1429 - sjrwmd

112
TECHNICAL PUBLICATION NO. 85-5 A GUIDE TO SCS RUNOFF PROCEDURES BY Thirasak Suphunvorranop Engineer Department of Water Resources St. Johns River Water Management District P. 0. Box 1429 Palatka, Florida 32178-1429 July 1985 Project Number 15/20 200 03

Upload: others

Post on 29-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1429 - SJRWMD

TECHNICAL PUBLICATION NO. 85-5

A GUIDE TO SCS RUNOFF PROCEDURES

BY

Thirasak SuphunvorranopEngineer

Department of Water Resources

St. Johns River Water Management District

P. 0. Box 1429

Palatka, Florida 32178-1429

July 1985

Project Number 15/20 200 03

Page 2: 1429 - SJRWMD

TABLE OF CONTENTS

PAGE

LIST OF FIGURES iii

LIST OF TABLES iv

LIST OF SYMBOLS V

ABSTRACT 1

I. INTRODUCTION 2

A. Background 2

B. Scope of Report 2

II. DISCUSSION OF SCS RUNOFF EQUATION 4

A. Development 4

B. Limitations 5

C. Summary 6

III. RUNOFF CURVE NUMBER 8

A. Hydrologic Soil Group Classification 8

B. Cover Complex Classification 8

C. Estimation of CN 9

1. Urban CN 9

2. Flatwoods CN 16

3. Wetlands CN 18

D. Antecedent Soil Moisture Condition 19

E. Sensitivity of CN 21

F. Summary 25

Page 3: 1429 - SJRWMD

IV. DISCUSSION OF SCS UNIT HYDROGRAPH METHOD 26

A. Development 26

B. Convolution 31

C. Limitations 37

D. Summary 39

V. TIME OF CONCENTRATION 40

A. Estimation of t 40Vx

1. SCS Lag Method 40

2. SCS Velocity Method 41

B. Sensitivity of t 45

C. Summary 47

VI. PEAK RATE FACTOR 49

A. Development 49

B. Estimation of K1 50

C. Sensitivity of K1 54

D. Summary 54

VII. SUMMARY 58

VIII. REFERENCES 60

IX. APPENDIX A - SCS Rainfall Distributions A-l

APPENDIX B - Hydrologic Soil Groups B-l

APPENDIX C - Descriptions of Selected Land Use C-l

APPENDIX D - Applications of SCS D-l

Runoff Procedures

Page 4: 1429 - SJRWMD

LIST OF FIGURES

Figure Page

1. Relative Sensitivity of RQ to CN 22

2. Relative Sensitivity of R to CN 23

3. Proportion of Error Due to t 24

4. SCS Dimensionless Curvilinear and Triangular 28

Unit Hydrographs

5. Triangular Unit Hydrograph for Example 1 33

6. Runoff Hydrographs of Example 1 Using 38

Curvilinear and Triangular Unit Hydrographs

7. Average Velocities for Estimating Travel Time 42

for Overland Flow

8. Sensitivity of q to t 46p c

9. Sensitivity of Triangular Unit Hydrograph to K1 55

10. Sensitivity of Runoff Hydrograph to K1 56

iii

Page 5: 1429 - SJRWMD

LIST OF TABLES

Table Page

1. Runoff Curve Numbers for Hydrologic 10

Soil-Cover Complexes (AMC II, I = 0.2S)

2. Approximate CN Values for Pine Flatwoods and 18

Wetlands

3. Classification of Antecedent Moisture Conditions 19

4. Runoff Curve Numbers for AMC I and AMC III 20

5. Ratios for SCS Dimensionless Curvilinear Unit 29

Hydrograph

6. Computation of Incremental Runoff for Example 1 34

7. Computation of Runoff Hydrograph for Example 1 36

8. Manning's 'n1 Values for Overland Flow 44

9. Adjustment Factors Where Ponding and Swampy 52

Areas Occur at the Design Point

10. Adjustment Factors Where Ponding and Swampy 53

Areas Are Spread Throughout the Watershed or

Occur in Central Parts of the Watershed

11. Adjustment Factors Where Ponding and Swampy 53

Areas Are Located Only in Upper Reaches of

the Watershed

IV

Page 6: 1429 - SJRWMD

LIST OF SYMBOLS

Aei

Drainage area, square miles

Effective impervious area, square miles

A . = Noneffective impervious area, square miles

A = Pervious area, square miles

A.. = Total impervious area, square miles

AMC = Antecedent moisture condition

CN = SCS runoff curve number

D = Duration of unit excess rainfall, hours

DWT = Depth to water table, feet

EIA = Effective impervious area

F = Depth of rainfall infiltrated after runoff begins, inches

I = Initial abstraction, inches

K = Hydrograph shape factor

K1 = Peak rate factor

L = Watershed time lag, hours

n = Manning's roughness coefficient

P = Total rainfall, inches

P1 = Total rainfall adjusted for the pervious area, inches

P24 = 2-year 24-hour rainfall depth, inches

Q = Direct runoff, inches

Q . = Runoff contributed from the effective impervious area,

inches

Q = Runoff contributed from the pervious area, inches

v

Page 7: 1429 - SJRWMD

q = Peak discharge, cubic feet per second

RO = Proportional change in Q per unit change in CN

R = Proportional change in q per unit change in CN

S = Watershed storage, inches

s = Slope of energy gradient, feet/foot

s = Overland flow slope, feet/foot

t, = Time base of unit hydrograph, hours

t = Time of concentration, hours

t = Overland flow travel time, hours

t = Time to peak of unit hydrograph, hours

t = Recession time of unit hydrograph, hours

TIA = Total impervious area

V = Volume of direct runoff, cubic feet

x = Overland flow length, feet

x = Hydraulic length of watershed, feetiV

Y = Average watershed land slope, percent

VI

Page 8: 1429 - SJRWMD

ABSTRACT

This report contains: (1) discussions of the SCS runoff pro-

cedures, including the curve number and the unit hydrograph

methods; (2) methods of estimating runoff curve numbers (CN) , the

time of concentration (t ), and a peak rate factor (K1) for dif-c

ferent hydrologic conditions; (3) a method of constructing a

triangular unit hydrograph for a peak rate factor; and (4) ex-

ample problems illustrating the effects of methods used in

estimating CN, t , and K1 on runoff hydrographs.O

In estimating CN for urban basins, the effective impervious

area (EIA) method should be used. The Agricultural Research

Service (ARS) method is recommended for basins where soil storage

is affected by water table. The SCS velocity method should be

used in estimating the basin t . K1 can be determined from theC

proportion of area under the rising limb of the time-area curve

or by using the adjustment factor for the swampy and ponding

areas.

Page 9: 1429 - SJRWMD

INTBQDUCTIQH

A. Background

The Soil Conservation Service (SCS) runoff procedures, con-

sisting of the curve number (CN) method and the unit

hydrograph method, are commonly used by hydrologists and en-

gineers for hydrologic analyses and designs. These runoft

procedures are often recommended by federal, state, and local

government agencies, including all of the water management

districts in Florida, for use in evaluating the effects of

land use changes on runoff volumes and peak discharges.

B. ScQpe.gf.Report

The first objective of this report is to provide a better

understanding of the SCS runoff procedures. The second ob-

jective is to develop practical guidelines for estimating

soil storage and selecting a peak rate factor for different

hydrologic conditions. Specific tasks involved in this

report are:

(1) Detailed discussions of the SCS runoff procedures.

(2) Discussion of techniques for estimating CN under dif-

ferent hydrologic conditions.

(3) Derivation of equations for defining the shape of a

triangular unit hydrograph for a given peak rate

factor.

Page 10: 1429 - SJRWMD

(4) Development of a practical guideline for estimating the

peak rate factor for swampy and depression areas.

(5) Example problems on applications of the SCS runoff pro-

cedures.

Page 11: 1429 - SJRWMD

DISCU§SIQH_QF.THE.SCS_RUNQFF_EQUATIQH

In the early 1950 's, the SCS developed a method for estimat-

ing volume of direct runoft from storm rainfall and evaluating

the effects of land use and treatment changes on volume of direct

runoff. The method, which is often referred to as the curve num-

ber method, was empirically developed from small agricultural

watersheds.

A. Development

In deriving the SCS runoft equation, the ratio of amount of

rainfall infiltrated after runoft begins (F) to watershed

storage (S) was assumed to be equal to the ratio of actual

direct runoff to effective rainfall (total rainfall minus

initial abstraction) . The assumed relationship in mathemati-

cal form is:

where

F = accumulated infiltration, inches

S = watershed storage, inches

Q = actual direct runoff, inches

P = total rainfall, inches

I = initial abstraction, inches

The amount of rainfall infiltrated after runoff begins can be

expressed as:

F = (P-I) - Q (2)

Page 12: 1429 - SJRWMD

By substituting Equation (2) into Equation (1) and solving Q

in terms of P, I, and S, Equation (1) becomes:

/ vt -r \ ^>

The initial abstraction defined by the SCS mainly consists of

interception, depression storage, and infiltration occurring

prior to runoff. To eliminate the necessity of estimating

both parameters I and S in Equation (3), the relation between

I and S was developed by analyzing rainfall-runoff data for

many small watersheds. The empirical relationship is:

I = 0.2S (4)

Substituting Equation (4) into Equation (3) yields:

n _ (P-0.2S)2 ....Q - P+0.8S (5)

which is the rainfall-runoff equation used by the SCS for

estimating depth of direct runoff from storm rainfall. The

equation has one variable P and one parameter S. S is re-

lated to CN by:

Q _ 1000 in (t^S ~ ̂ F " 10 (6)

CN is a function of hydrologic soil group, land use, land

treatment and hydrologic condition. It is dimensionless and

has values ranging from 0 to 100.

B. Limitations

The limitations related to the SCS runoff equation are as

follows:

Page 13: 1429 - SJRWMD

1. Since daily rainfall data were used in the development

of the equation, the time distribution and duration of

storms were not considered. If all other factors are

constant, all storms having the same rainfall magnitude

but different duration or intensity will produce equal

amount of direct runoff volume. In fact, rainfall in-

tensity does have an effect on the hydrologic response

of the watershed.

2. The equation tends to overpredict runoff volume for a

discontinuous storm, because it does not account for the

recovery of soil storage caused by infiltration during

periods of no rain.

3. The CN procedure does not work well in areas where large

proportion of flow is subsurface, rather than direct

runoff (Rallison and Miller, 1983).

4. Since the SCS curve numbers were developed from annual

maximum one-day runoff data, the CN procedure is less

accurate when dealing with small runoff events.

5. The equation predicts that infiltration rate will ap-

proach zero for storms with long duration instead of a

constant terminal infiltration rate (Hjelmfelt, 1980).

Summary

1. The SCS runoff equation is widely used in estimating

direct runoff because of its simplicity, flexibility,

and versatility. The only input parameter needed is CN

and the hydrologic data used to estimate CN are normally

Page 14: 1429 - SJRWMD

available in most ungaged watersheds. In addition, the

equation can be applied to a wide range of watershed

conditions.

Since CN is the only parameter required, the accuracy of

runoff prediction is entirely dependent on the accuracy

of CN.

Aron and Lakatos (1976) suggested that the assumption of

I = 0.2S is in general too large. According to McCuen

(1983), this assumption is not critical to design

accuracy. Although further refinement of I is possible,

it is not recommended because under typical field condi-

tions very little is known of the magnitudes of

interception, infiltration, and surface storage

(Rallison and Miller, 1979) .

To avoid using different rainfall distributions for the

same region, the synthetic rainfall distributions

developed by the SCS are usually used in practical ap-

plications (See Appendix A).

Page 15: 1429 - SJRWMD

RUNQFF_CURYE_N.UMBEBS

Runoff Curve Number (CN) is a parameter used in estimating

available soil moisture storage prior to a storm event. It is

determined based on the following factors: hydrologic soil

group, land use, land treatment, and hydrologic condition.

A. Hv_drQlQgic_Soil_GEOue_Class_i£ication

Soils are classified into four hydrologic soil groups (A, B,

C, and D) according to their minimum infiltration rate, which

is obtained for a bare soil after prolonged wetting. The

definitions of the four hydrologic soil groups and a list of

soil names associated with their hydrologic classifications

are given in Appendix B.

B. CeyeE_£Qffip.lex_eiassific§tiQn

Determination of cover complex classification depends on

three factors: land use, treatment, and hydrologic

condition. Land use is watershed cover; it includes all

agricultural and nonagricultural lands. Land treatment

refers mainly to mechanical practices (e.g., contouring or

terracing) and management practices (e.g., grazing control,

crop rotation or conservation tillage). The hydrologic con-

dition reflects the level of land treatment; it is divided

into three classes: poor, fair, and good. A brief descrip-

tion of the selected land uses are given in Appendix C.

Page 16: 1429 - SJRWMD

C. E

According to Mockus (1964), to the extent possible, curve

numbers (CN) were developed from gaged watershed data where

soils, crop covers, and hydrologic conditions were known.

The watershed data were interpolated and extrapolated to

determine the missing CN values. Estimates of CN values for

the selected agricultural, suburban, and urban land uses are

given in Table 1. By knowing a hydrologic soil-cover complex

condition, CN can be estimated from Table 1.

1. U£ban_CN.

A common method of estimating CN for an urbanized basin

is to compute the weighted average of CN's for the total

impervious area (TIA/A..) and pervious area (A ).

Another method is to divide the total impervious area

into effective and noneffective impervious areas. The

effective impervious area (EIA/A .) comprises those im-

pervious surfaces that are hydraulically connected to

the drainage system (e.g., streets with curb and gutter

and paved parking lots that drain onto streets). The

noneffective impervious area (A .) consists of those

impervious surfaces that drain to pervious surface such

as a roof that drains onto a lawn. The second method

assumes that rain falling on noneffective impervious

area is instantaneously and uniformly distributed over

the pervious area. This volume is then added to rain

falling on the pervious area prior to computation of

Page 17: 1429 - SJRWMD

Table 1.—Runoff Curve Numbers for Hydrologic Soil Cover Complexes (AMC II,I = 0.2S) (SCSr 1983)

Curve Numbers forLand Use Description HEdr_QlQgic_so_il_gr.pup

A B C D

(Vegetation Established)

Lawns, open spaces, parks, golf courses, cemeteries, etc.good condition: grass cover on 75% or more of the area 39 61 74 80fair condition: grass cover on 50% to 75% of the area 49 69 79 84poor condition: grass cover on 50% or less of the area 68 79 86 89

Paved parking lots, roofs, driveways, etc. 98 98 98 98

Streets and roads: paved with curbs and storm sewers 98 98 98 98gravel 76 85 89 91dirt 72 82 87 89paved with open ditches 83 89 92 93

2/-'

Commercial and business areas 85 89 92 94 95Industrial districts 72 81 88 91 93Row houses, town houses, andresidential with lot sizes1/8 acre or less 65 77 85 90 92

ResidentialAverage lot size

1/4 acre 38 61 75 83 871/3 acre 30 57 72 81 861/2 acre 25 54 70 80 851 acre 20 51 68 79 842 acre 12 46 65 77 82

DEVELQPaE JJgBAN^AREAS^ (No Vegetation Established)

Newly graded area or bare soil 77 86 91 94

10

Page 18: 1429 - SJRWMD

Table 1.—Continued (AMC II, I = 0.2S)

Land Use

Fallow

Row crops

Small grain

Close-seededLegumes orRotation Meadow5/

—Coyer.Treatment or Practice Hydrologic

4/Condition̂ 7

/EURALJjfiilB

Straight rowConservation tillageConservation tillage

Straight rowStraight rowConservation tillageConservation tillageContouredContouredContoured + conservation

tillage

Contoured + terracesContoured + terracesContoured + terraces+ conservation tillage

Straight rowStraight rowConservation tillageConservation tillageContouredContouredContoured + conservationtillage

Contoured + terracesContoured + terracesContoured + terraces+ conservation tillage

Straight rowStraight rowContouredContouredContoured & terracesContoured & terraces

poorgood

poorgoodpoorgoodpoorgood

poorgoodpoorgood

poorgood

poorgoodpoorgoodpoorgood

poorgoodpoorgood

poorgood

poorgoodpoorgoodpoorgood

Curve Numbers forHydrologic Soil Group

A B C D

111674

726771647065

69646662

6561

656364606361

62606159

6058

6658

64556351

868583

817880757975

78747471

7370

767575727473

73727270

7169

7772

75697367

919088

888587828482

83818078

7977

848383808281

81807978

7877

8581

83788076

949390

918990858886

87858281

8180

888786848584

84838281

8180

8985

85838380

11

Page 19: 1429 - SJRWMD

Table 1.—Continued (AMC II, I = 0.2S)

Cover. Curve Numbers forLand Use Treatment or Practice Hydrologic Hydrologic Soil Group

Condition̂ A B C D

Pasture or Range

Meadow

Fores tland — grass

No mechanical treatmentNo mechanical treatmentNo mechanical treatmentContouredContouredContoured

or orchards —evergreen or deciduous

Brush

Woods

poorfairgoodpoorfairgood

poorfairgood

poorgood

poorfairgood

68493947256

30

554432

4820

453625

796961675935

58

736558

6748

666055

867974817570

71

827672

7765

777370

898480888379

78

868279

8373

837977

Farmsteads —- 59 74 82 86

12

Page 20: 1429 - SJRWMD

Table 1.—-Continued (AMC II, I = 0.2S)

CQV.gr. Curve Numbers forLand Use Treatment or Practice Hydrologic Hydrologic Soil Group

Condition2/ A B C D

Herbaceous poor 79 86 92fair 71 80 89good 61 74 84

Oak-Aspen poor 65 74fair 47 57good 30 41

Juniper-grass poor 72 83fair 58 73good 41 61

Sage-grass poor 67 80fair 50 63good 35 48

13

Page 21: 1429 - SJRWMD

i/ For land uses with impervious areas, curve numbers are computed assuming

that 100% of runoff from impervious areas is directly connected to the

drainage system. Pervious areas (lawn) are considered to be equivalent to

lawns in good condition and the impervious areas have a CN of 98.

2/ Includes paved streets.

3/ Use for the design of temporary measures during grading and construction.

4/ For conservation tillage poor hydrologic condition, 5 to 20 percent of the

surface is covered with residue (less than 750 #/acre row crops or 300

#/acre small grain).

For conservation tillage good hydrologic condition, more than 20 percent of

the surface is covered with residue (greater than 750 #/acre row crops or

300 #/acre small grain).

5_/ Close-drilled or broadcast.

6/ Poor hydrologic condition has less than 25 percent ground cover density.

Fair hydrologic condition has between 25 and 50 percent ground cover

density.

Good hydrologic condition has more than 50 percent ground cover density.

If Poor hydrologic condition has less than 30 percent ground cover density.

Fair hydrologic condition has between 30 and 70 percent ground cover

density.

Good hydrologic condition has more than 70 percent ground cover density.

14

Page 22: 1429 - SJRWMD

runoff from the pervious area. The steps involved in

calculating the total runoff are given below:

Step 1. Compute CN and S for the pervious area

Step 2. Adjust rain for the pervious area such that:

P- = <l+Anei/Vrv)(P>

Step 3. Compute runoff from the pervious area:

0 = (P'-0.2S)2( / .yperv P'+0.8S ^ A x ;

Step 4 . Compute runoff from the effective impervious

area:

Qei " {P) (Aei/A)

Step 5. Compute total runoff:

0 = 0 + Q .v uperv vei

Miller (1979) studied the rainfall-runoff characteris-

tics of four urbanized basins in south Florida. His

study indicated:

(1) The EIA is an important physical feature in urban

basins, and is responsible for runoff from small

and medium rainfall events. It produces a linear

relation between rainfall and runoff.

(2) There is a breakpoint rainfall, which varies from 1

to 2 inches. When this rainfall is exceeded,

runoff will be contributed from the basin area out-

side the EIA.

15

Page 23: 1429 - SJRWMD

(3) A nonlinear relation exists when runoff is produced

from the area outside the EIA.

Alley and Veenhuis (1983) concluded that considerable

overestimations of runoff volumes and peak flows could

be incurred in rainfall-runoff modeling, if TIA rather

than EIA is used as a model input. Simulation experi-

ments also show that the TIA method produces higher

runoff volume and peak flow for larger rainfall events.

However, the TIA method gives lower runoff volume for

smaller rainfall events simply because most of runoff is

contributed from the EIA.

In the TR-20 computer model, the basin CN is calculated

based on TIA. To obtain more realistic estimates of

runoff volume and peak flow, the basin CN can be ad-

justed as follows:

Step 1. Compute total runoff using the steps given

earlier.

Step 2. Compute the equivalent S from the following

equation (Hope and Schulze, 1981) :

S = 5[P+2Q-(4Q2+5PQ)°'5]

Step 3. Compute the equivalent CN from the following

equation:

2 . Flatw,QQds_CN.

The CN values for the flatwoods are greatly affected by

the water table and antecedent moisture conditions.

16

Page 24: 1429 - SJRWMD

During wet periods, the water table is near ground sur-

face and the flatwoods are often submerged. The

flatwoods can become very dry during dry periods when

water table normally drops to 3-5 feet below the

surface. Estimates of CN values for the pine flatwoods

are given in Table 2.

Another way of estimating watershed storage or CN for

the flatwoods is to relate watershed storage with water

table. Capece (1984) conducted a study on estimation of

runoff volumes from flat, high-water table watersheds in

south Florida. Among the seven methods investigated, he

concluded that the ARS (Agricultural Research Service)

method gives the best estimates of runoff volume. This

method was developed from the absorption curve of sandy

soils in the Taylor Creek area (Speir et.al., 1960).

The relationship between watershed storage and water

table is given by the following equations:

S = 0.60(DWT) , 0.0<DWT<0.5 (7a)

S = 0.30+1.00(DWT-0.5) , 0.5<DWT<1.0 (7b)

S = 0.80+1.35(DWT-1.0) , 1.0<DWT<2.0 (7c)

S = 2.15+1.55(DWT-2.0) , 2.0<DWT<3.0 (7d)

where

S = watershed storage, inches

DWT = depth to water table, feet.

The ARS method ignores effects of crop cover, land

treatment and hydrologic condition on runoff. The

method seems to work well for watersheds where soil

17

Page 25: 1429 - SJRWMD

storage is significantly affected by fluctuations of

water table.

Table 2.—Approximate CN values for Pine Flatwoods and Wetlands.

Wet prairiesPine flatwoodsRiver swamp, cypress swamp,

lake border swampMarshBog swamp, bay head.cypress dome

CunDry Periods

7060

8090

"̂ ̂ m

te Number. fo£Wet Periods

9898

9898

98

Design

9593

9598

77

3.

It is difficult to assign CN values for wetlands because

their CN values vary from one condition to another

condition. During wet periods, wetlands are nearly or

fully saturated and could be given a CN value of 100.

The behavior of wetlands during dry periods is unclear.

Certain types of wetlands such as bog swamp, bay head,

and cypress dome may have tremendous depression storage

depending on water table conditions. Soils in wetlands

areas generally consist of organic materials, peats, and

mucks and have high water holding capacity. These soils

have very poor drainage and water is lost principally

through evapotranspiration. Description of different

types of wetlands are given in Appendix C. Approximate

CN values for wetlands are given in Table 2.

18

Page 26: 1429 - SJRWMD

D. Antgcedgnt_gQil_Moistute_Condition

Antecedent soil moisture is an indicator of watershed wetness

and availability of soil storage prior to a storm. It can

have a significant effect on both runoff volume and runoff

rate. Recognizing its significance, the SCS developed a

guide for adjusting CN according to antecedent moisture con-

dition (AMC) determined by the total rainfall in the 5-day

period preceding a storm. Three levels of AMC are used:

AMC-I for dry, AMC-II for normal, and AMC-III for wet

conditions. Table 3 gives seasonal rainfall limits for these

three antecedent moisture conditions.

Table 3.—Classification of Antecedent Moisture Conditions (SCS,1972) .

TQt§l_5_rday._Antecedent_Rain£all_linche§lAMC DQtmant^ Season Grow,ing_Season

IIIIII

Less than 0.50.5 to 1.1over 1.1

Less than 1.41.4 to 2.1over 2.1

Konyha and others (1982) suggested that the 5-day AMC is not

a reliable indicator of watershed wetness for the flatwoods

watersheds. According to Rallison and Cronshey (1979), the

SCS indicated that a five-day period is a minimum for es-

timating antecedent conditions. Sometimes longer periods are

desirable but the additional work does not always produce

19

Page 27: 1429 - SJRWMD

additional accuracy in the runoff estimates. Cronshey (1983)

suggested that the AMC II CN be used for most practical ap-

plications and an AMC curve number adjustment be made only

when an actual storm is to be evaluated.

The CN estimates presented in Table 1 are for AMC II. If

either AMC I or III is to be used, the CN can be adjusted

using Table 4.

* via^^

Table 4.—Curve Numbers for AMC I and AMC III.

CN forAMC II

10095908580757065605550454035302520151050

oCorresponding CNAMC I AMC

10087787063575145403531272319151297420

forIII

100999897949187837975706560555045393326170

20

Page 28: 1429 - SJRWMD

E. Sensitivity_o£_QI

Curve Number (CN) is an important parameter for determining

direct runoff (Q) and peak discharge (q ). An error in CN

estimate will cause errors in Q and q . The total error in

q due to error in CN estimate consists of the errors in Q

and time of concentration (t ) obtained from the SCS lagc

equation.

