN

o o cn

CN 1

1 O

o cn Pi

un o

u cu

1 3

<r o .—I

cn o ^H

CN O r-l

O r-H

cn 3 r-1 a >> CJ

00 3 •rl X 3 0 hJ

4-4 O

u CD rQ

e 3 S3

X

maximum loa

/M = 0.5)

t y

X 4_J »UJ

3 O

H3 O JJ cn X Pi •rl S cn

3 J*i -rl CJ U 3 CD u cn CJ e

e.3 3 CD e pq •H x •> 3 cn e CD

Variation of

of loading cycl

CN 1 > H <fi 3 M 3 00 •H Pn

(miu) U.3PTM ^ O B a Q uinuiTX-Bj^

Page 241: 1984 The deflections of reinforced and partially

219

cn m

o o cn PH

cn l <r I

o o cn

en cn

o o cn Pi

cn CN

O O cn Pi

cn r-^

O

o cn Pd o

I—I

. <r o rH

cn _ o rH

CN - O

rH

o

co 3 |H CJ p O oo 3 •rl X 3 0 hJ

4H 0

u CD -P B 3 S3

u CD rO

§ 3 -3 4-J

•rl

3 X Cfl J~\

maximum lo

M /M =0.7

t

V

4J W 3

O j3 O 4-1 cn X Pi •rl 3 cn

3 X -rl CJ JH 3 CD !-i cn

u B B 3

3 CD

B pq •rl X * cfl cn B CD

rH

3 Variation of

of loading eye

CD U

3 00 •rl Pn

(una) LpPTM J1DBJ-D uinuiTXBH

Page 242: 1984 The deflections of reinforced and partially

220

<r cn

o o cn Pi

-ut

<r o o cn Pi

<r CN

o o cn Pi

-3"

cn I

o o cn Pi

i

i

o o cn Pi

-H O

u CD -O

B 3 3

-uT

O i—I

cn o r-4

CM O r-1

o rH

CO CD r-\

o !>. cj

00 3 •rl X 3 O rJ

4H

O >H

<D rO

B 3 Z

CO ,-u 0 CT\

at maximum 1

0 (M /M = 0.

j-: o 4J cn x pi •rl 3 CO

CD Jji -rl O r-l 3 CD S-l Cfl CJ E

B 3 3 CD E pq

•I-t

X « 3 cn B 01 rH

4H a 0 >i

CJ

-4 Variation

of loading

> M < CD U 3 OO •rl Cn

(uiui) q-ipx^ jpnao mnuixxBft

Page 243: 1984 The deflections of reinforced and partially

221

LO

o LO <t pi

<t

o LO

o-Pi

en O LO -uT Pi

r-H

1

o LO <r pt,

CN 1

O LO •uf

Pi m o r-l

•ut

o r-4

cn o r-l

CN O I-H

o i-H

CO 01 r-\

CJ >1

CJ

oc 3 •rl X 3 0 J 4-4 O

U CD X E 3 S3

U CD X

E 3 3 rC 4-1 •rl

3 X cfl 0

r-\

at maximum

0

X m 4J -ut

x pi •rl 3 cn

3 rX -rl CJ rH 3 CD M CO CJ

E E 3 3 CD

E cq •rl X » cfl co E 3

rH 4-1 CJ 0 >>

cj

V-5

Variation

of loading

H

3 M 3 OO Pn

(unu) H1PTM ^OB-IO mnuixxBft

Page 244: 1984 The deflections of reinforced and partially

222

LO

o

-ut

o r—1

cn o r-4

IN O r-l

o I—I

CO CD r-\ CJ >, CJ

00 3 •H X 3 O hJ

4H O

U 3 rO

E 3 S3

U CD

•i 3 3 rC 4J •H

3 X 3 O

i-H

at maximum

ies PP300

rC U 4-J 3 X CO •rl 3 E

3 rJJ 3 a pq 3 u « O CO

3 E rH 3 O E >* •rl CJ X cfl 00 S 3

•rl 4H X O 3

0

V-6

Variation

of 1

H <

3 t-4 3 00 •rl

'Pn •

o en

O o «N r-4

o o

(cuui) LppTjM JIOBJQ uiniuxxB^

o o

Page 245: 1984 The deflections of reinforced and partially

223

Appendix V

MEASURED TOTAL DEFLECTIONS AND MOMENT-DEFLECTION CURVES

Page 246: 1984 The deflections of reinforced and partially

224

TABLE AV-1 MEASURED TOTAL DEFLECTION OF REINFORCED BOX BEAMS AT MID SPAN, 6 (IN MM)

Beam

R200-1

R200-2

R200-3

R200-4

R2Q0-5

R300-1-2

R300-1-3

R300-1-4

R300-2-2

R300-2-3

R300-2-4

R300-3-2

R300-3-3

R300-3-4

R300-4-2

R300-4-3

R300-4-4

R300-5-2

R300-5-3

R300-5-4

R450-1

R450-2

R450-3

R450-4

R450-5

No. of Loading Cycles

1

12.03

20.39

23.68

23.47

25.06

3.90

7.65

11.13

6.64

9.03

13.40

9.56

12.76

19.42

9.02

13.67

17.14

11.50

15.82

23.12

15.83

19.14

20.69

26.06

28.46

10

15.39

23.03

26.31

25.50

26.38

5.18

8.10

11.40

7.81

9.09

13.74

9.69

13.00

20.62

9.16

13.88

17.53

11.74

16.05

23.69

16.54

20.09

21.18

26.42

28.85

IO2

15.56

23.42

26.90

25.73

26.63

5.14

8.39

11.44

8.19

9.41

14.53

9.84

13.26

21.06

9.31

14.29

17.83

11.81

16.24

24.21

17.05

20.69

21.44

26.99

29.18

IO3

15.77

23.49

27.07

25.86

26.89

5.15

8.54

11.73

9.09

9.87

14.84

9.96

13.71

21.58

9.44

14.50

18.22

12.00

16.43

24.80

17.52

21.32

21.80

27.61

29.62

IO4

15.98

23.67

27.32

26.56

27.10

5.16

8.72

11.95

9.38

10.56

15.01

10.11 •

13.88

21.73

9.64

15.04

18.72

12.25

17.13

25.97

18.16

22.03

22.04

28.01

30.30

IO5

16-. 96

23.70

27.97

27.22

29.00

5.23

9.52

12.10

8.53

10.61

15.37

10.41

13.90

22.63

10.14

15.60

20.16

12.80

17.76

26.20

18.36

22.39

23.06

28.49

30.72

Page 247: 1984 The deflections of reinforced and partially

225

TABLE AV-2 MEASURED TOTAL DEFLECTION PRESTRESSED BOX BEAMS AT MID-SPAN, 5 (IN MM)

Beam

PP300-1

PP300-2

PP300-3

PP300-4

PP.300-5

Number of Loading Cycles

1

7.04

6.10

4.94

4.19

4.32

10

7.18

6.14

5.09

4.28

4.41

102

7.37

6.60

5.26

4.34

4.48

103

7.59

7.38

5.49

4.45

4.52

io4

7.83

7.68

5.72

4.63

4.70

IO5

8.54

8.36

6.25

5.16

5.13

Page 248: 1984 The deflections of reinforced and partially

226

o

CJ) LU __l Li_

LU

a

i

o o CN Pi 3 3 pq

3 0 •H J-l

a 3 CD X

co >

3 CD

E o S

3 M 3 OO •rl Pn

cn CD CM CO CNJ

(w|sn) 1N3W0W

Page 249: 1984 The deflections of reinforced and partially

227

OJ —i

E 2 -m r-l

e z _*: st

LU _l CJ >-CJ

LU LU _J

UJ _J CJ

LU _J CJ

LU _J CJ

LU _J CJ

cs C3

LO OJ

CS Pel

cs cs

o

cs cs

a cs 1-1

CJ LU _J LL-

LU CD

CN

I O O CM Pi

§ CD pq 3 0 •rl 4J CJ

3 H 4H

3 X CO

> 4J

3 3 E o X

CM

I %

3 f-4

3 00 •rl Pn

CWNM) 1N3H0W

Page 250: 1984 The deflections of reinforced and partially

228

e E

CO -*:_*:

LU _J CJ LU LU LU LU

LU

CS CS

CS CO

CJ LU _J CJ CJ CJ CJ

CS

cs

C\J

cs cs

CD

CS CS

C\J r-H

e £

N •'

z o 1—1

1— CJ LU

Li_ LU o

cn l

o o CN

Pi E 3 CD pq 3 0 •rl 4J CJ CD rH 4H 3 X

cn > JJ 3 CD

E o

en l

%

3 U 3 00 •rl

Pn CS

cs CO

CWNM) 1N3W0W

Page 251: 1984 The deflections of reinforced and partially

229

st 1 CS

E Z _ru

CO CO

E Z _ l r _

LO CD

-J CJ >-CJ

LU LU _! _J CJ

LU _I CJ >-

LU —I CJ >-

LU _J CJ >-

LU _J CJ >-

CS

cs •

cs CO

cs cs sf CM

CS CS

CD rH]

CS CS

CM

CS CS

£ £ '—'

•z.

o 1—1

h-CJ LU _ I LL_

LU o

I

o o CN

Pi CD P3

tt

3 O 4J a CD rH 4H CD X

CO

> 4-1

3 3 E o S •ut

1 %

3 M 3 00 •H Cn

CD

CS cs

LO CO

CM LO

cn CD

CO CM

CO

("hm 1N3W0W

Page 252: 1984 The deflections of reinforced and partially

230

cs cs cs CO

cs cs

CM

CS

cs CD "_H

CS

cs CM T—t

£ £

Z O I—I

1— CJ LU _I Li_ LU CD

m l

o o CN Pi CD PP n

3 O •H U CJ CD rH 4-1 CD X CO

> 4-J

3

O

>i

LO 1

%

3 U 3 00 •H Pn CS

CD

CS CS

LO cs CD

sj-cs CO

LO

("W) 1N3W0W

Page 253: 1984 The deflections of reinforced and partially

231

CM 1

r l

1 CS

cs CO

az x cr

E Z _j£

CS CO

CO

11

E

z -X:

T—1

LO .

LO r-l

II

LU _J CJ >-CJ

_l

cr r—1

r— r—1

z

LU _J CJ >— CJ

t— CO

LU LU _J _I CJ CJ J->- CJ CJ

X X r— 1— CM CS CS

LU _l CJ >— CJ

X t— CO

cs

LU _] CJ >-CJ

X r-st CS

LU _J CJ >~ CJ

X r—

Ln cs

cs cs CD

st

CS CD

CO

CS st

CM

. u

£ £

Z CD i — i

1— CJ LU _l Lu LU CD

CN

r-4

1

o o cn pi E 3 CD pq

«\ 3 O •rl 4J U CD H 4H CD X CD >

4-J

3 3 E O

vO 1 %

3 r-4

3 00 •H Pn

CS CM

CD CM CD

(wisH) 1N3N0N

Page 254: 1984 The deflections of reinforced and partially

232

- ^ £

O

CJ

LU CD

cn l

• — i

l

o o cn Pi

E 3 3 pq

3 o •rl •U CJ CD rH 4H CD X

cn > 4-1

3 CD

E o

a

r-u

I

% 3 U 3 00 •H Pn

LO CM

CS CM

LO CS LO

(WNH) 1N3H0H

Page 255: 1984 The deflections of reinforced and partially

233

st 1

I—I

1 CS CS CO X

X X LU CD

z -XL-

CS CO

cxi

n

-o X

z -li

r-l

CO . r-CM

n

*-» X

LU LU LU LU

LU _1 CJ >- UJ CJ LU _J CJ CJ CJ CJ

_J CJ >->—>- >-_1 CJ >- CJ CJ CJ CJ X >- CJ —i CJ X X X X r- X r— r- r— r— I-I r- I— CM CO st LO Z CO CS CS CS CS CS

CS LO

CM

CS CS

CS LO

£ £

a

CJ UJ

LU CD

I r-4

I O

o cn Pi % 3

3 O •rl 4J U CD r-\

4H CD X CO > 3 3 B O

s oo I % 3 U 3 00 •H Pn

CS CO

•st

CM CD CM CD

C iNm 1N3W0W

Page 256: 1984 The deflections of reinforced and partially

234

CJ LU

LU Q

CN I

CN I

O

o cn Pi

I 3 pq

3 O •H U

a 3 rH 4H CD X Cfl > 3 3

B o £ I %

3 U 3 00 •rl Pn

CS CO

•st CM

CD CM CD

(wNm 1N3W0W

Page 257: 1984 The deflections of reinforced and partially

235

CO 1 CM 1 CS cs CO X

X X LU CD

E Z _x:

r-cs

CD T—1

11

-o X

E Z -it-

CS LD • r~ CO

n -k»

X

LU _J CJ >-CJ

_J X 1—1

r— i — i

Z

o

UJ _1 CJ >-CJ

r— CO

S

LU LU _l _1 CJ CJ >— >- CJ CJ

X X r-1—CM CS CS

-r X

LU _l CJ J— CJ

X r— CO cs

o

LU _l CJ J— CJ

X r— St

CS

+•

LU _l CJ >— CJ

X r—

LD CS

X

CS

cs CM

CS CD

CS CM

£ £

CD

cs CD

st

CJ LU _J LL_

LU CD

cn l CN I O

o cn Pi

I 3 pq 3 o •rl 4-I

CJ

CD X cn >

4J 3 3

B o

I

%

Oi r-J

3 00 •H Pn

f^NM) 1N3W0W

Page 258: 1984 The deflections of reinforced and partially

236

st 1 CM i CS cs CO X X X LU CD

LU _J CJ LU LU LU LU

CS cs

CD

cs CM • •

CD CD n 'Ct

"O H->

X X

CJ LU _J CJ CJ CJ CJ _J CJ >->—>- >-

—I CJ >- CJ CJ CJ CJ X >- CJ >-• CJ X X X X

X r-r— CM CO "ut LD

CD CS CS CS CS S CS CD

CM I—I

cs CD Di­

es vl

CD

CS CM

' — v

£ £

Z a • — <

i— CJ LU _l Lu LU CD

<r I CN

1

o o cn Pi E 3 3

pq

C 0 •H 4J

a ai r-1 4 H CD X

cn > 4-J

c CD

E o

i — i

rH 1

CD 5-4

3 00 •H Pn

CO

cs cs

cs LO

CS st

cs CO

cs CM

cs

C^Nm 1N3N0W

Page 259: 1984 The deflections of reinforced and partially

237

CM 1 CO

E Z Ji

rH

E Z -at

CO

LU _J u >-CJ

LU LU _J

LU _1 CJ

LU _J CJ

LU _J CJ

. 1

LU _J CJ

cs rq _, _

cs CD

CD

CS CD

CD

£ £

CD-

CM

cs cs

CN 1

cn l

o o cn Pi

I 3 pq

3 0 •H +J CJ CD

3 X

CS st

st

CS CM

CJ LU _J U_ LU CD

CO

> 4J

3 3

B o £ CN rH

1 % 3 U 3 oo •rl Pn

(IUNVJ) IN3WQW

Page 260: 1984 The deflections of reinforced and partially

238

CO 1 CO 1 cs cs co X

X X LU CD

E Z _ku

r—l

ID •

Ln CM

II

"O

z

E Z -XL-

CD

r-•

CO LP

II

-»-» X

LU _J CJ >-CJ

_l X 1—1

I— 1—1

z

e

LU _! CJ >-CJ

r—

CO

HJ

LU _J CJ >-CJ

X

LU _l CJ >-CJ

X r—

1—CM CS

+

CS

X

LU _J CJ >-CJ

X r-CO cs

0

LU _J CJ >-CJ

X r— st CS

«-

LU _J CJ >-CJ

X r-LO CS

X

cs cs LO

CS

cs

CM

CS cs cn

cs cs CD

cs cs

r—C

£ £

Z CD i — i

1— CJ LU _J LL_ LU CD

cn l

cn I

o o cn Pi

1 3

pq

3 O •rl 4-1

CJ 3 r-\

4H 3 X CO

> •u

3 3 E o £ cn rH

1

3 U 3 00 •rl Pn-

CO

cs cs

LO CD

CM LO

CO CO

CD CM

CO

PISH) 1N3W0W

Page 261: 1984 The deflections of reinforced and partially

239

st I

co i

cs CO X

X LU CD

E E

rH CO CD CD

LO CD CM r-

II II

LU _] CJ >-CJ

_J X 1—1

r— l—l

z

LU _J CJ >-CJ

I— CD

LU LU _J _J CJ CJ J— J— CJ CJ

X X 1— r- CM CS CS

LU _l CJ >-CJ

X r-on cs

LU _l o >-CJ

X r— st CS

LU _J CJ >-CJ

X r-LO CS

CS CS

LO CM

CS cs

cs CM

CS

cs

cs cs

o

CJ LU

CD

<t i cn l

o o en Pi

B 3 3 pq

3 O

cj CD H 4H CD X co > 4J 3 <D

E o £ l % 3 r-4

3 00 •H Pn

CS CD

st CD

CD sf

CM CO

CD

[WNm 1N3W0W

Page 262: 1984 The deflections of reinforced and partially

240

LU rs cs

CM 1 st 1

E Z -ji-

es CD

E Z -if

r-CD

_1 CJ >-CJ

LU LU _J _J CJ

LU _J CJ >-

LU _J CJ >—

LU _] CJ >—

LU _l CJ >-

CS CD

CS CD

CD

CJ LU _J LL_

LU CD

CN

I < t I o o cn E 3 CD pq 3 0 •H 4J

U 3 t-\

4H

3 X CO

> •U

3 3

E o £

m rH

I

CD U 3 00 •rl Pn

(WNm 1N3N0W

Page 263: 1984 The deflections of reinforced and partially

241

co i st 1 CS es co X

X X LU X

E Z -Jf

CS X .

CM CO

11

-o z

E Z -ju­

st LO a

CD r-

u H->

z

LU _1 CJ 5— CJ

_J X 1—1

r-i—i

Z

B

LU _1 CJ >-CJ

r— CO

S

LU LU _J _J CJ CJ >->— CJ CJ

X X r— r—CM es cs

+• X

LU _I CJ >-CJ

X r— CO cs

i>

LU _l CJ >— CJ

X r— -ut

cs

4-

LU _1 CJ >-CJ

X r— LO es

X

es cs

cs CD

cs CM

a

CJ LU

LU CD

en I

u-t

I

o o cn Pi

§ 3 pq

3 O •rl 4-1 CJ 3

3 X CO

> 4-i

3 3 E o £ rH I

3 U

3 00 •rl Pn

CD st CD

OD st

CM CO

CD

PNm 1N3W0N

Page 264: 1984 The deflections of reinforced and partially

242

st I st I

E E Z Z

LU _J CJ

LU LU LU LU LU

es es CM CM

eS'-i C J L U _ J C J C J C J C J

co-st _j CJ >—>->- >-

es CD

r-

es CM *

CO rH

CS CD

CD

CS st

st

,_

£ £ "—'

Z CD i — i

r—

CJ LU _1 u_ LU CD

l <t l 1

o o cn Pi E 3 3 pq r.

3 0 •rl 4J U 3 T~\

4H

3 X

CO > U 3 3 B 0

£ rH

1 % 3 1-4 3 OO •rl Pn

es cs

cs x

es CD

cs cs CM

(WiNH) 1N3W0N

Page 265: 1984 The deflections of reinforced and partially

243

E E CM Z Z 1 ->= -* LO CO LO I CO LO CS • •

LU LU LU LU

LU _l CJ >- LU CJ LU _J CJ CJ CJ CJ

_I CJ > - > - > - >-_I CJ >— CJ

es es

cs CM

1-1

cs si-

CD

es CD

LO

es CD

»~ £ £

Z O i — i

1— CJ LU _J Li_ LU CD

CN 1 1

LP) i

o o cn Pi

E 3 3 pq

A

3 0 •rl 4J

a CD H 4H CD X

CO >

4J 3 3 E 0

£ 00 rH

1

> < 3 r-4 3 00 •rl Pn

LO OD

CD CD LO

sr CO

r-

(wism 1N3N0W

Page 266: 1984 The deflections of reinforced and partially

244

CO 1 LO I

E Z _*: CO CO

E Z -st:

CD rH

LU _J CJ >-CJ

LU LU _J _I CJ

LU -J CJ >-

UJ _] CJ >-

LU _J CJ >-

j

LU _1 CJ >—

cs cs m

£ £

O

CJ LU

LU CD

cn I LO

I O

o cn Pi % 3 pq 3

o •H U CJ

3 r-\

4H

3 X Cfl

> 4-J

3 3

E o £

ON r-l

I

%

3 U 3 00 •rl Pn

N3WQW

Page 267: 1984 The deflections of reinforced and partially

245

sr i

L O I

es es co x x LU

x

E E Z Z -*: -J£ CO CD

cn r-OD CD st st

II II

-a -^

LU _J CJ UJ LU LU LU

LU

es es x CM

CJ LU -J CJ CJ CJ CJ _I CJ > - > - > - >-

_) CJ >- CJ CJ CJ CJ

cr >— CJ CJ x x x x

i— x i— i— I-H t— r— CM CO st LO

z co cs cs es es cs es st

CM

CS CD

CD i—i

es CM

I—I

t—1

CS X

LO

, £ £

s—"~/

Z o 1—1

h— CJ LU _J L_ LU CD

<r i

m l

o o cn Pi E 3

3 pq

3 0 •rl 4J

a 3 rH 4H 3 X

CO

> 4-1

3 3 E 0 £ o CN

1 % 3 U 3 00 •rl Pn

i^m) 1N3W0W

Page 268: 1984 The deflections of reinforced and partially

246

•—ft 1 es LO

E Z _x:

X CM

E Z -XL-

CD

r-m

LU _l CJ >-CJ

_I

LU _I CJ

LU _I CJ >-

LU _1 CJ >-CJ

LU _! CJ >-CJ

LU _J CJ >-CJ

LU _l CJ >-CJ

cs es *

cs CM

es cs x

es es

CM r—ft

es cs X

cs cs

i — V

£ £

z o 1—1

1— CJ LU _J Li_ LU

a

1

o m uut

Pi E 3 3 pq r.

3 0 •rl

u U 3 i-\ 4H

3 X Cfl > 4-1

3 3 E o £

rH CN

1 % 3 l-i

3 00 •rl

Pn

cs es

cs CD

CO sj-

CD CO

CM CM

(WiNm 1N3W0W

Page 269: 1984 The deflections of reinforced and partially

247

CM 1 CS LO st

E Z -x: X es

r.

r-

E Z -x: CO r H

CO

_] CJ >-CJ

_J cr

LU _! CJ >-

LU _J CJ >-CJ

LU _1 CJ >-CJ

LU _1 CJ >— CJ

LU _J CJ J— CJ

LU _! CJ >-CJ

es es LO CM

es es

es CM

- ~ £

CJ LU

LU CD

CN

I O LO -ut

Pi

I 3 pq 3 O

CJ CD H 4H CD

X CO

> 4-J

3 CD

E o £

CN CN I

LO X

X CD LO

st CO

C^NM) 1N3W0W

Page 270: 1984 The deflections of reinforced and partially

248

£ £

CD

CJ LU

LU Q

cn l

o in -ut

Pi

ii CD pq 3 O •rl 4J

CJ CD

3 Xi

cn >

3 3 E

o £ en CN

l %

CD U 3 00 •rl Pn

LO

ca sr

x CD X

CM sr CM

C^NM) IN3W0W

Page 271: 1984 The deflections of reinforced and partially

249

st i

cs LO sr

x

E E Z Z -act _xu

r- r-

x cn r- co

LU _1 CJ >-CJ

_J X 1—1

f— r—t

z

LU _I CJ >-CJ

r—

X

LU LU _J _I CJ CJ >->- CJ CJ

X X r— 1—CM cs es

LU _1 CJ >-CJ

X r—

X cs

LU -J CJ 5— CJ

X r—

sr cs

LU _J CJ >— CJ

X Y—

m es

es cs • cs CO

cs cs •

sr CM

£ £

O

kuf

I

o LO

-r Pi

I 3 pq 3 0 •H 4J

a CD CD X

CJ LU _l U_ LLJ CD

CO

> 4J

3 3

E o £

<t CN

I % 3 r-4

3 00 •rl Cn

LO sf

to x X LO

cn CM

l^m) 1N3WQW

Page 272: 1984 The deflections of reinforced and partially

250

LU E E

LU LU LU LU ID 1 CS in st X

z X LU X

-JLu

LO X •

CM X

II

-a Z

-XU

cs CM *

st X H

11

Hk»

z

CJ >— LU _J _J _1 _1 CJ LU _J CJ O O CJ

_J CJ >->->- >-_I O >— CJ CJ CJ CJ X >- CJ H U X X X X

X I— r— r— I— I-H (— r- CM CO sj- LO z x es cs es es cs

es cs LO

x

es cs

X CM

CS es

O

cs cs ^ v—i

CJ LU _I L_ LU a

CS

es

es cs • es x

cs cs

•sr sr

cs cs

X es

cs cs CM

r-

es es x X

cs cs

LO i

o LO

<r Pi E 3 CD PI 3 O •rl 4J CJ CD

3 X CO

>

3 CD

E o £ u-l CN I

%

CD r-4

3 00 •rl Pn

(UN,1) -LN3W0U

Page 273: 1984 The deflections of reinforced and partially

251

es cs x

es CM

cs •

X

cs X

X

cs X

' * £ £

Z O 1 1

1— CJ LU _J L±_ LU CD

o o cn Pn PH

B 3 CD pq

3 O •rl 4J CJ

3 r-

4H 3 X CO

> 4-1

3 CD B 0

£ uO CN

1 > < 3 1-1

3 OO •H Pn

CS

cs

es x

es cs CO

cs CM

cs

(WN .»] 1N3W0W

Page 274: 1984 The deflections of reinforced and partially

252

es es

x

es CM

CN

es sr X

es X

X

es X

*~ ** £ £

Z

o 1—1

h— CJ LU _J Li_ LU CD

o o cn PH PH

E 3 CD pq r>

3 0 •H 4-J

a CD H 4H 3 X CO > 4J 3 CD E O

£ r CN 1

! > < 3 U 3 00 •H Pn

es es

x sr

x X

CM x x

("W) 1N3W0W

Page 275: 1984 The deflections of reinforced and partially

253

x i

cs cs X X X X X X

E E

z z -EC -If

r-H CO

X X * * X CM CM sj-II II

LU -J CJ

es es

LU LU LU x HOJ X LU

CJ X _! CJ O X X -I U >->->- >-

—I CJ >- CJ CJ CJ X X >- CJ -• CJ X X X X •— X I— r— r- l— '-' f— H- CM X sf LO z x es es es es cs cs

CM

£ £

CJ LU

LU CD

en I

o o cn PH

Pn

B 3 3 pq

3 0 •H JJ

a 3 OJ X CO >

c CD

E o £ oo CN I % 3 U 3 00 •rl Pn

X X X

r-CM

x x

(WN n 1N3W0W

Page 276: 1984 The deflections of reinforced and partially

254

E E -J Z Z CJ LU LU LU X

sr _x:_x: >~ LU _I _I —1—1 1 — i X CJ LU _J CJ CJ O CJ CS X X _J CJ >— >->->-

es • . _ I C J > - C J C J C J C J

X X CM X >- CJ a. cM-st >-»CJ x x x x X t— X r- r— r— I—

•—• i— i—CM cn sr Ln

es cs

CD

X CD

CJ LU _J u_ LU

a

"ut

I

o o cn PH PH

I 3 pq 3 0

CJ CD r-i 4H 01

X Cfl

> 4J

3 3

E o £ CTi CN

I % 3 M 3 00 •rl Pn

("NM) IN3W0W

Page 277: 1984 The deflections of reinforced and partially

'-

255

CJ LU _1 Lu UJ CD

LO I

o o cn PH PH

I 3 pq 3

o •rl 4J

CJ 3 rH 4H 3 X CO

> 4J

3 oi

E o £

o cn I % 0)

u 3 00 •rl Pn

X sr

x co

r-CM

x X

"Wi) 1N3W0W

Page 278: 1984 The deflections of reinforced and partially

256

Appendix VI

EXAMPLES FOR THE USE OF SPSS PACKAGE

AND EQUATIONS OF STATISTICAL COEFFICIENTS USED IN SPSS

Page 279: 1984 The deflections of reinforced and partially

REGRESSION EQUATIONS USED IN STATISTICAL ANALYSIS PACKAGE 257 SPSS [See, NIE, HULL AND BENT, 1975]

(1) For bivariate regression:

Y' = A + BX

where,

A =

N v T-

N V2 hrN v s-#

N V2\ /<r*N

B =

"C. *<-£..*<

in which, X£ is the <Lth observation of variable X, Y^ is the .tth observation of variable Y and N is the number of observations.

The equation for computing Pearson correlation coefficients is

$LIXX? - ( O W E . , * - ft., y)2M 1/2

(2) For multiple regression

where,

Y' = A + B]Xi + B'2X2

SPvl(SS2)-SP,,,(SP12) B ~ SS,(SS2)-SP22

SS1(SS2)-SP2:

A = Y- BlXl - B2X2

Page 280: 1984 The deflections of reinforced and partially

in which, SS and SP stand for sum of squares and sum of products, or variation and covariation respectively, e.g.

ssi= I (xu - V2 and spi2= £(xirV(x2rV

The equation for computing partial correlation coefficients is

ry\~ry2r\2 ry\.2

258

/^(/^I) where Y ,» Y o > Y,.-. and Y _ are the Pearson correlation

yl y2 '12 y2 coefficients between two variables.

Page 281: 1984 The deflections of reinforced and partially

259

J ST 1 £ 1- • Z F. UJ • i. Z. M cc X CJ

u • 0. £ x a LU >

. o z K IH

r «u z u. n: O • uj

M x a, w < z. W S. D UJ 11) z DC •

ul LL £ UJ CL <C QC CO LU

- a UJ z

J u a. • •H * 1- o J . 3 a m E 2 Z

•u O • H

H

< OC z O M

k-

u UJ _l UL

LU

o

UO

< o J

a 4 u Q

uu o

Uu

CO Ui -J u >-u Lk

c OC LU LTl T. 3 z CS o -J

i*. CJ

*u k-Z LU H Z O CJ

-1 LU LU H LO

u -1 M

CO z Lu

k-

0, :L tn

. k-Z UJ £ O S

C3 z n o i-cu cu

SE -J £ kH

X

< ;.

X

< .r CO

Uu

k-

z LU E O C-

13 Z kH

O r* UJ Q.

£ -J

i kH

z kH

Ju

z kH

CD

uu

k-

i: LU £ o s: o _l kH

LU

>-

T. '2 J-

k-

Z LU £ O SE

L3 Z kH

St

CJ

< LU

CJ

I" :c u

CM CM CM CM CM CM

O O O

o o o O O I

o o •

ro i«i in o M 1*1 • •

to CM

O o o

fl f i ro M ro ' CM CNI CNJ

» O »

• • • • • • • ro KI ro to ro to to ro ro M

a o o o

o f> o o

l f

m

i a. x a.

o •

• ro PO r-

O r- in

o •

r> o o c> o <>

ro ro ro ro ro ro

CMCMCNIrMCMfJCMCMCMCMCMrOrOrO

cMCMcMfMCMrororororofir-»—r-

O O CO o o o o o o o o o o o f > O l > ' j N L > O O O L j u c > u > 0 0 0

io ro ro r» i K I ro ro ro ro ro ro ro ro ro

O O O O O O r - » - * - r - r - . - . - r - « — r-r-• • • • • • C J O O O O O O O U - J C C ;

KIMKII"r«ir>lr<-rrrrrrrrrrlo

o o o ro ro ro

o o ro ro

roroioioroiorororoio

o o o o o o o k. fi r*>

o o

ru

o o

H) HI H) H) H) HI in vi in in in in

ro ro ro f i f i KI cn co co co LO LO

ru ru. ru r- is. ru

O O O O O O

•HI H) HTJ LO LO CO

ro ro ro co L O cn

ru- r<- Is-

o o o

>H1 HT) HI H> LO CO IO CO

ro ro ro ro LO CO CO l/l

r- r>- ru- ru.

o o o CJ

HI HI to CO

ro M CO CO

r~- r-o o

so H) |u LO u-i ro

ro ro LO IO CO oo

ru- r-KI ri

co co co oo

IN. ru. r-

O O H J

u. «t to * ac n E ~u Z * u- iQ • o a.

o o o o ON o

I— r- «— r- v- r-U' IO CO CO CO c>

• • • • • • LO LO LO CO CO CO

II II

£ a. QC CO

r _J co J _l 3 l" UJ iu !- "- J 31 • «. CD < "< Z < -I r UH

" u n a l -5 « < LJ o- > > UJ: IU

k. 2

LO

< o I- O

< • r- O O E to t- • cr cu ru> o o to a. L U r C t U L J I U U J u C J

CJ I- I- r- r- ft «-=) Lu

a. o

z

ro r-l ro co L O co

o o o o o o

M r l LO LO I

O O I O O I

r> o o o o o - o o o o o

r u . r - - r u r u r u r u . o N C k c k o c >

ru.ru-ru.ru-

IM CM CM CM

r-i ro ro ro LO CO LO LO

o o o o

o o o o

• o O r-

O H J O H J O H H O H J O H J O O O O O 'O O LO r- r- CNi

CM Tul CM CM CM CM CM

ro ro ro LO in to c o o

o o o

ro ro LO LO

o o

o o

r- C 0» r-• .

r>- o CM CM

C-. r-co o

o o O C3

cr CJ cj- (.•• e <_ ru. ru. ru- ru- r- to • • « • • «

o o o -o HD ru CM CNI CM CM rj ro

ru.ruiu.ru.tk.ru.

o ON o o o o

o o o o o o O O O C3 O O

c o o LO CO LO • • .

ru.ru.ru. ro ro ro

ru r- r-

o ON o cJ o a o o o

C J C r - r - r - « — r-T-C,u LO IO (M CM CM INJ 1 J INJ Hj

ru- ru. o ro r-i u»

O r> o o O O O O o o o o

u» ut

|N- |N-

ON o o o

o o o o o o o

r- CM rO uf LO

o o o o o o o o o o o o o o o o o o o o o o o o o o o

o • O N -* ut U»

r- r- o O O co o o «-o o o

... o o o

LO LO IM CM

tr- u o -o

tM ru

-» u»

o o LO LO

O O

o o

u— f M r O - J L O O r - r J r O u j r \r\ t . r- CM 10 .f UN r'. .— p J fl H 11 r ' r TJ -j. io i— i- rj

o ru o LO co -o

r- aj O -O

a. a JL. >

o o CJ CJ

3 • OL O fl

O LU u B r

o HJ a) ro -O -0

-T -3 ut uf ul

u— i— r- i— r— CM

UO LO l/l '

INJ CM CM

uf CM <3 .j

o ru.

i PJ ro

o o ro 'ij

LO HJ ru- r-

ru- ru- Is- ru

ro ro ro ro

•o >t <) ul ru- CN r- fl ut i- o o r- <J co rj ro o ru. r- r-.j o . . . • . . . . * . •

ru- ru CM CM ro ro f 1 CM rM 'M >~g

rOutut^tutufutCOLOLOl/l

ut o cu r*u ut .'j ut i> t— ut ru c M u t H j r u - O r - r O L o r o r o r o

• • • • • • • • • • • •I r-l-l M " W -I H r r r coLOHD-OHjHjujHjr-rur-

1 •• M m -i u. H> r r • ^ - - ^ - . - i S S ; ; ^

Page 282: 1984 The deflections of reinforced and partially

260

m m i/Mn m m m m m m t n m V-^^-^j''^'*J/-j-'4-'»jt'4' *»t *^ •%* * •v* -j >j »J/ tn u i f M A >n m

pj*>jrsjr\jt\jcaK>K>K>^MK>OHO»o<>>o >o rOi-onKiforOKifonrornK) n n ^ ^ " » " ^ < - « - ' " rucjr\jnjryr\jKi^irOKiKTjKi*— *-r-«-»-r-

O O o O O O O O O o O O r - r - « — T-t-*-r ' " T y N N ( \ J < \ J ( \ J K l l * i K > K ! r o n O C > 0 0 o o o o o o o o o o o o o o o o o o o o o - o - o o O O" O O O O O O

O C T " C ^ 0 " O O 0 ' O 0 ' ^ U ' C > ^ O 0 ' 0 , ' O C - O O 0 ' O C ' 0 ' • • • • • * • • • • • • on 00 OO CXJ OO a; ^ o o o o o o o o o o o o o o • • • • • • • • • • • • * • • • • • • • • • • • M P»> M rO f* i (*1 fO IO f^ n f 1 f> >o -o o o o -o > ^ t > L > > e h 0 * 0 * O * < > 0 * i > C > < > O » * 0 i ^ ^ r O ^ t O • • • * • «

• • • • • • • • • • * - t - T - T - r - t - * - f - r - r - r - « - r - f - « - « - i - « - r - « - * - r - « - i - O O O O O O M ^ M M n M K ) K) fO (•) IO KI M M CI O 0 O O 0 O 0 O O O O 0 « - r - « - T - * - » -* " * - * - « - r - T - r - « - * - r - * - f - « - « - i - . k t - 4 , < k 3 j - ^ -*f ••»* •**-•**<»* "** ^ ^ k j . ^ k j . ^ f c j . ^ . C ) 0 0 C j O O T - ' ~ « - * - * - T - T - T - r - « r - t - r -

K> Ni (O fO Kl M fi Ki f^ M fl n K) Ki K M Ki KI «- r t- r t- «- • • • • • • • • • • • • o.i cf 30 CO Cf) a; r V N r ^ r - r ^ f < - r ^ ^ f ^ K - r

f c r x - r ' - r - . v - • • • • • • • • • • • • • • • • • • • • • • • « ^ ^ l O ^ K l M K l ( » . f O K , ' K i K i r r i - r r " r ^ K t K 1 K * K 1 f O K t K » K > K 1 K l K i r n K > K 1 C > C > ^ < > • • • • • •

• • • • • • * • • • • • • • • c o o o o o o o c o o c. c> c- c t_ c> c •<)•*-» t o *o o T- w t- f- T- t- T- •— •-*-•-»- fN. r r r- r r ^ l A L / i i n ^ l / ^ ^ t n ^ i n ^ l i - H n U i r - r - r f - t - r - r - r - r f - r - r - r - f - r - t - r - T - r - r - i - r r - r - *T •** *f ** *f *3

lttV0ClX)000UCO0O(O0OIXJCQa>0U0O KI KI Ki K^ Kl K» K» KI M f) KI KI O O O O O O O o O O O O O O O O O O K J K l f O K l r O P O O o o o o o o <><>(>(>(>intnininu"tin

r r r r r r f - r T - f - r i - r - r T - W W r o ( d 0 0 l » j « C y O J « f t ) O ) a j m 0 ) W • * • • • • • • • • • • *— ^- r- T ~ r- «-•0 O -0 O O O -HU o -o O <J -O -O <i -O • • • • • • • • • • • • • • • • • • • • • • • • '-O uj cu <j oj a j aj uG a. -O a") uO • • • • • • • • • • • • * • • • • • • • # rv c\i i\* w *Ni f\< r^ ry w rv TJ i^ I>J ^i rw rj (\J r\J *^

wi/i^iAinininu^uiirti/iininijn^KiKiKiro^K^KirOMK^ «— T- *- *— ^- *-NNwpjpj(vojf>j<Mfsjcjrarjr\jr\i <o >o -o « 'P <c o» P: OJ ai w aj

p*- r*-r*-r*- I*- iT«- --f«sf xf ^f • u f k / f - r - r - f - T - f - i n V i 4 n i / > « n i A - - ^ «_ ,— ,— ^—f-». i^ pw_ ^ f^ __ ^ 1 _ _ ^ T . ^ _

O CA O- s0 HO *0 "O HJ *0 K) r. Ki M f- i fO "* "O "O "O "O M*J UT IO IT. U > id u. *J *J -4 *J HJ *4" in l- l/. Ui in Ui • • • • • • • • • • • • C O O O t. O ^^<5fN.r-.r--N.r*-f,-.no'Oogf'»iO',o • • • • • • • • • • • • • • • • • • • • • • • • « t f * * ^ - * " * - * * o * o * 0 ' O H ? o • • • • • • • • • • • * • • • • • • • • ^^^^^^^^*O^^<)*^WW0b0Q^^^T-^T-T-^^^r-T-T-<t^^^^^u^\^^\nv^\^^v^ r g r * i r o c j K < > o * o * o * o * o o o - o < > ^ i n i n i n t n t n i n •**»VlAI/MniAI/Mf>N N N N N N

tO JU CO 'O UO fj O O "J O a) jj ' 'J :'> !0 :0 O O O O O O O O O O O --> O O O O O O O r- t- T- «— T~ «-O o O O o o O O O O O O O O O « - * - t - i - «-*-•- t- r- t- r - « - * - « - ^ - T - t - * - O O O O O O O O o O O o O O O O O O r - f - t - * - « - r -^^inininuninintnu^ininininu^r\irgc»Ji%J^ K » ^ K ) M K > K i K ) K ^ ) K > K , K i r o K i K i K i K i i - » - < - r - «- <-t- j- »- *- ,- ,- ,_ ,_ r_ ,_ ,_ _ »- ,_ ,_ o O O O o c o o o o c, o o '> o < * o o o a o o o o o '" o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • o O O O O O O O O O O O O O O O O O O O O O O O O O O O - _ > O C . O O O O O O O O O O O O O O O O O O O O O O O O O O