Hawkins (1975) performed a sensitivity analysis of Q to error

in rainfall (P) and CN. He concluded: (1) For a con-

siderable range of Pf accurate values of CN are more

important than accurate estimates of P; and (2) The accuracy

of estimating Q is very critical near the threshold of runoff

(P=0.2S).

Bondelid, et. al. (1982) evaluated the sensitivity of the SCS

methodology to errors in CN estimates. They concluded: (1)

The effects of CN variation on Q and q decrease as P

increases; and (2) As both P and CN increase, the effect of

the error in Q on q decreases while the effect of the error

in t increases.

Figures 1 and 2 show the relative sensitivities of RQ and R ,

respectively, due to CN. The terms RQ and R are propor-

tional changes in Q and q , respectively, per unit change in

CN. Both figures can be used for evaluating the hydrologic

effects of differences in the estimated CN's. Figure 3,

21

Page 29: 1429 - SJRWMD

0.20

0.15 - \

o•o 0.10IIo

0.05

CM5060TOBO80es

5 6RAINFALL (In)

Figure 1.--Relative Sensitivity of RQ toCN, 0.7<t <5.0 Hoursc

(Bondelid et. al., 1982)

22

Page 30: 1429 - SJRWMD

0.20

0.15

BC

cIT

0.10

0.0£

CN

5060708«9096

£ e 72<-hr. R A I N F A L L ( in. )

Figure 2.—Relative Sensitivity of R toCN, 0.7<tc<5,0 Hours

q

(Bondelid et. al., 1982)

23

Page 31: 1429 - SJRWMD

0.8

oi-ui

a17

o.e

a:111

0.4

zoHcraa.Offa.

0.2

4 6 824-hr. RAINFALL On)

10

Figure 3.—Proportion of Error Due to t ,0.7<tc<5.0 Hours

C

(Bondelid et. al., 1982)

24

Page 32: 1429 - SJRWMD

which shows the proportional error in q due to t , can be

used to determine the proportional error in q due to Q.

F. Summary

1. For design purposes, average condition CN (AMC II) with

I = 0.2S should be used and the adjustment of CN based

on AMC is not necessary.

2. The EIA method should be used for urbanized basins; it

provides better estimates of runoff volume and peak flow

than does the TIA method.

3. The ARS method is recommended for watersheds where their

CN values vary with depth of water table. Although it

is preferrable to determine the depth to water table

from the study area, approximate depth during wet

periods can be obtained from the SCS soil survey

manuals. If depth to water table is not known, then the

CN value given in Table 2 can be used.

4. Irrigation practices usually keep the water table high

due to low efficiency of irrigation. If water table is

maintained within four feet of the ground surface, then

the watershed CN should be estimated by the ARS method;

otherwise, the watershed CN could be estimated from

Table 1.

25

Page 33: 1429 - SJRWMD

DIseU§S.!QS_QF_S£S_UNJT_HYDBQGRAPH_METHQD

A unit hydrograph is the hydrograph resulting from one inch

of direct runoff generated uniformly over the watershed at a

uniform rate during a specified period of time. The assumptions

involved in the unit hydrograph concept are:

(1) Rainfall intensity is constant during the storm period.

(2) Rainfall is uniformly distributed throughout the entire

watershed.

(3) The time base for the runoff hydrograph of a watershed

is constant for storms of the same duration.

(4) The ordinates of unit hydrograph are directly propor-

tional to volume of direct runoff.

The principles of linearity, proportionality, and superposi-

tion make the unit hydrograph method a very flexible tool in

developing runoff hydrographs for ungaged watersheds. A unit

hydrograph of a watershed can be derived by analyzing actual

rainfall-runoff data (Linsley, 1975). When these data are not

available, a synthetic unit hydrograph technique is normally

employed.

A. Development

Victor Mockus developed the SCS synthetic unit hydrograph

method for determining runoff hydrograph for ungaged

watersheds. Unit hydrographs were derived from observed

rainfall-runoff data of natural watersheds with different

sizes and geographic locations. The derived unit hydrographs

26

Page 34: 1429 - SJRWMD

were then made dimensionless and averaged to obtain a stan-

dard dimensionless unit hydrograph (DUH) as shown in Figure

4. The area under the rising limb is 37.5% of the total area

under the DUH. The time base (t, ) is 5 t and the inflectionb p

point on the falling limb occurs at 1.7 t . The time and

discharge ratios for the SCS curvilinear DUH are given in

Table 5.

The curvilinear DUH in Figure 4 can be approximated by a tri-

angular DUH having the same percent of runoff volume on the

rising side of the triangle. Using the geometry of tri-

angles, the area under the unit hydrograph is estimated by:

V = \ qp (tp+tr)(3600) (8)

where V = volume of direct runofr, cubic feet

q = peak discharge, cubic feet per second (cfs)

t = time to peak, hours

t = recession time, hours

Solving Equation (8) for q and rearranging yields:

qp (V/3600 t ) (9)p.

Let K replace the terms in the bracket such that:

K = (lu)

then Equation 9 can be written as:

qp = KV/(3600 tp) (11)

27

Page 35: 1429 - SJRWMD

EXCESS RAINFALL

rPOINT OF INFLECTION

t/tr

Figure 4.--SCS Dimensionless Curvilinear and TriangularUnit Hydrographs (SCS, 1972)

28

Page 36: 1429 - SJRWMD

Table 5.—Ratios for SCS Dimensionless Curvilinear Unit Hydrograph

Time Ratios(t/tp)

0.1.2.3.4.5.6.7.8.9

1.01.11.21.31.41.51.61.71.81.92.02.22.42.62.83.03.23.43.63.84.04.55.0

Discharge Ratios(q/qp)

.000

.030

.100

.190

.310

.470

.660

.820

.930

.9901.000.990.930.860.780.680.560.460.390.330.280.207.147.107.077.055.040.029.021.015.011.005.000

29

Page 37: 1429 - SJRWMD

By introducing A and Q into Equation 11, the equation

becomes:

q p=

where q = peak discharge, cfs

A = drainage area, square miles

Q = direct runoff depth, inches

K = hydrograph shape factor

645.33 = conversion factor

By letting K1 = 645.33 K, the SCS unit hydrograph equation

simplifies to:

_ (K1) (A) (Q)qp = - 1 -

P

where K1 is called peak rate factor. It should be noted that

the DUH shown in Figure 4 is valid only for the K1 value of

484. If the K1 value is different from 484, then a new DUH

must be developed.

In Equation 13, Q represents direct runoff depth resulting

from a given rainfall intensity and duration, while K1 ac-

counts for the effect of watershed storages and t provides

timing of unit hydrograph by incorporating hydraulic or

timing parameters such as slope, flow length, and surface

roughness.

30

Page 38: 1429 - SJRWMD

Figure 4 shows that:

tp = L + § (14)

where L = watershed time lag, hours

D = duration of unit excess rainfall, hours

The lag (L) of a watershed is defined as the time from the

center mass of unit excess rainfall (D) to the time to peak

(t ) of a unit hydrograph. The average relationship of L to

t is (SCS, 1972) :c

L = 0.6 t (15)C

Substituting in Equation 14 yields:

tp = °'6 V 5 (16)

Using the relationships defined for the curvilinear DUH

(Figure 4), it can be shown that:

D = 0.1333 t (17)C

Substituting Equation 17 into Equation 16 yields:

tp = 2 tc/3 (18)

B. CQny.olu.tion

The method used to compute a design storm hydrograph from

rainfall excess and unit hydrograph is called convolution.

It is a process of translation, multiplication, and addition.

The following example illustrates this process.

31

Page 39: 1429 - SJRWMD

I: Develop a runoff hydrograph using the following

data:

Drainage area: 1.0 square mile

Time of concentration: 1.50 hours

Curve Number: 85

Storm duration: 1.0 hour

Rainfall interval: 0.25 hours

Rainfall intensity: 0.40, 0.80, 0.50, 0.30

Total rainfall depth: 2.00 inches

Step 1. Develop and plot triangular unit hydrograph.

Using Equation 17, compute D:

D = 0.1333 (1.50) = 0.20 hours

Using Equation 16, compute t :

t = 0.5(0.20) + 0.6(1.50) = 1.00 hourP

For one inch of direct runoff, the peak dis-

charge is:

= (484)(1)(1) =qp - (1) - 484 CIS

For K1 = 484, the time base of the triangular

UH is:

tb = 2.67(1) = 2.67 hours

The resulting triangular UH is shown in Figure

5.

Step 2. Tabulate the ordinates of the triangular UH

using time increment D (Table 6, Column 2).

32

Page 40: 1429 - SJRWMD

484

10mu

Uin-HQ

1.00

Time (hours)

2.67

Figure 5.—Triangular Unit Hydrograph forExample 1

33

Page 41: 1429 - SJRWMD

Table 6.—Computation of Incremental Runoff for Example 1

TIME

(hr)

00.20.40.60.81.01.21.41.61.82.02.22.42.62.8

UHORDINATES

(Cfs)

09719429038748442636831025219413577190

ACCUMULATIVERAINFALL

(in.)

00.320.881.401.762.00

ACCUMULATIVERUNOFF(in.)

000.120.390.620.79

INCREMENTALRUNOFF(in.)

000.120.270.230.17

TOTAL 3233

3233(0.2) = 646.6

34

Page 42: 1429 - SJRWMD

Step 3. Check the volume under UH by summing the or-

dinates (Table 6, Column 2) and multiplying by

D:

3233(0.20) = 646.60 cfs-hours

Compare this value with the computed volume

under UH:

645.33(1.0) = 645.33 cfs-hours

If these values fail to check, re-read the

ordinates from Figure 5 until both values

agree.

Step 4. Tabulate accumulative rainfall in time incre-

ments of D (Table 6, Column 3).

Step 5. Compute the accumulated runoff from Equation

(5) (Table 6, Column 4).

Step 6. Tabulate the incremental runoff (Table 6,

Column 5).

Step 7. Determine runoff hydrograph by convolution.

The ordinates of triangular UH in Table 6, Column 2, is

convoluted with rainfall excess in Column 5. The com-

putations of runoff hydrograph is shown in Table 7.

35

Page 43: 1429 - SJRWMD

Table 7.—Computation of Runoff Hydrograph for Example 1

TIME(HRS)

00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

097(0)

194(0) H290(0) -387(0) -484(0) -426(0) -368(0) -310(0) -252(0) -194(0) -135(0) -

77(0) •19(0) •

h 97(01- 194(0h 290(0h 387(0h 484(0^ 426(0h 368(0I- 310(0h 252(0f 194(0f 135(0f 77(0

19(0

.12)

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

.12) -

h 97(0h 194(0H 290(0H 387(01- 484(0I- 426(0h 368(0^ 310(0f 252(0f 194(0f 135(0f 77(0

19(0

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

.27)

++++++++++++

97(0.23)194(0.23)290(0.23)387(0.23)484(0.23)426(0.23)368(0.23)310(0.23)252(0.23)194(0.23)135(0.23)77(0.23)19(0.23)

++++++++++++

97(0.17)194(0.17)290(0.17)387(0.17)484(0.17)426(0.17)368(0.17)310(0.17)252(0.17)194(0.17)135(0.17)77(0.17)19(0.17)

E

=

==============

IISCHARGE(CFS)

00

11.649.5

109.5185.9262.3320.1336.3316.8271.0225.2179.2133.187.145.817.5

3_i.2

TOTAL = 2,554.1

36

Page 44: 1429 - SJRWMD

Step 8. Check the volume under runoff hydrograph by

summing the ordinates (Table 7) and multiply-

ing by D:

2554.1(0.20) = 510.8 cfs-hours

Compare this value with the computed volume:

695.33(1.0) (0.79) = 509.8 cfs-hours

This example illustrates the derivation of runoff

hydrograph from rainfall excess and triangular UH by

convolution. The same procedure can be used to derive

runoff hydrograph from the curvilinear UH. Figure 6

shows that there is little difference in runoff

hydrographs using either triangular UH or curvilinear

UH, providing that the time increment D is approximately

equal to 0.2 t . The difference in peak discharges for

this example is 5.8%. This difference tends to decrease

with increasing storm durations.

C. Limitations

The limitations relating to the unit hydrograph method are

given below:

1. The unit hydrograph method cannot accommodate the areal

variations in runoff that can affect hydrograph shape.

For instance, a rapid rise, sharp peak, and rapid reces-

sion would result if urbanization is located near the

basin outlet. On the other hand, a slow rise, lower and

37

Page 45: 1429 - SJRWMD

500

DISCHARGE

OJCO

IN

CFS

400 .

300 .

200 _

100 _

0

I.0 SQ.MI2.0 IN.851.5 HRS.484

CURVILINEARTRIANGULAR

0

TIME IN HOURS

Figure 6.—Runoff Hydrographs of Example 1 Using Curvilinear and TriangularUnit Hydrographs

Page 46: 1429 - SJRWMD

broader peak, and slow recession would occur if ur-

banization occurred in the upstream portion of the

basin.

2. The unit hydrograph method assumes that ordinates of

flow are proportional to volume of direct runoff for all

storms of a given duration and that the time bases of

all such hydrographs are equal. This assumption is not

completely valid because duration of recession is a

function of peak flow. The larger the peak flow, the

longer the duration of recession. Furthermore, unit

hydrographs for storms of the same duration but dif-

ferent magnitudes do not always agree. Peaks of unit

hydrographs derived from small storms are normally lower

than those derived from larger storms (Linsley, 1975).

D. Summary

1. To obtain a good prediction of runoff hydrograph for a

basin, it is important to have accurate estimates of

direct runoff (Q), time of concentration (t ), and peakc

rate factor (K1).

2. The SCS unit hydrograph method should be applied only to

the basin small enough so that similar rainfall and

runoff characteristics can be attained within the basin.

If areal variations in rainfall and runoff are great, it

is necessary to divide the basin into smaller subbasins.

39

Page 47: 1429 - SJRWMD

T!M!_QF_CQHCEJJTRAT!QH

The time of concentration (t ) is the time it takes fortx

runoff to travel from the hydraulically most remote part of the

watershed to the point of reference downstream. The primary

function of t is to provide the timing of hydrograph. Besidesc

increasing runoff volume, urbanization generally decreases travel

time or t , which in turn shortens the time to peak of hydrograph

and increases peak discharge.

A. Estimation of t

There are numerous methods for estimating t . However, theC

methods recommended by the SCS will be discussed below.

The SCS lag method was developed from natural water-

sheds having areas less than 2,000 acres. The method

was intended to be used for different watershed condi-

tions ranging from steep to flat and from heavily

forested to smooth surface areas. The equation for

watershed lag is:

L = *w' (S+l)0'7 (19)1900y°'5

40

Page 48: 1429 - SJRWMD

where L = watershed time lag, hours

x = hydraulic length of watershed, feet\V

S = watershed storage, inches

y = average watershed land slope, percent

Data collected from small urban watersheds indicated

that Equation (19) overestimates lag time for urban

areas (SCS, 1975). However, the equation adequately

represents lag time for paved areas such as parking

lots.

2. §G§_YelQcity._MetbQd

In the SCS velocity method, the flow path is usually

divided into segments according to type of flows such as

overland, storm sewer or pipe, road gutter, and channel

flows. The time of concentration for a given drainage

area is estimated by summing the travel time of each

flow segment.

a. Qy.erland_£10Y£

The travel time for overland flow can be determined

from Figure 7. The types of flow included in

Figure 7 are: overland, grassed waterways, paved

areas, and small upland gullies. If slope and land

use of the overland flow segment are known, the

average flow velocity can be read from Figure 7.

The travel time is computed by dividing the over-

land flow length by the average velocity.

41

Page 49: 1429 - SJRWMD

100

0.5

VELOCITY IN FEET PER SECOND

Figure 7.—Average Velocities for Estimating Travel Time forOverland Flow (SCS, 1972).

42

Page 50: 1429 - SJRWMD

According to Kibler and Aron (1983) , Figure 7 gives

very good estimates of overland travel time as long

as flow paths exceed 300-400 feet.

However, if flow length is less than 300 feet, the

travel time for overland flow can be computed from

the simplified Manning-Kinematic wave equation

(SCS, 1983) :

0.006(nxQ)0.8

*•where t = overland flow travel time, hours

n = Manning's roughness coefficient

XG = overland flow length, feet

P24 = 2-year 24-hour rainfall depth, inches

S = overland flow slope, feet/foot

Equation (20) is based on the following assumptions:

(1) shallow steady uniform flow; (2) constant rainfall

excess; (3) 24-hour rainfall duration; (4) SCS Type II

rainfall distribution; and (5) impact of infiltration on

travel time is minor. Estimates of 'n1 values for use

in Equation (20) are given in Table 8.

b.

The travel time from storm sewer to open channel is

the sum of travel times in each individual com-

ponent of the system between the uppermost inlet

43

Page 51: 1429 - SJRWMD

Table 8.—Manning's 'n1 Values for Overland FlowI/ (SCS, 1983)

RecommendedValue

Range ofValues

ConcreteAsphalt

Bare sand2727Graveled surface

Bare clay-loam (eroded) 27

Fallow (no residue) **Chisel plow ( 1/4 ton/acre residue)Chisel plow (1/4 - 1 ton/acre residue)Chisel plow (1-3 tons/acre residue)Chisel plow ( 3 tons/acre residue)Disk/Harrow ( 1/4 ton/acre residue)Disk/Harrow (1/4 1 ton/acre residue)Disk/Harrow (1-3 tons/acre residue)Disk/Harrow ( 3 tons/acre residue)No till ( 1/4 ton/acre residue)No till (1/4 1 ton/acre residue)No till (1-3 tons/acre residue)Plow (Fall)CoulterRange (natural)Range (clipped)Grass (bluegrass sod)

2>Short grass prairie-7

47Dense grass -'4/Bermuda grass-7

Woods

,011,012

,010

.012

.012

.05

.07

.18

.30

.40

.08

.16

.25

.30

.04

.07

.30

.06

.10

.13

.08

.45

.15

.24

.41

.45

,01 -,01 -

,010 -

.012 -

.012 -

.006 -

.006 -

.07 -

.19 -

.34 -

.008 -

.10 -

.14 -

.03 -

.01 -

.16 -

.02 -

.05 -

.01 -

.02 -

.39 -

.10 -

.17 -

.30 -

,013,015

.016

.03

.033

.16

.17

.34

.47

.46

.41

.25

.53

.07

.13

.47

.10

.13

.32

.24

.63

.20

.30

.48

!/ Engman (1983).2/ Woolhiser (1975).37 Fallow has been idle for one year and is fairly smooth.4/ Palmer (1946). Weeping lovegrass, bluegrass, buffalo grass,

blue gramma grass, native grass mix (OK), alfalfa, lespedeza.

44

Page 52: 1429 - SJRWMD

and the outlet. During major storm events, the

sewer system can be assumed flowing full. The

average velocity of the sewer system is estimated

from the Manning's equation using average conduit

size, average slope, and hydraulic radius of full

flow condition. Manning's equation is:

1 49 r 2/3s1/2

v = ±f~ r s

where v = average flow velocity (ft/sec)

r = hydraulic radius (ft)

s = slope of energy gradient (ft/ft)

n = Manning's roughness coefficient

c. Gutter.flow.

The average velocity of shallow gutter flow can be

estimated from Figure 7 using the paved area curve

d. Channel.flow.

The "bank full" velocity is normally used for com-

puting the travel time for channel flow, which is

determined by the Manning's equation.

B. Sensitivity of t

The primary function of t is to provide timing of runoff

hydrograph; it is a very important parameter used in deter-

mining the peak and shape of runoff hydrograph. Figure 8

illustrates the effect of variation in t on peak discharge.\^r

The unit of peak discharge in Figure 8 is in cubic feet per

45

Page 53: 1429 - SJRWMD

500

c•H

-Hg

03\cniwO

C•H

0Cns-irfl£Uen

•HQ

OSd)04

40O

300

200

100

Time of Concentration (t ) in hours

Figure 8.--Sensitivity of q to t

46

Page 54: 1429 - SJRWMD

second per square mile per inch of direct runoff. It can be

seen that peak discharge is extremely sensitive to a change

in t , particularly for small values of t . Also, it will bec c

shown later that variation in t would change the shape and

timing of unit hydrograph, which in turn also affects runoff

hydrograph of the basin.

C. Summary

1. The main disadvantage of the t approach is that it

does not account for the areal distribution of runoff

which can affect the shape and timing of hydrograph;

i.e.,urbanization occurring upstream or downstream of

the basin will result in the same runoff hydrograph as

long as the t of the basin is equal. As a result, theC

t method should be applied to basins small enough toC

ensure that areal variation in runoff is not too great.

2. Generally, the SCS lag method is not as accurate as the

SCS velocity method because the lag method does not

reflect changes in hydraulic properties which can be

incorporated in the velocity method. For example,

channel modification causes a change in t by increas-

ing flow velocity of the channel. Furthermore, tC

obtained from the lag method will be equal for water-

sheds having the same CN, hydraulic length, and slope.

47

Page 55: 1429 - SJRWMD

3. Time of concentration varies with storm events; there-

fore, it should be estimated for each storm event. For

practical purposes, t can be calculated using the

"bank full" velocities.

4. Since t is very important parameter for determiningV-*

runoff hydrographs for small upland watersheds, great

care should be exercised in estimating t .c

48

Page 56: 1429 - SJRWMD

PEAK.RATE_FACTQR

Peak rate factor (K1) is a parameter used to reflect the effect

of watershed storage on runoff hydrograph shape. According to the

SCS, K1 value has been known to vary from 300 in flat swampy

country to 600 in steep terrain. Woodward et.al. (1980) suggested

a value of 284 for the Delmarva peninsula (Delaware, Maryland, and

Virginia) which is characterized by flat topography and con-

siderable natural surface storage due to swales and swamps. This

suggests that K1 values vary with the watershed storage charac-

teristics and that a constant value cannot be used to represent the

storage characteristics of all watersheds. Therefore, it is neces-

sary to develop a method for estimating K1 value of a DUH for an

ungaged watershed.

A. Development

Before a triangular unit hydrograph can be constructed for a

given peak rate factor, the following parameters q , t , and

tb must be known. Both q and t are computed from Equations

13 and 16. The equation for solving t, is derived below.

Using the relation t. = t +t and substituting this relation

into Equation 10 yields:

K = 2t /tb (22)

or

tb = 2tp/K (23)

49

Page 57: 1429 - SJRWMD

Substituting K = K'/645.333 into Equation 23 results:

tfa = 1290.66 t /K1 (24)

Equations 13, 16, and 24 are the basic equations used

for constructing a triangular unit hydrograph for a

given peak rate factor. By substituting Equation 18

into Equations 13 and 24, the equations for q and t,

become:

qn = 1.5K'AQ/t (25)P *-

tb = 860.42 tc/K' (26)

From Equations 18, 25, and 26, it can be concluded that:

(1) t is the most important parameter in determining

runoff hydrographs—any variation in t would causec

changes in q , t , and t, ; and (2) K1 is the second most

important parameter—any change in K1 would result in

changes in q and t, .

B. Estirnation_Qf_Kl

McCuen and Bondelid (1983) proposed a method for deriving a

DUH from the time-area curve. The method assumes that the

proportions under the rising limbs of the time-area curve and

DUH are equal. This implies that the K1 value of the DUH is

the same as that of the time-area curve. The steps involved

in deriving a triangular DUH for a given watershed are sum-

marized below.

50

Page 58: 1429 - SJRWMD

Step 1. Use the "bank full" velocities to calculate the

channel travel times to the watershed outlet.

Step 2. Divide the total channel travel time into a number

of equal time intervals, and then divide the

watershed into areas of equal travel time.

Step 3. Develop a dimensionless time-area curve.

Step 4. Calculate the proportion (p) of area under the

rising limb of the time-area curve. The calculated

p is then used to compute K1 from the relationship

K'=1290.66p. With K1 and tc values known, the

terms t , q , and t. are determined from Equations

18, 25r and 26, respectively. Consequently, the

triangular DUH can be drawn.

Similarly, the same procedure described earlier can be used

to derive a curvilinear DUH from the gamma distribution

function.

Another approach of estimating K1 for a watershed is to mul-

tiply the standard SCS K1 (484) by an adjustment factor

obtained from Tables 9-11. These tables are published in

SCS, TR-55 (1975). The values of adjustment factors are

given in terms of percent of watershed storage area (e.g.

ponds, swamps, ditches, and swales), storm frequency, and

areal distribution of watershed storage. It should be noted

that this table is not applicable for detention basins. This

approach is based on the following reasons:

51

Page 59: 1429 - SJRWMD

(1) Watershed storages affect the shape of runoff hydrograph

by attenuating its peak and enlarging its time base.

(2) Rainfall characteristics have an effect upon the storage

capacity of watershed. Therefore, K1, which is used to

represent watershed storage effect also varies with

storm frequency.

(3) According to Woodward, et.al. (1980), the standard SCS

DUH was developed from small watersheds primarily in the

Midwest. These watersheds are generally characterized

by local relief of 50 to 100 feet with little or no

natural storage.

Table 9.—Adjustment factors where ponding and swampy areas occurat the design point (SCS, 1975).