• • • • . • , • • . • . • • • O ^ N K 1 > t i n O r - ^ K ) u | ' n o r i N ^ N t i n o ^ ^ l 0 ^ i n O r f > J K ) - J j > i ^ O r ^ ' 0 ^ i n O r ^ ^ >* in o r- rg KI >f in n ^ w KI ^ in

** r*- o KI r*- f> o in c> -4 -o «— in .\i in rj oi o ;> -j- -o o K> f\i P-- o •-* p- KI UJ O »> *— -** o «- * 1 fJ in n *o O I M O O N O J ..j in co ro in <- o ^ M M * -kt «J ui in m -o i) 'O "J m o o N > «• r w <\i f\i n •* M •* »r > i m o .J < > t- T- *- INJ -uf Jf in u% « >-> ( * » » ' * 0 ' 0 M f l W 0 0 ' 0 L 0 O O « - N » - * » » » « t « » » i « « » » i , « • • • r " f ~ ' - T - t - f - f - t - i - r - i - r - f N j ' M f V J

O O O O O O f - T - f - r - r - T - r v J N N N N r N J K i K l K i ' O f O K i > * > f s » s J , N l -* ui m tfi U'. i n i n - 0 « 0 > 0 ' 0 > 0 > 0

^ * - ^ O T - J O C W U T > O T 0 O C A C > C N C > ^ < > ^ ^ ^

N c o o o i - r , K - i m o N t t O c r - r v K i s j t u - i ' C ' N a j ^ o ^ - p i K * f i / i O N m c rr-NKi-kjtiri't'N R c > O r - r r- -k*mor*-a-o*Or-r\ir'i n IA *m vQ o O O HJ o O O O O N N N ^ i N N N ' ' - N l V . -O ' ) ui • JO o o o O -O L> l> <> > '*> > ^ > "> t> J CJ uO J O o u-> ~i O O T - *- r- «-

Page 283: 1984 The deflections of reinforced and partially

261

O O O O O O

N S N N N ^ .Q ,JQ 03 .jy aj rjQ o £> CK O* O CK '

r\j PJJ p\j r\i pj • Ki Ki Ki KI K I Ki -wf -of -or -or > t N t i n i f i i n i n i n i n

ff)ff)5jcnaja)LxcQcOL3)cnro-o<)<3<)<)<)^o<)-o<)<) u co aj or; no a J x ao cr j co on ao o -o o so -o -o <) <J <J HJ -o rj r-j r i rvi r\j rg ro ru OJ ru ro r J • o o o o o - o o o - o - o o o • * • • • • • • • • • • • • • • • • • • • • * • • • * • • • •* • • • • » O O O O O O o O O O O O ^ ^ ^ " « — ^ - » - r - ^ « — ^- *— «— O O O O O O O O O O O O ^ * " " ^ - * - r- *- *» ^^^*~»-NfVf\J(\JPvJMf\jf\jpiJ!fMr«JrNj

V O H O ' 0 « 0 ' 0 , 0 0 0 ' 0 - 0 ' O H O ' O O H O H O > O H J

r\ir\jr\jpjpor\jpjpjrNjr^jrofNjror\4copjr\jpj

KiKOKiKiPlKO-vJjr-**-^-** ^ J K^ Kl M Ki fO Ki in in tfl Vl in ro n> a- ro oo ao >o «o O O ^7 NG <f •«* *«t -* -* *>t ro ro; PJ PJ CM ro o o o o O o cu cri ao nu ac to KI K- Ki r M K- KI KI KI Ki fl Ki • • • • t • • • • • i • » • • • # • i • • i « « • • • • • • • • • • • • < 0 ^ v j t - J / ' 4 0 ; > l ^ ' » t ' * « - * o O O O O O « f l O < K ) 0 ' 0 f-. O' U' R' CU Cu ^ ** O O O; >J- i- r- f- t- r- i- Kl Kl K ; KI Ki K; r r- r r f- T - Ul »n U.in U> l/l N. p. N- p- p» f*- <> O O O O O ^ - T— » - T - » — « - - T - T - T - « ( - r» T - HI- * ~ r - T - ^- *— ^- « _ » - , - «- r

r-»-*-*-r-«-»-*-<r-«— t-r•Ki^OMM^O^O^^^^^^WCOcOcO00'l0^O<)^0<O>O'0 i/iiAinir. i n i n K i K > K 0 K i K i K O K i K ^ r n K i K i K i > * \ j r y r J r \ i r o r ^

K, Ki Ni Kl K> Ki a' a ai a OC OU *Jr -st -T <t *4 *J O O C CJ O C K> KI K I Kl K> Ki p- P- p- p- P- Is-^™puf\ji\jr\jc\jr\ir\jr\ipjpjK)KiK^KiKiK-*-st -* -or sjr • k t N f r V i f > K i K i n f O O j , o ; > t o ; NJ- >JK

^^^^•jj-^f-^k-^^^inu^inintfiininininiTiinin^^ Iflinifiini/i i n O O C G i v C ' C , 0 < ; ' 0 < 3 ' O r r r r r r r f*• T P- P P* *- t - «- t- r «-*

f\ir\J^rarofvirj''jr\if\jrorNjr\i rj r\i i\i no ro.

inininu, inina-c>oocKO*Pdror\Jrur\ir\j •~ *- «— «- r »*ui m u i u i uiinto cu cu co co oo '

Ki Ki KI fl f ' KI f11 M r.i f\| P-l PJ o o t> o O t> '

o o o - o o o* -o >o - O O ^ > < J O O O O O O t— r- t~ *— »— r- Pi PJ PJ PI f" • f\| KJ K' M Ki K < K)

ooO'O *o -o p- r- P- p- N-N-OOOO *o ^ •

o o o o o o r ^ r ^ - r - i N - p-r«-ropjropjcor\i

rv»NNNNNWcU^OJa;COc>(>C>C> OO ui in in ir; u1 IT N r*. r- p r- P- o o- o- o o t>

^^^^lS^^^^^^ P- o o o cr o c ro K i K i K i K i M i - t - r - T * t- «— ro pjrj py roro

3

r» r- *- r- «— f - © O O O O O Q G O O O O « - r - r - ? - r - » - C O « j f O i O a 3 C O M K l K l K » K J K > -fr ••* * -4 -or -jr in tn m m in m O o o O O -O P» P- Is- N. P- P. u-i «n in in m in o >0 ocO'O u

t>>0*>0(>OOOoO<5r*T-«— t-«— rM^Kirnn^-rtivi^inuiifivnuiinininin Ci O) TO OJ 'fl r>j k-, k-, fv, n n k , l;J r,j i, | c-, /,_, j) Ki KI Ki KI M fl r- i- r r- « - * - * 0 ' O > 0 > 0 ' 0 ' 0

^^^^T-«-r\jr^r\jrsjr\jr\jroc\Jrur\jr\jru O O O O O O O O O O O O C O » C ' 0 < " . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o

N W P g r O f ^ P J ^ ^ O N ^ O ^ ^ O / ^ v j ^ ^ v v t O O O O O O f » ) M K l M K i K J ^ < J O O V ) 0

>* Nujf .J. s f s | r * T - r - r - r - » - K i K 1 f ' ) Ki Ki Ki *< O O O O O O a i U U C T [ ' ) C / > o O K 1 K 1 K l K l K I K 1 >

pjrNjrs)N(Ni(MfaNrjPNiryrvjKiKiroKiKi>y) O O O O O O O O O O O O O O O O O O

If 3 r-

i/i +

L3 -LU in

o o o o o o o o o o o o o O O O O O O o o O ..ji O O O o CP O O o o o o o o O O O O --> O O :3 O .) o O O f"-> o o o o

Or-rOK>^inOr-f\|Kl^inO*-A»K|**inO r-IVKIvtinor-PlPO >tinO «" ''J KI vJ II O rfNIKlNtmOrrinNtmo r- PJ M> -j^ w Q

•o */ o *- N- o ^- r- a; o o rr) in K» i/> ^> Pi »>- (.> */ p- r> r-j PJ ^ i^ ^ in KI o pj ^> r- o ^ JJ N o N o^ N s st ^ (N NJ v^ n ry KI in p. N ^o ui i/i ' W ' n i / l i f i O U ) r - r - n j T - ' \ J s * N P - N a) CO r- K) M ^ I ' l ^ ^ ^ N i j U y - U J j ' i n - O - O N ' N N O / s t O ; vf in N Ki K| >f or IO PJ K1 Kl KI vj sf lO ^ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • a • • • • • • • • • • • • • • • • • • • • • • • u j O M fj ri r-j rj oj t— ro PJ PJ p' f-J — r- •— i- r- i- »~ T- r- «- r- «~ t- *- *- i— r- -*\I r- *- »- r- t- *- <— i- t- r- r- *— t- <- t- - T- r- T— T- T- t— r- »- o; M

O K-

N - r ^ l ^ f v . f v P w 0 U 0 U C 0 C 0 C t » 0 0 O O O O O O O O O O O O ' r - « - ^ , r - r - r - p ^ O. K r * r - r - i - f - f - r - i - « - r - r i - * - i - r - r - f - A j p J r U N n j P J P J ^ W P J r y P J O

•sT if. o r<- CO O O r f t / K l ^ l ^ i i N ^ O O r A ' f Y i ^ w O N f f ; O C V i \ ^ k J l P ^ J K C C e O T- PJ Kl •»-* in >0 P 0" • O C • *- p.' Kl %*• in ^ N &.• t> C ' • f f r r r i M r g ^ j ~j CJ ^J -i ro oo rsj m ^ Ki t*\ '*i KI r-i KI wi ?*i o/ >t -jr •st -j- -t -r st j; in in -n in in n ^i m n m 0 *> o o o O -o O i o r-

Page 284: 1984 The deflections of reinforced and partially

262

< uj

< Q.

O O

CO o

cu o

3 3 I

> ID

<--1 •

LO LU

LO

z O ft

1-

< CX CU

a. o

-1 JE 1 ;E 1- » Z !E LU k

z s: n o£ IX CJ Ck k

-U.

o kH

1-

< UC

z o

z o ft r- 3 < _I LU E < k. ex > 3

o a. Lk CU JC to O O Z O CJ *C t-J •u. LL Ul U. i- cr m IN. O O f I Ul o

-u z z z LO CU LU LCI LU i- s. s: _i z o o CJ o >' a.

O LU

o z

z o

z o kH

to to LU

cx C3 LU

or

cu _l

a. kH k-

_l 3 IE

i.

m » X

«t

s: m * 0.

a CO k

z CJ k

•si.

a » UJ

z

•U.

Lk

LU CD £ -3 Z

«L£ <C LU CU

•D Z

LU

a

a < o -j

a < LU O

* £5

O

or LU LU £. 3 Z

CO

o _l

z u

LU O Q r- E: i- z z z o tO LU CU CU £

ID CU E cu O C3 _l £ £_ £• z n 3 3 ri LO £_ ST O lk 7 H H J U r- < r-t LU a

I •E CD

OC r-LO kH U 3

a a. to

X

«* JC

u

z t—

s. m

Je

lO

>-

1

ac CJ

1 X

< LE CD uj

II IE Cu

a. 0-to •U.

• r-II

a. to

a. to

* z CJ II

a CO CJ

S" Lt

« a. to

n ac tn

UJ -J CD <t »—t

O-

< ?*

»-« ro CO r-

w •> UJ «-CK f-O •• UJ in CK r-

o 3

O -I -I

o o

z 3

-t z I- « CO Ik

OC ex

o o 3 it

Ul l/l • tk- CM

• O r z r- r-o

to ft _i to

-J LU Ui LU £ -J 03

< a < Z < _l

kH

z oc ac 3 < « oc > >

< 5f

ex O lk

1-3

a. z rH

to LU to

< CJ

Lk

o

;•

CU 1-3

a. i.

o CJ

LU

t" 3 0. £ C. LJ

LU K-3 Q. IE © CJ

LU

r-3

a. £. O CJ

h-3

a z kH

a <* cu rr.

•L k-

Z Ui

£ n OS LU

a. X

kM

cx o 3

o CNJ

*—

LU

< kH

o: < > CO

z u» o «u kH _l k-

f-iNjroutLooru.oooOr-cMro-tLOHjrN-

< on tn tn

a. tn

o lk

to to

a. CO

< UJ CJ •X LL Ul

< •* a. a. LO LO LK Z UC 4. O cx 3 t-

o K-

*r O

»-* i/)

to UJ D-l_> -U

UJ _J

a t-i

K-J 3

• • O

UJ

a. >-f

=> uj

UJ u.

UJ

o < Q.

on ;.: < nc

i/i

~£ O

t-

•-c s; UC

o u. UO JT *-£

cr K-

-J"

+

C/l

UJ

-3 _J

< > UJ tO

O

u UJ Q£

O

OC UJ

a. o UJ K-^J

a i_

o t_>

>». u-H-*

P

*—

13 UJ

cc

• • oo O «— r-

K- «« 0- K-O */>

• • O r-(•j r-.r

Page 285: 1984 The deflections of reinforced and partially

263

L9

< a.

ut

no

to O O O LU LO LO LO

r- rN- O

-t «t O

o to C O ut

LU

r-3 a.

LU O

<

z

U- cx O cj

HJ r O N > r r-t r- ru.

• • • ' J — o

o »o

LU

a Ul

j

a. ft

r--1 3 JC

t

z o z

UJ -1 k«

Uk

CU -1

a. •t kH

'.X.

•>

X UU

O k-

^ o kH

to to LU

cx O lU

cx LU -J 0. kH

t-_l 3 £

Z O kH

1-

«* LU CX LJ UJ

Ui t: 4 Z

o z

LU _l i-l

Lk

LO 1-j>

UJ rH

u j

kH

Ck

U-

uJ

O CJ

S. o kH

1-UC -J .u CX U£ uJ

CJ

CX CD

. a r-t/j o kH Z

.' O < CJ CJ

o O r-O Z • LU

O kH CJ CJ

—t

lk lk

O u. UJ

LU O 3 CJ _l «t <

> Lk < -H

O r- O IO ut o

a c o ~t u-i o o IN. o

CO O c-IN. O ut ut O CJ

ru- o LO

N O N

CJ CI o o i u . r o o -j- o O N ut <••> fu. C-

CO <£.

CJ 1/1

"N ">

Page 286: 1984 The deflections of reinforced and partially

CO ru.

264 oo CM |N-

LU Z

_l o lD kH < to ft tn

ac LU < cx > o

LU LU o ro CE m o < IN. ut 3 «- ut a H)CM

z o kH 1-

< 3 a UJ

z < cx CU _l

o r-

Ui 00 uO ac ao C M < O ut 3 CO CM a ut CM

to • •

ro Z HJ

z o rl r-<C 3 a cu

Ul

I •-

Z < CX UJ _l o 1—

-J <

o z

o z

z o

CO UJ

cr < 3

a IrO

U.

O

£ 3

O ^ m f-IV o *- -st -o ro

• • Ki sO CM K> Ki

co tn ao UJ p- in a. T- u^

< o o ~3 O O a • • co -o ro

PJ Ki

_l

CD <t •—i

cr «x ->

-z KH

•X K-Ul

m

-J 3

Lk T— OO a ut

o -I n

r-

Z r- O

o

to n CO

>--J <c z <

z o ft to to

cu cx C3 CU cx

_l

ec 3 £> rH to CU CX

CM

o o

< > lk

o

to n to

>--1 < z <

o n to to LU CX L3 LU CX

_l 4 3 a ft tn UJ QL

ut ut O r-ut

CO o o* KI ro

DL r- CJ

O O O or cn o cx • • kl

>t < 00 I- s.

o c

o _l

z o

3

II

LU k-

< Q

z o ft r-

<

« «

* « * « «

-

* a

UJ

CD

3 Z

a. UJ t-LO

O

o r- o o ro CM to O 00 O 00 ut uf O O u> O .O 00 ut

• • • •

I- ut CU ON LO •

3 U UJ

LU X H-

< \-LU

ut Kl co in O ul Kl ut oo «-

3

Z O Z

I— cii -I -I 3 .-C U.

LU

-1 CD <t ft OC

LU -1 0. . 1

r-_i

LU a OC lU

« (-3 L> CJ 3 LO ->

o cx «* a z • *

O o o I fN-

r-r-H> LO rj Kl

o • C5 ut H)

o 00 r-r-

3 *.: a. UJ K-CO

o o in O t- -or T- in K> CO r - Ki LTt O O P-o o o --t

OL

< 3 CX (J o to cx

IX

-I CD

z

CO

n Z ac o «c f. CJ > to -

Ul -J CD <t rH CX ut

>

CU

-I a. rH r--I 3 £

LU a o cx ui cx «t r- « J u l u l CJ 3 Z LO "5 -

a H-lt < to

o 13

1 r-P-K-

m no u.

ro

O O 1 m r-i NO

O CO sj r—

o o + o •4" -O ' J

ao *— «—

3 a. E:

o

o z

I 3

•..-. CO

it CO t_J

2"

< t-co "" o *_-» -

Page 287: 1984 The deflections of reinforced and partially

s* Ki -O in U> sjf K> -J1

<X> r-

265

LU Z _l o LTJ ft < to kH LO ac UJ

< cx

> u LU

'JJ

< 0.

r l M r

o o o o o o I I •

r- in O

r- CM ut

IN. >o H3

ro o o

00 00 oo X) vt •-M r i-

uf ro

0.

O CO ro rs. 00 -J ut r-O fu

tj -u ro

z o

o o o o OC C3

3

o n 1-<t CX

z o

_l CD

< k-

>-CX <t £ ? 3 to

cu cx < 3

a tn

ac

oc LU _l 0. kH k-_J

IN. O CM ul O OU O o OJ ON

. •

o o ro r-0U Kl ut CO t> ON

• •

r-

3

o

3 a ru M ru Z CO LU O UJ J H or co to

•J: to o ft cu Ul Or OU ru < C3 kH •> Ul

a. Q- LU O LU O

•a nj

I- u. o

to U tt

CX O

0.

X

z o

z o

CX

a LU CX

Ul -1

a ft

r--1 3

£

Ui

< z o z

LU -1 kH lk

« « HI

« « « M

CX

< > H Z UJ

a ,< UJ 0L u o

a X UJ

O

k-

Z O kH to CO LU IX i:J

LU

3 JL. LX O u.

I" n

LU U! Z 4 X LJ

rTJ u-

1- _l LO < ~» 3 -1 o

3 to £1 'JJ k-rcx CO kJ LU

X 3

— o z

l/> < to

aj

o

z o

LX L3

j O ..-. to CJ

LO CJ uJ 3

Page 288: 1984 The deflections of reinforced and partially

266

X X X X

_l

< 3 o o ft m tn i-

o o CX • ft < o «

z o

* * * * «

or

-i

0.