Percentage ofponding and StQ£m_freguency._iyearslswampy area

0.2.5

1.02.02.53.35.06.7

10.020.0

2

0.92.86.80.74.69.64.59.57.53.48

5

0.94.87.81.75.70.65.61.58.54.49

10

0.95.88.83.76.72.67.63.60.56.51

25

0.96.90.85.79.75.71.67.64.60.55

50

0.97.92.87.82.78.75.71.67.63.59

100

0.98.93.89.86.82.78.75.71.68.64

52

Page 60: 1429 - SJRWMD

Table 10.—Adjustment factors where ponding and swampy areas arespread throughout the watershed or occur in centralparts of the watershed (SCS, 1975) .

Percentage ofponding and StQrm_f,requency_iyearsl.J. _/

swampy area

0.2.5

1.02.02.53.35.06.7

10.020.025.0

2

0.94.88.83.78.73.69.65.62.58.53.50

5

0.95.89.84.79.74.70.66.63.59.54.51

10

0.96.90.86.81.76.71.68.65.61.56.53

25

0.97.91.87.83.78.74.72.69.65.60.57

50

0.98.92.88.85.81.77.75.72.68.63.61

100

0.99.94.90.87.84.81.78.75.71.68.66

Table 11.—Adjustment factors where ponding and swampy areas arelocated only in upper reaches of the watershed (SCSf 1975) .

Percentage of§tQrm_freguency__iyear.sl.J. ^

swampy area

0.2.5

1.02.02.53.35.06.7

10.020.0

2

0.96.93.90.87.85.82.80.78.77.74

5

0.97.94.91.88.85.83.81.79.77.75

10

0.98.94.92.88.86.84.82.80.78.76

25

0.98.95.93.90.88.86.84.82.80.78

50

0.99.96.94.91.89.88.86.84.82.80

100

0.99.97.95.93.91.89.88.86.84.82

53

Page 61: 1429 - SJRWMD

C.

Figure 9 shows the effect of K1 values on the shape of unit

hydrographs and that peak discharge is very sensitive to

variation in K1 values. With parameters A, Q, and t heldC

constant, q increases and t. decreases as K1 increases, or

vice versa. It should be noted that the t of unit

hydrograph is not a function of K1 and therefore is not af-

fected by changing in K1 values. Similarly, the effect of K1

values on runoff hydrograph is shown in Figure 10.

D. Summary

1. Peak rate factor (K1) is a critical parameter for deter-

mining the shape of hydrograph. It is used to represent

the effect of watershed storage on hydrograph shape.

High values of K1 are assigned to watersheds with little

or no storage effects, and low values of K1 are for

watersheds with significant ponding effects.

2. The peak rate factor of a watershed can be determined

from the proportion of area under the rising limb of the

time-area curve or by using the adjustment factor ob-

tained from Tables 9-11.

3. The adjustment of K1 value should be made based on

natural surface storage rather than watershed slope,

because the effect of watershed slope on hydrograph

shape is normally taken into account when t is being

calculated.

54

Page 62: 1429 - SJRWMD

1000

DIScHARGE

I

N

Crs

800 _

600 _

400 _

200 _

0

GIVEN AQTC

0 0.5

1 .0 SQ.MI1 .0 IN.1 .0 HR.

K, - 300K, = 484K = 600

1 1 .5 2.5

TIME IN HOURSFigure 9.--Sensitivity of Triangular Unit Hydrograph to K 1

Page 63: 1429 - SJRWMD

1000

DIScHARGE

cr>

I

N

CFS

800 _

600 _

400 _

200 _

0 _

GIVEN : A = 1.0 SO.MI.P « 5.0 IN.SCS TYPE II

CN « 80TC « 1.5 MRS.

300484600

CMOD.}

0

Figure 10.--

I

5 10 15 20 25 30

TIME IN HOURS

Sensitivity of Runoff Hydrograph to K 1

Page 64: 1429 - SJRWMD

4. Higher K1 value should be used for future condition if

significant natural depression and ponding areas are

modified by urbanization.

57

Page 65: 1429 - SJRWMD

SUMMARY

This report has included background information for the SCS

runoff procedures and provided methods for estimating runoff

curve number (CN), the time of concentration (t ), and a peakc

rate factor (K1) for different hydrologic conditions. This

report will help to utilize the SCS runoff procedures properly

and effectively. The main points of the SCS runoff procedures

can be summarized below:

1. The accuracy of runoff volume prediction solely relies

on the accuracy of CN which is the only parameter re-

quired in the SCS curve number method. In estimating

CN, the effective impervious area (EIA) method should be

used for urban basins and the ARS method is recommended

for basins whose CN values are affected by water table.

2. For practical purposes, CN should be estimated based on

the average hydrologic condition (AMC II, 1=0.2S). The

adjustment of CN is necessary only when an actual storm

is to be evaluated.

3. The function of t is to provide the timing of runofrC

hydrograph; it has the most influence on hydrograph

shape. An error in t estimate will cause errors inC

peak discharge (q ), time to peak (t ), and time base

(tb) of hydrograph. The SCS velocity method is recom-

mended for estimating t .

58

Page 66: 1429 - SJRWMD

Peak rate factor (K1) is used to account for the effect

of basin storage capacity on hydrograph shape. The K1

value of a basin can be determined from the proportion

of area under the rising limb of the time-area curve or

by using the adjustment factor obtained from Tables 9-

11.

In order to obtain a good prediction of runoff

hydrographf it is important to have accurate estimates

of CN, t , and K1.c

59

Page 67: 1429 - SJRWMD

REFERENCES

Alley, W. M. and J. E. Veenhuis, 1983. "Effective Impervious Areain Urban Runoff Modeling," dQUEn§l_Qf _tbe_Hydr.aulicDivision, ASCE, Vol. 109, pp. 313-319.

Aron, Gert and A. C. Miller, 1977. "Infiltration Formula Basedon SCS Curve Number," JLQU£nal_of_tiie_Irrigation_and_DEainage

ASCE, Vol. 103, pp. 419-427.

Bondelid, T. R., R. H. McCuen, and T.J. Thomas, 1982."Sensitivity of SCS Models to Curve Number Variation," HaterBesou£Cgs_Bylletin, AWRA, Vol. 18, No. 1, pp. 111-116.

Capece, J. C. , 1984. "Estimating Runoff Peak Rates and Volumesfrom Flat, High-Water-Table Watersheds," Master ofEngineering Thesis, University of Florida, Gainesville,Florida.

Cronshey, R. G. , 1983. Discussion of "Antecedent MoistureCondition Probabilities," by D. D. Gray, et. al., Journal^of.tbe_!ErigatiQn_and_D£ain§ge_Diy.isiQn, ASCE, Vol. 108, pp.297-299.

Hawkins, R. H. , 1975. "The Importance of Accurate Curve Numbersin the Estimation of Storm Runoff," Water _Resou£cesBulletin, AWRA, Vol. 11, No. 5, pp. 887-890.

Hawkins, R. H. 1978. "Runoff Curve Numbers with Varying SiteMoisture, " aQUEnal_o.£_th,e_lEEigatiQn_an.d_DEainage_Diy.ision,ASCE, Vol. 105, pp. 389-398.

Hjelmfelt, A. T. , 1980. "Curve Number Procedure as InfiltrationMethod," dQUEDal_of_the_Hy.dEaulics_DiYisiQQ, ASCE, Vol. 106,pp. 1107-1111.

Hope, A. S. and R. E. Schulze, 1981. "Improved Estimates ofStormwater Volume Using the SCS Curve Number Method,"International Symposium on Rainfall-Runoff Modeling,Mississippi State University, May 18-21, 1981, pp. 419-427,Water Resources Publications, Littleton, Colorado.

Kibler, D. F. and Gert Aron, 1983. "Evaluation of T Methods fort*

Urban Watersheds," EEQceedings_Q£_th.e_C.on£eEence_onEEQntieE§_in_HydEaulic_EngingeEing, Massachusetts Instituteof Technology, Cambridge, Massachusetts, August 9-12, 1983,pp. 547-552, ASCE Publications, New York.

60

Page 68: 1429 - SJRWMD

Konyha, K. D., K. L. Campbell, and L. B. Baldwin, 1982. RunoffEstimatiQQ_£rQm_Flatt_HlgbrWaterrTaMg_Watgr sheds,Coordinating Council on the Restoration of the KissimmeeRiver Valley and Nubbin Slough Basin, Tallahassee, Florida.

Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, 1975.Hy_d.£QlQgy._fQE_Ei3ginggrs, 2nd Edition, McGraw-Hill, New York.

McCuen, R. H., 1983. "A Pragmatic Evaluation of the SCSHydrologic Methods," EEQCggding§_Q£_tbe_gp.gcialty._C.Qn£gEencgQn_Ady.ancgs_in_lEEiga.tiQn_and_DEainaggi £u.EY.iY.ing_Extgrna.lEEgssuEgs, Jackson, Wyoming, July 20-22, 1983, pp. 200-207,ASCE Publications, New York.

McCuen, R. H. and T. R. Bondelid, 1983. "Estimating UnitHydrograph Peak Rate Factors," J_QUEna.l_g£_tbe_Irrigation_andDEainage_DiYisiQQ, ASCE, Vol. 109, pp. 239-250.

Miller, R. A., 1984. "Rainfall-Runoff Mechanics for DevelopedUrban Basins," lDterQatiQnal_§y.mp.QSium_Qn_UEban_HydrQlQgy.iHydEaulic§_and_Sgdimgnt_ContEQl, University of Kentucky,Lexington, Kentucky.

Mockus, V., 1964. Personnel Communication: Letter to OrrinFerris, Dated March 5, 1964, 6 pp.

Rallison, R. E. and R. C. Cronshey, 1979. Discussion of "RunoffCurve Number with Varying Site Moisture," by R. H. Hawkins.aQUEnal_Q£_tbe_lEEigatiQn_and_Drainage_DiYision, ASCE, Vol.105, pp. 439-441.

Rallison, R. E. and N. Miller, 1981. "Past, Present, and FutureSCS Runoff Procedure," In£gEn§tional_gympQsium_Qn_Rainfa^l-BUQo££_MQdgling, Mississippi State University, May 18-21,1981, pp. 353-364. Water Resources Publications, Littleton,Colorado.

Soil Conservation Service, 1969. CQfflP.uteE_PEQgEam_fQE_P£Qj.ectFQEffiulation_Hy.3EQlQgy_, Technical Release No. 20, USDA-SCS,Washington, D.C.

Soil Conservation Service, 1972. N.atiQna.l_EQginegEing_BandbQOkiSection_4.t_Hyd.EQlogy.. USDA-SCS, Washington, D.C.

Soil Conservation Service, 1975. UEban_HydEQlQgy_fQE_SmallWatersheds., Technical Release No. 55, USDA-SCS, Washington,D.C.

Soil Conservation Service, 1983. U.Eb,an_By.dEQlogy__£oE_Sffi§llWattESbeds (Revised), Technical Release No. 55, USDA-SCS,Washington, D.C. (Draft)

61

Page 69: 1429 - SJRWMD

Speir, W. H., W. C. Mills, and J. C. Stephens, 1969. HydtQlogyQ£_Three_EjcEeriffiental_W§tershgds_in_SQUtliern_FlQ£idar ARSPublication No. 41-152, USDA-Agricultural Research Service,Washington, D.C.

Woodward, D. E., P. I. Wells, and H. F. Moody, 1980. "CoastalPlans Unit Hydrograph Studies," PrQceedings_of_Na.tionalSymEQsiuro_on_HEb§n_StO£©water_Managginent_in_CQastal_AEeas,Blacksburg, Virginia, 1980, pp. 99-107, ASCE Publications,New York.

62

Page 70: 1429 - SJRWMD

APPENDIX A

RAINFALL_DISTBIBUTIQNS

The intensity of rainfall for a given storm duration is an

important factor for determining hydrologic response. Storms

having the same magnitude and duration but different intensities

will result in different hydrologic responses. The rainfall in-

tensity varies considerably within the storm period and from one

region to another region. For uniformity, the SCS developed two

synthetic 24-hour rainfall distributions from the Weather Bureau

rainfall-frequency data (1, 2, 3). The Type I distribution is

representative of the maritime climate, including Hawaii, Alaska,

and the coastal side of the Sierra Nevada and Cascade Mountains

in California, Oregon, and Washington. The Type II distribution

represents the remainder of the United States where high runoff

rates are generated from summer thunderstorms.

The procedure used in developing the SCS rainfall distribu-

tions are described in the SCS TP-149 (4). In addition to the

Type I and II distributions, the SCS modified the Type II dis-

tribution for Florida climate. This distribution was developed

in the same manner as the SCS Type II distribution, but the data

from HYDRO-35 were used instead of TP-40. The SCS rainfall dis-

tributions in 30-minute intervals are listed in Table A-l. The

96-hour rainfall distribution is sometimes required, depending on

the type of problems. The procedure for determining the rainfall

distribution is explained in the District Applicant's Handbook

for Management and Storage of Surface Waters (5).

A-l

Page 71: 1429 - SJRWMD

Table A-1. — Ordinates of the SCS 24-Hour Rainfall Distributions

Time Rainfall_RatiQ_lAccuinulated_TQtal/24rHQur_TQtall

0.0 0.000 0.000 0.0000.5 0.008 0.005 0.0061.0 0.017 0.011 0.0121.5 0.026 0.017 0.0182.0 0.035 0.022 0.0252.5 0.045 0.029 0.0323.0 0.055 0.035 0.0393.5 0.065 0.042 0.0464.0 0.076 0.048 0.0544.5 0.087 0.056 0.0625.0 0.099 0.064 0.0715.5 0.122 0.072 0.0806.0 0.125 0.080 0.0896.5 0.140 0.090 0.0997.0 0.156 0.100 0.1107.5 0.174 0.110 0.1228.0 0.194 0.120 0.1358.5 0.219 0.134 0.1499.0 0.254 0.147 0.1649.5 0.303 0.163 0.181

10.0 0.515 0.181 0.20110.5 0.583 0 .204 0.22611.0 0.624 0.235 0.25811.5 0.654 0.283 0.30712.0 0.682 0.663 0 .60612.5 0.705 0.735 0.71813.0 0.727 0.772 0.75713.5 0.748 0.799 0.78514.0 0.767 0.820 0.80714.5 0.784 0.835 0.82615.0 0.800 0.850 0.84215.5 0.816 0.865 0.85716.0 0.830 0.880 0.87016.5 0.844 0.889 0.88217.0 0.857 0.898 0.89317.5 0.870 0.907 0.90318.0 0.882 0.916 0.91318.5 0.893 0.925 0.92219.0 0.905 0.934 0.93119.5 0.916 0.943 0.93920.0 0.926 0.952 0.94720.5 0.936 0.958 0.95521.0 0.946 0.964 0.96221.5 0.955 0.970 0.96922.0 0.965 0.976 0.97622.5 0.974 0.982 0.98323.0 0.983 0.988 0.98923.5 0.992 0.994 0.99524.0 1.000 1.000 1.000

A- 2

Page 72: 1429 - SJRWMD

REFERENCES

1. Hershfield, D. M., 1966. "Rainfall Atlas of the UnitedStates," Weather Bureau Technical Paper No. 40, U. S.Dept. of Commerce, Washington, B.C.

2. Miller, J. F., 1965. "Two-to-Ten-Day Precipitation forReturn Periods of 2 to 100 Years in the ContiguousUnited States," Weather Bureau Technical Paper No. 49,U.S. Dept. of Commerce, Washington, B.C.

3. Frederick, R. H., V. A. Myers, and E. P. Anciello, 1977."Five-to-60-Minute Precipitation Frequency for theEastern and Central United States," NOAA TechnicalMemorandum NWS HYBRO-35, U.S. Bept. of Commerce,Washington, B.C.

4. Soil Conservation Service, 1973. "A Method for EstimatingVolume and Rate of Runoff in Small Watersheds,"Technical Paper No. 149, USBA-SCS, Washington, B.C.

5. St. Johns River Water Management Bistrict, 1983. Aep.li cant IsHandbQQk_r_Managgment_and_gtQ£age_Qf_SUEface_V?atgrs,Palatka, Florida.

A-3

Page 73: 1429 - SJRWMD

APPENDIX BHYDBQLQGIC_SQIL,_GRQUP§

This appendix provides a list of soil names and their

hydrologic soil group classification (Table B-l). These soils

are divided into four groups, Af B, C, or D based on the minimum

rate of infiltration obtained for a bare soil after prolonged

wetting. The hydrologic soil groups, as defined by the SCS soil

scientists, are:

A. (Low runoff potential). Soils having high infiltration rates

even when thoroughly wetted and consisting chiefly of deep,

well to excessively drained sands or gravels. These soils

have a high rate of water transmission (greater than 0.30

in./hr.).

B. Soils having moderate infiltration rates when thoroughly

wetted and consisting chiefly of moderately deep to deep,

moderately well to well drained soils with moderately fine to

moderately coarse textures. These soils have a moderate rate

of water transmission (0.15-0.30 in./hr.).

C. Soils having slow infiltration rates when thoroughly wetted

and consisting chiefly of soils with a layer that impedes

downward movement of water, or soils with moderately fine to

fine texture. These soils have a slow rate of water trans-

mission (0.05 - 0.15 in./hr.).

D. (High runoff potential). Soils having very slow infiltration

rates when thoroughly wetted and consisting chiefly of clay

soils with a high swelling potential, soils with a permanent

high water table, soils with a clay pan or clay layer at or

B-l

Page 74: 1429 - SJRWMD

Table 3-1—Soil names and hydrologic classifications (1)

AABERGAASTADABACABAJOABBOTTAoBOTTSTOHNABCALABEGGABELAABELLABERDEENABESABILENEABINGTONAB1QUAABOABORABRAABRAHAMABSAROKEiABSCOTAABSHERABSTEDACACIOACADEMYACAD1AACANAACASCOACEITUNASAC ELACKERACKMENACMEACCACOLITAACOMAACOVEACREfcACRELANEACTONACUFFACHORTHACYADAADA I RADAMSADAMSONAOAMSTOHNADAMSVILLEADA TONAOAVENADDIELOUA DO I SONADDYAOE•ADELADELAIDEAOELANTUADELINOADELPHIAADENAADGERAOIL1SADIRONDACKA01VADJUNTASADK1NSADLERADOLPHADRIANAENEASAETNAAFTONAGARAGASSIZAGATEAGAHAMAGENCYAGERAGNERAGNEHAGNOSAGUAAGUAOILLAAGUA DULCSAGUA FR1AAGUALTAGUEOAAGUlLITAAGUIRREA6USTINAHATONE

Ha'

CB0CDCDBBBDDCBCB/CDCBCB00CCDDDBDB6CBBCCCC6BBCBDAB

CDDCDCAA0B8CC0A

BCBC0A/DBBDBDDBCDBB/CB8ACBB8B0BD

res & 6TWO SOIL

AHLAHLSTROMAHMEEKAHOLTAHTANUMAHHAHNEEAIBON1TOA! KENAIKMANAILEYAINAKEAAIRMONTAIROTSAAIRPORTAITSAJOAKAKAAKASKAAKELAALADDINALAEALAELOAALAGAALAKAIALA MAALAMANCEALAMOALAMOSAALAPAHAALAPAIALBANALBANOALBANYALBATONALBEEALBEMARLEALBERTVILLEALBIAALBIONALBRIGHTSALCALDEALCESTERALCOAALCONAALCOVAALDAALDAXALDENALDERALDERDALEALDfcRHOODALBINOALOHELLALEKNAG1KALEMEDAALEXALEXANDRIAALEXISALFOKDALGANSEEALGERITAALGIERSALGOMAALHAMBRAALICEALICELALICJAALIDAALIKCHIALINEALKOALLAGASHALLARDALLEGHENYALLEMANOSALLENALLENOALEALLENS PARKALLENSVILLEALLENTINEALLENHOODALLESSIOALLEYALLIANCEALLIGATORALL ISALLISONALLOUEZALLONAYALMACALMENAALMONT.LANK HYDROLOGIC

GROUPS SUCH AS

CCBDCCCB/CDBBC8DBCABCBABADBBDCDABDCDCBCCBCCBBBBCD0BCCCC8CBC8BBBC/DB/DBAB8BBADBBB08CBCDBBCBDDCC

BCD

SOILB/C

ALMYALOHAALONSOALOVARALPENAALPHAALPONALPONAALPSALSEAALSPAUGHALSTADALSTOWNALTAMONTALTAVISTAALTD'ORFALTMARALTOALTOGAALTONALTUSALTVANALUMALUSAAtvTfiALVIRAALVISOALVORAMADORAMAGONAHALUAHA NAAMARGOSAAMARILLOAMASAAMBERS ONAMBOYAMBRANAMEDEEAMELIAAMENIAAMERICUSAMESAMESHAAMHERSTAMITYAMMONA MOLEAMORAMOSAMSDENAMSTERDAMAMTOFTAMYANACAPAANAHUACANA MITEANAPRAANASAZIANATONEAN. VERDEANA HALTANCHOANCHORAGEANCHOR BAYANCHOR POINTANCLOTEANCOANDERLYANDERSANDERSONANDESANDORINIAAND OVERANDREENANOREESONANORESANDREWSANEDANETHANGELICAANGELINAANGELOANGIEANGLEANGLCNANGOLAANGOSTURAANHALTANIAKANITAANKENY

GROUP INDICATES

BCBCBCBBC8CB8DCDBCCBBB6DBCDCDDDBDBB

CCABBACBCC8CBCBBDDBDDB8D8DBADDDCCCBCCD8CBCDADB/0CCABCB0DDA

ANLAUFANNABELLAANNANDALEANNISTONANOKAANONESANSARIANSELANSELMOANSONANTELOPE SPRINGSANTEROANT FLATANTHOANTHONYANT 1 GOANTILONANT 10 CMANTLERANT DINEANT RO BUSANTYANVIKANHAYANZAANZIANOAPACHEAPAKUIEAPISHAPAAPISONAPOPKAAPPIANAPPLEGATEAPPLE TONAPPLINGAPRONAPTAPTAKISICARABYARADAARANSASA RAP 1 ENARAVEARAVETONARBELAARBONEARBORARBUCKLEARCATAARCHARCHABALARCHERARCH INARCOARCOLA •ARDAROENARDENVOIRARBILLAAREOALEARENAARENALESARENDTSVILLEARENOSAARENZVILLEARGONAUTARGUELLOARGYL EARIELARIZOARKABUTLAARKPORTARLANDA RLEA RUNGARLINGTONARJ.OVALARMAGHARMIJOARMINGTONARMOARMOURARMSTERARMSTRONGARMUCHEEARNEGARDARNHARTARNHEIMARNOARNOLDARNOTARNY

THE SOIL GROUP HAS NOT

CBCBACDBABCCCBBBB0CCBBBBBCDACBACCCBBCB

CDC0BCB

" B' B

BBBCCBCCBBCBCABABDBBCACBB8DCC0DDBBCD»BCCD8C/DA

BEEN

ARDOSTOOKAROSAARPARRINGTDNARRITOLAARROLIMEARRDNARROWARROMSMITHARROYO SECOARTAARTOISARVADAARVANAARVESONARVILLAARZELLASAASBURYASCALONASCHOFFASHBYASHCROFTASHDALEASHEASHKUNASHLARASHLEYASH SPRINGSASHTONASHUEASHUELOTASHHOODASKENASOAS3TINASPENASPERNONTASSINNIBOINEASSUMPTIONASTATULAASTORASTORIAATASCADEROATASCOSAATCOATENCIOA'TEPICATHELWOLDATHENAATHENSATHERLYATHERTONATHHARATHOLATKINSONATLASATLEEATKDREAT3KAATONATRYPAATS I ONATTERBERRVATTEHANATTICAATTLEBOROATHATERATHELLATHOODAUBBEENAUBBEEAUBERRYAUBURNAUBURNDALEAUDI ANAU GRESAUGSBURGAUGUSTAAULDAURAAUKORtAUSTINAUSTWELLAUXVASSEAuzauiAVAAVALANCHEAVALONAVERYAVONAVONBURGAVONDALE

DETER Nl NED

CC8DCDBBBCCDCDBC8BBBCBBBCBACBBCCCCCBBBBAA/Dg

CDBBDBBBBB/DCBB0CB/DCBCCBAB

BC/DBBBC/D0BC8CDBCC00BCBB6CDE

INDICATES THE DRAINED/UNDRAINED SITUATION

B-2

Page 75: 1429 - SJRWMD

Table B-i—Continued

AUBREYAXTELLAYARAYCOCKATOMAYRAYRESAYRSHIREAYSEESAZAARAZARMANAZELTINEAZFIELDAZTALANAZTECAZULEAZHELL

BABBBABBINGTON8ABCOCKBABYLONBACABACH8ACMUSBACKBONE6ACULAN8AOENAUGHBADGERBADGERTONBAOOBADUSBAGAROBAGDADBAGGQTTBAGLEYBAHEMBAILEBAINV1LLEBAlRO HOLLOWBAJURABAKEOVENBAKERBAKER PASSBALAAMBALCHBALCDMBALOBALDER6ALDOCKBALDWINBALOYBALEBALLARO6ALLER6ALL1NGERbALMBALKANBALONBALTICBALTIMORE8ALTUBAMBERBAMFORTHBANCASBANCROFTBANDERABANGOBANGORBANGSTONBANKARCBANKSBANNERBANNERV1LLEBANNOCKBAN8UETEbARABOQSAKAGABARBARYbARBOURBARBOURVILLEBARCLAYBARCOBARCUSBARDBAKCtNBAaDLt»BARELABARF I ELL)BARFUSSbAKGcBAR1SHMAN