-1

3

Si

* Hi

*

to to kH ft

-1 -J

LU Z -1 O LC kH < to kH tO CX lU « cx > CO

o <z> <^ o o o o o o o o o o o o o o o o o I I I I 1 I t i l l

-J K l U i r y i i n u i i n o / f g ^ r O t t i C ^ K l O V O i - ^ r - V T i O i n o j ^ O N O J ^ N O « - ' O K i K i P J N M O N ' O s f K i » * O N U i K l f \ l O «* t — K i r \ j « ~ o o s o ^ ' . o ^ K i O s t r > v J O O » - K i o ^ p . s ^ 3 i n i n i n u ^ u ^ s j o ^ C K r ^ ^ i M r ^ i N j i x i t O K i K i r ^ s O "OP-ou*ioinoo*-in<x)T-st-0*" o i " <o r\j o u ^ r \ j o o j > O s t o s t ^ u ^ ^ < > r \ j r ^ r - c o i n r v r s . r o r ^ *-i ^ N r * K l ^ r £ > i ^ W > O i n K ) K i n O i n ' - N V ^ ^ N y J K l W O O K l C > r W * - < J r v J p j | ^ O K i i N ' ^ co i n K > r o T ~ o o r \ J o r ^ j o o r o o r o i n ^ c u s t > o » n u i C O « ~ r o r - r s . K i s ^ UJ tfi • • • • « K 1 K l r i n N O ; K i t > ^ r » J i n ^ r v j N • • Hi in »- r- sj t- T- h i in r- PI ^ n Ki K) n n K) PN| st vt sf sj s| sj I I I l I I I I I I l l I I l I I l l I I

h

< a J

< K Z

fi r\j

V. 0> O

II

« « « «

I o a. ik

in in ui i/i i/i m C O P J B ^ I O < ' N C co ps. KT K > Kr ro pj ,- *- cx cu a' a: CK- o • rv K X -J- in <> p- in u. *— K . »c t> t— K- m so a: c i n 0 r * - ' 0 < > 0 s > s t o u * i » * - *o ro i\j pj K I K I K I N K> s| ui -o M n «n, r- O N m o st o st c>* st nj r- <n « ,— st so ,- -o »- o ro >t st s t s t s t i n o o m - o i n K i P - s t r CL> in I M P J N M N pj N c> c o o O c? t n r " r * - r . O r - o t ? o i n r j O f v - r o P - t - ' O o i n u ^ r v O r - K i i / » N - O s t c o r ^ > O W s » o t n « - r ^ s t U i r * N j 0 0 r - p ^ in v . u. *o <i o (vj pi t-. K^ *•* *-f O o *- T- ro ru ft. rs, v*j <-;• in o m P C^ f . «- <- co «- K' oj a t- sr vt> cx; <- r•• u\ o -4 V «t u K ,

T~ P J Ki st »n sO T - Ki in p— o «— o st N- o Ki O t> *"*» o <— i- *— P- io o o *— r\i m P . O t> o ro O *i *o P- p- N- o t— »— rj rj K I

K i f / i K T O w i f o m i n i n u i i n O P» P- P- -O r> JO •— OJ *M PJ ro ro ro I>J rj M K» KI "I KI fi KI O st «— *— r- t— i— ro PJ t\t -NJ ro rj

UJ

u)

LL

J 11

cj •J

UJ

<t z o z

« « * « Hi

«

t-J -1 £2

< ft

ac

< j»

i— z

> or UJ vr tO Q UJ o

%

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O Q O O O O O O O O O O O O O O O O O O O o O CJ O O O O I'i o r-' O <-' O O O O O o o o o o o o o o o o o o •--> O O < t O O D <_> O O -> O O U O O O '-> o o o o o o o o o ° o o o o O O O O O O O O O O O O O O O O O O O O O O O ^ O O O O O O O O O O O P' p- O f~ rr.f vj f i <) fr; f1- st i\J C fl K. c3u sO *JT •."'j "• P. O r K) sf r C* st : fJ p. st . O C f sf N O PN' LA <"* P- P.J sV <f l/l f- 'n in •<; o O r- KI «o •<•) ;0 -o sjj m o p- P- O t— -o -.) PJ ^ N N O I> AJ st ^ I N ..* r -i in M »<) r w j j o o P- •*, o «'i Kl si st st st st in Ui m Ui u-l *> P- P» P- P- P- P- PJ CM r-l Kl Kl Kl CM PJ CO NflKlMClMNtsfstri-rr-ri-rr-rrrr-

r P J K I O in O N O' t> <J K TJ K) sj LTI O P a o o « - r o K i s t m s O P ^- ^- i\l f-.J jj i J r>J < J ( J <>J

1 O r_? »- n. j o -n •» Ki

Ki st in ) /• I ' t

o ^ a a -) J>H> N 1 .-;

O f - CM Ki %t in*t>p-sJTst ststst -tsj>sj

-3 -.

Page 289: 1984 The deflections of reinforced and partially

267

* * * * *

* * * *

* * « * « *

o o o o o o O CJ I I I I

O c c j i n K i f Q U s t i n ' O N N o j C r j ' k t o e o o >o o r\i in cn «- o o t - t — * — s o a j u i K i o r ^ i n O a o u i K i « - c o o st «— t> N o ; oo m o V O s t o u m p j N N ' U i > O O i n K l f " ( > N r r S K l c > i n f \ J O O i n O r n o i 3 ( V O ) v | O ^ T - c > r o s ^ s j ^ N ^ r ^ ^ ^ O C > o o ^ r v j > f ^ K i i ^ ^ r ' J ( > o ; , > KI j fs. v roj o 'O °J W M N- xt r> O i J n in N I- r> 0 *0 «" *J O ui K ^ pg fsi <> o »- iM hi Ki -0 N (> in N -u -O •o T- o IA rg o «- g M st in »- N pj sf>OI^O- K r\' s sf o N (?• 4 a> r\i in co «— s t o O O O O c u c x J ^ i n K i P J o o o i ^ O K i O P - ' s t O s O t — P - K I C C K • st in m < Q N c o o o o o r o s t s o W t > O r M s t K l ( h i V l O n a < ) - 0 ( > O W K i O ^ ' ' » O N J O ' - r J n o O O W s r ^ N s f ^ ^ l ^ ( 0 N-O>lf»sOstK*srfr0«— C^^>P»lrO>OsJj>stinKist«~F'''_inKlc^ CJ p- fs, fs. fs_ »o f— r- f— «— fv. ro PJ PI PJ r-j ro «- m ui in ui Ki KI PJ t— r- *- »— ro ri ro ro »— f— ro P. P- p. p_ r- p. st st st sf st aj st oj no cu oy o KI in so I I I I I I I I I I l I I I I I I I I I I I I I I I I I I I I

M C C - O C r l / i K i P . C W < O r N K l C - O M K t- U • O st 00 PO 0(1 st O •*» PJ O O P « in Ki PJ N PJ VO »- <) r r O (> «j a. tfi * N N OJ c «0 t-'OOp-sj-rjc>Nor^'r)>t<>inoOojstcaps,r-r>NOK^Hr-« vt C S O r- Pi P - s t O P - K. c m pi in K)«— s t O O O O O P) cn *0 m Kl M O O <? Kl O N st O *0 t- N M P) -Ci Ul st s t K i f M O O O O O O r - i n K i w o O f - K ) s t K i t > m o -O c J s O o c o o r o K i O O K i O P - s t o * — r o K i s t u i O r o s t - O P - O »— Ki o oo T- KI M KI K> KI KI KI «O N CO O O «— in ro O m r. c p- st «- cx, a w f, -st O OJ *- *t OL: »— st o K' U- K~. r- P; o o r- ro K> st o ( ; sj o a> o «~ st r c st N 1/1 o M N r-in it. c r o; Is- a c r- r !1 -O N N >0 > st sf m Ul Ui in N 'D 13 'O a O O r- t— i N W M n s t s t O s t s t ^ O O ^ O N ' O ^ ^ C > P C > ^ C > O O ^ r i ' i - 0 0 ' 0 < ) - O i P i i n i n >M ''J P/ Pjnjpj.

o o o o o o o o o o o o o o o o o o o o c ; o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O c j o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o C o O O O O O O O O O O O O O ' - J I O O O O O O O O O O O O O O O O O O O O O O O O 3 - i O O O t - J O O O O O C - O O O O O O O

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 " M n r o * j t « * N O Ki r- o c m c s/ so f- in ro in rj PI o c- st o c KI PJ p- ' ' st P- K» OO -o c* »- st c f- st v> ro in o so sr st c *- p. o t- *- ,-, O J > o f— f\j ri Kj 4 si st m ui n o <o -o :>> in o o P- S> ' f- rj ro ro Ki st *n sf st st in -<> 3 o r- »- »- <v st t in in so o r-j t in in in K> 'O *- r-' - f f - N C J f M - 10 ro INJ ro I\J ro ro IM IJ ro rj ro f— ro ro

O r f M K i s t m ^ O N O O- c- r r j K i o m o N a / O c r w r - w 1/1 « s a; o o r ro m st •n un in in ui in u> in <n o o o o o o o O - O U N N N N N N N N N ^ > '> •> ° *J

. sO P CO O CJ t-O JO J f > >

K

• -> Rj O O r- (\j m st

. > > O O I'll 15 '1

Page 290: 1984 The deflections of reinforced and partially

o o

l— t— CO '

o o o o o o o o o o o o o o o o o o o o o o

I I

-OcoMnfjf-Ost rs»inrsJOrooOijOOOOsJ'JOstro(r)rs.ovnOsOr\^

— " • ~ m m p. ro O o

O O O O O CJ W(_>*_JtJ I l i l t I I I I I

t><OKist«-OOst«-COO O l K i O s i r J U i O K i O O P s l t - f — P r s O P - P - r - o i^tiOK>rsiin<>coOf-.>r^uiCsJOrooo.JOOO KJKisf O >0 f" vj M N- sOC-OtjO <^GQK>fVrs.*\JrwK>OP-0*~r^st<-0>OKOO O PJ st O ooorufouif— s o r o | s . o s t r o o o o o o c o P ^ i n s t a o u i u i f ~ P J s t K i o o p - i n s t K i o s t I ' l N O r u i l U c O U i r N i N O s O P - r * - s t O P - s t T * r O u i O O HJ"HtKiinstKiNf-r-(s

lf^l>o^oo^NvJOw«>o^^coocoul^oof^J^ 1 ^ ^^oo^o , 0 'OulO(^Ost • O N O S O O r s i P J p J K i K t P J s O s t s t r s j f — p j p j « — f— f " p . r O f — c o i n * — *— Pj r- f— f— T- p. t— *— p-

o o o o I 1 in fs. ro o pn o o <o no u-i Ps. o K, Kl I I I I I I I I I I I I •

CNJ f- T ~ T» f\J V

O O O O O O

O O O O O O I I I I I I ps. ro o f- no r J p-aO *— st O tO p-Ps. O Kl « i/l PJ O rj OO U-\ O >0 Kl O Ki N i n U l v J N t > r ou ui in ui tn r- st Kl f— Ui st Ki st K) I I I I I

H,» r~ fs. ps. ui K": PJ o or- o o- O on a> on CO O O O O t- X U"< r- CXJ sj ,- m r- P Ki G O C a.'-O Kl r O1 t» "' <J !• ! C N <)s)innoKia3rniOPjOstroo'^>0'iJrs.r\i.oK^„or^o»-iMstOs^

i--Of^OstajK»p^roor\jst^jip-0'Ocop-ui^roui1^^ « f J ( > O ^ S r x t C O N n 3 0 l O i - P J ^ C N s f r C O i n l > K i N r U i U | s f K | l \ i r O N O s t N O K l U I U i i n t A U I u i LP r- tty st u- *c to o c; Ct t- f- K • *«t W> C K I <? o *** f- *t O O r- st SJ st s<r to <_< r\j si K i/- »o p- o- c r a O" C- T- I>J i n r j n u i s r s u f s f s t s t u i ^ s j r s t s t s t s t r c J O ^

P\J fNJ f-j

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O Z O O o o o O CJ o o o O r.* o o o o O O O o o o o o o o o o o o < •> O o o O O O O o o O o o O o o o o o o o o c^ o o o o o o o o o o o o o o O J o O O O O O CJ o o o o o o o o o o o o o , , -J M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

w Ci ; c\. m M vi -o r.' r- a O N C PI PJ r K; a, UI M O CJ M K -O -J W N L- n st N N PJ 4 rjstPs.P-fs. O O r f)»0 fl st O O N N '-J! st in o N M J sf st -Jf st in 'J Ki < st sO O pj Ki in P- r-i -o st srinr\jpOKiK)st sf

O S w c o r N K: st in "O r- o 5 • ' O O «~ t— <— •— «— t— f— t— f—

r- j r* i r v r- v-1 C' r- PJ Ki st in sO P 0 J O s~ t- ro K • st i J f\l CM (NJ fsj PJ - O f J P J .-g Ki Ki Ki n, *0 Kl Ki Ki Ki *»i st st st st -f

y c « - p j K i s t m < i p W< so P U; C ' -t st st st st

Page 291: 1984 The deflections of reinforced and partially

269

o or.

a 2

a oc < a z

3 -I

Z

3

3 O a r- I-u- to to

3

o

r-£ uJ

Ju­ki

cr. LU a. X LU

II

LU 1-«t a

z o

uu kH ft a re <t ca \Z

< r-

3 n S Ik

_l O Cj n < to ft tn

ac cu < cr > o

o

Z o M to CO UJ a. o

X CJ kj

cu ?-

1-o -1 Cu

«

.. UU -J rr, <i n OC

<

* INJ

CM

«

CM X I

• 3 >- O X O 0=

* IM I «

* CM CM *

* r j n * fM * * K) ro || f J i n i i M * CNJ O ut HJ Kl

•j ri ro

3 O

3 -I

r- > I

sr 3

X IM >- I

a J-

a. LU

o

J- X •

o

Page 292: 1984 The deflections of reinforced and partially

270

3 OL

3 O

o o I

o o

LO

< 0-

LO

<

< UJ

z 3

3 Z 3

O Lk

z

z 3

o o -1

z o

z LU h-

CU

CO

z kH

to to kH

£. 1

•J

LU 3

or c

L>

z o

U j;

z o z

cr 0.

Q

Z

< -1

•< 3 O UH

l/>

LU

OC

lk

o

to oc ft

< CL

ru

HI •

O T-

1k

•X) UJ

to ft

k-

•< jr

ac o u. 1-3 a.

3 u.

>-3 O

to rl

Z o ft

k-

•Lt

i. C£ O U.

z kH

L3 7 ft

tn i— r- tn

LU lk

t - o u X z to U" ft H U ri uJ tn tn cu CD to < 3 £ n u

z 3 s: 3 Z

LU

cn E LU

k" 3 tO 3 Z < a. cj

>- a 3 Cu or O O LU

CJ 0.

3 <

a. E K o. 3 o O Lk

z

ec O h-CJ kH

Q

'JJ

z o kH

LO LO LU Of C3

K-co ft

-J

O O H «

z tt < LL

no i

o o r- CM I I

-I o •4 I-3 LJ Q kH

n o LO LU

UJ ac ac a

I-

z LU

|N-

o

z o

3

LU

X LO ft

z ft LU

« CM

r '

. n o -i

Lk

o a z LU

-I <t £ Lk

O z

LU

3

to o r±

< CJ

-J

o oc I-z o L_J

CM CNI

LU

LU O

LU OC LU 3

CO LT O

cr 0T H i

C

-1 -s,

Page 293: 1984 The deflections of reinforced and partially

271

o o

LU ro u-i t- ro tn m in CM ut CM tn ro

LO CM 10

o r-CM

in r-LO 00

ro r-

o o o o o o o o o o o o o o o o o o I I I I I I I I I L U L U L U L U C U C U L U L U C U

L f l i n . f r 4 r l O L O L k f l O O r - 4 ) i - i n L l ^ O L k O N i o r l N L » r H ) I O r O i M l . l r j ' J L N H ) - r w l r O c » H J r i O ^ I O O . t r > r j j O r r » l « N N V r O ( > l l i r . l O I O r r l O r O < ) L n u f K I ^ N O r 1 4 1 » LO ut C> H3 o is. ro *o IS INJ < M ro rO to r*. -O LO C\J fu. CM Is- fM r- JJ CM st JO fu. O i/i O LO JO r- u-l O r uj ^ u j ; O u t r l / l r ^ r H N r S J i n N N r J N r - u > r i l i n O O t > O O O l A C \ I N r O 0 0 O 0 0 u i r L l O N u t r L > C > i j l O l / l l O r i r i O i n r N i / l L j ; C i J 4 3 r * ) C O O O l O t > r L O r O r - o l v l N L J n S r l f l l l o O O ^ I O W a ) N l > I N J i r i r a j > 4 ) t T i n i I J r r j r N r i . t i n r 4 f N O l l l O r - i r i N K l r L J i - r . r . < ) • •rOPOr-LO|N-uj>roOr-(sJin>Or-Hjru • I T ) m »- r ^ r *— «o in «— ru .M ri rO ro ro rO ro CM

O IS. cfl PO (M 3 CM ut HJ "CI O r O r O I M N r O O O O u r r l> r> r- r. ut ut ut uT u» u» ut

I I I I I I I I I I I I I I I I I I I I

z o

a: or o. or LJ

LU CQ

* * z 0 0 3

- z u. a o * LU

o to 5- - < CJ O CJ

< * or a 3 »

" z z LJ -u •*.

» « CJ CJ

LO LO LU UJ 3

3 -I -I <

« > > uu a

o o

O LU UJ r-> CJ OL ft lul O CO LU

LL) or O LL

O ft r-u

k- -O CJ *

n o O IM LU LU

or •

a o

• ur; CO o i—

lk Lk <M

O » O

or •

3 o or r-or u. LU UJ

ixicoLOi/Ncoi/NOOrMonior>oiN-r>ocMrOroroCNjryr-r-cocnwiari^c>cMr^ lll0^alLNOl>^OIClrOfyNINIIOMI'lNKlH s l J10^LAI•lrCr^lCll>ur(^ufcNurlUrl/l^JrsrOrOrO ^ u r u t ^ u l i n O L k W O i n l O N ^ r w l r l C V I I N I N N N N N O O O L N L N ^ W f O N r v l O r O W U i r J O N C y N r o O l n ^ L h r W I / 1 ^ 0 • I ^ C ^ I O l n ^ O l r 1 r ^ ^ l l / l ^ f f J u r ^ O I * l l O W r ( ^ ^ C L ) ^ O ^ ^ J C J l 0 ^ r l J 1 ^ 0 l > 0 ^ r f > L r l ^ i n O H I O N M r i r O H ^ e c ) r r N i ^ l i O r J O O I f i ( > L T i N w i r l r O B ) i - r n < ) o ) r . ^ O r ( ) i - K l | p r > , r o . ^ a i l - ^ ^ l r ^ u J l r ^ O r M l n ^ ( ^ l - o ^ ^ o M O l > o o t - ^ - r ^ m c ^ o r l ^ l l n ^ ^ O | ^ o r ^ l ^ ) u ) ^ ^ ^ ^ u O r f - r L J r J roioiOioikiiOLotoininLOHjru.rN.iN.coiO'Xjr-rMr^rLjfNjriruiNjrjrororoiOr^

o o o a o o o o o o o o o o o o a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 't Ld 3 '3 <-> O O O "J O O O -J O O O '"5 3 O •"-> O CD O O O O "> CJ 'O O O O 3 O O O 3 O '.-> o O '3 O O ' J O O O '3

O O L U i X O 0 O O O O O O O O O O O O O O O O O 0 O O O O O O O 0 O O O O O O O O O O 0 O O O O O O O O O ^ ^ u^ rH >JS O O O O 3 O •-> O Cl> O -J O O O O <J '-> 3 '•-> 3 -3 ' 1 O O O O .J O -J O O _) -N .. j 3 _> j 0 ,_j r3 j O O 3 • J O J

O O O kr* O ' l l N O t - W O O O t ' ) N ^ i \ i a o r l L U O H 1 0 l l l S L > i " M H r u > L j O N N H i | ) ^ ( > r ^ s O l \ l i > O N r L j O J < i - i n » 1 0 4 ) < ) r . f l O < ) ' ' J O L f i n < ) N N C > r 4 J l ' ) ^ I O O N N » u ' ' r 4 L j < ) S u N | - l ' l » i r l » i n - I H ^ O O M ) ' 0 <M-*H*H*^uficiiAiniALnoNNNNNNrLjNrgroiororHriiNiMnio'OiOrOH >-J;uf

3 kH LL -J tO H -J 3 LU Ijj lU

'•> ~. _i crj • <t n <

*» Z < _J r- ui w 2 X LU 0. 3 « <

u or > >

< LE to (-or in 3 o LO a. u- •« z

CJ kH

k-3 u- Ci 0. O 'C Z LU H Z It

st ui o P- JO o CJ j f i - t in O N a o o t — r g K i s t i n s o p - L i i o o f — < J to st *n o P- 'O ••> o «— j KI >t in -o p-r- »— f v i N N r N j P J r N J N f \ j r N j r \ i n K i n K i s i K i M K i r O K l s t o ^ s t s t s t s t s t u t