NJTtS

D00BBB0CBCC8BBBCB

ABCAC0CAA8CB0CCBDBBDCCD0CaADBCCB/C0BC8DCB/CB/CBDBDBBB8BCBAAACc/oBDBC0BBCB60CCCDacc

A

BARKERBARKERVILLEBARKLEYBARLANEBARLINGBARLOMBARNARDBARNES6ARNESTONBARNEYEARNHARDTBARNSTEADBARNUMBARRADABARRETTBARRINGTONBARRONBARRONETTBARROWSBARRYBARSTOWBARTHBARTINEBARTLEBARTLEYBARTONBARTONFLAT8ARVONBASCOMBASEHORBASHAWBASHERBASILEBASINBASINGERBASKETBASSBASSELBASSETT9ASSFIELDBASSL&RBASTIANBASTROPBATABATAV1ABATESBATHBATTERSONBATTLE CREEKBATZABAUDETTEBAUERBAUGHBAXTERBAXTERVILLEBAYAHONBAYARDBAYBOROBAYERTONBAYLORBAYSHOREBAYSIOEBAYUCOSBAYWOODBAZETTEBAZILEbEADBEADLEBEALESBEAR BASINBEAR CREEKBEAROALLBEAROENBEARDSTOWNBEAR LAKEBEARMCUTHBEARPAHBEAR PRAIRIEBcARSKINBEASLEYBtASONBEATONBEATTYBEAUCOUP .BtAUFORDBEAUMONTBtAUREGARDBEAUSITEBEAUVAISBEAVERTUNBECKBECKER

BLANK HYDROLOGICTMO SJIL GROUPS SUCH AS

CC8DCBDBBAB

BDDBBCDDBCCDC8BCB008DCCcABBBD0BABBCDCDBCB/CBBBADCDB/CC0ACBCCABCCCCDABBDCCCCBDDCBBACB

SOILB/C

BECKETBECKLEY8ECKTONBECKHITHBECKWOURTHBECREEKBEDFORD8ED1NGTONBEONERBEEBE8EECHERBEECHYBEEHIVEBEEK6EENOMBEEZARBE GAYBEGOSHIANBEHANINBEHEHOTOSHBEHRINGBEIRMANBEJUCOSBELCHERBELDtNBELDINGBELENBELFASTBELFIELOBELFOREBELGRADEBELINDABELKNAPBELLAMYBELLAV1STABELLEBELLEFONTAINEBELLICUMBELLINGHAMBELLPINEBELMONTBEL MOREBELTBELTEDBELTON6ELTRAMIBELTSV1LLEBELUGABELVOIRBENCLAREBENEVOLABENEKAHBENFIRLDBENGEBEN HURBENINBENITOBENJAMINBEN LOMONDBENMANBENNOALEBENNETTBENNINGTONBENOJTBENSONBENTEENBENTONVILLEBENZBEOTIABEOWAKEBERCAILBERDABEREABERENICETONBERENTBERGLANOBERGSTROHBERINOBERKELEYBERKSBERKSHIREBERLINBERMESABERMUOIANbERNALBERNALDUBERNARDBERNARDINOBERNARDS! ONBERNHILLBERNICEBEKNING

GROUP INDICATES

CBDCBBCBCAC

BCDBBCBB0DBDDBCBBBBDCCDB

BCCBBDDCBCDCCCCCBB0DDBABCDDC/DBCDBDCBCBAD6B

C8CCBDB0CCBAC

BERRENDOSBERRYLANDBERTELSONBERTHOUDBERTIE8ERTOLOTTIBERTRANOBERVILLEBERYLBESSEMERBETHANYBETHELBETTERAVIABETTSBEULAHBEVENTBEVERLYB EMBcWLEYVILLEBEMLINBEXARBEZZANTBIBBBIBONBICKELTONB1CKLETONBICKMOREBICONOOAB I DOE FORDBIDDLEMAN8IDMANBICMELLBIE8ERBIENVILLEBIG BLUE8 1 GELB I GEL OHB I GETTYBIGGSBIGGSVILLEBIG HORNBIGNELLBIG TIMBERBIGKINBIJOUBILLETTBILLINGSB1NDLEBINFORDBINGHAMB1NNSVILLEBINSBINTONBIPPUSBIRCHB1RCHUODDBIRDOKBIRDSBIRDS ALLBIRDS BO ROBIRDSLEYB1RKBECKBISBEEBISCAYBISHOPBISPINGBISSELLBISTIBITBITTERONBITTERROOTBITTER SPRINGBITTONB1XBYBJQRKBLACKLYBLACKBURNBLACK BUTTEBLACK CANYONBLACKCAPBLACK ETTBLACK FOOT9LACKHALLBLACKHArfKBLACKLEiFBLACKLEEDBLACKLOCKBLACKMANBLACK MOUNTAINBLACK OARBLACKPIPEBLACK RIDGE

THE SOIL GROUP HAS NOT

DDBBC8BDBBC0CBBBB0BDCBB/DABCCCDCCBDADACCABCBDDAACBBBDBCBACBCDBDBACB/CBBCDACC8BCCBCDABB/CDDBADCDCC0

3EEV

8LACKROCKBLACKSTONBLACKTAILBLACKWAT6RBLACKKELLBLADENBLAGDBLAINEBLAIRBLAIRTDNBLAKEBLAKELANDBLAKENEYBLAKEPDRTBLALOCKBLAME*BLANCABLANCHARDBLANCHESTERBLANDBLANDFORDBUNDINGBLANEYBLANKETBLA4TONBLANYONBLASOELLBLASINGAMEBLAZONBLENCOEBLENDBLENDONBLETHENBLEVINSBLEVINTONBLICHTONBLISSBLOCKTONBLODGETTBLOMFORDBLDOMBLQOHFIELOBLOOMINGBLOORBLOSSOMBLOUNTBLOUNTVILLEBLUCHERBLUEBELLBLUE EARTHBLUEJOINTBLUE LAKEBLUEPOINTBLUE STARBLUEMINGBLUFFDALEBLUFFTONBLUFCRO

" 8LYBLYTHEBDARDTREEB3BSBOBTAILBOCKBDDELLB09ENBURGBODINEB3ELBOELUSB3ESELB3ETTCHERBQSANBOJARTBOGUEBOHANNDNBOHEMIANB3ISTFORTBOLARBOLDBOLESBOLIVARBOLIVIABOLTONB3M8AYBONBONACCDROB3VAPARTEBONDBOND RANCHBONDURANTBJMEBONG

DETERMINED

BBB0B/DDDBCCCACBDC8AB/DCCBBCACAC0cDBBBB/DD0CA8CABDCCeccDBABBBCDDBDCD"BBDBBAAeccB0ceccBCBBB8BDADDBDB

INDICATES THS OR AI NED/UNDRAINED SITUATID1

NEH Notice U-102, August 1972

B-3

Page 76: 1429 - SJRWMD

Table B-1—Continued

BONHAMBONIFAYBONILLABONITABONNBONNERBONNETBONNEVILLEBONNICKBONNIEBONOBONSALLBONTABONTIBOOKERBOOKERBOONEBOONES80RQBOONTONBOOTH60RACHOBORAHB3ROABORDEAUXBORDENBORDERBORNSTEDTBORREGOBORUPBQRVANTBORZABOSANKO60SCOBOSKETBOSLERBO'SBUEBOSSBOSTJNBOSTWICKB3SNELL60SNORTH60TELLABOTHKELLBOTTINEAUBOTTLEBOULDEREOULOER LAKEBOULDER POINT80ULFLATBOURNESONBOWBACBOXBELLS '60KCOINBOKOREBOHERSBOWIEBOWMANBOWMANSVILLE80XELOERBJXWELLBOY63YCEBOYDBOYERBOYNTONBOYSAGBOYSENBOZARTHBOZESOZEMANBRACEV1LLEBRACKENBRACKETTBRADBRADOOCKBRAOENTONBRADERBRADFORDSRAOSHAWB>.AD«.AYBRADY6RADYV1LLEBRA HAMBRA I NERO&RAILIERSAAMSRAMAROBRAMBLE8AAMWELLBRANDBRANDENBURG

NOTESTNO

CABD0BBBA0D0CCDBABCCCA/CDBBBCC6DC0BBBBDCB00BCCABDB0CCCBDCCBB/0CCCAB/D0B

DDCBACDC0C8/0DBe0BCBB0BBCCDA

A

BRANDONBRANDYNINE8RANFORDBRANTFORDBRANYONBRA SHEARBRASSFIELDB RAT TONBRA VANEBRAXTONBRAYMLLBRAYSBRAY TONBRAZ1TOBRAZOSBREABRECKENRIDGEBRECKNOCKBREECEBREGARBREMENBREMERBREMOBREHSBRENOABRENNANBRENNERBRENTBRENTONBRENTMOODBRESSERBREVARDBREVORTBREWERBREUSTERBREHTON8RICKELBRICKTONBRIDGEBRIDGE- HAMPTONBRIDGEPORTBR1DGERBRIDGE SONBRIDGETBRIOGEV1LLEBRIOGPORTBRIEDWELLBRIEFBRIENSBURGBRIGGSBR1GGSOALEBRIGGSVILLEBRIGHTONBRIGHTMOODBRILLBRIMBxIMF-IELDBRIHLEYBRINEGARBRINKERTBRINKERTONBRISCOTBRITEBRI TTONBR1ZAMBROADBROAOALBINBROADAXBROADBROOKBROAD CANYONBROADHEADBROAOHURSTBROCKBROCKLISSBROCKMANBROCKOBROCKPORTBROCKTONBROCKMAYBRODVBROEBROGANBROGDONBROLLIARBROMOBRONAUGHBRONCHOBRONSCNBRONTEBROOKEoRGOKFIELOBRCOKINGS

BLANK HYDROLOGICSOIL GROUPS SUCH AS

BCeB0CBeDCB/DDCAABDeBDBBCACBc/oCeBB8BC0CCCCBBAB/C8B888

ACCA/DCBCC/PBBCDBCCACCBCBCDDCC80DBCBBB0BBB8CCBB

SOIL

BROOKLYNBROOKS IDEBROOKSTONBROOKSVILLEBROOMFIELDBROSELEYBROSS8ROUGHTONBROWARDBROW NELLBROWNf IELD8ROWNLEEBROYLESBRUCEBRUFFYBRUINBRUNEELBRUNOBRUNTBRUSHBRUSSETTBRYANBRYCANBRYCEBUCANBUCHANANBUCHENAUBUCHERBUCKHOUSEBUCKINGHAM6UCKLANDBUCKLE BARBUCKLEYBUCKLONBUCKNERBUCKNEYBUCKSBUCKSKINBUCODABUOD6UDEBUELLBUENA VISTABUFF1NGTONBUFFHEYERBUFF PEAKBUICK8UISTBUKREEKBULLIONBULLREYBULL RUNBULL TRAILBULLYBUMGARDBUNCOMBEBUNDOBUNDYHANBUNEJUGBUNKERBUNSELMEIERBUNTINGVILLE8UNYANBUR BANKBURCHBURCHAROBURCHELLBURDETTBUR ENBURGESSBURG I6URGINBURKEBURKHARDTBURLE1GHBURL ES ONBURLINGTONBURMABURMESTERBURN ACBURNETTEBURNHAMBURNSIOEBURNSVILLEBURNT LAKEBURRISBURTBURTONBUSEBUSHBUSHNELLBUSHVALLEY

GROUP INDICATES

0CB/DD08B0CBABB0CCB/CAC

BABD0CCCA

CBB/C0AABCCBCBB88CCBBDBBBBBABCCDCB/C8ABBB/CCCCBDCBDDA

DCBDBBB0DBBBCD

BUSTERBUTANOBUTLERBUTLERTONNBUTTEBUTTERFIELDBUTTONBUXINBUXTONBYARSBYNUMBYRON

CABAL LOCABARTONCABBACABBARTCABEZONCABINCABINETCABLECABO ROJOCABOTCACAPONCACHECACIQUECADCOCADEVILLECADMUSCADOMACADORCAGEYCAGUABOCAGMINCAHABACAHILLCAHONECAHTOCAIDCAIROCAJALCOCAJONCALABARCALABASASCALAISCALAMINECALAPOOYACALAWAHCALCOCALDERCALDHELLCALEASTCALEBCALERACALHICALHOUNCALICOCALIFONCALIMUSCALITACALIZACALKINSCALLABOCALLAHANCALLEGUASCALLINGSCALL OKAYCALMARCALNEVACALOUSEC ALPINECALVERTCALVERTONCALVINCALVISTACAMCAMAGUEYCAMARGOCAHARILLQCAMASCAMAS CREEKCAM6ERNCAMBRIDGECAMCENCAMERONCAMILLUSCAMPCAMPBELLCAMPHORACAMPIACAMPOCAMPONE

THE SOIL GROUP HAS NOT

CCDCCCCDCDCA

BDCDDCCDCDBDCDDB0CCDBBBCCBDCADBCDCBCDBCBCAD0;BBBCCC0CCBCBBDCC0BDBB/CAB/3CCBDBBB/CBBCB/C

BEEN

CAMPSPASSCAMPUSCAMRODENCANAC A N A A NCANADIANCAKADICECANANDAIGUACANASERAGACANAVERALCANBUHNCANDELEROCANECANEADEACASEEKCANELCANELOCASEYCANEYVILLECANEZCANFIELDCANISTEOCAMNINGERCA«NQNCA«OECANONCITOCAKDVACANTALACANTONCA1TRILCANTUACANUTIOCANYONCAPACCAPAYCAPECAPE FEARCAPERSCAPILLOCAPLESCAPPSCAPSHAWCAPULINCAPUTACA»ACOCAHAUMPICASBDCARBOLCARBONDALE-CA*BU*Y^ARCITYCARDIFFCAtDINGTONCAftDONCAREYCAtEY LAKECAAEYTOMNCARGILLCAAIBECARIBELCARIBOUCA*LINCARLINTONCARLISLECARLOTTACARLOWCARLSBADCARLSBORGCARLSONCARLT3NCARMICARNASAUCARNEGIECARNEROCARNEYCAROLINECA1RCARRISALITOSDARRIZOC A R S I T A SCAKSLEYC A R S OCARS3NC A ^ S T A I R SCA3STUMPCA*TCARTAGENAC A R T E C A YCARUSOCARUTHERSVILLECARVERCARWILE

DETERMINED

CBCCC/DBDDCCDCCDBBDCCBCCD8BBB/DBBBBBDBDD0DCCBCBCCB

-CD08DBCDBBDCBBB -0BA/0BDCACBBCCCDCBDAACDDBCBDCCBAD

B/C INDICATES THE ORAI NtD/UNDRAINEO SITUATI3*

NEH Notice 14-102, August 1972

B-4

Page 77: 1429 - SJRWMD

Table B-l—Continued

CARYVILLECASA GRANDECASCADECASCAJOCASCILLACASCOCASECASEBIER;ASEY;ASHEL:ASHIONCASHMERECASHMONTCASINOCASITOCASPARCASPIANACASSCASSAOACACASSIACASS IRQCASSOLARVCASSVILLECASTAICCAST ALIACASTANACASTELLCASTILECASTINOCASTLECASTLEVALECASTNEftCASTOCASTROCASTROV1LLECASUSECASWELLCATALINACATALPACATANOCATARINACATAULACATAMBACATHCATMCARTCATHEDRALCATHERINECATHROCATLETTCATLINCATNIPCATOCTINCATOOSACATSKILLCATTARAUGUSCAUDLECAVALCAVECAVtLTCAVE ROCKCAVOCAVQOfcCAVOURCAWKERCAYAGUACAYLORCAYUGACAZADEROCAZADORCAZENOVIACEBOLIACEBONECECILCEOACEOARANCEDAR 8UTTEtE DAK EDGECEDAR MOUNTAINCEDARV1LLECfcOQNIACEORONCELAYACELETONCELINACELIOCELLARCENCOVECENTERCENTER CREEKCENTERFIELDCENTERVILLECENTRALIA

NJTES

BCCB8BBDCC0BBA0BBA

CCB

CCBCBC00CCC80DBCA0CB0CDB/00C/0B0CBACBB00A0C0BCBCCBBCCBa0cB0aaC/Ba0cA/i0ac8BDa

A

CENTRAL POINTCERE SCOCERRILLOSCERROCHACRACHAFFEECNAGRINCHAIXCHALFONTCHALMERSCHAM ACHAMBERCHAMBERINOCHAMISECHAMOKANECHAM WONCHANCECHANDLERCHANEYCHANNAHONCHANNIN6CHANT*CHANTIERCHAPINCHAPMANCHAPPELLCHAROCHAR60CHAR 1 TONCHARITYCHARLEBOISCHARLESTONCHARLEVOIXCHARLOSCHARLOTTECHARLTONCHASECHASEBURGCHASEVILLECHASKACHASTAINCKATBURNCHATFIELOCHATHAMCHATSMORTHCHAUNCEYCHAV1ESCHAMANAKEECHEAOLECHECKETTCHEOEHAPCHEEKTOHAGACHEESEMANCHEHALEMCHEHALISCHEHULPUMCHE LANCHELSEACHE MA MACHEMUNGCHENCHE NACHENANGOCHENEYCHENNEBYCHENOWETHCHEOUESTCHEREETECHE R 1 ONICHEROKEECHERRYCHERRYHILLCHERRY SPRINGSCHESAMCHESHIRECHESHNINACHESNIMNUSCHESTERCHESTERTONCHETCOCHETEKCHEVEiONCHEWACLACHENELAHCHEYENNECHIARACHICKASHACH1COPEECHICOTECHIGLEYCHILCCTTCHI LOS

BLANK HYDROLOGICT»0 SOIL CROUPS SUCH AS

BABCCCBBCCBCCBBBB/DBCBBBDC

BBC00CcBAA/DBCBAC0BCBDC8CC0B0CCBDBAB

DAABCBCADDCBCABCBBC0BCCBB0BaDCDe

SOILB/C

CHILGRENCHILHOHIECHILICHILKATCHILLICOTHECMILLISOUA9UECHILLUMCHILMARKCHILDCHILOOUINCHILSONCHILTONCHI MAYOCHIMNEYCHINA CREEKCHINCH ALL DCHINIAKCHI NOCHINOOKCHIPETACHIPLEYCHIPMANCHIPPENYCHIPPEHACHI QUITOCHIRICAHUACHI SPACHITINACHITTENDENCH1THOODCHI VAT 0CHI HAM ACHOCHOBEECHOCKCHOCOLOCCOCHOPA4ACHOPTANKCHOPTIECHORALMONTCHOSKACHOTEAUCHRISTIANCHRISTIANACHRISTIANBURGCHRISTYCHROMECHUALARCHUBBSCHUCKAMALLACHUGTERCHULITNACHUMMYCHUMSTICKCHUPADERACHURCHCHURCHILLCHURCHVILLECHURNCHURNOASHERCHUTECIALESCIBEQUECIBOCIBOLACICEROC I ORALCIENEBACIMACIMARRONCINCINNATICINCOCINDERCONEC1NEBARCINTRONAC1PRUNUCIRCLEC1RCLEVILLECISNECISPUSCITICOCLACKAMASC LA I BORNECLAIRECLAIRE MONTCLALLAMCLAM GULCHCLAMOCLANTDNCLAPPERCLAREMORECLARENCE

GROUP INDICATES

CC8CC

BBB/DBDB0BBB/DAB/CBDCDDB/0C/DDBBCCDBCD8/0B'CA0BBCCB0BCBCBBBC/0CCD0DBBADB0BDCCCCCABBDDCC0ABCBABCDCCBDD

CLARESONCLAREVILLECLARINOACLARIONCLARITACLARKCLARK FORKCLARKSBURGCLARKSDALECLARK SONCLARKSVILLECLARNOCLARYCLATOCLATSOPCLAVERACKCLAM SONCLAYBURNCLAY SPRINGSCLAYTONCLEARFIELOCLEAR LAKECLEEKCLE ELUMCLEGGCLEMANCLEMSCLEMVILLECLEORACLERFCLERHONTCLEVERLYCLICKCLIFFDOHNCLIFFHOUSECLIFFORDCLIFF WOODCLIFTERSONCLIFTONCLIFTYCLIKARACLIMAXCLIHECLINTONCLIPPERCLOOINECtONTAILFCLOQUALLUMCLOQUATOCLOQUETCLOUDCLOUDCROFTCLOUD PEAKCLOUD RIMCLOUGHCLOVERDALECLOVER SPRINGSCLOV I SCLUFFCLUNIECLURDECLUROCLYDECLYMERCOACHELLACOADCOAL CREEKCOALMONTCOAMOCOARSE GOLDCOATICQOKCOATS BURGCOBBCOBENCOBEYCOBURGCOCHETOPACOCOACOCO L ALL ACJDOKUSCODYCOECOt BURNCOtROCKCOFFCOFFE6KCOGGCNCOGS* ELLCOHASSETCOHOCTAHCOHOfcCOIT

THE SOIL GROUP HAS NOT

CC0BDBACCBBBBBDCCBDBCDC

BCBCBCBD0CBB/CDBCBBDDCB0D3BCDCC0BBBDCCB/CCDB0BCCACcAACDDBBCBDBC

SEEN

COKEDALECOKELCOKERCOKESBURYCOKEVILLECOLBATHCOLBERTCOLBURNCOLBYCOLCHESTERCOLOCREEKCOLDENCOLD SPRINSSCOLECOLEBROOKCOLEM4NCOLEMANTOWNCDLETDCOLFAXCOLIBROCOL I NASCOLLAMERCOLLARDCOLLBRANCOLLEENCOLLEGIATECOLLETTCOLLIERCOLLINGTONCOLLINSCOLLINSTONCOLLINSVILLECOLHACOLMORCOLOC3LOCKUMCOLOMACOLOMBOCOLON*COLON! ECOLORADOCOLOROCKCOLQSOCDLOSSECOLPCOLRAINCOLTONCOLTS NECKCOLUMBIACOLUMBINECOLUSACOLVILLEC3LVINCOLKOODCOLYCOLYERCONERCOMERIOCOHETACOMFREYCONITASCDHLYCOMMERCECOMOCOMODORECOMOROCOHPTCHECOMPTONCOHSTOCKCOHUSCDNALBCONANTCONASAUGACONATACONBOYCONCHASCOUH3CONCONULLYCONCORDCONCREEKCONDACONDITCONDONCONECONE JOCONESTOGACONESUSCGNGAtEECONGERCDNICONKLINC3NLEN

DETERMINED

B/CBDDBC/DDBBBB0CB/CBC0ACBBCBCCCCABCCCBBBBABCABDDADBABBACB/CCB/DBC/0BBDCA•CCABBBCCBBCCD0CCB0BCDCACBBBBDBB

INDICATES THE CikAINEO/UNORAINED S1TUATI31

NEH Notice 4-102, August 1972

B-5

Page 78: 1429 - SJRWMD

Table B-]—Continued

CONLEYCONNEAUTCONNECTICUTCONNERTONCONOTTONCONOVERCONOMINGOCONRADCON ROECONSERCONSTABLECONSTANCIACON SUMOCJNTEECONTINECONTINENTALCONTRA COSTACONVENTCOOKCOOKPORTCOOLBRITHCOOL 1 DOECOOLVILLECOOMBSCOONEYCOOPERCOOTERCOPAKECOPALISCOP ELANDCOPITACOPLAYCOPPER RIVERCOPPERTONtOPPOCKCOPSEYC09UILLECORACORALCORBeTTCORBINCJRCEGACORDCOROESCORDOVACORINTHCORKINOALECORLENACORLETTCORLEYCORN ANTCGRNH1LLCORNING .CORNISHCORNUTTCORNVILLECOROZALCORPENINGCORRAL ITOSCJRRECOCORRERACORSONCURTAOACORTEZCORTINACORUNNACORVALLISCORWINCORYCORYDONCOSAOCOSHCOSHOCTONCOSKICOSSAYUNACOSTILLACOTACOCOTATICJT1TOCOTOCOTOPAXICOTTCOTTERCOTTERALCJTTIERCJTTONWCI03COURiLLCOUCHCJUGARCOULSTONECOUNTSCOUPEVILLe

NJTES

CC

BBBCBBC/DADBDCCCCDCBBCBBCCBBB/o8

DBB0C/D0CB8CCBCCBABCCBDBCBCDACacBDADBBCCCCCBCACCCCABB8BCCCDBCC

A

COURTCOURTHOUSECOURTLANOCOURTNEYCOURTROCKCOUSECOUSHATTACOVECOVEILOCOVE LA NOCOVELLOCOVENTRYCOVEYTOMNCOVINGTONCOWANCOMARTSCOWDENCOMDREYCOWEEMANCOMERSCOMETACOHICHECOMOODCOXCOXVIU.ECOYCOYATACOZADCRA8TONCRAODOCKCRADLEBAUGHCRAFTONCRAGOCRAGOLACRAIGCRAIGMONTCRAIGSVILLECRAMERCRANECRANSTONCRARYCRATER LAKECRAVENCRAMFCROCREALCREBBINCREDOCREEDKANCREEOMOORCREIGHTONCRELDONCRESBAROCRESCENTCRESCOCRESPINCRESTC RES TCI HECRESTMORECRESTONCRE SWELLCRETECREVACREVASSECRE MSCRIDERCRIMCRISFIELDCRITCHELLCRIVITZCROCKERCROCKETTC ROE SOSCROFTONCROGHANCROOKEDCROOKED CREEKCROOKSTONCROOMCROPLEYCROSBYCROSSCROSSVILLECROSMELLCROTCROTOKCROUCHCROMCROW CREEKCROWFOOTCROMHEARTCROM HEARTCROM HILL

BLANK HYDROLOGIC

B0BDBCBDBCB/CBC0AC0c0BCBCD0DC8BBDCBDCCADBBCBCDDCC0c88CBCCC8

ACDDA0BB66AADCBBCDBB0CDBA00BCB60DC

SOIL

CROHLEYCROMNCROUSHAMCROZIERCRUCESCRUCKTONCRUICKSHAMKCRUMECRUMPCRUTCHCRUTCHERCRUZECRYSTAL LAKECRYSTAL SPRINGSCRYSTOLACUBACUBERANTCUCHILLASCUDAHYCUEROCUEVACUEVITASCULBERTSONCULLENCULLEOKACULLOCULPEPERCULVERSCUMBERLANDCUMLEYCUMMINGSCUNOIYOCUNICOCUPPERCURANTCURDLICURECANTICURHOLLOMCURLEMCURRANCURTIS CREEKCURTIS SIDINGCUSHINGCUSHMANCUSTERCUTTERCUTZCUYAMACUYONCYANCYLINDERCYNTHIANACYPREMORTCYRIL

DABOBDACONODACOSTADADEOAFTERDAGFLATDAGGETTDAGLUMOAGORDAGUAODAGUEYDAHLQUISTDAIGLEDA I LEYDAKOTAOALBODALBYOALCANDALEOALHARTDALIANDALLAMDALTONDALUPEDAMASCUSDAMONDANADANBURYDANBYDA NO RE ADANDRIDGEOANGBERGDANICDANIELSDANKODANLEYOANNEMOftA

0BBCDBCBDB0CBDBBBDDB008CBCCcBCB/DBCBBCB0CCDABCCDDBADBC/0CB

8CDABCAD6CCBCABB0CBBBBCBD0BC

CDDCB0CD

OANSK INDANTDANVERSDANVILLEDANZDARCOOARGOLDARIENDARLINGDARNELLDARN ENDARRDARRETOARROCHDARROUZETTDARTDARVADAOARMINDASSELDASTDAT EM ANDATINODATMYLERDAULTONDAUPHINDAVEYDAVIDSONDAVISDAVISONOAVTONEDAMESDAHHOODAMSONDAXTYDAYDAVBELLDAYTONOAYVILLEDAZEDEACONDEADFALLDEAMADEANDEAN LAKEOEARDURFFDEARYDEARYTONDEATH ANDEAVEROEBENGERDEBORAHDECANDECATHONDECATURDECCADECKERDECKERVILLEDECLQDECOR RADECROSSDEEDEEPMATERDEER CREEKDEERFIELODEERFORDDEER INGDEERLOOGEDEER PARKDEERTONDEERTRAILDEFIANCEDEFORODEGARMODEGNERDE GREYDE JAR NETDEKALBOEKOVENDELADELAKEOELANCOOELANEYDELANOOELECODELENAD6LFINADELHIDELICIASDECKSDELLDaLEKERDELLO

GROUP INDICATES THE SOIL GROUP HAS NOT

BDCCBADCBCBACCcA0D0CCccD

ABB8BCB/D0CDADB/CDBBCCCBCBCCCD0DBBCCBBBCCCBDBDABC0DB/CCDBCDBBCAB/CDD8ABB/DC8A/C

BEEN

DELLROSEDELIDELMARDELMITADELMONTDELNORTEDELPHIDELPHILLDELPIEDRADELPINEDELRAYDEL REYDEL RISDELSONDELTADELTONDELMINDELYNDIADEMASTDE MASTERSDE MAYADENERSDEMKYOEMONADEMOPOLISDEMPSEYDEMPSTERDENAVDENHAHKENDENISONDENMARKDENNISDENNYPENROCKOENTONDENVERDEODARDEPEMDEPDEDEPORTPER ADERINOADERRDERRICKDESANDESARTOESCALABRADODESCHUTESDESERETDESERTERDESHADESHLERDESOLATIONDESPAINDETERDETLORDETOURDETRADETROITDEVDEVILS DIVEDEVOEDEVOIGNESDEVOLDEVONDEVOREDEVOYDEMARTDEMEYDEMVILLEDEXTERDIADIABLODIAMONDDIAMOND SPRINGSDIAMONDVILLEOIANEVDIANOLADIAZDIBBLEDICKDICKEYDICKINSONDICKSONDIGBYDIGGERDIGHTONDILLDILLARDDILLOOMNDILLINGERDILLON

DETERMINED

BDDCBCBCCDA/0C8€C8AABBCD0CC8BBDCDC00DC0cDDBCCBAC0ccB0ccBCccBC8D0 'C/DBBBD

BB8CD0CccDCcAAACccB6C

8D

THO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNDRAINED SITUATION

NEH Notice U-102, August 1972

B-6

Page 79: 1429 - SJRWMD

Table B-1—Continued

DILLWYNOILMANOILTSOILWORTHD1MALOIMYAMDINGLEDINGLISHNADINKELMANOINKETOINNENOINSDALE01 NUBAOINZEROIOX1CEDIPMANOIOUEOiSABELDISAUTELDISCODISHNEROUTER HErFD1TCHCAMPDITHOODIVERSDIVIDEDIXDIXIEOIXKONTOIXMOREDIXONVILLEDIXVILLE00 AKDO BBSDO B ELDOBROMOOBYOOCASDOCKERYOOCTDODGEOOOGEY1LLEOODSON03GERDOGUEDOLANODOLEDOLLAROOLLARODOLORESDOLPHDOMEZDOMINGOOOMINGUEZDOMINICDOMINODIM IN SONDONA ANADONAHUEDONALDDONA VANDONEGALDONERAIL03NEYDONICADONLONTDNDONNA00 UN ANDONNA ROODQNNYBROOKDONOVAN030LEYDOOMfcDOOROJRAOORANDORCHESTERDOROSHINDOROTHEAD3ROVANDORSDORSETDOS CABEZASDOSSUUSSMANOOTEKDOTKANDOTTADOTYDGUBLETOPDOUOSDOUGHERTY

AC000CBDBABBB/CBB0B0BBDCCCB8ACCBCABCDD0eC8BBCACBCBCBCCCCACABCBb

CCACDCB0BABBDCBDC0aBCCBaB66BBA

NJTES A

DOUGHTYDOUGLASDOURODOVEROOVRAYDOWDOWAG1ACOOWDENDOHELLTONDOWNERDOWNEYDOWNSDOXIEDOYCEDOYLEDOYLESTOWNDOYNDRADRACUTDRAGEDRAGOONDRAGSTONORAHATDRAINDRAKEDRANYONDRAPERDRESDENDRESSLERDREWSDREXELDRIFTONDRIGGSDRUMDRUMMERDRUMMONDDRURYDRYADOR r BURGDRY CREEKDRYDENDRY LAKEDUANEDUARTDUBAKELLADUB AYDUBBSDUBOISDUBUQUEDUC ETDUCHESNEOUCKETTDUC ORDUDADUDLEYDUELDUELMDUFf AUDUFFERDUFF I ELDDUFF SONDUFFYDUFURDUGGINSDUGOUTDUG WAYDUKESOULACDUMASDUMECQCUMONTDUNBAKDUMBARTONDUNBRIDGEDUNCANDUNCANNONDUNCGMDUNOASDUN (JAYDUNDEEDUNELLENDUNE SANDDUNGENESSDUN GLENDUNKINSVILLEDUNKIRKDUNLAPDUNHGREDUNNINGDUNPHYDUNULDUNVILLE

BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

ABBB0BBCDBBBCCA0CCCBBC0DB8CBCBBCBCBD6CBCBCBCCDBCBBBCDADBCBDBBBBDDDACBCBDCBD8DCACBABCBBBBCDAB

SCILB/C

DU PAGEDUPEEOUPL1NDUPODUPONTDUPREEDURALDEDURANODURANTOURELLEDURHAMDURKEEOUROCDURRSTEINDUSTONDUTCHES SOUT SONCUT TONDUVALOUZELOWIGHTDWYERDYEDYERDYKEDYRENS

EACHUSTONEAOEAGARE AG L EC ONEEAKINEAMESEARLEEARLMONTEARPEASLEYEAST FORKEAST LAKEEASTLANDEAST ONEASTONVILLEEAST PARKEASTPORTEATONTOWNEAUGALLIEEBAEBBERTEBBSEBENEZERECCLESECHARDECHLERECKERTECKLEYECKMANECKRANTECTOREDALGOEDDSEDDYEDENEDENTONEOENVALEEDGAREDGECUM8EEOGELEYEDGE MONTEDGEWATEREDGEUICKEDGE WOODEOGINGTONEOINAEDINBURGEDISONEDISTOEDITHEDLUEEDMONJSED MORE:EDMUNDEDNAEDNEYVILLEEOOMEDROYEOSONEDWARDSEELEFFINGTONEFWUNEGAMEGAN

BCCCDDC6DBBCB0BB0DBBDA0

B0

0CBBBBDB/CBDCACCA0A

B/0CDBCBCBDBB0DCBCCCDBBCBCB 'ACDCBCA8DDCCBC0CB/0C0ACB

EGBERTEGELANDEGGLESTONEGNAREICKSE1FORTEKAHEKALAKAELANELBERTELBURNELCOELDELDERELOER HOLLOWELDERONEL DONELDORADOELDRIDGEELEPHANTELEROYELFRIDAELIJAHEL10AKELKELKADERELKCREEKELK HOLLOWELKHORNELKINSELKINSVILLEELKMOUNDELK MOUNTAINELKOLELKTONELLABELLEELLEDGEELLERYELLETTELLIBERELLICOTTELLINGTONELLINORELLIOTTELLISELLISFORDEELLISONELLOAMELLSBERRYELLSWORTHELLUMELMAELMDALEELMENDORFELMIRAELMOELMONTELMOREELM WOODELNORAELOIKAELPANEL PECOEL RANCHOELREDELROSEELSELSAHELSINBOROELSINOREELSMEREELSOEL SOLYOELSTONELTOPIAELTREEELTSACELWHAELWOODELYELYS I ANELZINGAEMBCENEMBRYEMBUDOEMOENTEMEREMERALDEMERSONEM I DAEMIGRANTEMIGRATION

GROUP INDICATES THE SOIL GRUUP HASINDICATES THE

B/CBBCCCCBADBBBBDBBCCDBBCCBBCBBDBCBDDB/DCDDA

' ABCCDCBDCCCBBDAC8BCBBDCBB/DBABBAADCBBBDBCBBBBBBCCBBD80

NOT SEE*

EMILYEMLINEMMAEMHERTEMMETEMM3NSEMORYEMPEORADOEMPEYENPEYVILLEEMPIREEMRICKENCEENC1ERROENCINAENDERSENDERSBYENDICOTTENETENFIELDENGLEENGLESIDEENGLEWOOOENGLUNOENNISENOCHVILLEENDLAENONENDREEENDSENOSBURGENSENADAENSIGNENSLEYENSTROMENTENTEENTERPRISEENTIATENUMCLAWEPHRAIMEPHRATAEPLEYEPOUFETTEEPPINGEPSIEERAERAMERBERERICERIEERINERNESTERS3ERRAMOUSPEESCA30SAESCALESCALANTEESCAMBIAESCONDIDOESM3N3ESPARTOESPILESPINALESPLINESPYESOUATZELESSESSENESSEXESSEXVILLEESTACA30ESTELLINEESTER -ESTERBROOKESTHERVILLEESTIVEESTOESTRELLAETHANETHETEETMRIDGEETILETNAET3EET3WAHETOWNETSELETTAETTERETTERSBURGETTRICKEU8ANKS

DETERMINED

BBCABCBCBCCBBDBCBCB8B8CDBB/0BCDB0B0DBBBDCCBBDDDBCCBCBCBCCBBCC8BDADCBBCCDBBDBBCBBBBCA

BBB0CBBDB

ORAINED/UNORAINED S1TUATI3*

NEH Notice U-102, August 1972

B-7

Page 80: 1429 - SJRWMD

Table B-]—Continued

EUDORAEUFAULAEUREKAEUSTISEUTAWEVANGELINEEVANSEVANSTONEVAROEVARTEVENDALEEVERETTEVERGLADESEVERLYEVERMANEVERSONEVESBOROEUAEWAILEWALLEWINGSVILLEEXCELSIOREXCHEQUEREXETEREXLINEEXRAYEXUHEYERBOWcYRE

FABIUSFACEVILLEFAHEYFAINFAINESFAIRBANKSFAIRDALEFAIRFAXFAIRFIELOFAIRHAVENFAIRMOUNTFAIRPORTFAIRYDELLFAJARDOFALAYAFALCONFALFAFALFURRIASFALKFALKNERFALLFALLBRQOKFALLONFALLSBURGFALLSINGTONFANCHERFANGFANNINFANNOFANUFARADAYFARALLONEFARAWAYFARBFARGOFARISITAFARLANDFARMINGTONFARNHAMFARNHAMTONFARNUFFARNUMFARRAGUTFARRARFARRELLFARRENBURGFARROTFARSONFARWELLFASKINFATIMAFATTIGFAUNCEFAUQUIERFAUSSEFAWCETTFAWNFAXONFAYALFAYETTEFAYETTEV1LLEFAYWOOD

BADA0CBBA0CBA/0BCDABAABBDC/DDDC0B

B8BCABSBBBDCCCCDCABCBB/CCCDCBBCCB8000CBC/DBB/CBBCBBBCBCaBcACDCBDCB8C

NOTES A

FEFEDORAFELANFELOAFELIOAFELKERFELLOWSHIPFELTFELT*FELTHAMFELTONFELTONIAFENCEFENDALLFENWOOOFERAFERDEIFORDFER01SFERDINANDFERGUSFERGUSONFERNAMOOFERN CLIFFFERNOALEFERNLEYFERNOWFERNPCINTFERRELOFERRISFERRONFERTAIINEFESTINAFETTFETTICF UNDERFIBEAFIDALGOFIDDLBTOHNFIDOYHENTFIELOINGFIELOONFIELOSONFIFEFIFERF1LLMOREFINCA.STLEFIN6ALFINLEYFIRESTEELFIRGRELLFIRMAGEFIROFIRTHFISH CREEKFISHERSFISHHOOKFISHMLLFITCHFITCHVILLEFITZGERALDFITZHUGHFIVE DOTFIVEMILEFIVESFLAGGFLAGSTAFFFLAKFLAMINGFLAMINGOFLANAGANFLANDREAUFLASHERFLATHEAOFLAT HORNFLATTOPFLATWILLOWFLAX TONFLEAKFLECHAOOFLEERFLEETHOOOFLEISCHMANNFLEMINGFLETCHERFLOKEFLOMFLOMATIONFLOMOTFLORENCEFLORESVILLEFLORIDANAFLORISSANT

BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

0BAB/08DDBCAB88CBCCccBBBBBC8CB000BDDCDCCC88ABDDCCBBB80B/C880

ACBBBBBBCBBDBBAAB0BAABD

0CBDCABCCB/DCSOILfl/C

FLOWELLFLOWEREEFLOYDFLUETSCHFLUSHINGFLUVANNAFLYGAREFLYNNFOARDFOGELSVILLEFOLAFOLEYFONOAFOND ISFONTALFONTREENFOPIANOFORBESFORDFORDNEYFORDTRANFORDVILLEFOREFORELANDFORELLEFORESMANFORESTDALEFORESTERFORESTONFORGAYFORMANFORNEYFORRESTFORSEYFORSGRENFORT COLLINSFORT DRUMFORT LYONFORT MEADEFORT MOTTFORT PIERCEFORT ROCKFORTUNAFORTWINGATEFORWARDFOSHOMEPOSSUMFOSTERFOSTORIAFOUNTAINFOURLOGFOURMILEFOUR STARFOUTSFOXFOXCREEKFOX MOUNTFOXOLFOX PARKFOX PARKFOXTONFRAILEYFRAMFRANCISFRANCITASFRANKFRANKFORTFRANKIRKFRANKLINFRANKSTOWNFRANKTOWNFRANKVILLEFRATERNIDADFRAZERFREDFREOENSBORGFREDERICKFREDONFREDON1AFREDRICKSONFREE BURGFREECEFREEDOMFREEHOLDFREELFREEMANFREEMANVILLEFREE ONFREERFREESTONEFREEZE NERFREMONT

GROUP INDICATES

CBBC

C8DDBBDD

. CDBDBDAC8008B0CCABDCCCBCBAACC0CCBBB/CBDDBB/C8BB/DCDD0CBBADD0CBBDBDCCCBCCCCDCBBCBBCCCC

FRENCHFRENCHTOWNFRENEAUFRESNOFRIANAFRIANTFRIDLOFRIEDMANFRIENDSFRIESFRINDLEFRIOFRIZZELLF ROB ERGF ROHM ANFRONDORFFRONHOFERFRONTONFROSTFRUITAFRUIT LA NOFRYEFUEGOFUERAFUGAWEEFULCHERFULDAFULLERTONFULMERFULSHEARFULTONFUQUAYFURNISSFURYFUSULINA

GAASTRACABAL DONGABBSGABELGABICAGACEYGACHADOGADDESCADESGADS DENGAGEGAGEBYGAGETOWNGAHEEGA1NES-GAINESVILLEGALATAGALEGALENGALENAGALEPPIGALESTOWNGALETONGALEYGALISTEOGALLAGHERGALLATINGALLEGOSGALL I NAGALL I ONGALVAGALVESTONGALVEZGALVINGALWAYGAMBLERGAMBOAGANNETTGANSNERGAPOGAPPMAYERGARAGARBERGARBUTTGARCENOGARDE LL AGARDENAGARDINERGARDNER'S FORKGARDNERVILLEGAR DONECAREYGARFIELDGARITAGARLANDGARLET

CDCC/DDDCBDDBBCDCCc0DBBCCcBCCBB/0CDBB/DB/DC

CBDCDDDCGD

8CacADBBCCADBr

BABCBBACCBABD0DBBABCDBABDACCcBA

THE SOIL GROUP HAS NOT BEEN

OARLOCKGARNONGARMOREGARNERCARDGARRGARRARDGARRETSONGARRETTGARRISONGARTONGAMINGASCONADEGAS CREEKGASKELLGASSGASSETGATESBURGGATESONGATEVIEWGATEWAYGATEWOODGAULOYGAVINSGAVIQTAGAYGAYLOROGAYNORGAYVILLEGAZELLEGAZOSGEARHARTGEARYGEEGEEBURGGEERGEFOGELKIEGEMGEMIDGEMSONGENE SEEGENEVAGENOAGENOLAGEDRGEVILLEGEORGIAGERALDGERBERGERIGGERINGGERLANOGERMANIAGERMANYGERRARDGESTRINGETTAGETTYSGEYSENGHENTGIBBLERGIBBONGIBBSGIBBSTOKNGIFFINGIFFORDGILAGILBYGILCHRISTGILCRESTGILEADGILESGILFORDGILHOULYGILISPIEGILLIAMGILLIGANGILLSGILLS9URGGIL1ANGILMOREGILPINGILROYGILSONGILT EDGEGINATGINGERGINIGINSERGIRARDOTGIRDGIVEN

DETERMINED

CCBD0DBBB8CCDCCDDACBCDBC00BCB0BABBCCABCCCBC08BBDDBBC

BDBCC0CC8DACCBBBBCBB/DBCCBCCBCCCBD0CBCDAC

INDICATES THE DRAINED/UNORAINED SITUATION

NEH Notice U-102, August 1972

B-8

Page 81: 1429 - SJRWMD

Table B-l—Continued

GLADDENGLADE PARKGLADSTONEGLADWINGLAHISGLANNGLASGOWGLEANGLEASONGLENGLENOARGLENBERGGLENBROOKGLENCOEGLENDALEGLENDIVEGLENDORAGLENELGGLENP I ELDGLENFOROGLENHALLGLENHAMGLENMORAGLENNALLENSLENOMAGLENROSEGLENSTEDGLENTONGLENVIEWGLENVILLEGLIDEGLIKONGLORIAGLOUCESTERGLOVERGLYNDONGLYNNGOBLEGODbAROGODDEGOOECKEGODFREYGODWINGOEGLEINGOESSELGOFFGOGEBICGOLBINGOLCONDAGOLD CREEKGOLOtNOALEGULDFIELD.G3LOHILLGOLDMANGOLDRIDGEGOLDRUNGOLDSBOROGOLDSTONGJLDSTREAMGOLDVALEGOLOVEINGOLIADGOLLAHERGOLTRYGOMEZGOMMGONVICKG30CHGOODALEGOOD INGGJODINGTONGOODLOWGOOilMANGOODRICHGOODSPRINGSGOOSE CREEKGOOSE LAKcGUOSHUSGOktJCORDONGOREGJKGUNIOGORHAMGORINGORINGGORMANGORUSGORZELLGOSHcNGOSHUTEGOSPORTGJTHAM

NOTES

ACBACB/CCBCBBB00BBDBDCBBCCB80BBCaacAC/DBCCBD0CDCDCBCODBBBCBACcDCCCAABDB0CCCBBBDBDBBD0ABCC6ABBDCA

A

GOTHARDGOTHICGOTHOGOULDINGGOVANGOVEGOWENGRABEGRABLEGRACEMONTGRACEVILLEGRADYGRAFENGRAF TONGRAHAMGRAILGRAMMGRANATHGRANBYGRANDE RONDEGRANOFIELDGRANDV1EWGRANERGRANGERGRANGEVILLEGRANILEGRANDGRANTGRANTSBURGGRANTSDALEGRANVILLEGRAPEVINEGRA SMEREGRASSNAGRASS.Y BUTTEGRATZGRAVD6NGRAVEGRAVITYGRAYCALMGRAYFORDGRAYLINGGRAYLCCKGRAYPOINTGRAYSGREAT BENDGREELEYGREEN BLUFFGREENBRAEGREEN CANYONGREENCREEKGREENDALEGREENFIELDGREENHORNGREENLEAFGREENOUGHGREENPORTGREEN RIVERGREENSBOROGREENSONGREENTONGREENVILLEGREENWATERGREENWICHGREENWOODGREERGREGORYGREHALEMGRELLGRENADAGRENVILLEGRESHAMGREWINGKGREYBACKGRcYBULLGREYCLIFFGREYSGRIFFYGRIGSTONGRIMSTADGRISWOLDGRITNEYGRIVERGRIZZLYGROGANGkOSECLOSEGROSSGROTGNGROVEGROVELANOGROViRGROVETON .