2 i— P; K* st in O P- P I K I st wi < r*. a> o o t- ro KI st in so N KI o o •- rJ KI st ui <> i>s- o i o o f- pi *-*<-- — T - « ~ « ~ «— f-.|. J J\J J • J J J ,\J M f-1 "1 lO Jl • i H '•! ••) v i "O -t st t

st in O N a t> O f— P) K I st Ui sO

of -t f-i n sn ui in m n

1/ !' ( j

Page 294: 1984 The deflections of reinforced and partially

272

O O o o I I LU UJ

O O O O L O r O r - uOutLOOIN-IN-lMOCMut H J O O O - O O C N J C O C O o r ^ r s ^ r > O Q i ^ r O r L > N r T r r k . r H > Q u i o r v O O L r i c > r o (J 10 O rN. ut M cj. o i\l .0 ro N -* l> <3 .J ro ui N r" O HJ 10 r-in^ONI>rMNul;OM>^OOriJLnMrujOC>C>OC> H 3 u o o > o « - r o « t r o O N L o O r o o ~ o c o o o r > j r ' i O -o ro o ru. COru.C>tnH3utrN--^c>Jr-CDOruCJfJLOututLOrOutr-rOT-LO H U N N N N O r r r r M M ill l\l IM CJ M r in in ulin n

r- o o UO <\J, a) 0 O LO 00 CX) HJ ut O r-Kl O HJ rO CM r-

sf O r- ru. to rO CM ro LO ro

I LU

r O U3m H3 r O rq v) ru i> 3 ru co oc> HJ ut O O CM o co ro CNJ r- IM CM ru

• • * • • «

I I I I I I • I I I I I I I f | I I I I I I I I I I I I I

LU

n o N i n N H l ^ - » r ul M Kl Kl O fu. ut ut -o ru- ut o o LO o ruj r- r— iM

. • • • I I I I

O QQ LO CM NO V •a i\i o O .£> «-r M O L/N CO HJ is ru. IN.

rtrW-O •0 r- CO O LO • J 0 O ru. ro co ro co t- ro HJ O V I O K I r- r- r~ ut

• • • • I I I

ut i— o ru. u» to r> O O r- CM St «"l I- 'U'CIU J ut LO l/l HJ fu. O HJ HJ HJ HJ HJ rl IO OO fu- crj O IN. -t Ut ~t >t -O ut

1-1 ON ut O >t OO LO ut ro ro C M C M o ut r- i\l fO ut LO «"• I J O O O O O CM >t CuJ r- O t> 00 ut fk-Pl N 4) O O O td uj JJ -o LO L> ro LO

_ _. „ _ k ^ m ^ r u r - r i j N r - S u t a l C M q O u t O O C M O O u r - O l o r o r A i r u . f M O r O r r o C > C O a O L O O O I S O I ^ » C > C N O r i o r O I M O C X > O r r - r O O O f M f ^ r L O C > ^ c ^ . N i r o o i N . u t r N , c ^ O C M » u t c > L o i j N O C M ^ L o r . r o N H j r o I O < f O r u - C N r r u i f i , » O f N - I O O O O C M t o C O r - ^ O O u C J N ( > C H W W H j c o ^ o r r o u t r o o k i o o o r j o w O N O C M r ^ o H j r o o r - ^ o r r M r o ^ r o L o r N i o i ^ s t r o o c > r ^ u t o « r u t c n r u t O N r ' c « r o r ^ f M C > o r 1 i n O N N < 0 » H , H i n i " i n i J l N M » L O l > l > O r r N N n M H < H « - r H J ^ U j y J . » J "J # # _ _ # . # . #

* " _ __ ,_ .-.-,. ,j ,u| CJ r-l «- 1~ r r- r- r- r »-r j r u r J o j r - J C M C M r r r r r r r r r r r r r v J . - J r M I M r J < N J r r r r . - r r - r r - r - r - r - r - r r - r - ^ - ,

_-,,,,-, , - , , - , r - > o o a o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O U o ^ CJ00 0 3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 3 3 0 3 0 0 0 0 o o o o o o o o o o o o o o o o o o o o o a o o t- g » ° ^ ° 0 0 ^ o o >-> L-J o O o O O L> o O O O -3 :> O o O LJ '3 O "J cul

S2S!C-:?i5k:"2^i,SS2SSSS2!SK -O sO • O O 3 K r J K » M N | s t s f U i - i U i O

t~»— f— «— roj CM r\i •— r-f—t™^-*- »— »—*•- r- r-

r r - N N t s t U i U l N O ^ O s t m U I U i O ^ t -

r- t— r-t— t— «— r\iroror\jrorsiroro,ror\ir\jpjf-PJ

.o o o r- <SJ Ki t in o N f) IP <"> <- iM o jr m so P-stsfininiAirtininuiinuiiii'O'O^-O'O'Ou'O

K o «— <g 'o st in so p- o o o «-O S N - N N N N N N N N C U r o

i\j m st in o fs. --o o o t- oi Ki st in o P- o o o *— c o KI O C J O c O n o c x J C O o j i O O O O O O O O O O O O O O O

s «. a o r- r - „, ut „. o r- co c o r cj K , -t LO O r- a, o- o ~ ~ - ^ ^ » ^ r ^ t ^ >l« - - ' st in <) P- Oj o• o f— PJ KI

Page 295: 1984 The deflections of reinforced and partially

273

CM T-r-t— r- r— r r l M r r r r r C M r r r f M r O O O O O O O O O O O O O O O O O O O O O O O O O CJ O O O O O 0 0 0 0 0 0 0 0 o I I I I I I I I I I I I I I I I I I I I UJ LU UJ UJ LU LU U J L U U J U i LU L U U i L U L U U i ' j J l U . U U J

N t > O r J W r L O H ' r 0 0 3 ) r O L > H ' i M i n c > f O ' l ) r j r r N O N N r O u l L j ) N i n r 4 r L O . f i n S N C 4 0 r . r j i \ I N r > n c J r ^ N i r . 0 ' 0 o r l > N i n N O r \ i a J 0 L r C > O O I C l ^ l \ | . 0 S i > l / l O 4 ) f H L 0 H O S l ! l ( V I I > r 0 r . H 4 l l l N N INJ kl r»l ut ut O t— Hj INJ ru HJ >0 'O UO UO rO lU fu. lU fu- ro 3 fu. i> r- r- t .O HJ rO ON O CM ut L> 'O LO IO CJ HJ CO i> l/l Iu O .M HJCJOOfUKILr. r O I \ I N O u f N O O O O O B J N I n H O I i r i i n i - N J | r l W N l / l H I O i > ^ N l \ I O . H ) a ! i i n ( > O K l L > M O r 1 N O i - l J l r J « l l f l r N r i J ^ O N N ^ O N H r N i n L > l ) O H r l l n ^ r l l N J i - r N O O f 4 i n r * J u l t f l O N l > r ^ H r f > O N r / l N N < ) O l f l i > O i - 4 3 i n O C 0 i n r u 0 r 4 n f 0 N 4 ) H N ^ 0 4 ) U l O l > O ^ N O f 0 i n u i i n i n r H 0 4 ) 0 0 0 » r H C H r H I O I O r \ I O ^ ^ i \ t r r y r L | r r r | U N r . O L n r r r H r r . r r N r r . r N f . l r n r n r i i i ^ i . l ^ k l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

< " < l r s S ^ n N o f f l C > C > C k i a c O ( O l C I O . C > O O r m i n r ( J H r l A r N n r > H O C ' J O | r l r ( > r c O O K 1 0 N | s o o i o t o i o t i o r o u > r M O u t c ^ o i J O O r j r u - r u t x j r o c o f ^ o N r c U u t o o i o c > o C M c > i > i o i M c > o r 1 r | > N ( ) , j a n N I V O N H O N u N O i O S L n H C J i n i r l 0 0 4 ) « I U S i n H M r H N O r H l o a i n l l l u ] N I i ) a j M i>Hjrgc>Oufisrutcoru.c>jONO'-CMutoru.utr-cOLoi>r'iru. r i n m > | M N r o M V < » N o w i n i n i n i n i n i n • n « l N o * i n 4 J M u > C u > 0 ' - r 1 J l J l » l " ^ O H N - J 4 ! C > r 4 < | H < ) I J ) O C J - t r 1 « l < I N l > O N « ) l > O r N O « l l l l » l i j l ^ ^ < H < i n n 4 ^ ^ > t > f l < I C > C > 0 0 0 0 < ) O S S N " « l l ' I O ' 0 ' < l - ' ' ' < , ' - ' " , " f l ' 1 ' ' < ' - ' "

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0-C3 O O O O O O O O O O O O O O O 3 O O . J O O O O 3 O O O O 3 O O O O O O O O O O o O 3 o O O O 3 O 3 O O o O O J O O O O 3 3 UJ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C J C J I O - J 3 O 3 3 O 3 3 O O '3 O uj O 3 O O -J 3 O O O 3 1 O O 3 J O 3 O O O O O "> O O J J O O <"> ..1 . J • J i. j ^ - 3 * O u N M i n r r i i j i O N N i > J S L > r J N r f l « i r i i o O i N i M r O ^ » 3 N O f i i J N N J i c i " ' ^ ' O O N r i i n N r 4 0 Q - * < r-rjrcM-tfu.rN.fN- • D - ' J r r o r o r O u t O O r u . r - r j o o u t L o H J O N N N J J J - » « r j M M J J i n c 4 « i p l n t J

• N I M I M l M r i - r r i - r r r r r r r r r r i - r N r r r r i - r m - r i - r r r r r i - r r i - i - i - T - r •ft

t OC uJ 10 ft m uo (—

"1 O IS -J ru o r CM CO -t .O O fu. O T O r CM -O -t LO O fu- .1 i> 3 r J rO ut LI O fu. Lu> £ < > r • U rO ut LO O IS J <* O UJ £ CO T O O O o O r r r r r r r r r r ' M N n J N C H C H r j r j l \ i r j M « M I O M n n M I O - 0 - t J ^ H - - f L t ^ . f J H i n K O H M CJ Ck I- *-H Q.

LI O D H LJ

z

rrStZSST.S!^^^^

Page 296: 1984 The deflections of reinforced and partially

274

z o

o uu O

m <

a <

CD o r-U o

• o

. INI 3 3 1 r-

• 00

Ul to

< LU -1 CU or

» X

z o •H

to or UJ

> k

00

CJ u X LU

Q o t-1—

u

< > M z 3 3-

co z o ft

r-<t ST or o lk to z

< or r-

r-ro

.

. or o ik

to 3 O J -1

<

• • z o

> to z

CO o < kH 3 k-

< + or cu

co a. LU O 3 -J UJ < T-> 3

0. ui sr o o O CJ *j s LJ lk or —I

a o Ul o r ro

LO tO

oc oc o o 3 3

LO LO S ru 00 r r- r

z o kH

1-o kH o cu or a.

it £3)

lk

O

Jr CJ

< or 3 LJ CJ

<

Ui SL

< z z 3 or

•"

or LU i<c a

a

o

» o it

o

» z

< CJ

r to kH

-J

UJ _l a

< or

« >

ru

or Ui m £ 3 Z

CU to

< CJ

z

< u

to _l LU CD

< -J or

< >

ro

to cu 3 -1

< j>

* a

o LU

> or LU CO to O

O Ut

a

ut

CO LU 3 -1

> It O

a Ul

LJ rl O UJ or 0.

a it

o

CO

z o kH

k-

o kH

O LU or a.

it

o

Lk

O

or O or or UJ

or cu it

o

HJ

r% -O

• a ru LU

•O

• LO 1—

Lk

CM

O

• o r lk

UJ

O LU X ft

lk

r

< ST or

o Ck

r 3 a. z U-|

|N-

UJ m

O

LU or

< to cu _J to

kH

or

< » k

I-

or O

I-3 a. z ri

or 3 O

>-o f-

o z kH o or O LJ LJ

<

to

z sz 3 -J O u

Q or o o cu or

h-

«* JC or o u.

LU

_j LD

< kH

or

< >

o r

1 r

r

a

» o r ik

z < LJ

LO ru

I r

*~

r

•G

• CO r Lk

o It O

o o -t

1 -o CM

r

HJ

HJ

1 r ut

i—

•O

• co a r lk

a. ur a

'U UJ

or Ui it

Q

O

< Ul or

UJ CO

_l -J kH

3

<r

. to LU -J ID «u ri

or

<

3 3 O CJ \ O HJ

Ck

O

s. 3 3Z kH

X

< Lik

•X

• LU to < o or cu a.

r^

> » uf

or O Ik

to LU o kH

> O or a.

r-t

to kl

or

•< CJ

UJ

to o or O CJ cu or

r

or

o CO r

< r < O

to >-UJ 3 to 0. 4 Z CJ n

Lk O O <

LU z or

• • 00 o

5.

<

OCJ

O

a. it

oo

o UJ O LO 3 It • 3 a «t <

CO kH

or to k-LU z to r- o ft t- ft r-< 1- < LJ Ck r to o to

to 3 O 3 3

« Ul

or 0.

u 1-t

tn

or o u.

to to a. to

o 3 LU UJ -J LJ LJ < < <

a. a ui CO to CJ it z

< or < a o or CO 3 k_

JE O or u. O Lk CO

LU I- O

3 « a. =»

z o n or

o 3

-s

Page 297: 1984 The deflections of reinforced and partially

275 o o

ut

o •o

o 00

o o

o CM

o o

o • o + •

o •o

00

•o

a o

o -t

o or o CJ ut

o •o

+ • HI

* •

+ * +

« • « +

* +

a 00

o o

o

* « « « *

CM

*

Kl

«

HI HI

* r.j rj

+ «

* «

CM CM

« « * + CM M

CM

CM Kl o ui rj « HJ

Ii ro Hi CM CM * ON r-

o HJ

a o x:

2 a o M J-k

I- z < 3 O Ul o uf

or a •

ui o £ < £ Z < o or Z C3

oc

-I 1 ft o

• Hj-• •

o Cj

a IM

fN.

o -t

o HJ

a a o

ut o uj

o CJ

Page 298: 1984 The deflections of reinforced and partially

276

o ro o o o ru o uf

o o

< a.

cs z

0.

o o

l*J -u,

o

o o

3 0.

o o o o fM uf

CU

m

o z

I I to LU

ru 3 < _J k" <

> 4 u 3 tt CI cu

LO O

r a or CJ lU LU

fN-

or r-u* tO

LU

z O u. -H O

a) o -» u. O

o z LU

or < LJ

_J

o or k-

Z o CJ

cu or cu 3 CO

oc o or or ~u

3 3

< a cu

o - J

a.

Page 299: 1984 The deflections of reinforced and partially

277

o r-u

< u. 0.

> ft

tn

Z a <-t o

I

a »-LU CU K £

« 3 0. -J LU CJ ui 3 or < cj

u LU

"- > O M to

>- Z CJ UJ < K-

or z 3 kH CJ

u >-< QJ

It CJ k

It

£

it

a LU

or 3 CO

< LU

£

*: £

X

o LU h-

< 3 3 CJ 3

< CJ

It CJ

o -J LU ft Lk LU UJ or o lk Kl

K l C 3 H J C M O l O u t a f N - u f r - t ) 0 0 « — r C M C M L O f N - O r O O O O r O I N - O u f u t k f K i r O r M r M f N - « J C X > C > O O L O r O r C > f V l O C > i o l M C X J u » O C > < > r O r C O O ^ N W ^ O r O r H J r j N N i r i i o a c o O c o u i r i i c j j i n r y o O O O u i N r r O D O l X i i i O N N O N O M O M r O o r j M ' I O g r l M I ' i ^ r O r O r o i f t r M 0 l > i r i O N 4 t r « ) O ^ r y r ' ! > a j ^ > O l , J O r i l ^ O r O r N . O u t r S ^ r u t c O r L O r u l O N r O - O O t > r O r u . o - » c O C > K l t o r U L O COLOoOONL>ONHjr^rN.rN.(jOCOuf-H*ufLOLOHJrCMrurOr1rOOrr-PJrM

o uu it

S kH LO 3 LO LO ru HJ Kl o -

ro 3 . UJ LO 3

r It- - 3 £ ut <

LU * £ 3 o. < CQ £ z < O rH « z or

• 3 < rn or >

ui o to ro u. < < CJ J r-

3 Lk or o. o

• - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 o o o o a a o a o o o o o o a a o o c j o o o o o o o o o a

a r a o a o o o o o o o o o o o a o o o o o o o o o o o o r j r j

i» a o cj o o o u o o a o o o rj a CJ cj cj o o oi CJ o o cj o o o u

r H o o o a o o c 3 o c 3 0 o o c J o o c J o c 3 o o o c j c 3 u c j c j i j a o

oocMWooot/NiouoOiniN-iorocjo-J/ac^ooroLOL>ijoriN-ruOrua O c » ) O L » C > O N O K V - t O H J O O C > r u r O u t u f L O O C O r r M C j r U r i > O r r - r U f M r O

£

o < C3 or CJ

Oct W H O UJ z to I O k_ O kH tO H t - M I - H • -* I- < Z r cj a. |- n

to O to lk

a.

a.

«

J •• N n J in o M u

3

JO

O l - N I O H L J i O N I J j C I . Q r l U l O H U l O N L l j O O r N K I H ' i n O N n J O O r . r M r _ , . r . - r r r r t - , - r j r U C M I U I M C M C M c M C U C M K l ' O r O I O r o r O r O r O r O r O -fuf -t

cn

Page 300: 1984 The deflections of reinforced and partially

278

or o

CO o r-

or Ui (D O r-

3 CD

< n or

< > CO z

co o

cu 3

to > or ft

o to a. n cu o I- 3 < 3 LU £ < r-OC > 3 O 0. u. UJ £ to o o Z O LJ

Z O kH O

x o r-LU CU t- £

or cu u. r- oc ft

E kj

K ln

> to

z CJ 1-

< 0

10 l/l D. 10

UJ or

« X

z o M to or LU

> »

CO

u Ul

X UJ

o o r r-

U

< > n Z 3

V

or or UJ 0. to

oc

o Ik

CO to 0. to

IN- O O Kl

• • or

o u.

to 3 O 3 3

<

• • Z

o rl

r-

< LJ o 3 3

< LU LJ

•* a. in

IO I i— i

to a ac O 3

LO r-00 IN.

LU CJ

< 0. LO X or

o 3

• Kl

to O or o 3

LO CM r r

UJ LJ

< 0. to z < or k-

< CJ

Ck

O

jr

(J

< or 3 CJ CJ

<

LU £ < Z

Z 3 or

r

CJ

LU

> ft tn r* LU 1-

z ft

> •

CD

O r-

cu < or 3 3 3 to CJ « 3 UJ <. £ CJ

vr CJ

» X it X £ £ CJ

t-CO n J CO

3 UJ UJ 3 CO CD < < 3 rH

or or

« < > » •

ru ro ut cn

o 3 LU ft

Lk

LU LU or Lk

r-•X

£ or

© Lk

r-

3 0-

z n

HJ

O

ro

to cu to

< CJ

lk

o z

r-

« r-

< o

r-

3 0. z kH

Q

< LU or

00

Page 301: 1984 The deflections of reinforced and partially

279

CO

o

Kl k

C3 vin J X - 3 £ •* <

CJ

ro ru HJ ru

< or CJ cn fi ac tn r-ku Z 1/1 K O H

or o

3 O 3

< »- < u a i -to o to

< 0.

o 3 Z cu

> kH CO

Page 302: 1984 The deflections of reinforced and partially

13 O

280 o r-

o to

o HJ

a o

a • • o + • •

+ • CM

o uf

LO to

o or to cj .O

< •

* 4> o CO

o CM

or o r- X U ru < H O v l it oo uu r-

s ac •

a. o 3 iu r- tn

s < r> ui

O £

O HJ

uf

• +

U

< OS. 3

Z £ O

r Z < 3 co UJ O r

Ui O E < £ Z < o or Z LO

ar cu h-

Ul r-U J < O M CJ

• •

O

a

a a

o uf

o O O

o HJ

a o

/P'

Page 303: 1984 The deflections of reinforced and partially

281

O ro O r O LO O CM • r

•4 OO s, t> f s.

t> o

< sJ c^ lk r-H

^ CO »-t Ul

••s CD SH»

LU Q-

o _l Ul

-> U 7T i-t Ul Ul •H

s; • o UJ K--D CL E

o

fu. C> ut r Kl CO O LO IN. r • •

I

o z z

ur <

>

O I-u

<

fu. CU fu LO ro -o IS P-ij r

-J

1 rs

or UJ

z o kH

k-

< 3 LU

or or o

I

k-to LU

lk

o

or or Ul

o r-

1

to LU 3 3

< > a UJ k-r-

o 3

Page 304: 1984 The deflections of reinforced and partially

282

Appendix VII

NUMERICAL EXAMPLES AND COMPUTER PROGRAMS

FOR THE COMPUTATION OF <5T USING THE PROPOSED METHOD

Page 305: 1984 The deflections of reinforced and partially

283

NUMERICAL EXAMPLES

For beam R 450-1^

b = 450 mm, bw = 120 mm, t = 50 mm, D = 305 mm, d = 270 mm, L = 5,700 mm;

Ast = 1'400 ™2'P = Ast/bd = °-0115. fs = 323 MPa, Eg = 2 x 105 MPa;

F' = 40 MPa, F = 0.62 /F~= 3.92 MPa, E = 31975 MPa-c. u c c

n = 6.5

The values of kd, M , M and M can be obtained using Eq. (Al), (A2), (A3) and (A4) respectively. Thus, ^ u

kd = 92.18 mm

M = 21.26 kNm cr

M = 110.93 kNm y M = 115.28 kNm

u For T = 10s cycles, M. = 0.3 M = 33.28 kNm and M^ = 0.53 M - 58.79 kNm,

d y t y ' the total deflection 6-, can be computed following the steps given below. (1) Moments of inertia

The gross and cracked moments of inertia are,

I = bD3/12 - (b-b )(D-2t)3/12 ft W

and

= 8,27 x 10s mm1*

I = b(kd)3/3 - (b-b)(kd-t)3/3+nAe rd-kd) LI W o L.