BLANK HYDROLOGIC

GROWDENGROWLERGRUBBSGRULLAGRUMM1TGRUNDYGRUVERGRYGLAGUADALUPEGUAJEGUALALAGUAMANIGUANABANOGUANAJ180GUANICAGUAYABOGUAYABOTAGUAYAMA

A/0 GUBEN0 GUCKEENB GUELPHC GUENQCC GUERNSEYC GUERREROB/C GUEST8 GUIN

GULERGULKANAGUMBOaTGUNBARRELGUNNGUNNUKGUNSIGHTGUNTERGURABOGURNEYGUSTAVUSGUST INGUTHRIEGUY TONGWINGWINNETTGYMERGYPSTRUM

HACCKEHACIENDAHACKHACKERSHACKETTSTOWNHADARHADESHADLEYHAOOHAGENHAGENBARTHHAGENERHAGERHAGERMANHAGERSTOWNHAGGAHAGGERTYHAGSTADTHAGUEHAIGHAIKUHAILMANHAINESHA I REHALAWAHALOERHALEHALEDGNHALEIWAHALEYHALF MOONHALFOROHALFWAYHALGAITOHHAL 11HALIIMAILEHALISHALLHALLECKHALL RANCHHALLVILLEHALSEYHAMACERHAMAKUAPOK3HA MANHA MARHAMBLEN

HAMBRISHTHAMBURGHAMBYHAM ELHAMERLYHAMILTONHAMLETHAMLINHAMMONTONHAMPDENHAMPSHIREHAMPTONHAMTAHHANAHANALEIHANAMAULUHANCEVILLEHANCOHANDHANDRANHANDSBOROHANDYHANEYHANFOROHANGAAROHANGERHANIPOEHANKINSHANKSHANLYHANNAHANNUMHANOVERHANSHANSELHANSKAHANSONHANTHOHANTZHAPHAPGOODHAPNEYKARBORDHARBOURTONHARCOHARDEMANHAROESTYHARDINGHARDSCRAB6LEHARDYHARGREAVEMARKERSHARKEYKARLANHARLEMHARLESTONHARLINGENHARM EH.HARMONYHARNEYHARPERHARPETHHARPSHARPSTERHARPTHAROUAHARRI ET

B/C HARR I MANC HARRIS

HARRISBURGHARRI SONHARRISVILLEHARSTENEHARST INEHARTHART CAMPHARTFORDHART 16HARTLANDHARTLETONHARTLINEHARTSBURGHARTSELLSHARTSHORNHARVARDHARVELHARVEYHARWOODHASKIHASKILLHASKI NSHASSELL

0BCCCABBC

CCcACABDBCDDB8CBBCBABDCCCcABDBBCB

BBBDBDBCBBCCDCCCDBBCBCDBDDCCBCDCA8BBBBBBBBCCBACC

SOIL GROUP INDICATES THE SOIL GROUP HAS NOT SEEMTWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNDRAINED SITUATI3*

NEH Notice H-102, August 1972

HASTINGSHATHATBOROHATCHHATCHERYHATFIELOHATHAWAYHATTIEHATTONHAUBSTADTHAUGANHAUSERHAVANAHAVENHAVERLYHAVERSONHAVILLAHHAVINSDONHAVREHAVRELONHANHAWESHAWIHAMKEYEHAWKSELLHAHKSPRINGSHAXTUNHAYBOURNEHAYBROHAYOENHAYESTONHAYESVILLEHAYFIELOHAYFORDHAYHONOHAYNESSHAYNIEHAYPRESSHAYSPURHAYTERHAYTIHAYWODDHAZELHAZEL*IRHAZENHAZLEHURSTHAZLETONHAZTQNHEAOLEYHEADQUARTERSHEAKEHEATHHEATLYHEBBRONVILLEHEBERHEBERTHEBGENHEBOHEBRONHECHTHECKIHECLAHECTOR 'HEDOENHEDRICKHEDVILLEHEGNEHEIOENHEIDTKANHEILHEIMDALHEISETONHEISLERHEISTHE1TTHEITZHEIZERHELOTHELEMANOHELENAHELMERHELVETIAHELYHEMBREHEHNlHEMPFIELDHEHPSTEAOHENCRATTHENDERSONHENDRICKSHENEFERHENKIN

DETERMINED

B/0BD8CD8CB0BB0CABBCADCCCBDCBD0DCDBB8BCD0CCcccBBC

CBBBCB

B-9

Page 82: 1429 - SJRWMD

Table B-]—Continued

HENLEYHEMLINEHENNEKEHENNEPINHENNINGSENHENRYHENSELHEN SHAHHENSLEYHEPLERHERBERTHEREFORDHERKIMERHERLONGHERH1STONHERHONHERNOONHEROHERRERAHERRICKHERRONHERSHHERSHALHESCHHESPERHESPERIAHESPERUSHESSEHESSELHESSELBERGHESSELT1NEHESSLANHE S SONHETTINGERNEXTHEZELHIALEAHHIAWATHAHIBBARONIBBINGHIBERNIAHICKORYHICKSHIDALGOHIDEAWAYHIOEWOOOHIERROHIGHAMSKI6HFIELDHIGH GAPHIGHLANDHIGHNOREHIGH PARKHIHIMANUHIIBNERHIKO PEAKHIKO SPRINGSHILDRETHHILEAMILESHILGERHILGRAVEHILLEHANNHILLERYHILLETH1LLFIELOHILLGATEMILLIARDHILLONHILLSBOROHILLSOALEHILMARHILOHILTHILTONHINCKLEYMINDESHINES6URGHINKLfcHINMANHINSOALEHINTZEHIPPLEHISLEHITTHI VISTAKI4ASSEEMI WOODHIXTONHO BACKERHDBANHOBBS

NJTEST«0

CC0BC0BCD0BBB0BABBACBAB 10BCBBC00BCC08B0A0CCCaB0cc0BCBBBACB000B6BC00B0aBBBC/0ABBACCDC

0C0BCBABBCB

A

HOBOGHOB SONHOCHHEIHHOCKINGHOCK1NSONHOCKLEYHODGEHODGINSHODGSONHOE BEHOELZtEHOFFMANHOFFMANVILLEHOGANSBURGHOG EL ANDHOGGHOGRISHOHHOHMANNHOKOHOLBROOKHOLCOMBHOLDAWAYHOLDENHOLDERHOLDERMANHOLDERNESSHOLDR6GEHOLLANDHOLLINGERHOLLISHOLLISTERHOLLOMANHOLLOHAYHOLLYHOLLY SPRINGSHOLLYWOODHOLMDELHOLMESHOLOMUAHOLOPAUHOLROYOHOLS1NEHOLSTHOLSTONHOLTHOLTL6HOLTVILLE •HOLYCKEHOMAHOME CAMPHOME LAKEHOMERHOMESTAKEHOMESTEADHONAUNAUHONCUTHONDALEHONDOHONDOHOHONEOYEHONEYHONEYCftOVEHONEYV1LLEHONNHONOKAAHQNOLUAHONOMANUHONOULIULIHONUAULUHOODHOODLEHOOD SPORTHOOOVIEWHOOKTONHOOLEHUAHOOPALHOOPERHOOPESTONHOOSICHOOTHOOTENHOOVERHQPEKAHOPE TONHOPEWELLHOPGOODHOPKIKSHOPLEYHOPPERHOQUIAMHORATIOBLANK HYDROLOGIC

SOIL GROUPS SUCH AS

0CBBCCBCC6CCcBBCBBCCBD0ABCCBBBC/00cA0D0CBBB/D

C/0ccBCDBCB0CBB0CCBA6B0ABBC6CBDDBA00BDC

CBBBaDSOILB/C

HORDHOREBHORNEHORNELLHORNINGHORNITOSHORROCKSHORSESHOEHORTONHORTONVILLEHOSKINHOSK1NNINIHOSLEYKOSHERHOTAWHOT LAKEHOUDEKHOUGH TONHOUKHOULKAHOULTONHOUNDBYHOURGLASSHOUSATONICHOUSE MOUNTAINHOUSEVILLEHOUSTONHOUSTON BLACKHOVDEHOVENHOVENMEEPHOVERTHOVEYHOWARDHOWELLHOW LANDHOYEHOYLETONHOY P USHOYTVILLEHUBBAROHUBERLYHUBERTHUBLERSBURGHUCKLEBERRYHUDSONHUECOHUELHUENEMEHUERHUEROHUEYHUFFINEMUGGINSHUGHESHUGHESVILLEHUGOHUICHICAHUIKAUHULETTHULLSHULLTHULUAHUMHUMACAOHUMATASHUMBARGERHUMBIRDHUMBOLDTHUMDUNHUMEHUMESTONHUMMINGTONHUMPHREYSHUMPTULIPSHUNSAKERHUNTERSHUNTINGHUNTINGTONHUNTSVILLEHUPPHURDSHURLEYHURONHURSTHURWALHUSEHUSSAHUSSMANHUTCHINSONHUT SONHUXLEYHYAMGROUP INDICATES

BBD0ADBBBBC0DCCCBA/DCDC/0DBD0CDDA/C0CDCBCCBCA0ADBCCCcAB/CDDACBBBC/D

. ABC6DBBC8CDBCCC6BB/CBCBBBBDC0BCB/DDCBD0

THE SO

HYATHYATTVILLEHYDABURGHYDEHYDROHYMASHYRUMHYSHAM

IAOIBERIAICENEIDAIOA8ELI OAKI DANAIDEONIOMONIGNACIOI GOIGUALDADIHLENIJAMILDEFONSOILKAILL I ONIMAIMBLER1MLAYIMMOKALEEIMPERIALINAVALEINOARTINOIAHOMAINDIANINDIAN CREEKINDIANOINOIANOLAI MOIDINGAINGALLS1NGARO1NGENIOINGRAMINKLERINKSINMACHUKINMANI NMDINNESVALEINSKIPINVERNESSINVILLEINWDOD10IOLAIOLEAUI ON AIONIAIOSCOIPAVAIRAIREDELLIRETEBAIftlMIR0CKIRON BLOSSOMIRON MOUNTAINIRON RIVERIRONTONIRRIGONIRVINGTONIRWINISAACISAAC UAHI SANISANT1ISBELLISHAMISHI PISHIISLANDISDNISSAOUAHISTOKPOGAITCAITSWOOTIUKAIVAIVANIVESIVIEIVINS

IL GROUP HAS NOT

ACD0CDBD

CDCBBBCDBC0000BBB/DBBCB/D0ABD

DCABBB6CDBDDCADCDBCBAC8BBBC0CCB0PBCCC0cB/CD0CccBBB/CDDBCCBBAC

BEEN

IZAGORAIZEE

JABUJACAGUASJACANAJACINTOJACK CREEKJACKLINJACKNIFEJACKPORTJACKSJACKSONJACKSONVILLEJACOBJACOBSENJtCOBYJACQUESJACuUITHJA:WINJAFFKEYJAGUEYESJALJALMARJANES CANYONJAMESTOWNJANEJANISEJANSENJARABJARBOEJARITAJARREJARVISJASPERJAUCASJAVAJAYJAYEMJAYSONJEANJEANERETTEJEAN LAKEJEDDJEDDOJEFFERSONJEKLEYJELMJENAJENKINSJENKINSONJENNESSJENNINGSJENNYJERAULDJERICHOJEROMEJERRYJESBELJESSE CAMPJESSUPJETTJIGGSJINJIMENEZJIMTOWNJOBJOBOSJO:ITYJOCKOJOOEROJOEL 'JOESJOHNSJOHNSBURGJOHNSONJOHNSTONJOHNSWOODJOKEJOLANJOLIETJONESVILLEJONUSJOPLINJOPPAJORDANJORGEJORNADAJORYJOSEJOSEPHINEJOSIE

DETERMINED

Ccc8D8ABCDcBC00cccBA6BAB/CCCcADCCBB

. BABCBDADBCDBCDBBDBCDDCCCDCCBCcccccBABBBCDBB/DBDCCABBBDBCCCBB

INDICATES THE ORAI NEO/UNDRAINEO SITUATD*

NEtt Notice U-102, August 1972

B-10

Page 83: 1429 - SJRWMD

Table B-l—Continued

JOYJUAN A DIAZJUBILEEJUODJUDITHJUOK1NSJUOSONJUDYJUGETJUGHANDLEJULESJULESBURGJULIAETTAJUMPSJUNCALJUNCOSJUNCTIONJUNEAUJ UN I ATAJJN1PEROJUNIUSJUNOJUNOUITOSJURAJUVAJJVAN

KAALUALUKACHEMAKKADAKEKADASHANKAOEKADINKADOKAKAENAKAHALUUKANAKAKAHANUIKAHLERKAHOLAKAH SHEETSKAHUAKAIKL1KAILUAKA1KUKAINALIUHAJPOIOJKAlMiKIKALAEKALALOCHKALANAKALANA ZOOKALAPAKALAUPAPAKAL1FONSKYKALIHIKALISPELLKALKASKAKALMIAKALOKOKALOLOCHKALSINKAMACKKAKAKOAKAMAOAKAMAOLEKAMAYKAMIEKAMRARKANABECKANAKAKANAPAHAKAND1KKANEKANEOHEKANEPUUHAN IMAKANLEEKANOSHKANZAKAPAAKAPAPALAKAPOOKAPOKSINKAPUHIKANIKARAKINKAROEKARHEENKARLANKARLINKARLOKARLUK

BBCDBCBCDBBABBCDBB

BCBCCBD

AB0BCBB0DBBBB0DDAAABABacBB0DDAABDB0BABBDBBBB

KARNAKKARNESKARROMRSKARSHNERKARTAKARTARKASCHN1TKASHUITNAKASILOFKASK1KASOTAKASSLERKASSONKATAMAKATEMCYKATOKATRINEHA TULAKATYKAUFMANKAUPOKAVETTKAHAIHAEKAWAIHAPA1KAWBAtiGAMKANICHKANKAHLINKEAAUKEAHUAKEALAKEKUAKEALIAKEANSBURGKEARNSKEATINGKEAUKAHAKEAHAKAPUKEBLERKECHKECKOKEDRONKEEPERSKEEGANKEE1KEEKEEKEELOARKEENEKEENOKEESEKEGKEHENAKEIGLEYKEISERKEITHKEKAHAKEKAKEKELLERKELLYKELNKELSEYKELSOKELTNERKELVINKEMMERERKENDOKEMPSVILLEKEMPTONKENAIKENANSV1LLEKENDAIAKENDALL

0BaADCB0BABCACBCCBBC0A0CBCACDBC0DBC0BBD8CC

0BBCC0BCCBBB0C0c0cBCCBBBCACB

A/0 KENOALLVILLE B8BBBCaC0AaBCDBB0CA0D

N3TESTHO

KENESAkKENMOORKENNALLYKENNANKENNEBECKENNEDYKENNERKENNEHICKKENNEYKENNEY LAKEKENGKENOMAKENSALKENSPURKENTKENYCNKEOKEOLtMRK60MAHKfcOTA

A BLANK HYDROLOGICSOIL GROUPS SUCH AS

BBBBBB/C06ACCDBADC6BCC

SUILB/C

KEOWNSKEPLERKERBYKERNELKERHITKERHOKERRKERRICKKERRTOMNKERSHAWKERSICKKERSTONKERTKERWINKESSLERKESWICKKETCHLYKETTLEKETTLEMANKETTNERKEVINKEUAUNEEKEHEENAHKEYAKEYESKEYNERKEYPORTKEYSTONEKEYTESVILLEKEZARKIAMAHKIBBIEKICKERV1LLEKIDDKIDMANKIEHLKIETZKEKIEVKIKONIKILARCKILAUEAKILBOURNEKILBURNKILCH1SKILDORKILGOREKILKENNYKILLBUCKKILLEYKILLINGHORTHKILLPACKKILHERQUEKILNKILOAKUCHA NAKILMINNINGKIMKIHAMAKIMBALLKIHBERLYKIMBROUGHKIHKERLINGKIHMONSKINOKINAKINCOKINESAVAKINGFISHERKINGHURSTKING MANKINGSKINGSBURYKINGSLEYKINGS RIVERKINGSTONKINGSVILLEKINKEADKINKELKINKOKAK1NMANKINNEARKINNtYKINMCKKINRtAOKINROSSKINSTuNKINTAKIM ONKINZELKIOHAT1AKIONAKIPLING

GROUP INDICATES

0CBBAABB

A0A/0CCCDBBBCCCAB00CA0BC8B0BA08B0BAB0CB/0BC/DD

Cc0AACBBCSD0CC0ACBBDC/DC8CBCCBDCBBCDD0DCBAB0

KIPPKIPPENKIPSONKIRKKIRKHAMKIRKLANDKIRKTONK IRK V RLEKIRTLEYKIRVINKISRINGKISSICKKISTLERKITCHELLKITCHEN CREEKKITSAPKITTANNINGKITTITASKITTREDGEKITTSONKIUPKIVAK1WANISKIZHUYAKKJARKLABERKLAHATHKLAUSKLAWASIKLEJKLICKERKLICKITATKLINEKLINESVILLEKLINGERKLONDIKEKLONEKLOOCHHANKLOTENKLUTINAKNAPPAKNEELANDKNIFF1NKNIGHTKNIKKNIPPAKNOB HILLKNOWLESKNOXKNULLKNUTSENKOBARKOBEHKOCHKODAKKODIAKKOEHLERKOELEKOEPKEKOERLINGKOGISHKOHALAKOKEEKOKERNOTKOKOKOKDKAHIKOKOMOKOLBERGKOLEKOLEKOLLSKOLLUTUKKOLOAKOLOBKOLOKOLOKONAK.ONAKAKONNERKONOKTIKOOLAUKOOSKIAKOOTENAIKOPIAHKOPPKOPPESKORCHEAKORNMANKJSMOSKOSSEKUSTERKUSZTAKOTEDOKOUTS

THE SOIL GROUP HAS NOT

CACB/0C0BCCC00C/DBBC

0ccB8AB0CB/DADBCCBC/D8DBCBBBCCcBDBBBCBCBCCBCBBBDABCBDB/DBCDDCCBDBDCCcA0BBBBDDCBDB

BEE*

KOVICHKDYENKOYUKUKKRADEKRtNZBURGKRATKAKRAUSEKREAMERKREMLINKRENTZKRESSONKRUMKRUSEKRUZOFKUBEKUBLERKUBLIKUCERtKUCKKUGRUGKUHLKUKAIAUKULAKULAKALAKULLITKUHAKUN1AKUNUWEIAKUPREANOFKUREBKUROKUSKOKMIMKUSLINAKUTCHKUTZTOWNKVICHAKKUETHLUKKYLEKYLER

LA BARGELABETTELABISHLABOULABOUNTYLA BOUNTYLA BRIERLABSHAFTLACAMASLA CASALACITALACKAUANNALACONlLACOTALACYLAODLADDERLADELLELADOSiLADUELADYSHITHLA FARGELAFE -LAFITTELA FONDALAFDNTLAGLORIALAGONDALA GRANDELAGRANGELAHAINALA HQGUELAHDNTANLAHRITYLAIDIGLAIDLAULAILLAIRDSVILLELAIREPLAJARALAKELAKE CHARLESLAKE CREEKLAKEHELENLAKEHJRSTLAKE JANEELAKELANDLAKEHONTLAKEPORTLAKESHORELAKESOLLAKETON

3ETERNINED

08BBBCACBCCDBBBCCBC0DABB/CBBBCBA00DDB6A0D

BC0DCCCDC/DCBCC0DBDBCBDBDDBBBCCDBB0ACBCDDDADCBABADBDBB

INDICATES THc DRAINED/UNDRAINED SITUATIDN

NEH Notice U-102, August 1972

B-ll

Page 84: 1429 - SJRWMD

Table B-1—Continued

LAKEV1EWLAKEW1NLAKEMOOOLAX IUAKINLAKOMALALAAULA LANOELALLIELANLAMARLAMART1NELAMBERTLAMBETHLAMBORNLAM1N6TONLAMOLAMONILAMONTLAMONTALAMOURELAHPH1ERLANPSHIRELAX SONLANARKLANCASTERLANCELANDLANDESLANDISBURGLANOLOMLANDUSKYLANELANEYLANGLANGFOROLANGHE1LANGLEYLANGLOISLANGOLALANGRELLLANGSTONLANiERLANIGERIANK.6USHLANKINLANKTREELANOAK(.AN SCALELANSOOHNELANSINGLANTISLANTONLANTONIALANTZLAPLA PALMALAPEERUAP1NELAPLATTALAPONLAPORTELA POST*LA PkAIRlELARABEELARANOLARCHMOUNTLAROfcLLLAREDOLARESLARGENTLARGOLARINLARIMERLARKINLARKSONLA ROSELARRYLARSONLARUELARVIELASLAS ANIMASLASAUSESLAS FLORESLASHLEYLASILLAS LUCASLAS POSASLASSENLASTANCELAS VEGAS

NJTESI MO

CeABA0AB0B/aBBBC0060ADCB00eBCDBCC0CCB/DCecDBBCBBBCCBBCBBD800CBAC0cABBBBCBC0BABBCB00A0Ccc0

0cc0B0

A

LAIAHLATAHCOLATAN6LATANIERLATENELATHAMLATHKOPLATINALATOMLATONIALATTYLAUDEROALELAUGENOURLAUGHLINLAUMAIALAURELLAURELHURSTLAURELHOOOLAURENLAVALLEELAVATELAVEENLAVELOOLAVERKINLA VERKINLA VI NALAMAILAHETLAkLERLAWRENCELAWRENCEVILLELAkSHELAkSONLAWTHERLAKTONLAXLAXALLAYCOCKLAY TONLAZEARLEALEADERLEAOPOINTLEAD VALELEAOVILLELEAFLEAHYLEALLEAPSLEAThAMLEAVENMORTHLEAVITTLEAVITTVILLELEBANONLEBARLE BARLEBECLEBOLEBSACKLECK KILLLEDBEDERLEDGEFORKLEDGERLEORULEOYLEELEEDSLEEFIELOLEELANAULEEPERLEESVILLELEETONLEETONIALEFORLEGLERLEGORELEHEHLEHIGHLEHMANSLEHRLEICESTERLEILEHUALELALELANOLEMETALEMINGLEMMLEMONEXLEMPSTERLENLENALENAPAH

BLANK HYDROLOGICSOIL GROUPS SUCH AS

CCB080CDDB0B

LENAHEE 8/0 LINVILLELENNEP 0 LIN WOODLENOIR D LIPANLENOX B LIPPINCOTTLENZ B LIRIOSLEO B LIRRETLEON A/0 LISAOELEONARD C LISANLEONARDO B LISBONLEONAROTOWN 0 LISMASLf ONI DAS B L1SMORELEOTA C LITCHFIELO

B/0 LEPLEY 0 LITHGOHBBCCBBBB8DCCc8CBCCCB0CcBBA0CBBCBDCBCCBBBCB88CCBBA00

0c

/c

cc0BcB000cB0c/ocA0SOILB/C

LERDAL C LITHIALEROY B L1TIHBERLESAGE LITLELESHARA LITTLES EARLESHO UTTLEFIELDLESLIE LITTLE HORNLESTER LITTLE POLELE SUEUR LITTLETONLET A C LITTLE WOODLETCHER D LITZLETKA 0 L1VLETHENT C LIVERHORELETORTLETTERBOXLEVANLEVASYLEVERETTLEVIATHANLEVISLEWISLEWISBERRVLEHIS6URGLEHISTONLEH1SVILLELEXLEXINGTONLHAZLIB8INGSLIBBVLIBEGLIBERALLIBERTYLI6ORY

LIVIALIVINGSTONLIVONALIZELIZZANTLLANOSLOBOELLLOBELVILLELOBERGLOBERTLOBITOSLOCANELOCEYLOCHSALOCKELOCKERBVLOCKHAROLOCKHARTLOCKPORTLOCKHOOOLOCUST

LIBRARY 0 LODARLIBUTTE D LODEMA•LICK B LOCILICK CREEK D LOOOLICKOALE 0 LOFFTUSLICKING C LOFTONLICKSKILLET 0 LOGANLIODELL 0 LOGOELLLIEBERMAN C LOGCERTLIEN D LOGHOUSELIGGET B LOGYLIGHTNING D LOHLEftLIGNUM C LOHMILLEftLIGON D LOHNESLIHENLI HUELIKESLILAHLILLlKAUPLIMAL1MANILIMBERLIMERICKLIMONL1MONESL1MPIALINCOLINCOLNLINCROFTUNO LEVLI NOSEYL1NDSIDELINOSTRONLINOVLI NEVILLELINGANORELINKERLJNKVILLELlNNELINNETLINNEUSLINOLI NOTE RLINSLAWLINTLINTON

LOIRELOLAKLOLAL ITALOLEKAALOLETALOLOLOLONLOMALOMALTALOMAXLOMIRALOMITASLONDOLONELONE P INELONER ID CELONE ROCKLONETREELONGFORDLONGLOISLONGMARELONSMONTLONER IELONGVALLONG VALLEYLONGVIEHLONOKELOMT1LOOKOUTLOONLOPERLOPEZ

GROUP INDICATES THE SOIL GROUP HAS NOT

8A/ 90B/0BDBDBD8ACCCcADC0BBCCAD0ACBCCcBBCDCBBCBBDBCDACDC0DDABBCCA80BBC/DAAC0B8DCCCBAACB0CcBBC8CC8BD

BEEN

LORADALE CLORAIN C/DLORDSTOWNLOftEAUVILLELOR ELLALORENZOLORETTOLORINGLOS tLAMOSLOS BANDSLOSEELOS GATOSLOS CUINEOSLOSHNANLOS OSOSLOS ROBLESLOS TANOSLOST CREEKLOST HILLSLOS TRANCOSLOSTHELLSLOTHAIRLOTUSLOUD ONLOUOONVILLELOUIEXOUISALOUISBURG

/C

LOUP DLOURDES CLOUVIERS 0LOVEJOY CLOVELANO CLOVELL CLOVELOCK C/OLOWELL CLOWRY •LOVVILLE BLOYAL BLOYALTON 0LOYSVILLE 0LOZAMO BLOZIER DLUALUALEI 0LUSBOCK CLUBRECHT CLUCAS CLUCE CLUCEDALE BLUCERNE BLUC I EN CLUCILE 0LUC I LE TON 8LUCKENBACH CLUCKY BLUCKY STAR BLUCY ALUOOEN 0LU9LOK CLUEDERS CLUFKIN 0LUHON 8LUJANE CLUKIN CLULA 1LULINC 0LUMBEE 0LUMMI B/CLUX CLUNA CLUNCH CLUND I MO CLUNOY 0LUNT CLUPPINO CLUPTW 0LUXA 0LUKAY C/OLUTE C1LUTH CLUTHER BLUTIE BLUTON DLUVERNE CLUXOR 0LUZENA 0LVCAN BLYCOHIN6 CLYOA 0LYDICK CILYFORD CLYLES B