= 3.97 x 108 mm'4

The effective moment of inertia at M = M , d

I . - (M /M,)3 I +I1-(M /M,)3]I e,d cr d g cr d J cr = 5.09 x IO8 mm"

Page 306: 1984 The deflections of reinforced and partially

284

and at M = M

Xe,t " (Mcr/Mt)3 Ig+U"(Mcr/V,]1cr

= 4.17 x IO8 mm"

For computing I , Eq. 7.3a gives

M = 36.97 kNm x

Then with I = 1 , Eq. 7.3(with m=2) yields

I = 5.53 x 10B mm" rep

(2) Initial dead load deflection

For the third point loading, the deflection at mid-span,

6,. = 0.10648 ML2/E I . di d c e,d

= 7.07 mm

(3) Intensive creep factor k

The values of k. , and R are determined using Eq. 6.8a and 6.8b respectively.

They are,

k = 1.897

and R = 0.0371

Thus for T = IO5 cycles, Eq. 6.8 yields

k = 2.083

(4) Total deflection

Finally, employing Eq. 8.1, the total deflection is computed as,

6 - 2.083x7.07 + P J 0648(58,79 - J3.28) xlO6 x 570Q2 T 31975 x 5.52x10s

= 14.7 + 5.00

= 19.7 mm

Page 307: 1984 The deflections of reinforced and partially

285

For Beam PP300-3:

b = 305 mm; bw = 120 mm; t - 60 mm; D = 305 mm; L = 4350

mm; Ast -- 603 mm2; Ap = 118mm2; Aeq = 721mm

2; P -

0.0088; F' -33.11*.; F.-3.56MP,; Ec = 28.1 x loVa;

H=0.6; Pe = l41 kN; M ^ = 39.51 kNm; My = 85.37 kNm;

and kd = 83.16 mm

For T = 105 cycles, Md = 0.3 My = 25.61 kNm and M -0.5

My = 42.69 kNm, the total deflection 6T can be com­

puted by applying the following steps:

(A) Moments of Inertia:

(a) For gross section,

bD3 (b-b.w)(D-2t)3

g " 12 12 = ^*2^ x 1® mm k

(b) For cracked section,

_ _ b(kd)3 (b"dw:

3 o + n A (d-kd) 2 _ b(kd)3 ( b - y (kd-t 3

c r 3 3 eq

= 2.44 x 108 mm"

(c) For the effective moment of inertia at M=M

Eq. 5.6 gives,

I .. = 5.45 x IO8 mm" e,t

(d) For computing 1 ^ , Eqn. y>3a g i v e g

M = 39.73 kNm - "

Then from Eq. 7.3 (with m=2)

I = 6.23 x 10s mm" rep

(B) Initial dead load deflection:

Under dead load, the beam is uncracked, thus

5,. = 0.10648 M-L2/E I =2.99 mm. di d c g

Page 308: 1984 The deflections of reinforced and partially

Note that if the section was cracked, the effective moment of inertia at M = MJ should be used.

(C) Intensive creep factor, k:

With n = 0.60, Eq. 6.10a gives P = 1.69

Then for T = 10s cycles Eq. 6.10 yields k = 1.61

(D) Total deflection:

Finally, 6T is given by Eq. 8.1 as,

oMgL2

5T =k5di + E-T- = !-61x2-99

c rep 0.10648 x(42.69 - 25.61) x 43502 x106

+ 28.1 x 103x6.23 x IO8

= 4.81 + 1.98

= 6.79 mm

Page 309: 1984 The deflections of reinforced and partially

287

r> r-

N w lk

O J < u •

••"-

i—

w c < uu J]

J ut

u

IS

z ft

czt < o -1

Q a LO LU LO <

:* i- o o o < O -1 M Ul I 1- a. I- a LJ LU LU UJ

-u re £ k--1 < uu LC UU UU

iu UJ z a. a a n LU z z ar

-I 3 < >• OC ft < 33 UJ

h M a w 1- a z Z Ck LU 3 kH Ul k-

Z <c < . U I H J H C J I -J »- O i- u. LJ cr x

O -J UJ r-LO < Z U

L U l - U H i l r- Z < Ul LO Lk GO

-J E Z 0 --J 0 O or: <-> E n 1- O -1 1- 2. X < Ui LJ LU k .

" > -1 E -3 •H LU O <

Z t- u. JT 1 U L J >•

cr UJ Q UJ m IS u. > O"- J H O OC LU < I— UJ

a. M U H Ul l— LU <

LO x n ik _j kH r- 3 Lk -"J X ft LU O

r- O -I k III lU «(

< X X U I - I -

« ¥ HI

* « « UUL.

LJ

o -I IS

r-3 0. z kH

« « < * * « ¥

«

LO z 'J

* or Ul I-LJ

< cr < X LJ

•i.

or k

LO UJ

LO • •A LJ k LU

LO k a >• k LO

a u. k k

I- r-k LJ

.1 u. CO • k LJ

T) Lk

z z o o E £ y: E o o '-> LJ

El z ru

o o •

LI u.

a •t. LU

cr

-I 33 k

LO

a k

o « 1-» .« 'a k LO

L> <

ru JU

* « k k

LO L/1

-r ur

O Q >* T LU U 'K re

>-LO Lk k

r-

u u. k

LJ L k

ru

* k

L/1 U J

O

-< UJ

cr

;r cr k

LO 1]

UJ Z k

U r^ UJ o

o r*» r-

« k

• o L/1 U" L^ UJ

<=> 1-•X >H

UJ OC

ac i

ru

in o r-*

HJ . J

UJ

H M

cr -«

_i 0. k

LO O k

a .

k-k

3 HI k

LD

ru

o r* r-k

•O U J

LU

1-kH

cr i

£ cr LJ

s: LU

E cr u

E a

jr E OC a_-uj CJ

E 5L ru cu

E cr

ru ru ru r-"| ur ur ruru ru ru ru «

" r u k H M ru ru ur M H r. ) ruru CrCT uJUJ «X CU CD Z ru ru ru

W U J U U rHk-l Z Z* 1 O SL. kH M H M — J 3 oc oc o >- >- LO tn ir or L3LD * * U o I t < Z s B n * « U U « H o U L> < ru « « U U LUUI U U uJ LULUCJruuJLJLJ UJ lU w w LULU « U" u ,J i UJ U

E . ca Z3

LJ O -J

m

> 0 ru ru ru X -J _l

I _l r- CO CD cn LU * .

« E _l _l 1 -J ttJ LU III z * * « O <* H3 uO n + + •f H LU UJ LU LJ • •

-J .LI

HJ

r- T- LO * * i-

< Lk LJ

in o o uJ ;-> in z

r-l

o

t~>

\n i—

rj

o ro II o ,2 OJ

* r— i— r- AJ O f—

r t r u r t A ^ r - r r r r C J l j

0 0 4 ) 0 4 ) 0 ur *J ur U J uJ Ui Ui UJ UJ Ui

* * E SL.

a LU ca o * « X uO O I- J W ui -o m i: o «-

r- O ¥ ft UJ UJ

in * I u j HI

IE ft t a «

I- a n < -r iu ^ if.

11119 13 LO LJ r-

o LU al LU « HI jr T3 o ac ut oo

lk O T" L/l r- •:•

Z • •

< o o cr UJ UJ

r- II II cr oc

o u u LU ZJ 3 uj LJ r-LJ Lk U.

< A Q cr

O HI HI CD +

O £ S ru i ill m a u r- « * o u. r-L U I O L T

JC uj; u

•O ro z LJ t-O i- *-J M . • k- O C LJ ur uj LU || || LO CX Qu

o u

II LO

T— LJ

II II

LU u. u. a ft uTI LO J

Uu u. w OL W UJ ru ru LJ uu uu _| _l kl ur ru ru

a ra o i _i _i * « x j J I -a.i at L U

« « >: -o >o + + •LU­

LU LU n • • i-

r- r- OC * ¥ UJ

:-r s: z UJ ID ft * ¥

LO "> Lu uj- o o O k-l O r- r-i- O ..1 . . LU

-J O X UJ UJ O II II JL. r.U '.n

> IUJ > - > - • >

LJ r- m

or cx LJ LJ

LJ LJ LU LU

i- m LO uj * « r _J -I ru CU rn ru ¥ ¥

UJ -o o n + + Lj LU Ui

>- r- m o ¥ ¥ ¥ * E E Oi LJ LU aj -uf • « 41 O «-

uj- O r- ru

LQ H3 •« • Q

O Ui o 00 • I l»> « - f-r- * UJ

O -. E

O ro O T-

•u. HJ Kl ru O <- <J

ur r- O O 5. « • X cr o o I— U UJ ur LU •J II II Z UJ or or II LU LU cu L J LJ T - Hj

• r u . r u « HI

ur I-H

II « BJ ru

LU ur

LJ n

: k C ^ C ^ J ^ Q _ > - r u r u t J L k l k k - U r L k L k C j u L k L J

• » *u cr

>^ ru <

uJ . LU

ur ro Z II * n iOr, J Ui uJ ft U M LU <— or Lk l_J h-

o o LU UJ

II II

IU L U

a a

o n -

u u u j u

-* i- rJ fi uj LCI uo r- o i o o O r l M K I u t l / l H ) N r O I > O r IM Kl ut l/l H) S C O O O r r o l ^ u r i A H D N L V O O r f y C l u f i n H I N l X L O C>T-IM|u° r- r- i- r- r- i- i— i- r- v- J .\J ,J J J . J -J J J J r-1 •'! ro ,-i r^ r-i .-> f.> ,o M -r t ujr ujf - f -r -J- -J- -J -t u i in i n in

»- l\l fr. uJf Lfl uO

Page 310: 1984 The deflections of reinforced and partially

288

UJ 3

^ < 0.

£ UT-

II in i/i LU <T r-

(0

UJ

-J M

OO

2 UJ H

LU r-kj

tx u 2

o u X*

Ct

O z r-UJ O

z. II h-

.•-> ;.

r-0.

u

-o • UJ cx • f>

r- CX

ft xc

C*, < CX 2 xc o KH 1 ac cn <-> a X. w cx * cx, VI

** 2

< O 2 <J 3 w

* ">» £ --N 'fl w *•* <

** 2 II a V > II

r t-o : <-» a.

cx h-

r DC 1

• --V

« J CD II <

m

•-1 Ct " • ^

« cx

3 [fl

1 ca —<• « K-£. cr 1 a * cu * r -

•eJ cr + c/i •ri­

ft S-. tx • r-

* --, 3 • 1 .n U _ r

, « •

f\J II a ;u

I to a « </i

< « s. OC

* • *-*

f\j • 1 rj cx * • +

INJ 1-

* w

* * CX CXj

1- 3 1 00

o 1 w UJ w *—'

* 1 .-» 3 •

:j 'NJ

1 * LD * •— a

* •** \— * £ Cfl Ct * II t-LJ ST

cx

<

r * %

• ro •X*

cx •

< Kl

ft • (\J

w

**. cx cx <-J

LJ

* < <* * • ** 1 •

r\j

« « ca

* • .-x

i-1

< z X w HP cx 3 LU 1 -U • — '

• - c

w

1 ex.

• CO K I *-*•

H tr 3 VI •

CQ Ul 1

—' II < X

•X

cx •

*0

ft -tt

< 2 X

ft .D w XC

II r-4

(J

1 «"X

« I<1

--. CX

ft * cx

< 2 X 1

o xc

ft Lb

* H il 0C -u---

XC

• •

cx

• Kl

**. r-^

Kl

« « cx

< Z-. X

1 r\j h-

* * cx

< 2

«* 1 Ul o k ^

* l/l

«c ft

if—

1 Q Oaf

ft ^ v

.~f -LJ 1 rra

• - - •

« r-i: nc -—' —-

>o + UJ a

T—

« ,—, r-1

LJ -s,

*"-• < -» X

< E LO u-r»

w

II r-C/l

o o

*«• o

< 2 X 1 VI o s-*

* «— V)

o LJ s^

•s.

< -r X II ,_ r-

ni

2 UJ X i- >o

lf^

r-O

o • o • UJ _1

• , - k

I—

£ CJC

1 r— t— <s-LK

u-J»>

k _ «

u.

•H

• LU

• r~

* , ~ k

r«-^

M «-J

« O LU

—' *> s: u

U - *

II a. LJ

> cr 3 LJ

-I QQ

* -J L2

« 0. LJ

> OC 13 LJ

« 'C X*

o o 1 —

• o II o_ LJ

u u. o

-J III

ft _J OD

« CL

'—> > cr =3 LJ

# o uO ro if—

-:a •

o n CL LJ T—

U. UJ f* LO

^1 LU

r-f-£H cr M h-

cr

m

o h-

u. O tH o o

J U .

Ill

o

o X K LU

s:

a < UJ 2 r-H

r j

r-H

^3

VI

> cr UJ j*

CK

<

*-» E a: u I * *•*•

21

>• ***** • * %

cx cx

>- i_ CL LJ 1 £_ LU w »-c

« r — *

cx •*¥¥*

r—K

a. LJ

1 cx

••" HH

a N-/

1 CX

— * •

rH

^ II r-H

r <

cx •H

cr 3

« o LU vc S cx -1 ai

* -J LQ

* o • LU •

*— ft '•£ LU

« 00

-» -o o r-

• O u - r

H

cr _* LJ U.

o

cx

cr 3

* LJ

Ui

» s cx -1 tri

* _i

rn ft o + LU

• T—

ft F. LU

ft o ^ 1-1 w— O •

o u>C

II cr 3 r"

u. o

fVJ

o o X r— UJ

u cr < UJ

*_; r-l

-J >-H

33

Vl •

V ;j LU

L U

fQ

s: cr LJ 1

r >

L k *

£ fXl

3 vc •x,

cx cx

>— i:

cr L_»

1 Sul Lit Sat

*-» * cx cx

"-' rH Ci L-»

1 cx w M

o --C

1 cx w M •o II KH

>-J J

U

cx •H

>-LU

CD

* LJ LU

*-» S cx

_J CD

« -J LU

ft o * LU

• f —

ft s: LU

ft 0 X*

MJ

o r-

• O

*-< II

>-LU CD LJ u. O

cx r-H

> LU

(fl * LJ LU

—• *Xi

cx -J ra ft J CJ

ft «o + UJ •

t—

« I.C a) * o LX)

o »r-O a

O s>

II V LU UJ <r-U. O

< t-H

H cr UJ 2 KH

U_

O

1— 2 LU

s. o E

u. O

u. o •-H)

H < _l Z) LU

J < LJ

LU

X

r-

rvj

II £

X

KH

3

o o X K UJ

•r

V)

• cr o X

>-Z3

< >-LX)

O

< o _J

o UJ K-

«x LU 0.

>u fC

o

cx,

3-u

cr LJ

+ cx JCX

cx -krf

5C Cx: O

1 c\ Vrf

£ CQ > •

vc •*x

• I'M

* ft cx CX

w

s: cr LJ

1 £ XI * Xf

M ?. X

• rvj

+ * cx

K X "x.

cx

<*c

E: cr o w

1 •

ul-

x^ • cx x-» KH

L3

ft cx

• r\J

ft ft cx

-=: X •x.

cx t * '

EI cr LJ *-*•

x^ II KH

a. -U

cr

* « « * + « « v LJ

o -1 CD

r -

D 0. r-=3 O

ft ft ft ft * ft ft

cx "3 r\j fM

» o , ' LU 1-

- ir

z

_ LL

-CL.

cx : r>

•H

Q_

LU

LC

» KH

cr :* *> r-t

LJ •

»-( cc LD

cx 3

K» in INJ

nj •

O ~U k-r"

LU 1-r-H

_ :«

* • "

LU

r-•~* x j\-

cx O •O '\J

" •

•o w LU

t-*-* rr. c

•. » or aj LJ O LJ *-U. U.

a a » ••

cr 03 LJ a ID LJ «— U.

u. a o * * m cr UJ

LJ LJ

_D «-LJ U. Liu O O » * 03 >-

cr UJ UJ LJ LJ ^J r - U r -u_ u. u_ a Q O

» •. » cr cr > LD a ) LU

<-» t- UJ Li. U . ( j

a Q u. • j

cx or -o •;) LT - *-» n

CJ u- r-- O U-

O - O xc ifl * '.u js tr

i- .v -« M r - U !_ UJ- Li.

* * « * * * ft v. LJ

o _J Ll J

1-< ?:

>r O u.

ft ft * * ft ft ft

cx O

< * »-< E_ cr o u .

O

*• II

O X • K -

^t Q. cx, u. LU *X • O

•* * - 11 -1 V) X «t UJ 1— tr KH a uj r- KH > K 3 0 UJ • CL OJ * O UJ X CT 3 <M

a. - » cx * o *x _l X • * < N X* "~* ZZ •* u.

- o o » 1 »-H • -- t - x * ||

w (_) U- L/J

o LU • vn O LO - UJ *- II 2 * £. x -M:

N < t- U -UJ Q H

CO J) M J < - 3 H

* •> • l— O H» lU X T - IM L3 «r- 1— h- 2 W u_/ LV <t K- r- 1— _l < < -X u.

E E SL -tr rr *r » O O '-J 'U u.. u_ U- l~-

o tn o O O r-

N O - , f > O T i J M x * i n « O N W a _ rtMin o o J O .> xO o •> o -J IN. fXk rx- !•- is- fx- rx. r

«— OJK>xi'ir. o N cu o o s- fx. J

f rj fi in o N o> a o i- w f" »i i/\ o N > o 7J o o o o o J kJ* N > .> 'j* j* •:> ^ o :

0 . 0 « " M i v w i r i > o r r : o o r l M f n ".•» ^ 3 •> J LJ ,J J J r- r- r- r-

•'l'l/ r' O

Page 311: 1984 The deflections of reinforced and partially

289

n

z Z ' • o

oo

OLL

Z Ul < H Q. LO L/l

19 2 H 1-

LJ

>: M

u or

10 O LU r-

z «

u. z M LU Cr

O LO

• z uf UJ . lu r- •

II o -I I H •» -a. ui UJ

ill X CJ Q < 0

• r-Ui k k

U H E UJ < E lk t

'L or 0 UJ O LO • LL .

ru r-

LU X

I- •- -LU 19 •

or z il LJ LU UJ z ac y- k

O h u x u LO or CM

LJ -k a z c\j

x -I o • ru ul u O k kH r-

• J- Lk LU

< o -CL _l E LU 5- II

ru • LU | 1 uu. k k H U J

• x n u u • r . M k L0 k k k. LO ru LU O X LO uu, ri • OJ < U. uu k- ut k _| O . OC Lk • UJ ru U • < >• -0. - 0. Lk r- | O II E O k-l . 0£ X - LJ uj 0. r- k CO ft o

0 X 3 1 - 0 J / r J B I r < UJ k o < . ft ac ru o _J uu. or >- • O Ui k LJ co -j- J£ ru

. r- Lk - Lk . • < UU k k O ut ' E f- • f\J Lk

UJ II t- CO k

E or x k -j . < LJ r- >. _l II "i Z 13 - 3 O 3 o Z - o n - U UJ < O r-«- a: o, \C <

•J -K- E - or r- INJ LO • k i- I- - x ac ur ur LU X r j < I — » — I *— - _|

< *t n k o rj ii J.VIO • o or or z . o o O O UJ uj- r- E

- -> < II ru kH r- - r-

z I or

o o E O

k E X ur

a UJ

ur I o x Z r- ut 3k U . •

k- < .

CJ II n . 1 - 1 -

o z or r UJ HJ

u. E Z k O r.

- E II Lk k- LU O

Z I-LU < I-E E Z O M U

* I- E _l O

Q Z3 E LU • it k LO LJ X LO < CM O or - ur LJ - in k I .

N 2 N h l < r -

- II II ru O - rl kH •«u O II

k x n a a ru K O « - LU O X O I sr o t- _i

I LU uJ LO I— E ra o z ui ui O O E LO r-i— LO or «*•

- Z O LU Ul "uu < r- Z Q. - or t- or LU

CM .a a. < or • <-> 3 O >- Lk r in > >• o Lk it) 'JJ

-< < x n < < rt HJ I- rH rH k-T- or r- r- or k LU or or LU

ro z uj UJ z

--J O

o a.

< o

z o

Z u X UJ k |UJ E CVJ r-

O « -SL o ru

ru eg

z lk O k ,_ k U^

» r ( M I L S

Z r- X «-

Lk - C D

Lk «

O ••£

< IVJ <

E • E or o or O r O

o o r- <VJ

r- rvj ro ut r-

LU Lk

£ O O E Z

O O kH

U/l-JT rl LJ LO

< O or a. o -z -~o x - ut i— CVJ

LU O Lk Lk

O O X t-O Z I- t-I M L U Z Z • J. LU LU

ro o E E • E O O

0 E E •«- LU LU -> LU Ui k « > > X r- ft ft

m o h h r LU u u . Lu LU LU

kO U. U. LL

- I I -

< a. I

z o

E

LU r-,

• K CVJ Lu r- k

• ru k r H L k T - O r — - CVJ r u u - k k .- lk t» .

IM N O O X - u_ k O CJ

-*. >x •• X • •TvJ CNJ X PJ • *-

(M • O -<- O T - (\J » ^ u_ •

rvj u. * o • •> x «*•

O X r\i u. r M r - * U. r- » X - - I M CJ X (M • «-f\! • O •

X X tw-xj r j

X,, »i— «—

•> « *• r\j c\J ru • • •

o o o <— r- r -LL. U_ U.

• . • . < * . X X X f\l QK O r- •» *—

« - »

o

<

> z

E o

I E

O • HI ul . UJ ' r- - - . ur O

O ••» O r-

_l ru 3 -LJ I -I -< UJ

<-» a

'Ul INJ k k k (- rsi C M

fO k I- |-

CM » I- >. O ru

ro -I- I

O ru

u- I

II O

a. o i—

rt k < -u ' O k - I - I

- E ' » I "> Z I

cr O

T- X r- r- Lk - O CO r- UJ k O r - k £ X

r- - a ix CM LU a •£. a

x or H UJ UJ

< or

» ) r U O

< < ro rl ro ro E E . • . • or or o CJ o o O O r- r- r- r-u_ Uk UJ UJ LU LU

r- ruj r- .U LO O r- Ul rvj ru

s s s w r y ) u j . ur* i^ t-> - - . ( - o i - u J I - - >- Z

< O E X

< o E «J OS r-

o »

< rM

E • or o O r-

w z

< - or 3- ID

LJ O LI J

i C M ru r- k-

1 4 "

a -o n X LJ

K X uJ 1-s: UJ

^ a rwt cr UJ < — UJ rH ^ -J M M rj 0 H

CD v> cr ci UJ >-^ .1) cr UJ < UJ 3 lD

> • - -

f\i r-J h- 1-o o

cx ^x

-cx • 1 •

^ o o r-

" •

*x.

o

f—

o 1-

o L*>

Q_ O Q I- £. '/) "J

r*X

V C

M

U

2 O M r-LJ ?

-3 u.

UJ X. t—

LU r-

< _l _J LJ -1

<. LJ

2 O M r-LJ 2 -D u.

V) M

X r-

VI

2 O --H 1— LJ IU in

V) LO O IT

'->

VI

< » V)

a • •

a » l-» c CD m ID

ZZ o •few

>. O LJ

m ^ I cr in » Xr

LO w IU v-C * 1

LJ cx -J • •. rvj

>- --t/l 'X Lib cx •- cx

r- • LJ Kl

"- * •• ft

LJ tJ U. w

« 2 -J a o *-* cr E ^ 3 •=: n i-Z> «-H UJ tJ V5 X

z LU CO

E Z o o

UJ O LO I r- UJ Ui < E LO . _j or < LJ i 3 0 » LU LJ Lk LO k ,

J M O >• • < "LC. k LO

JU I_J or a u- . ^ j - k k -l Z I- •-or o o k LJ LJ ft LU J U.

3 i- ir rn -• LJ LJ k LJ

Z Z « ,D u. O D I kH Lk LJ Z Z I- z o o • LJ LO n E E ' Z n E E D X u. o O LL h O u U

o ul

t * ^ u ) N o l c i . O r r H r ^ u t i n < ) N i r i > L V r f J r n u t l ^ H j S O j ( f t O r r \ I M u l « s J N R ' C V C i r r u r O u t ^ 4 ) N l T O Or-(vi r r- r- r- .— r— :-J ^J J 'J J >M J "J . J 'M r>> .'O kO IO 'O IO '.' I CO O O -f ~t ut -t UT uT -t t -t -t L-1 >' LO u"v LO I'l 11 < • O 'n J C) J

routiri u o f v - c n o o O Hj HJ C) ul o J |u-

Page 312: 1984 The deflections of reinforced and partially

290

• CVJ

rvi I

« cn * ur • ru ¥ fM O ru *

ru ¥ ~* ¥

LO in i0 ru

< . I o * C J L J > ru | ur | • O + LO

r > „ o I ur . uj

i. * CM « re »J r- tn

" I N < H r H ru ur . ru r- • 10 . • ru « r-• • ¥ I

IV CM ru £

I «- •- er CJ uu * uj ur ru • 4

• • rvl ru r« IO | .

JJ « o ru ul « ur « I UJ « «

• 41 ru ru

ur m t • l vr ca <u r» vr | >» J.

LJ ii m o cc « M UJ | 3

ca re »J o r- rj » L J v > . i U , . UJ 3 uj UJ rr UJ

r r- IM

< Z

z o

o 0.

— z < o Z H

z z O _3

LO LU

LO k

LO < LJ Z k LU 0 OO » ft a > r- k LO LJ rt Lk UJ k k ru

LO LO - O G

Q jTLL (

Ui CO k 3 ir k LJ JJ LJ 31 Lk UJ

< *» tr z z LO <-> o o <

E E II D I U . O O H . LU h O u U l/l

LO * ru

E « or E UJ < « Lj . 41

CVJ ru

« CO E kr < + 13 r-¥ 0. ru L"

. « t- E I a= •t «J I- I LU ru IU ru u j *

• CM r- + 0. * LO < • S E < cr in

HI _J LO LJ ru T) <-> k- « « uu. -u. CC r- ir

• D H L ) I -ii ii LO < o or < < n »- it a k- 5C iT Ui < f-

o I-

z LU

E o ». LU X k- tn

I ru

<

L J

z

< E

IC UJ

u j * LO

z z

o cn o kr ri or

LU o 00 uj k- ft Ul | r. «t I- LO k ru . J U < U .CM 3 LU k IU r-l 41 CJ 00 CO k uu HI _J rt >• ru ru < rt k LO KL ru LJ UJ rt Uu 41 ur

ru >k - k « < uJ Z LJ t— t— ru Z kH O < k LJ uJ O

ur n ur I u. < I ur- L)Q k z co

LJ k LJ rt rt

Z r )• U J L U * W

o _> -I CD * k H U . _ J Z Z u J L O Z k- _3 o o UJ < or U Id U. £ S II « 3

O Z k - J jr !u- _( jr |— rt

z o x u. o o or -jr ui z UJ Lk k- o LJ LJ LJ LJ or iu

LU tn LU I

< L0

_l < Lj r-3 k LU >- ur cj tn k co HI

J O > k CO <U k LO Uu k: rt U Q Lk ru LU 41

k - I- I >-Z I- k- * k- CO O - CJ L0 LL u-| .i U. 41 ru * k- CO k <_J LJ LO CJ k LJ U- • <

z cn u. « LU II

_j LO _l E U. z z co « .u

o o « L0 -J CO E E O < H 5: lu u. J

X O O U LL h-L> U U H

ru ru

r-ru «

>- m CO . ik o S 1 ru LO ru rt 3 UJ

CI) 41

1 ru

LO :« U J CD

« 1 1- CD 41 ur

LJ 41

LL r-

41 41

LO LJ

•O u. • 41

O to UJ 00 UJ .

1 O LO ur < ur

II II rj E LO CO

< -J

HJ 1 LU

. r—

* ru ru ru ru LJ lk

« O 41 -t OJ ur uu ru

3-LO LL 41 rl

LO

< * o .

CJ

ur UJ Lk

1 n . r)

z or 3 k- rt

E O E

uj ro

< uu Z ru rt t-41 I . ru

CVJ ur

-> <

ur IU or u

LO .

« LJ k 'U

CO • Q >• k 1/3

11 lk

k k

r- r-k U J3 Lk iD k k LJ |Q LL

z z o o E E "u E O O l_) LJ

. rvj uu J-.

ru ^-r

<L

:-Q ¥ uj Ur

II r— LJ

41 ru r-

1 ru u j

< Z rt UJ

41 ru 3 13 1 I)

>-. UJ

II rvi LJ

ur

41

ru LJ

1 ru

. ro -u ru UJ

< Z rt ur

41 r-LJ UJ

II X

X 1 LO

rt II -j

rt

o 1 LU a

«— 41 -J

rt 41 LO <£ 4r 3-JM lk

II E CJ 3-

Z or ra 1— UJ

ur rt =_ i:J

111 kH j; Lk ru

k ^ ^ w ^ ' « ^ « ) C C j r l v M u • l n « ^ B l > O r ^ l K . > r l ; l H J ^ l l | l > O r N n u , l n 4 l ^ « l l ^ O r N M u • l n < | . t l u ^ o • IV. fu. ru. |u. l>- l«- fu- |u- |u- .J .« •) .» O O .0 -O -J <J l» '-> > "> u.- '»• .r- 'J» O > O J J 13 -> L.3 .J j J J r- V - c- .- .- c- r- r- .- r- 1 ul c

r . . . _ . — . ru. _ • r. , ru. r-i ru . ru. i r- • n i n l o. 1 . 1 1 H I 1 "1 1 /-, 1 r-i /SI r

C^ f N M x» U^ 1J h-v* Cvl !M <\J (M «\J

•j rg (\. PJ iM r^ rM ''si ru ru rg r j r\j ru . M r\j (V rvj ru r*-j r\j nj <M ru f\i 'M «%!

?';••

Page 313: 1984 The deflections of reinforced and partially

291

o E

LP Z

rt Z

LU CO ru r- LU rt < CO k « _l «. LJ in ZD k LU . LJ LO k o J O r U «* k LO uu, LJrtU.ru

E O »«-> ri J; H .i iu .j u n- ca k «

LJ k LJ ) — Z Z T) Lk LJ O _> "--I U- Z Z uJ Z t- o o UJ or

<-> co E E II _. -! ri jr E E r- rt

3 x o o or JJ z U. r- LJ LJ LJ or LU

LJ

E

oj O O r N IO uf IM .M ro ro •••> ro ro

J rvj nj rvj rvj ru CM

~\

Page 314: 1984 The deflections of reinforced and partially

292

LO

E

. o

z < 0-

13

z

E

<

II X

0-jj

a. oc

O • cu

or o •>•

tn

E 4 LU

, J

UJ 3

. IO

o to II c k-

rt n

«

LU

z r u n X 1-

LU L3 Z •LL -1 Lk

-1 kH

LO

z LU

r-

u. o

< -J

or <

lu­

ll

o < n 0. k-

E <

m or

cu i CM _|

n 3 X rt

r- o

o E z LU or uO

I- o co o

-J II UJ _l LU LU

< a. E

O ut

. ro II X r-L3 Z LU

or 1-

Lk

o

> r-•H LJ —1 k-LO

< -1 Ui

Uk

O

LU Tj -I -I n _3 CO rt Z O

UJ E

LJ ft

k-

or IU

a. o cr a.

-I

< kH

cr LU k-

•t

E

E

< UJ rj

Z -u o or LJ LJ

z o

•* LJ

a. E u.

o . O 3-

ro r-rH

II LJ X rH I- r-13 LO

z < LU -1

or UJ r-OO Lk

O LU 1- LO LU - I1C _l LJ -J Z ui

O O LJ •£.

E I

E JU­

KI r-

-o

O uO

ft o

z

r>

z LU

CO

o

«- o o o • o o a> o + uO o o r- + ut . o j ru. ut • ro

II *

n II ft

rt II O ft a

x o r- rt X

UJ O r-

E X LU

I- E

LO LU

Z i CO

O or LO C3 LU Z r- Z

l r- or

or a. <

CJ .a JJ •t < < ft ft *-t

r- t- t-

ar or or

o o o

r- r- r-

z z z LU LU UJ

E E E o o o

iu iu CJ

> > >

U LJ O IU LU UJ

E O E

u t r o r o i n i n u t i n i n c M C v j r- r- LV --J CD r- O ." J r- r*

O N M m o H N ut r- CM

o o o r - i u r o r o o o o

I

o o rt O X D

x r- x I— III H

rt o T 1-Lll E

ft

to i/)

O or U3

O Lu

LO

7

< ac r-

rt LU V. LJ LC

cr LJ

z 3

C3 1 J

X. r-U £.

"-I

IJ

LU uu LJ ut

or LJ

O X 1-LU E

LC

LU 1-Z —1

3

.1

13

>-

rt o I

r-UJ ur

Z o uO

z < or •j

UJ

o X

r-JJ

E

00 uO

o r-

lO IU LJ

E

tr

< ui

z UJ

-1 ft

ru

r-LJ LU

r kH

LJ

J 'J X k-

UJ Su

LJ r-r-

0. LJ

cr

< LU Z

n _l kH

l)

LO tr LU

z X <LT

I

E

cr

< cu

z ft

_l kH

CD

CO

>-cn LJ i 1

n

"V

• U 0 M' I, I.

Page 315: 1984 The deflections of reinforced and partially

293

E I Z

O X

o o o o o + o a 0 0 4 r> O r--t • OJ • ut) IO

ut

rM

-3 O

z o

x: o E

a z

jr

u>>

ut

II

Q II O n

Ui o t-E X Ui

r- E CO Ui Z E CO

o cr CO O LU

z «- z «* «- or or a. < in o 3

>->->-in o a

or or or LU LU LU

s z z

o

-I

z LU E O £.

IU

> kH

1-UJ

LU

z LU E O le.

LI

> kH

k-

—1

LU

Z LU E O r-

CU

-> kH

y-<-i

Ul

o a.

ut ru -t> o o ro o o in LO cvj iui >o ut M ro ri o iu iu

I

z z o

ro i- i

ro I--) i

r-,— rvifu-coinruoutrn r j o f u - r v o r j i n r O L o o o

r r u > r c i r j r i l i y u t r r -j

a

>

II E

E O E

rt Z

Cj

X

LU

E

rt o X 1-UJ

E

n

CO CO o or U3

n

rt LU E or o Lk < 3

CO o Z X < r-or iu k- 'HL

Q -1 LU 5r rt CJ UJ •X * ac LJ CJ t z or 3 LJ

ti

rt o L 1-Lul

E

LT UJ r-

z kH

3

r-Jl

r. >-

o O X r-UJ

E

Z O tn z •t or 'D

ui O X r-uJ E

t» •O

o r-

,3 UJ LJ

rt C3 X r-UJ E

X

< UJ z kH

-I -H CD

1-CJ LU ur —4

LJ

rJ

O X k-UJ 5c

CJ r-r— 0. CJ

rt O rt X o r- X LJ r-E UJ

E rr <t or LU < Z UJ n z -1 n n _l 0 ft

LU LO

or co .LI >»

z co ur LU •i :<J

"» a

ut

a.

I

rt

u k-

< -I .3

< O

o o o o o + o o UJ CJ 4. « O H ) CM • «-• p- ut r- • IM

II . kH II

kH O II O n rt X O I- Q X LU O I-E X LU

I- E LO LU k i V I

o cr CO o cu Z T- Z

< r- or or a. < CO LJ 3 >- 3- 3-LI ii ra

cr or cr Ui CU LU

z z z

UJ UJ UJ

E E E o o o

U LU lj

> > j>

o o o

ro t> r-m ro ut

< o

ut

a.

co a rt z x o < k. X or u k- k. E LU E rt «"H

LU kH ur Q

LJ LU CO <£ UJ

co or LJ CJ cj <

or z or 3 3 LJ

->

Page 316: 1984 The deflections of reinforced and partially

294

in cu o m in o ru. s. ru u uO o rn ut

HJ o ro r- oo o uj-|k- ut «- O CM CO -O

m LO H> LO rv ro ro

o X I- J

B O O E O X

X k-cr r- .u LU Ul E r- E 2 CO H Z o 3 O cr

n i-vl Z

< CO 3 or LU >- j <j

rt rt o rt O X o X I- X

t- LU |_ UJ E UJ

or or -t or < UJ < Ui Z IU Z rt -H ;-H O J M

-I I -I _l -H r- j -H CO LU CO

E CO I- or co U ' J a l k cu «- z m or i- or uj - Q. t LJJ

rt LJ x n

rt O

I

z IkT O

o

z

o o o o o • o» o ut O + fM O r-rM • in . -f CM o • ru

II • kH II

I c I- Q X LU O H E X UJ

I- E LO Ui Z E CO o or CO O LU Z r- Z « r- a or a. < CU LJ l

ca .Q .a

or or or LU LU Ui

z z z

z z z UJ UJ UJ

E E E o o o UL JL ik XI JJ ' jj

> > > LJ U LJ Ul LU CU

ut O -I

r M O c o o j o r u - o O u o r o ut u t L n r - f — ( U u J r O u J - O

u o r u - o v u t i n r - o i n o r o C M O O u t O r u - u O C J u r - r -

roioc\i(jot>o.Nc>-oru

cu :l E or rt o o U- uu X CO j r-

rt Z X UJ O « I- E x or cu h H u. UC LU LU E rt •-• r-

ui z kH ur rt -I

LJ Ul 3 co or cj 4

o X

Lu LT

CJ O < o C Ui X r- Z I- IU kH L U :

O rt X o I- X

or

E •"" CO CD

z o o o t-LO

X n _| 0 -H

CD CO or to

U I ul 3-

•D -I

Z LU ut CD cr or U J ft D LJ rt

rO

br,

Page 317: 1984 The deflections of reinforced and partially

295

M

K

U

LU

-J

U.

-U Q

- J

< K O 1—

O

UJ

H

< —1 3 s: 3 LJ

LJ

< LU cr X < 1- -1

3 LO i. LU cr 1- O < u. _J -J Q.

LJ UJ

-I 'U

< rr LJ LJ

>: m

< > t r «-H •3 </i

O -2 DC UJ

CL r-

-J LO >-H •H

X >-1- U

II II

II II II II

II II II II H II II II

X .

U

O .J CD

*-. O l-H

CO

z LU

el. M 3

il il ii II II n ii n II u n

z L Q

in

* tr LU

1-u

< cr < r LJ

f\J cx XC ,Q

£. *

cr m LJ O J *• »-•

cx c x LU

L T - u - . Q :

fNi (M J— w x-# u, E »-H O

CJ Q *

>• U . C X

• a o

cn ex, tn (M m<\i x* r\i w 1 v uj CrO t-H t r

» a. o CX vjj U_

I/I a: a ru • «, xc jcx cx,

LJ m xo UJ OJ m.

• v i n cx X CJ in < w ru K ^ w CJ o J - * CD ex. If>

• in -c cx f\J *

m w i/i ru 2 oj -H- -H —'

z s: z .a u LJ

Z Z Z o o o I-H I-H) r-H

l/l l/l (/)

H*T z -= LU UJ UJ

s x s: r H t-H »-<

n a 3

M il H H n ll ll n n u II ll II II ti­

ll

^ LJ

O _J UJ

h-3 0. z. M

II II II II II II II II II II II II II

in OJ

* n i-H

o L3

»— o <ra

--X

•H

xc

-J LU

•* ex.

M xc

2. CD

ex

O

r-

• tn x-y

O

< LU

a:

*s

I-H

*—" Q -

LO

• cx

r-H

X C

LJ

LU

ft «*-m u-C

o t LU

cr

e>

t-H Ik/

2 *-H

s: IO

• cx

I-H

-c

X

-a: £ CL

*> cx

(-H

xc

t; cr LJ

.•

C X

r-H

Vu-C

E T]

>-

ft «*• in

-» o

< LU

rr

cx t-i ve

• H

a u. a

* C X

• H

xc

Ml

Q-

'U cr

« •. m t-e

O

< IU

rr

cx

o

•> r-II

* * cx

J3tu

* kH

xc

2 LJ

W

ft +

tn

-* o

< LU

cr

UJ

3 ct ruH

•" £ o LJ

o

cx

O

• o i\j

Lk

•" X

in

» in

< x>

1-

< IL cr: o u_

O

T "

II II II II II II II It U II

II II II II II II II

•<

LJ

o -J (3

2 O • H

1-

< -J 3 LJ

-1

c: o

M ll ll n il n n M n il II n II n

m ru

• u —

II «-H

o o ru

o o

o » »r-II j * .

O

r-

ru

o o

I-H

Z LJ

O t—

L3 O -J

< ft •—* •-* + xc cx

CL cx t/1 cx "X,. r>H

• W

r~ E »-c tr ft LJ »n | IM cx O »-« t> w

co n xf cu t- >•

O w o •>.

• cx

O ex

+ »H O w xf 2 O HH -3 E 0 0 CD

r- 1 • cx

" X k

cx

cx

»-4

Z t-H

SE: ta i

cx

»-H xc

X

< S-J

-( —' ft C X

cx

>-H

xc

CL. (#0

x^

» «*•

xc

« r-

c- •-» N .

II *-" cx X

^ < • " ^ r

t-H LU X-* x-»

>-/ w

o «

r-ro JO

CO

ru o •

cx

cx

cx

M

-—' E tr LJ

1 cx

r-H

>kJj>

£ in

>-x^

cx

J«-

«• rH

xc

-Jt.

O

ft cx

r-H

X -

r-H

o Lb

(O II cx

^ » •H

xc

LU

cr a LL.

c*_t

ft r-H

—' -J CI)

ft cx

•-H

*-•

-1 OJ

ft OU cx -J- ex O ex O »-H r— xc

• t-H

o a. # OJ

xo cr • * IU e s

• »-H

*— w • LJ cx IU :*: w » "x.

•-H ex

xc cx

LU r-H

-r w o zr U. »H

^ --: u Q cx |

i£ ex • H LU

r-H W ^

* X 2 LU < rH

u. 2: h r- l/l X L»- W Q

O W (.J

LU

3 Z •-H

H

^ O LJ

o o i * l !Vl

II II II II II II II II II II II fl II

JT

LJ

o _J 00

I— 3 a. H 3 a II II it n II u II II M n n

in

ru •

f—

n *-i

o o K l

O

..>

ex

O t—

Ki

«•

O

^ LU

»->-H rr 7

ex

cr u

«. cx

r-H XC

K LU

>-cx

hH

xc

a. tej

n

ex ex

t-H »-t •W >_

LJ I-H

UJ Q

••• U_

cx a l-H •

xc cx

-I rH CQ xc

•> »-H

cx Q .

t-H Ul

w ac

»-'. • CO ex

*-H

J*X >—'

o X ruj <

r-> z: - LO

-o ••

—• cx

i-H

• U W

h- i-»-H »-H

Li- :_;

3 "J

it.

•-H

^ fi

cx

•» tH xc

IU

cr l-u. a

*. .—L

r * .

*. t-H w

UJ

tr o Li-

o m

C-.

ie.

•> t-H

xc

JiJ

LJ

cx

o o » *— n w:

j

-4" Kl

O O

1 M

••

O xc

uJ

1->-H

r

*

cx

-n r-II H t-H

"I 3 u-C

2 Ul

Q .

O

cx

-iT

to

t*-t

xc

LU

tr t-U.

rj M

C X

V

» *-H

w

Ui

tr o u. 3

cx

ft » in

t— xc

LU

H M

t.

-.*

LU

3 •z. • H

1-r.: o LJ

o

IU

3 *z •-H

r-

2T.

o LJ

o c *

Z

o 1— ex

LJ *^.

u. -

L U ft a -

o o LU O

H <~

< * -J . 3 -£- -3 tn LJ LU

LJ _J

< LJ

> •

U. <_J

O L3

1- Z 3 t-H

0. O

1- <

3 O

O -1

• * a ru iu r- 1-

- < T- IU

x a r- UJ XC Q£

r - k *

< U i. Q

cr .' O 3 u. -

o

ro

xs,

• x .

• X s: ru

» . •> < o a.

O - %. T- •• *s

u . p j -

-. • - * O • II «— xO 2 u. u. < «• -

a. - -L O II II

• utt. - IU

x s: O LU <

r- 1- LU * UJ aj

l/l ct. < LJ LU » 2 X

- O h-Ls, LJ < u_ UJ LL, O .11 o

o p. >- M

ru i- l-h- HH < v U ( t

r-l

K - 1 - - J < 71 UJ

£. < UJ cr -j «>-3 LU f 1

Li. - •

O

f 1

Kl

10.2,

LOAD

Lk O

k k k LU

- CM CM r-

k II . • 4

- or o o LU E u r r a. II E Lk Lk LU z k k Q. >r E - -- < il il -or k UJ 1— k . LU

ru CD Z E rt * Ui UJ z

O LU E E _J r- x O O Lk 1- E E <£ — kH

- Lk O CD k-

n o z z a 3- M M LU

E 1- Q rt z z z .>: -H

1- UJ UJ LU Z E CD CL) U-LUJ o O E E E E O 3 3 K E C3 S E Z

Z n n LU 13 kH Z X E k O M H. O ft Z E i E rt LU - - -Z CU - . . Ui rM CM CM a rt r- I- r-

Ul k k -

rt J C -u uu -uu J U U N N

n 4 - k .

LU cr - - -3- CJ E E E

- - I I I - k ?. ;-_• 3T

N x i c a u h- CO - - -ro ut LO H3 IO

-S-'-rJKixJ'tnxOr-Ci.'O O r T J ^ x t ^ - O N O O O <-rut*nxi'»nxOr*-CA-' • u J -u J I'j iM J r-j

O r- 0- Kl i .*•» M -i n

xf in xo |x-•t J «* -I

i O O r- (\J h t sj m «fl •I L*\ i'i in in in ^ T O .

Page 318: 1984 The deflections of reinforced and partially

296

E E o

o

LL X -KI

-u z o I-H

r-

LJ

LU -1 U. LU Q

rt < O -1

a «; LU

rt -1

< ft

1-ft

z ft

-k "M k-

• u*.

UU. '

--CO LU -1 LJ

CJ

>-LJ L9 Z kH

rt « o -J

l k

o

or LU LU

>._. 13 z • k CM k-k

ru

1

u r

-o ro o . . o k

r- uu LU -u •o ru-

>U ut u* .

- O

-1 -k ur

>. a CM O k T -

-Z o kH

k-

LJ LU -J l k

LU

rt a < o _i

rt 4 LU

rt rt IU h-

< -J 3 E 3 LJ LJ •t

1—

. »— Lk k

3< O ' r--rM

k «

U U

•u.

-Z o n k-

UJ

LU -J lk

UJ o -1

< K O r-

Q

uU r-

< -1 3 :-j

3 CJ LJ 1

IM

o r-

• Lk

. X LO

T-

. CM

. o r-Lu

k

X in r-k

O

. o r-U.

k

CM k-ur

k -

«( E or a o z lk. IU

o kl ro

f>- co £> o «— ru .n n ..-\ o O O

Qlu'nWi s

Page 319: 1984 The deflections of reinforced and partially

297

0.

O

z o

o E

4

h-

O

D

3

UJ cr 3 - 4 I- -J

CO Z.

LU or I- o 4 u. -I 3 CL CJ LU -I UJ

4 or CJ U

£ UJ

< > or M ID LO

o z ru or IU r a n

uf Z uJ CO kH 19 n

O X 3-0: r- CD

a.

z o

a o

HJ ru -o ur uO -E uJ uO or n UJ

uJ rt LU - ik or

ri rt H uO k Lk ur ru rt E uO -

CD ur ru

> n uO

- a. -ru LU -O •O cr

II II II II II II II ll II II II UJ k I

II a. ru or II CO uO rt

ru x a O 4 k ur E ru LJ CQ uO LU k k k ru uO

ru uO «J «D UJ * UJ Z rt _J M k CO E ru - CL. <J

•. r» k k ) HJ ru O UJ uQ uJ

> Z UJ z - CD 0- LJ

! '. Z Z Z J o o o - r* kH M J LO CO CO

z z z

II II II II LU II r-II CJ II < II at ll 4 II X n UH

II cj

E E E ft ft ft

rt rt o

CL

z

E CD

ru X n 4 uJ E 0. CD ru ru O k kH UO

ru rt ru ur k kH — ft ft r-ur ru ur rt II

H UJ or - a. LJ

ru CO -

Lk JC

rt » a . o

II r « « « «

LO m in O i-> *•> ~

r- rt rt rt 4 « 4

O LU UJ ul

rt or or or

co m 3 UJ ur Z H

n 4

rt rt I- E 4 4 z or Ui LU O O or or LJ u. O o

O r-

4 -I 3

Z rH uj rH ur k CO uJ E 0. Z X

LJ CD Ul LJ LO

uO ru UJ >- or UJ -

-o o .— .— ru ru ru ru r— II r- '

L3 O

Q_ + tO ex x^ x, * ex

«— ex »-' t-1

* xc

*n £ ru tr uO (J

O 1 CO ex •4 »-H l— xc

O i. o a.

• > •

O -' XC X*.

XC

Z I-H

£ CQ

| cx

l-H

xc

X «£

E a: XC

•*—• * CX

ex t-«

cx

cx

O -J xO

o 00 r-

cx

•.<: •> r-H

XC

l*C

O

3 UJ

* 00 -4-

O o »r-

• O ft -o + UJ

• T-

+ ex

J*

k k fM

II ll ro H ) C 4

• O O r-

D r II

CM IM ru

O O "

rt rt a.

uj ru UJ . * 41 r-u CL i- ru ru kH LO + kH ru UJ -uu ru UJ

ft Z • ru ft •<*> ft r- n rt LL E UJ n u. »u CD * kr o i I r E II

r- ru N- Or ru u M S U It

o ll -J ro I -• r-u X CO ru ft i- jr 4 00 n ur

II k jr ru) uJ LU

ru n IL. O E or

n uJ uJ . CD rt

UJ u ur O 3- u.

a. o 41 UJ LJ o

r- CM ro

cx o

ru ru 3r rH k-u k

U H UT UJ <LJ LU k lk or

ru rt UJ

ft r. lk ur ru rt

k Uu n ru ur ru Lu ri or UJ rt z Lk ft rt E II iD i 1 * ru - ft

kH "J •J X LU 4 or E 1- CD lk ^

rt — r-

UU

3 Z n 1-Z o LJ

LU 3 Z k4

h-Z o LJ

o o t—

CM o CM

r-3 a i-3 O

II II II II II II II II II II II

• o o T~

« ru ft

•o ** k Q.

i- o II rt kH II

ru O rH O kJ

ro a. o

o a rt rt

ru 0. ft LU

ur or Z k CD ru

ft

ru ru uJ

o a x r- CM 4 ro ro E - k ca

4 ) 4 ) • ur ur ru

ft

LU UJ ur

k- K Z ft ft ft

ac or E 3 3 m

r-

-rl •-i

Z CJ

^ uO o -ro

«- ro II -ur HJ ^. o

ut LU M 1-

kH

o cr rt 3

ru

in r~

II H kH

z 3 "J

Z LU

a. o

cx Q ex o ru ll K-UH 2

3 UJ

Z UJ

a. o

ru

3T

. rH

UJ

* a ru

II k

o CM UJ

LU r-UH

or 3

LU 3 Z ft

r-Z O CJ

z o ««. ft uu r- ru -LJ Uk \ k LU - X. X _J ru £ CM LLl 1 -LU 41 - \

rt V O 4 ur . a.

rt O O E -LLiOr) s 1- r- Lu. k «uu 4 k k INJ k -1 -u » . uf 3 k ii a • E » Z «- uO "_) LO 4 Lk lk LJ LU a. - -LJ _J LO *• * 4 U \ II II

3- - CJ a Lk LJ X LU

O O E O r LU <

1- Z k 1- LU 3 n a LU OJ

0. rt r- or r- 4 4 LJ LU

3 O k z I O -1 \ O 1-. E LJ k rt 4 LL

(M Ui Ui LL. O

r - r - m o - 4 \ O

T- LU k >. ft X 0. CM (- r-r- LU H ft 4

LU uj or ur o or

3 kH z t- or r- t- _l n 4 LU 4 LO LU 1- E rt E <• LU

z or z or _i i-o O -> O ,iJ CO CJ lk I Uk \ %

«- «- CM

o a o a ut ro

O r - CM ro ro ro

S r C M r i u u t C O u O r - O O O O ' 3 r-

r j r o - t L O H j k _ c o r u 0 ^ r u 1 K 1 u , u . 4 3 r u . « , L > o - ~ r o u t i n ^ ^ ^ r - r - T - r - r - r - r - r U l M C U r M l U I M O J i M I M C M r O r o r o r O P . r O I ' l r O I ' l r O - t u J u J - u t - J u r - H - u i •»

Page 320: 1984 The deflections of reinforced and partially

298

k

ru . o

r-

Lk k

4

- || > or • E U

N l l E

"k Z

II

0.

Ui k

or i ft E

E

rt > 4 -O CM

-J

rt k k LU

CM CM r-

. . 4

O O LU r- r- 0.

. 13

*— i k

. u

II

Z

Uk Lk Uu O

k k or

- LVT E » « . \ 4

rt k LU

. (M CD

. . o a ui • «- X

-t u- k.

Ik k m\ Ik

» II o II V U i l -z z n K UJ

CO Z E

CO Ul o

UJ E E

or O 1- E CO

CO z

UJ 10 kH

or Z rt 0. n Z

ll ll or

r- r- UJ

Z E rt

Ul Ui Z

E E 3

o o E E «

ft

13 13 1-

z z or kH rl LU

CU rt u

Z Z rl

LU UJ

CD CD U.

O

E E

3 3 r-

E E Z

kH kH UJ

Z X E n 4 O E E E

a i m » » u. z cn O LU

CO rt Ui UJ

UJ rt JC

or _I u u ) k | <

k k .

CM fM CM

n

k-

CJ LU

-1 Lk

LU

rt rt 4

O

_l

rt 4

UJ

rt _l

< kH

H rH

z rH

4

k

r- r- r- CM k k k

•uuku-Uu Uk.Uk.Uk

UJ uj or \ \ %

rt 3- LJ

1 1 1 r ». ^

CM CM X

E E E

1 1 1

E E Z v ur <

I- r- m \ L *

« IO ut in .© m

t-k

ku

k

ro . a

i —

UJ

o

k

X

ro r

4

LO

LU

-1 LJ

LJ

3-

LJ

Lk

o

. o z 1

k

IM

r-k

ru

1

1

\ a a ,— k

-u.

•u.

r-

ru

1

ru |

uu 4

-U. UJ

- a ru a

\ T-

1 -\ -U uJ -u.

o -a -t —- . - a uu. «-

"uu Lk

k k

u X

a o ur «-o -» CM

k .

k x o

X ro r-

CM k u.

k % -

» Z X

Z O CO

O n r-

f> r- -

t- LJ CM

LJ LU •

LU J O

-1 Lk T -

Lk UJ Lk

LU rt k

rt X

-J m

• 4 r-

-i r- -• o o o t- •

a rt rt u-

Ui Ui U.

1- r- «

4 < CM

_l -1 r-

3 1-3 >J

E E 1-

3 3 4 cj cj E CL

LJ LJ or o rt 4 4 O 1- Z

\ \ Lk LO LU

r- CM

o ro

N-uOOO-— rMPOutcouOru-COO niAU)OH)4)4)^4)4)4)4)4)

O a ro a. Lu

a. ca

OS^a

Page 321: 1984 The deflections of reinforced and partially

299

i E

O

o

E 4

00 O-

4 LU CD

O ut

CM uO

o HJ

¥ ¥

* in ¥

Ul 41

-1 41

LJ «

>" 41

Li 41

41 13 < Z « M « rt i 4 * O ¥ -I ¥

* a ¥ LU « k- *

< « LU ¥ a. ¥ IU ¥ ac ¥

¥ 0C ¥ LU ¥ a ¥

z « 3 41 Z 41 O ¥ n 41 K « cj 41

Ul 41

-1 41

Lu ¥

Ul 41

rt 41

• »

a ¥ LU 41

1- ¥

< 41 -1 ¥ 3 ¥ E ¥ 3 41 LJ 41

U 41 < 41

« u. 41

O 1

« r- ¥

3 41 CL 41

r- ¥

3 41 O 41

E E

. CJ m ro u»

II Z 4 CL tn

ro l

o o ro CL 0-E 4 LU CD

O

o ft r-4

or -I LU LU r-co

4 0. E O

o o o o CO

ru

II LJ LU

LU I— UJ

or LJ

z o u

Lk

o 3-1-rl LJ rl r-co 4 -1 UU

Lk

o 3 -I 3

o o E

JH!

a uO

II IS Z

CO CO Ul

or r-CO Ul

or CL

Lk

o LU LU

or cD UI

rt

z LU E O E

LP Z kH

rt z LU CD

rt UJ ir LJ 4

or LJ

E II Z ir r-ro

. LO CO

II

>-E

r-

Z LU

E O E

13 Z kH

rt z LU ID

rt -1 kH IU 3-

E 1 E uu r-uO

. in tvj

ll r-Z LU

E

a E

13 Z rH a

z LU CD

E 3

E ft Z ft E

E 1 Z 3k 0> uO

. CM ut

II 1-

£ LU

E O E

LD

z rl

a Z LU CQ

E 3 E ft X 4 E

» a a + ro ru -o .

n a. LU or kH

a 4 O _J

rt Ui t-ut UJ a. LU at

or LU

rt z 3

< n k-Qt UU

z kH

Lk

o k-

z LU E O E

E E O O

• CM

II Z

o ft h-LJ LU -1 UL

UJ

rt rt 4

o _J

rt < Ul

rt -J 4 ft k-kH

z • *

_J 4

> -o 1-

rt LU 1-4 -J 3 E 3 LJ LJ 4 1 1 Z

o ft 1— I—I LU -J Lk UJ

rt _l

• rt rt LU k-4 -J 3

E 3 LJ LJ

< 1 1 1 LO LU -1

LJ 3-LJ

Ik

o

. o Z

00 |u-

o

r-u»

a a

a CJ

a

o o •

o

o o a o o

Page 322: 1984 The deflections of reinforced and partially

PAPERS PUBLISHED BASED ON THIS THESIS

Wong,Y.W. and Loo.Y.C. "The Accumulative Effects of Repeated

Loading on the Deflection of Reinforced Concrete Box

Beams", proceedings, 7th Australiasian Conference on the

Mechanics of Structures and Materials, May 1980, Perth,

pp97-102.

Wong,Y.W. and Loo.Y.C. "A Study of Deflection Behaviour of

Reinforced Concrete Box Beams under Repeated Loading".

AIT Research Report Mo. 153. Asian Institute of Technology.

May 1983. Bangkok, 40pp.

Loo.Y.C. and Wong,Y.W. "Intensive Creep Deflection of Rein­

forced Concrete Box Beams under Repeated Loads". Proceed­

ings. 8th Conference on Concrete & Structures. August

1983. Singapore. ppYCL 1-12 .

Loo.Y.C. and Wong.Y.W. "Analysis of Total Deflection of

Reinforced Concrete Box Beams under Repeated Leading".

Journal of the American Concrete Institute. Proceedings

Mo. 1 Vol. 81 January-February 1984, Detroit. pp87-94.

Wong.Y.W. and Loo.Y.C. "Intensive Creep Deflection of Par­

tially Prestressed Concrete Box Beams" Department of

Civil and Mining Engineering Research Report ST 84/2.

University of Wollongong. August 1984. Wollongong. 4pp.

Page 323: 1984 The deflections of reinforced and partially

301

AUTHOR'S CURRICULUM VITAE

The author was born in 1944 in Shanghai. China where he also

received his early education. In 1967 he obtained his Bachelor of

Engineering degree in Structural Engineering from Tianjin University.

Tianjin China. From 1967 to 1973 the author worked as a structural

and construction engineer for the Department of Industry in Tianjin

County. From 1973 to 1974 he worked in Hong Kong and Macao as a

structural and construction engineer for Chee Lee Investment Co

Ltd. The author came to Australia in 1977. where he joined the

University of Wollongong and started his Ph.D. study. Since March

1983 he has been a lecturer in the Department of Civil and Mining

Engineering, University of Wollongong teaching subjects mainly in

the areas of structural design and surveying.