DETERMINEDINDICATES THE DRAINEO/UNDRAINEO SITUATIM

NEH Notice U-102, August 1972

B-12

Page 85: 1429 - SJRWMD

Table '.•&+.!—Continued

LYMANLYMANSONLYNCHLYNCH8URGLYNDENLYNNDVLLYNN HAVENLYNNVILLELYNXLYONMANLYONSLYONSVILLELYSINELYSTA1RLYTELL

MABANXMABEHHAS IMABRAYMACARMACEDONIAMACFARLANEMACHETEHACHIASKACHUELOMACKNACKENHACK I MACMACKS BURGNACOMBHACQHBEftMACONHACYKAOALINNADAHASKAHADDOCKMADDOXMADELIAMADELINEHAOERAMADISONMADONNAMADRASMADRIDMA DRONEMADURE2KAFURTMA GALLONMAG ENSMAGGIEMAGINNISMAGNAMAGNOLIAMAGNUSMA&OTSUMAGUAYOHAHAFFEYMAHAFFYMAHALAMAKALASVILLEMAHANAMAHASKAMAHERMA HONINGMAHUKONAMAIDENMAILEMAINSTAYMAJADAMAKAALAEMAXALAPAMAKAPILIMAKAUAQMAKAUELIMAKENAMAKIKIMAKLAKMAKOT1MALMALAMALABARMALA80NMALACHYMALAGAMALAMAMALAYAMALBISMALCOLMMALETTIMALEZAMALIBU

NOTES

C/DC0B/0AAB/0CBCDBDBB

0C00BCBCB0C0BBBBaB0B

•A

C0DBCCBCBBBB0CDBCD0C/DC/DCB/DBBCDBBAD8BDABBBBACBBA/0CBBA0BBC8D

A

MALINMALJAMARMALLOTMALMHALOMALONEMALOTERREMALPAISMALPOSAMALVERNMAMA LAMAMOUMANAHAAMANALAPANMAN A HANANASSAMANASSASMANASTASHMANATEEMANAMAMANCELONAMANCHESTERMANDANMANOERFIELDMANOEVILLEMANFREDMANGUMMANHATTANMANH6IMHANIMANILAMANISTEEMANITOUMANL6YMANLIUSMANLOVEMANNINGMAN06UEMANORMANSF-IELDMANSICMANSKERMANTACHIENANTEOMANTERMANTONMANTZMANUMANVElMANHOODMANZANITAHANZAWOMANZANOLAMAPESMAPLE MOUNTAINMAPLE TONMARAG4JEZMARATHONMARBLEMARBL6MOUNTKARCELINASMARCETTAMARCIALMARCUMMARCUSMARC USEMARCYMARDENMARDINMARENGOMARESUAMARGERUMMARGUERITEMARIAMAR 1 AKAMARIASMARICAOMAR1COPAMARIETTAMARILLAMARINAMARIONMARIPOSAMARISSAMARKESHARKEYMARKHAMMARKLANOMARKSBORQMARLAMARLBOROMARLEAN

BLANK HYDROLOGIC

C/0BACBB0CCC0CC

CCBCB/0CAABeBDDACCCBCBCBBDB0BBCC/DBBBCC0CCCCBC/0aBAB0A0BCDDCCC/DBBBB/CCDBBCCA0CCDDCCCABB

SOIL

MARLETTEMARLEYKARL INMARLONMARLTONMARHARTHMARNAHARPAMARPLEENMARQUETTEMARKMARRIOTTMARSDENMARSELLMARSHALLMARSHANMARSHDALEMARSHFIELDMARSINGMARTMARTELLAMARTINMARTINAMART I NECKMARTINEZMARTINIMART INS BURGMARTINSDALEMARTINSONMARTINSVILLEHART I NT ONMARTYMARVANMARVELLMARVINMARYMARY DELMARYSLANDMAS ADAMASCAMPMASCHETAHMASCOTTEMASHELMASHULAVILLEMASONMASONVILLEMASSACKMASSENAMASSILLONMASTERSONMATAGORDAMATAMORQSMATANUSKAMATANZASMATAPEAKEMATAWANMATCHERMATFIELOMATHERSHATHERTONMATHESQNHAT HEMSMATHISMATHISTONMAT LOCKMATMONMATTAPEXMATTOLEMAUMAUDEHAUGHANMAUKEYMAUMEEMAUNABOMAUPINMAUREPASMAURICEMAURINEMAURYMAVERICKMAVIEMAHAEMAXMAXEYHAXFIELDMAXSONMAXTONMAXVILLEMAXWELLMAYMAY6ERRYHAYBESO

GROUP INDICATES

BC0CCBDB0ABBCBBDCCBC8CADDBBBDBCBDBCCBDC0BDCB/0BCBCBBDCCB8CACBBB

AC0DCC0

. BCCA/00C0ADBC0ABCCABA0BC0

MAY DAYMAYERHAYESMAYFIELDMAYFLOWERMAYHEMMAYLANDMAYMENMAYNARD LAKEMAYOMAYODANMAYOKORTHMAYSOORFMAYSVILLEMAYTOHNMAYVILLEMAYWOOOMAZEPPAMAZONMAZUMAMCAFEEM CALL ENMCALLISTERMCALPINMCBEEMCBETHMCBRIOEMCCABEMCCAFFERYMCCAINMCCALEBMCCALLYMCCAMMONMCCANNMCCARRANMCCARTHYMCCLAVEMCCLEARYMCCLELLANMCCLOUDMCCOINMCCOLLMCCDNNELMCCOOKMCCORNICKMCCOYMCCREEHCCRORYMCCROSKIEMCCUL LOUGHMCCULLYMCCUNEMCCUTCHENMCDOLEMCDONALDMCDONALDSVILLEMCEHENMCFADDENMCFAINMCFAULMCGAFFEYMCGARRMCGARYMCGEHEEMCGILVERYMCGINTYMCGIRKMCGOHANMCGRATHMCGREHMCHENRYMCILHAINEMCINTOSHMCINTYREMCKAMIEMCKAYMCKENNAMCKENZIEMCKINLEYMCKINNEYMCLAINMCLAURINMCLEANMCLEOOMCMAHQNMCMEENMCHULLINMCMUROIEMCMURPHYMCMURRAYMCNARYMCPAUL

THE SOIL GROUP HAS NOT

DDDBCDCDBBBCB

CBBBCCCBCCBDBBACBD0CDBCCBCDD8aCCBDDCCDCBBCBBCCBCCC0BCBBABABBDDC/0DBDCBCB:cDCBDDB

BEEN

MC P HE R SONHCPHIEMCOUARRIEMCQUEENMCRAEMCTAGGARTMCYICKERSMEADMEADINMEAOOWVILLEMEADVILLEMEANDERMECANMECCAMECKESVILLEMECKLENBURGHEDAMEOANQMEOARVMEDFOROMEDFR/kMEDICINE LODGEMEDINAMEDLEYMEDWAYWEEKSMEETEETSEMEGGETTMESONHEHLMEMLHORNMEIGSMEIKLEMEISSMELBOURNEMELBYMELITAMELLENTHINHELLORMELLOTTMELOLANDMELROSEMELSTQNEMELTONMELVILLEMELVINMEMALQOSEMEMPHISMENAHGAMENANMENARDMENCHMENOEBOUREMENDOCINOMENDONMENDOTAMENEFEEMENFROMENLOHEXDMENDKENMENDMINEEMENTOMENTOR.MEBUONMERCEDMERCEDESMERCERMERCEYMEREDITHMEKETAMERGELMERIDIANMERINOMERKELMERLINMERMILLMERNAMEROSHERRIFIELDMEiUILLMERRILLANMERRIMACHERRITTHE* ROUGEME»TONMERTZMESAMESCALMESCALEROMESITAMESKILL

DETERMINED

CBDCBBCDABCDBBCCBCCBuBBBBADDCCC

DDBCB0DBCCABBDDBACBCCBBBDBDCC8CBCC/DDCeBCB80806/00ABCCAB/CBBBBBCCc

TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION

NEH Notice U-102, August 1972

B-13

Page 86: 1429 - SJRWMD

Table B-1—Continued

MESMANMESPUNXESSERMETMETAL1NEMETAMQRAMETEAMETHOWHETIGOSHtMETOLIUSMETREMETZMEXICOHHOONMIAMIMIAMIANHI CCOMJCHELSONMICH1GAMM6HICKMIDASMIDDLEMIDDLEBURYMIDESSAMIDLANDMIDNIGHTMI OVAL EMIDWAYM1FFL1NMIFFL1NBURGMIGUELMIKEMIKESELLMILACAMILANMILESMILFDRDM1LHAMMILHEIMMILLMILLARDHILLBOROMILLBROOKMILLBURNEMILLCREEKMILLERMILLERLUXMILLERTONMILLETTMILLGROVEMILL HOLLOWMILL1CHMILLIKENMILLINGTONMILLISMILLRACEMILL5APMILLSDALEM1LLSHOLMMILLVILLEMILLWOODMILNERMILPITASMILROYMILTONH1MBRESMIMOSAMINAMI NAMMINATARcMINCHEYMINCOMINOALEMINOEGOMINOEMANXINPENMINEMINECiLAMINERMINERALMINERAL MOUNTAINMINERVAKINGMINGDMINIDOKAMINNEISKAMINNEOSAM1NNEQUAHINNETONKAHINNEWAUKANMINNIECEMINClA

N3TES

CACDBBBBAB0A00BCA/3BCBDCBB0DCDBBDDCBBBCCLBBDBBB00DtB/0eDCBCBCB/3CBDCCDCCCCB0BaBeBcB

DACBBBCCBBDBDC

A

MINORAKIN TOMINUMINVALEMIRAMIRABALMIRACLEM1RAMARMIRANDAMIRESMIRRORMIRROR LAKEMISSIONMITCHMITCHELLMITIWANGAMITREMIZELMI I PAHMOANOMOAPAMOAULAMOBEETIEMOCAHOC HOMODAMQDALEMODELMODE NAMODESTOMODOCMOENKOPIEMOEP1TZMOFFATMOGOLLONMOGULMOHALLMOHAVEMOHAKKMOIRAMOKELUMNEMOKENAMOKIAKMOKULEIAMOLANCKOLCALMOLENAMOLINOSMOLLV.ILLEMOLLYHOLOKAIMOLSONMOLYNEUXMONADMONAHANMONAHANSMQNAROAMONCLOVAMONDAM1NMONDOVIMONEEMUNI COMONIDAMONITtAUMONMOUTHMONOMONOLITHMONONAMONONGAHELAMONROEMONRCEVILLEMONSEMONSERATEMONTAGUEMONTALTOMONTARAMONTAUKMQNTCALHMONTEMONTE CRISTOMONTEGRANOEMONTELLMONTE LLOMONTEOLAMONTERUSAMONTE VALLOMONTGOMERYMONTICELLOMONTIETHMONTMORENCIMONTOSOMONTOUR

BLANK HYDROLOGIC

CC0BDCBBDBBABBBCCDCD0AB0B0CC8CC0BBBBBBBC0CBBBBABDBBBBA0BDBCBDBB0CDCBCBC/DBCDC0CABDDDCC0DDBABBD

SOIL

MONT OVAMONTPELLIERMONT ROSEMONT VALEMONTVERDEHONTWELMONUEMOODYMOOHOOMOOSE RIVERMORAMORAOOMORALESMOROMOREAUMORE HE ADMOREHOUSEMORE LA NOMORE LA NOT ONHORETMOREYMORFITTMORGANF1ELOMORGNECMORIARTYMORICALMORLEYMORMON MESAMOROCCOMORONIMOROPMORRILLMORRISMORRISONMORROWMORSEMORTENSONMORTONMORVALMOSBYHOSCAMOSCOWMOSELMOSHANunNKOSHERMOSHERVILLEMOSIDAMOSQUE TMOSSYROCKMOTAMOTLEYMOTOOUAMOTTSVILLEMCULTONMOUNDMOUNTAINBURGMOUNTAINV1EHMOUNTAINVILLEMOUNT AIRYMOUNT CARROLLMOUNT HOMEMOUNT HOODMOUNT LUCASMOUNT OLIVEMOUNT VI 6KMOVILLEMOWATAMOWERHOY E RS ONMOY1NAMUCARAMUCETMUORAYMUD SPRINGSHUGHOUSEMUIRMUI RKI RKMUKILTEOMULCROWMULKEYMULLINSMULLINVILLEMULTMULTORPORMUMFORDMUNDELEINBUNCOSMUNISINGHUNKMUNSONMUNUSCONGMURDO

GROUP INDICATES

0CB0A/DCBBB0BC0c'0ccDA0DBB

0Ce0A/CDCBC8CDCBBCACCB0CB08BBDAB/0C0fi/DBABBBCDBCDCDDDCDCCB6DDC0BC •ABBBBC0DB

MURDOCHMURENNURRILLHURVILLEMUSCATINEMUSEMUSELLAMUSICKMUS1NIAMUSKINGUMHUSK OGEEMUSQUIZMUSSELMUSS ELS HELLNUSSEYMUSTANGMUTUAL AMUTUALMYAKKAMYATTMYERSMYERSVILLEMYLREAMYRICKMYRTLEMYSTENMYST I CMYTON

NAALEHUNABESNANACEVILLENACHESNACIMIENTONACOGDOCHESNADEANNADINANAFFNAGEESINAGITSYNAGLENAGOSNAHATCHENAHMANAHUNTANAIHANAKAINAKNEKNALDONAMBENAMONNANAMKINNANCYNANNYNANNY TONNANSENENANTUCKETNANUMNAPANAPAISHAKNAPAVINENAPIERNAPLENENAPLESNAPPANEENAPTOHNENARANJITONARANJONARCISSENARCNARLONNA RONNARRAGANSETTNARROWSNASERNASHNASHUANASHVILLENASONNASSAUNASSETNATALIENATCHEZNATHROPNATIONALNATRONANATROYNATUR ITANAUKATINAUMBURGNAVAJONAVAN

THE SOIL GROUP HAS NOT

CBBDBCBBBCCcBBDA/DBBA/0B/0DBBDBADB

BDCBCBBDBB

. CBDCCCBBDBBCABB8BCCDDBBB9DBCCBBCBBDBBABCC/DBCBB8BDBDC0D

SEEN

NAVARRON /WE SINKNAYLORNAYPEDNAZN-BARNEAPOLISNEBEKERNESGENNEBISHNEBONECHENEDERLANDNEEOHAMNEEDLE PEAKNEEDM3RENEELEYNEESOPAHNEGITANEGLEYNEHALEHNEHARNEKTONNEISSONNEKIANELLISNELMANNELSCOTTNELSONNEKAHNEMOTENENANANENNONEDLANEDTDMANEPALTONEPEST*NEPH1NEPPELNEPTUNENERESONNESDANESHAM1NYNESIKtNESKAHINESKOMINNESPELEMNESSNESSELNESSOPAHNESTERNESTUCCANETARTSNETCDNGNETONETTLETONNEUBERTNEUNSNEUSKENEVAOORNEVILLENEV1NNEVINENEVKANEVOYERNEVTAHNEVUNEWARKNEWARTNEWAYGONEWBERGNEWBERR.YNEWBYNEW CAMBRIANEWCASTLENEKCDMBNEWDALENEWELLNEWELLTONNEUFANENEMFOXKNEWKIRKNEULANDSNEWLINNEWMARKETNEWPORTNEWRUSSNEWRYNEWSKAHNEWSTEADNEWTONNEWTONIA

DETERMINED

B

cBBB/0coB

cB0ccB

BCBB6BcABB08ACBBA8AB88CBDBBcCABBCB8BCBcBCDC0CBB8CBCBABBD

DDBB8CBBBDA/DB

TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNSRAINEO SJTUATI3N

NEH Notice U-102, August 1972

B-14

Page 87: 1429 - SJRWMD

Table B-1—Continued

NEWTOWNNEWV1LLENEZ PERCENIAGARANIARTNIBLEYNICHOLSONNICHGLV1LLENICKELNICODEHUSNICOLAUSN1COLLETNIELSENNIGHTHAHKNIHILLNIKABUNANIKEYNIK1SHKANIKLASONNIKOLAINILANONILESNIMROONINCHNINEMILENINEVEHN1NIGRETN1NINGERNINNESCAHNIOBELLNIOTANIPENIPPERSINKNIPPTN1PSUMNIRANISHNANISHONNISQUALLYNISSWANIUNIULIINIVLOCNIWOTNIXANIXONNIXONTONNUINANOBENG3LENOB SCOTTNOCKENNOOAWAYNOELNOHILINOKASIPPINOKAYNOKOHISNOLAMNOLICHUCKYNOLINNOLONOKENONDALTONNONOPAHUNOOKACHAMPSNOOKSACKNOONANN3RANOfcADNGRBERTNORBGRNENuRBYNURDNOROBYNOROENNORONESSNORFOLKNORGENORKAN3RMANORKANGEfcNORRESTNORRISNORRISTJNN3RTENORTHDALeNORTHFItLDNORTHMORENORTHPORTNORTH POWDERNJRTHUKBcRLANC

N3TES

CCCCBCCCBBCB0BB0BAB0CCCC0BBBCC0BBACBC0ABBC0CCBBA0BACB000CBBBB80B0C/DB0B60aBBBBBBBBB/C0CCBBCBC

CC/D

A

NORTONNORTONVILLENOR TUNENORWALKNORWAY FLATNOKWEILNORWICHNORWOODNOT1NOTUSNOUQUENOVARANDVAR.YNONOOONOYONOYSONNUBYNUCKOLLSNUCLANUECESNUGENTNUGGETNUMANUNOANUNICANUNNNUSSNUTLEYNUTRASNUTRIOSONUVALDENYALANYMORENYSSANYSSATONNYSTROH

OAHEOAKOALEOAKOENOAK FORDOAK GLENOAK GROVEOAK LAKEOAKLANDOAKS RIOGEOAKV1LLEOAKWOODOANAPUKAOASISOAT HANOBANOBARCOBENOBRASTOBRAYOEURNOCA LAOCEANETOCEANOOCKEYEOANOCHLOCKONEEOCHOOCHGCOOCHOPEEOCILLAOCKLEYOCOEEOCONEtOCONTCOCOSIAocoutocOCTAGONODEEOOELLODEMOOERHOTTODESSAODINODNEO'FALLONOGDENOGEECHEEOGEMANOGILVIEOGLALAOGLEOHAYSIUHIAOJAIOJATAOKANOGAN

BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

CC0BBCDBDA/C0eeCCCC/DCacACCcccDCCBC0AC8C

BB0B8CaccADBBBC8CD0D0DAB8DCB/DCBA/DC3DBBDBACDCC0DCCceaDAB0B

SOILB/C

OKAUOKAYOKEECHOBEEOKEELANTAOKEHAHOKLAREDOKLAWAHAOKMOKOKOOKOBOJIOKOLONAOKREEKOKTIBBEHAOLAOLAAOLALLKQUANTAOLA THEOLD CAMPOLOHAMOLDSOLDSMAROLDMICKOLE LOOLE NAOLE QUAOLETEOLEXOLGAOLIOLIAGAOLI NO AOLIPHANTOLIVENHAINOLIVEROLIVIEROLJETOOLMITOOLMITZOLMOSOLHSTFOOLNEYOLOKUIOLPEOLSONOLTONOLUSTEEOLYICOLYMPICOHADIOMAHAOMAKOMEGAOMENAOMNIONAONALASKAOMAMIAONARGAGHANAON Ah ATONDAMAONE I DAO'NEILLONEONTAONITAONITEON OTAONriVAONRAYCNSLOKONTARIOONTKOONTONAGONONYXOOKALAOPALOPEOUONOPHIROPIHIKAOOPPIOOOUAGAORAORANORANGEORANGE BURGORCASORCHARDORDORDNANCEORDWAYOREL1A

08A/DA/0CBA/0B0CDD0CACBCDC0B/0BBBBCBCBB/0BBDBCA08CB/Da0cDCB/0BBBaCAacA/DBBaDBBBBBCBCP

(;.,-jft/0DBADC/DCD0CCB0B0BACDD

OREL LAOR ENORESTIMBAORFORDORIOIAORIFOR IDORIONORITAORLANDORLANDOORMANORMSBYORODELLORO FINDORD GRANDEORONOOROVADAORPHANTORKORRVILLEORSAORSINOORTEL LOORTIGALITAORTINGORTIZORTLEVORMETORMOODOSAGEOSAKISOSCAROSCURAOSGOODOSHAOSHAWAO'SHEAOSHKOSHOSHTEMOOS IF*OSKAOSMUNDOSOOSOBBOSORIOGEOSOTEOSSIANOSTOSTRANOEROTEROOTHELLOOTISOTISCOOTISVILLEOTLEYOTSEGOOTTEROTTERBEIIOTTER HOL1OTTOKEEOTWAYOTWELLOUACHITAOURAYOUTLETOVALLOVERGAARDOVERLANDrvi'SLY:.V;nTGNa, ;oCV:KAOWE GOOWEN CREEKOWENSOHHIOHOSSOOMYHEEOJULISOXBOWOXERINEOXFORDOZAHISOZANOZAUKEE

PAAIKIPAALOAPAAUHAUPACHAPPAPACHECO

GROUP INDICATES THE SOIL GROUP HAS NOTINDICATES THE

DACCCAC8BBACB/CCBCrL0ccAAACCcBABDBDCBBDCCBB/DCBBDDBCBBBDCAABCB/DCBADCCACCCcc0r

S0CDBBBCCcDB/DDC

BBABB/C

SEES

PACKPACKARDPACKERPACKHAMPACKSAODLEPACKhOODPACOLETPACTOLUSPADENPADRONIPADUCAHPADUSPAESLPAGETPAGODAPAHRANAGATPAHREAHPAHROCPAIAPAKEPAINESVILLEPAINTROCKPAITPAJARITOPAJAROPAKAPAKALAPAKINIPALAPALACIOPALAPALAIPALATINEPALESTINEPALISADEPALMAPALMAHEJOPALM BEACHPALMERPALMER CANYONPALMICHPALMSPALMYRAPALOPALDDUROPALOMASPALOMINOPALOS VERDESPALOUSEP.ALSGROVEPAMLICOPAMOAPAMSDELPAMUNKEYPANAPANACAPANAEWAPANASOFFKEEPANCHERIPANCHUELAPANDOPANDOAHPANDORAPANDURAPANEPANGUITCHPANHILLPANIOGUEPAMKYPANOCHEPANOLA?A'JS=Y?ASiTESOPANTHERPANTONPAOLAPAOLIPADNIAPAPAAPAPAIPAPAKATINSPAPOOSEPARADISEPARADOXPARALOMAPARAMOREPARASOLPARCELASPAROEEPAREHATPARENTPARIETTEPARIS

DETERMINED

CBC8BDBCCBB888CCDDCCCCB8CB8BB88BBBBC

• A0B8DBBB8DB8B0C0cBDDDBCBC008Baac90DDD0ABCDADCC8C0BDDCcc

DRAINEO/UNORAINEO SITUATION

NEH Notice U-102, August 1972

B-15

Page 88: 1429 - SJRWMD

Table B-l—Continued

PARISHVILLePARKAYPARKDALEPARKEPARKERPARKFIELDPARKHJLLPAkKHURSIPARKINSONPARKVIEWPARKVILLEPARKWOOOPARLEYSPARLINPARLOPARMAPARNELLPARRPARRANPARR1SHPARSHALLPARSIPPANYPARSONSPARTRIPASAGSHAKPASCOPASO SECOPASOUETTIPASSUOTANKPASSARPASS CANYONPASSCREEKPASTURAPATAHSPATENTPATILLASPATILOPATIT CREEKPATNAPATQUTVILLEPATRICIAPATRICKPATRCLEPATTANIPATTcNBURGPATTERPATTERSONPATTONPATHAYPAULPAULDINePAULINAPAULSELLPAULSONPAULV1LLEPAUHALUPAUNSAUGUNTPAUSANTPAUKELAPAVANTPAVILL1GNPAVOHROOPAWCATUCKPAWLETPAWNEEPAXTONPAXV1LLEPAYETT6PAYMASTERPAYNEPAYSONPEACHAMPEARL HARBORPEARMANPEARSOLLPEAV1NEPECATONICAPECOSPtOEEPEDERNALESPcDIGOPEDLARPEDOLIPEDRICKPEEBLESPcELPEELERPEEVtRPcliLERPEGRAMPcKJNPELHAM

NJTES

CBB8BC0

BBCA/0BCBC0B0CB00C0B/CDC/DB/DC0C0BCBCBBCBBCDBCCB/0CB000BaB0BB0aa0B0cuaBcu00

0cB0cc6/C0cBccBc0BCB/D

A

PELICPELLAPELLEJASPELONAPELUKPEMBERTONPEMBINAPEMBROKEPENAPENCEPENOENPEND OREILLEPENOROYPENELASPENINSULAPENISTAJAPENITENTSPEN LAWPENNPENNELPENNINGTONPENOPENOYERPENROSEPEMSGREPENTHOUSEPENT*PENHELLPENWOODPEOGAPEOHPEONEPEORIAPEOTONEPEPOQNPEQUEAPERCHASPERCIVALPERELLAPERHAMPERICOPERITSAPERKINSPERKSPERLAPERMAPERMA N£NTEPERR1NPtRRlNEPERROTPERRYPERRYPARKPERRYVJLLEPERSANTIPERSAYOPERSHINGPERSISPERTPERUPESCAOEROPESETPESHASTINPESOPETEETNEETPETERBOROPETERSPETOSKEYPETR1EPETROLIAPETTONSPEWAMOPEYTONPFtlFfERPHAGEPHANTOMPHAROPHAROLIOPHEBAPMEENtYPHELANPHELPSPHIFERSONPHILBONPHILIPSBURGPHILLIPSPHI LOPHILOMATHPHIPPSPHOEBEPHOENIXPIASAPICACHO

BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

DDBCDACBBABB0DCBBCCCBCC00D0AACCB/CDCBC0cccBCCACACB000BBC0CB0CC/0CBCDB0

00CB/DBBaCBDC8BBBB/DBCB0CB0DC

SOILB/C

PICAYUNEPICKAWAYPICKENfPICKET.PICKFORDPICKRELLPICKWICKPICOPI COS*.PICTOUPIE CREEKPIERIANPJERPONTPIERREPIERSONTEPIIHONUAPIKEPILCHUCKPILGRIMPILOTPILOT ROCKPI MAPI HERFINALPINALENOPJNAHTPINATAP1NAVETESPINCHERPINCKNEYPINCONNINGPINCUSHIONPINEDAP1NEOALEPINEGUESTPINELLOSPINETOPPINEVILLEPINEYPINICONPINKELPINKHAMPINKSTONPINNACLESPINOPINOLAPINOLEP1NONP I NONESPINT ASPINTLARPINTOPINTURAPINTWATERPIOCHEPIOPOLISPIPERPIROUETTEPI RUNPISGAHPISHKUNPISTAKEEPITPITTMANPITTSFIELDPITTSTOWNPITT WOODPITZERPIUTEPLACEDOPLACENTIAPLACER I TOSPLACIDPLACKPLAINFIELOPLAINVIEWPLAISTEDPLANOPLASKETTPLATAPLATEAPLATEAUPLATNERPLATOPLATOROPLATTEPLATTVILf EPLAZAPLEASANTPLEASANT GROVEPLEASANTONPLEASANT VALE

GROUP INDICATES

8CDBDDBBCBDAC0BABABBC8BDB8CACCDBB/D8BA/DCBCBCBBCCCBCDDACADDDB/C0BC6BDDBCBCDDDCA/0DACC8DBCBCC8DBB/CC6B8

PLEASANT VIEWPLEDGERPLE6KPLEINEPLEVNAPLOMEPLOVERPLUMASPLUHMERPLUSHPLUTHPLUTOSPLYMOUTHPOALLPOARCHPOCALLAPOCATELLOPOCKERPOCOMOKEPODOPOOUNKPOEPQEVILLEPOGALPOGANEABPOGUEPOHAKUPUPOINOEXTERPOINSETTPOINTPOINT ISABELPOJOAQUEPOKEGEMAPOKEMANPOKERPOLANDPOLARPOLATISPOLEPOLEBARPOLELINEPOLEOPOLEYPOLICHPOLLARDPOLLASKYPOLLYPOLOPOLSONPOLVADERAPOMATPOMELLOPOMPANOPOHPONIOPOMP TONPOHROYPONCAP ONCE NAPONCHAPONDPOND CREEKPONOILLAPONILPONTOTOCPONZEftPOOKUPOOLEPOOLERPOORMAPOPEPOPPLETONPOOUONOCKPORRETTPORTPORTAGEVILLEPORTALESPORTALTOPORT BYRONPORTERSPORTERVILLEPORTHILLPORT I NOPORTLANDPORTNEUFPORTOLAPORTSMOUTHPORUMPOSANTPOSEYPOSIT ASPOSH INPOSOS

THE SOIL GROUP HAS NOT

BDC0DBBBB/D

DD0BB/CDBDBACBBCBBBCBBCACBBCBCCBBCBCCA/DC/DBBB0AB/CBADB0AB/DDBBACB/DBDBBBBDCCDBCDCCaDoc

BEEN

pas.POT4MOPOTHPOTLATCHPOTRATZPOTSDAMPOTTERPOTTSPDUDREPOULTNEYPOUNCEYPOVERTYPOWDERPOWDERHORNPOWELLPOWERPOWHITEPOWLEYPDWWATKAPOYPOYGANPOZOPQZO BLANCOPRASPRATHERPRATLEYPRATTPKEACHERPREAKNESSPREBISHPKESLEPRENTISSPRESQUE ISLEPRESTOPRESTONPREWITTPREYPRICEPRIOAPRIDHAMPRIETAPRIMEAUXPRIMGHARPRINCETONPRINEVILLEPR INGPR INSPRITCHETTPROCTORPROGRESSOPROMISEPROMOPROMONTORYPRONGPROSPECTPROSPERPROSSERPROTIVINPROUTPROVIDENCEPRDVOPROVO BATPROWESSPTARMIGANPUAULUPUCHYANPUDDLEPUERCOPUERTAPUETTPUGETPUGSLEYPUHI 'PUHIMAUPULASKIPULEHUPULLMANPULSPULSIPHERPULTNEYPUKELPUMPERPUNAPU*ALUUPUHOHUPURDAHPURDYPUXGATORYPURNERPURSLEYPURVESPUSTOI

DETERMINED

DDccC8cBBB0ABCcBCDC0DC/DBC8CA80DCCBAAB0CDDDCBBCBCcBCDDBCBBCCCcD0B8AAD0D0B/C8A0880DDCCCADAC0DDB0A

INDICATES THE DRAINED/UNDRAINED SITUATION

NEH Notice 1|-102, August 1972

B-16

Page 89: 1429 - SJRWMD

Table B-l—Continued

PUTNAMPUUKALAPUUONEPUU OOPUU DPAEPUU PAPUYALLUPPYLEPYLONPYOTEPYRAMIDPYRMONT

9UACKENBUSHQUAKEROUAKERTOKNOUArtSAOUAMOSOUANAHQUANOAHLQUARLESQUARTZ BURGQUATAKAQUAYQUAZOQUEALYQUEBRADAQUEENYQUEETSQUEMADOQUENZERQUICKSELLQUIETUSQUIGLEYQUILCENEQUILLAYUTEQUIMBYQUINCY9UINLANQUINNQUINNEtQUINCONQUITMANOUONSET

RABERRABEYRABIDEUXRABUNRACERACHERTRACINERACOONRADRADERSBURGRAOFORORAOLEYRADNORRAFAELRAGERRAGLANRAGNARRAGORAGSDALERAGTOWNRAHALRAHMRAILRAINBOWRAINEYRAINSRAINSBORORAKERALSENRAMADARAMADERORAMBLERRAMELLIRAMIRESRAMMELRAMORAMONARAMPARTRAMPARTARRAMPARTERRAMSEYRAKSHORNRANCERANCHER I ARANDRANDAOORANDALL

NOTES

DDCABBBADAD0

CCBDABB0CCBDDCDBC0DCBCB-BACDC

CA

CABBDDBDCBBCDDBCBCB/0DCCC/DCBB/acDB/CCBBCDCCBBAA0BCBBCD

A

R AND MANRANDOLPHRANDSRANGERRANIERRANKINRANTOULRANYHANRAPELJERAPHORAP I DANRAP LEERARDENRARICKRARITANRAS8ANORASSETRATAKERATHBUNRATLIFFRATONRATTLERRATTORAUSRAUVILLERAUZIRAVALLIRAVENDALERAVENNARAVOLARAMANRAMHIDERAH SONRAYRAYADORAYENOUFRAYHONOVILLERAYNERAYNESFORDRAYNHAMRAYNORRAZORRAZORTREADINGREADINGTONREAOLYNREAGANREAKORREALREAPREARDANREAVILLEREBAREBELREBUCKRECALRECLUSEREDBANKRED BAYRED BLUFFRED BUTTEREDBYREDCHIEFREOCLOUOREOOICKREDDINGREDFIELDRED HILLRED HOOKREDLAKEREDLANOSREOLODGEREDMANSONREDMONDREDNUNREDOLAREOONAREDRIDGEREDROBRED ROCKRED SPURREOSTOEREDTHAYNERED TOMREOVALEREDVIEMREEREEBEXREEDREEDERREEDPOINTREEDY

BLANK HYDROLOGIC

DDCDCCDBCBBCCBCBBCCBDBDBDBC0CBBDBBCBDBBCDCBCCBBBCDCCcB

0cBBCBCCBC0BCC0BDBCCBBBDBBBBCCCec0Bc0

SOIL

REELFOOTREESERREESVILLEREEVESREFUGEREGANREGENTREHMREICHELREIFFRE ILLYREINACHREKOPRELANRELAYRELIANCfRELIZRELSEREMBERTREMMITREMSENREMUOARREHUNDARENBACRENCALSONRENCOTRENFROWRENICKRENNIERENORENOHILLRE NOVARENOXRENSHAMRENSLOMRENSSELAERRENTIDERENT ONRENTSACREPARAOAREPPREPPARTREPUBLICRESCUERESERVERESNERRETRETRIEVERRETSOFRETSOKREXBURGREXFORDREXORREYESREYNOLDSREYNOSAREYWATRHAMERHEARHINEBECKRHOADESRHOAMERIBRICCORICETONRICEVILLERICHARDSONRICHEAURICHEYRICHFIELDRICHFORDRICHLIERICHMONDRICHTERRICHVALERICHVIEMRICHWOODRICKMORERICKSRICORICRESTRIDORIDGEBURYRIDGECRESTR1DGEDALERIDGELANDRIDGE LAWNRIDGELVRIDGEVILLERIDGEWAYRIDITRI ET BROCK

GROUP INDICATES

CCCccBCCBBABDABCDBDADBCDCADOC/00C'JaBBCCB/CCDABBCBBB/CDCBBCAC/D

B0BBDDCC0BCBCC.CAADBBCBCACBCCcB0ABBOCc

RIFFERIFLERIGARIGGINSRIGLEYRILEYRILLARILLITORIKErRIMINIRIHROCKR INRINCONaiNCONADARINOGERINGLINGRINGORINGOLDRINGWOODRIORIO ARRIBARIOCONCHORIO GRANDERIO KINGRIO LAJASRIO PIEDRASRIPLEYR1PONRIRIERISBECKRISLEYRISTARISUERITCHEYRITNRRRITORITTERRITTMANRITZRITZCALRITZVILLERIVERHEAORIVERSIDERIVERTONRIVERVIEWRIVRARIXIERIXONRIZROANOKEROBANAROBBINSROBBSROBERTSROBERTSDALEROBERTSVILLEROBINROBINSONROBINSONVILLEROBLEDOROB ROYROSYROCAROCHEROCHE LLEROCHE PORTROCKAWAYROCKCASTLEROCK CREEKROCKFORDROCKHOUSEROCKINGHAMROCKL INROCKLYROCKPORTROCK RIVERROCK TONROCKWELLROCKWOODROCKY FORDRODDYRODMANROEROEBUCKROELL ENROEMERROESIGERROGER TROHNERVILLEROHRERSVILLEROICROKEBY

THE SOIL GROUP HAS NOT

BA/D0ABCBBCADBCCDIDBBDDCBCABBBBBDCDBCBBCB/DBBBACBACCDDBBDDC0BDBDCCDCCccDDBAC/DC/DDCBBBBB

ABDDCBDBCDD

BEEN

ROLETTEROLFEROLISSRDLLAROLLIIRDLOFFROMBERGROHBOROMEOROMNEYROMULUSRONDRONNEBYROSSONROOSE'RDOTELROSACHIROSAMONDROSANEROSANKYROSARIQROSCOERDSCOMMONRDSEBERRYROSE BLOOMROSEBUDROSEBURGROSE CREEKROSEGLENROSEHILLROSELANDROSELLAR3SELMSROSEMOUNTROSENOALEROSE VALLEYROSEVILLEROSE WORTHROSHE SPRINGSROSITASROSLYNROSMANROSNEYROSSROSS FORKROSSIROSSMOYNEROSS VALLEYROTANROTHIEMAYROTHSAYROTTULEEROUBIOEAUROUENROUND BUTTEROUNDLEYROUNDTOPROUNDUPROUNDYROUSSEAUROUTONROUTTROVAL .ROMEROWENAROWLANDROWLEYROXALROXBURYROYROYALROYALTONROYCE"ROYSTONEROZAROZELLVILLEROZETTAROZLEERUA*KRUBICONRUB10RUBYRUSYHILLRUCHRUCKLESRUCLICKRUDDRUDEENRUDOLPHRUDYARDRUELLARUGGLES

DETERMINED

CC0cDCBCCCDCBBBDCBCCCDDB/DDBBCBDDDDBBCBC0ABBCBCCCCcBBBCC0CCccADCDDCcB0BBBCBBDBBCCACBCBDCDBCDBB

TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION

NEH Notice k-I02, August 1972

B-17

Page 90: 1429 - SJRWMD

Table B-l—Continued

RUIDOSORUKORULERULICKX LIMBORUMFORORUMNEYRUMPLERUM RIVERRUNERUNGERUNNELLSRUNNYMEDERUPERTRUSCORUSERUSHRUSHTOMNRUSHVILLERUSSRUSSELLRUSSELLVILLERUSSLEftRUSTONRUTLANDRUTLEGERYANRYAN PARKRYDERYDERRYEGATERYELLRYEPATCHRYERRYORPRYUS

SABANASABANA SECASABENYOSABINASABINESABLESACSACOSACRAMENTOSACULSADDLESADDLEBACKSADERSADIESADLERSAFFELLSAGANINGSAGESAGEHILLSAGEMOORSAGERTONSAGINAMSAGOSAGOUSPESAGUACHESAHALIESAINT HELENSSAINT MARTINSALAOOSALAOONSALALSALAMATOFSALASSALCHAKETSALEMSALENS8URGSALGASAL IDASALINASSALISBURYSALIXSALKUMSALLISAHSALLYANNSALMONSALOLSALONIESALREESALTAIRSALT CHUCKSALTERSALTERYSALT LAKbSALUDASALUVIA

NJTES

C0BCCBCCccBCBAC0CA086CCBC0D6B/DCBA0CCC

D0BCA0BDC/D0Ba0BCB00eccDcABACBDBDCBBaCAC0BC8C800C/D0AB00C

A

SALV1SASALZERSAMBASAMISHSAMMAMISHSAMPSELSAMPSONSAMSILSAN ANDREASSAN ANTONSAN ANTONIOSAN ARCACIOSAN BENITOSANCHEZSANDALLSANDERSONSANOLAKESANOLEESANEL1SAN EMIGOIOSANFOROSANGERSAN GERMANSANGOSANGREYSANILACSAN ISABELSAN JOAQUINSAN JGNSAN JOSESAN JUANSAN LUISSAN MATEDSAN MIGUELSANPETESANPITCHSAN POILSAN SABASAN SEBASTIANSANTASANTA CLARASANTA FESANTA ISABELSANTA LUCIASANTA MARTAS4NTANASANTAOUINSANTA YNEZSANTEESANTIAGOSANTIAMSAN T1MOTEOSANTON1SANTOSSANTO TOMASSAN YSIDROSAP I NEROSAPPSAPPHIRESAPPHOSAPPINGTQ-*SARASARALBGUISARANACSARAPHSARATOGASARATONSARBENSARCOSARDINIASARDOSARGEANTSAR I TASARKARSARPYSAR TELLSASKASASPAMCOSASSAFRASSASSERSATANKASATAhTASATELLITESATTSATTLEYSATTRESATURNSATUSSAUCIERSAUDESAUGATUCKSAUGUS

BLANK HYDROLOGIC

C00C/DC0B0CBCBB0CBCA06AB0CAC80CBABBCBCBDBCC00cccACD8CCDC6DB0BB8CBDDBBABCB0ADAABBBBCBCDBBBBBBCB

SOIL

SAUKSAULICHSAUMSAUNDERSSAUVIESAUVOLASAVAGESAVANNAHSAVENACSAVOSAVOIASAWA8ESAWATCHSAWCREEKSAWMILLSAWYERSAXBYSAXONSAYBROOKSAYLESVILLESAYLORSCALASCAMMANSCANDIASCANTICSCARSCARBOROSCAVESCHAFFENAKEfSCHAMBERSCHAMPSCHAPVILLESCHEBLYSCHERRARDSCHLEYSCHMUTZSCHNEBLYSCHNEIDERSCHNOORSONSCHNORBUSHSCHODACKSCHODSONSCHOFIELDSCHOHARIESCHOLLESCHOOLEYSCHOONERSCHRAOERSCHRAPSCHR1ERSCHROCKSCHUMACHERSCHUYLKILLSCIOSCIOTOVILLESCISMSCITUATESCOBEYSCOOTENEYSCORUPSCOTTSCOTT LAKESCOUTSCOWLALESCRANTONSCRAVOSCRIBASCRIVERSCROGGINSCULLINSEABROOKSEAMANSEAQUESTSEARCHLIGHTSEARINGSEARLASEARLESSEATONSEATTLESEAWILLOWSEBAGOSEBASTIANSEBASTOPOLSEBEKASEBEWASEBREESEBRINGSEBUDSECATASECCASECRETSECRET CREEK

GROUP INDICATES

B0CcC/0cccccB0cBCCDB8CABC8CA0CAACC00BBDCB/0C

CBCBC/0D0OBBBBBCBCCBCDBBCB/0ACBCCCcccBBCB0BD0CDB/DD0BC/0CcB

SEDANSEOILLOSBOWELLSEEDSKADEESEESSEEWEESEGALSEGNOSEHORNSEITZSEJITASEKILSEKIUSELAHSELDENSELEGNASELFRIOGESELKIRKSELLESELLERSSELMASEMIAHMOOSEMIHMOOSEMINARIOSEMIXSENSENECAVILLESEQUATCHIESEQUIMSEQUINSEQUOIASERENESERNASEROCOSERPASERVO SS.SESAMESESPESESSIONSSESSUMSETTERSSETTLEMEYERSEVALSEVERNSEVILLESEVYSEWAROSEWELLSEXTONSEYMOURSHAAKSHADELANOSHAFFERSHAKANSHAKESPEARESHAKOPEESHALCARS HAL ETSHAMS HANBOSHAMELSHANAHANSHAN DONSHAMESHANOSHANTASHAPLEIGHSHARATINSHARKEYSHARONSHARP SBURGSHARROTTSHARVANASHASK ITSHASTASHAVANOSHAVERSHAWASHAWANOSHAH HUTSHAYSHEARSHECKLERSHEDAOOSHEOOSHEEGESHEEP CREEKSHEEP HE AOSHEEPROCKSHEET IRONSHEFFIELDSHELBURNE

THE SOIL GROUP HAS

BCDCBDCDCDC0CcDC0BA/0BD0DCBCBABCDDAC/0DCCCDC0D8DCBBDCDCABCC0D0BBB

DBBC/0B0BB0CB/CA8BBAB0Cc8CDCCAB0C

NOT BEEN

SHELBYSHELBYVILLESHELDONSHELIKOFSHELLA8ARGERSHELLORAKESHELLROCKSHELMADINESHELOCTASHELTONSHENASHENANDOAHSHEPSHEPPAROSHERANOOSHERARSHERBURNESHERIDANSHERLOCKSHERMSHERRYLSHERWOODSHIBLESHIELDSSHIFFERSHILOHSH1NAKUSHINGLESHINGLETOMNSHINNSHINROCKSHI OC TONSHIPLEYSHIPROCKSHIRATSHIRKSHOALSSHOEBARSHOEFFLERSHONKINSHODFLINSHOOKSHOREWOOOSHOREYSHORNSHORT CREEKSHOSHONESHOTKELLSHOUNSSHOWALTERSHOWLOWSHREWSBURYSHRINESHROESHROUTSSHUBUTASHULESHULLSBURGSHUMWAYSHUPERTSHUWAHSISIBLEYVILLESIBYLEESICILYSICKLESTEETSSIDELLSIEfkNCIASIEBERSIELOSIEROCLIFFSIERRASIERRAVILLESIESTASIFTONSIGNALSIGURDSIKESTONSILCOXSILENTSILERSILERTONSILISILSTIOSILVERSILVERADOSILVERBOHSILVER CREEKSILVERTONSILVIESSI MASSIMCOE

DETERMINED

BB

DBAA08CCcBAACB8B08aBCBC00cBCBCa

. BccB80cACBB00DBCcDB00CBC0cBBB08CBBAC0Ba0BCBDB0BB0ACC00cDCC

TWO SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNORAINEO SITUATION

NEH Notice 1*-102, August 1972

B-18

Page 91: 1429 - SJRWMD

Table B-l—Continued

SIMEONS1MMLERSIMMONTSIMNERSIMONSIMON ASIHOTESIMPERSSIMPSONSIMSSINAISINCLAIRSINESINGLETREESINGSAASSINNIGAMSINOMAXSINTONSINUKSIONSIOUXSIPPLESIRISI SKI YOUSISSETONSISSONSITESSITKASIXMILESIZEMORESIZERSKAGGSSKAGITSKA HASKALANSKAMANIASKAMOKAWASKANEESKELLOCKSKERRYSKIOMORESKILLETSKINNERSKIYOUSKOKOMISHSKOOKUMCHUCKSKOWHEGANSKULL CREEKSKUMPAHSKUTUMSKYBERGSKYHAVENSKYKOMISH .SKYLICKSKYLINESKYWAYSLABSLATE CREEKSLAUGHTERSLAVENSLAWSONSLAYTONSLEETHSLETTENSLICK ROCKSLIGHTSSLIGOSLIKOKSLIPSLIPMANSLOANSLOCUMSLOOUCSLOSSSLUICESMARTSSMITH CREEKSMITHOALESMITHNeCKSMITHTONSKOLANSMOOTSNAGSNAHOPISHSNAKESNAKE HOLLOWSNAKELUMSNEADSHELLSNELLINGSN3HOMISHSNOQUALMIE

NOTES

A0CACDCBCDCCCcBCB8DBAABBBBCBBBBBB/CACBBCBCBCCcB/CBB00CCDBC0BDCCDBDC0BDB0BB/C0BCCBBABB0C0BBCBB0CBDB

A

SNOWSNOWDENSNOWLINSNOWVILLESNOWYSOAKPAKSOAP LAKESOBOBASOBRANTESOOA LAKESODHOUSEiODUSSOELBERGSOFIASOGNSOGZIESOKOLOFSOLANOSOLDATNASOLDIERSOL DUCSOLDUCSOLLEKSSOLLERSOLOMONSOLONASOMBREROSOMERSSOMERSETSOMERVELLSOMSEKSONOITASONOMASONTAGSOPERSOQUELSORDOSORFSORRENTOSORTERSOSASOTELLASOTIMSOUTHFORKSOUTHGATESOUTHW1CKSPAASPACE CITYSPADESPALDINGSPANSPANAWAYSPANELSPARTASPEARFISHSPEARMANSPtARVILLESPECKSPECTERSPEELYAISPEIGLESPENAROSPENCERSPENLOSPERRYSPICERSPILLVILLESPINKSSPIRESSPIRITSPIROSPLENOORASPLITRDSPOFFORDSPOKANESPUNSELLERSPOON 8UTTESPOONERSPOTTSWOODSPRAGUESPRECKELSSPRINGSPRING CREEKSPRINGOALESPRINGERSPRINGERVILLESPRINGFIELDSPRINGMEYERSPRINGTOWNSPROULSPURSPURLOCK

BLANK HYDROLOGIC

BCBDABBACBDCBBDBBDBCBBC0DB0B0BCBD0B/CBCCBB/DCCBDDCDABDDBDABCCD0C6DBBCCBADBBCDCBBCCBB/CCC/DCBBDDCCDBB

SOIL

SOUALICUMSOU AWSQUILLCHUCKSOUIMERSQUIRESST. ALBANSST. CHARLESST. CLAIRST. ELMOST. GEORGEST. HELENSST. IGNACEST. JOEST. JOHNSST. LUCIEST. MARTINST. MARYSST. NICHOLASST. PAULST. THOMASSTAATSBURGSTABLERSTACYSTAOYSTAFFORDSTAGECOACHSTAHLSTALEYSTAMBAUGHSTAMFORDSTAMPEDESTANSTANOISHSTANEYSTANFIELDSTANLEYSTANSBURYSTANTONSTAPLETONSTARBUCKSTARGOSTARICHKOFSTARKSSTARLEYSTARRSTASERSTATESTATENSTATLERSTAVESTAYTONSTEAMBOATSTEARNSSTECUMSTEEDSTEEOMANSTEEKEESTEELESTEtSESTEFFSTEGALLSTEIGERSTEINAUERSTEINBECKSTEINMETZSTEINS BURGSTEIHERSTELLARSTEMILTSTENOALSTEPHENSTEPHENSBURGSTEPHENVILLESTERLINGSTERLINGTONSTETSONSTETTERSTEUBENSTEVENSSTEVENSONSTEWARTSTICKNEYSTIDHANSTIGLERSTILLMANSTILLWATERSTILSONSTIMSONSTINGALSTINSONSTIRKSTIRUM

GROUP INDICATES

BBBBBBB0ACACB/DB/DACB0B0

BBBCBCC8DDBC/DDCCDDBDBDCDBBB0BDDDDAADCBCCCABB0CCCCc •CBBBBBDBBBDCACADBB/CBCDB

STISSINGSTIVERSVILLESTOCKBRIDGESTOCK LANDSTOCKPENSTOCKTONSTO01CKSTOKESSTOMARSTONERSTONEWALLSTONOSTONYFOROSTOOKEYSTORDENSTORLASTORM1TTSTORM KINGSTORYSTOSSELSTOUGHSTOWELLSTOYSTRAIGHTSTRAINSTRASBURGSTRATFORDSTRAUSSSTRAWSTRAWNSTREATORSTRDLESTRONGHURSTSTRONTIASTROUPESTRYKERSTUBBSSTUCKCREEKSTUKELSTUKEYSTUMBLESTUMPPSTUMP SPRINGSSTUNNERSTUTTGARTSTUTZMANSTUTZVILLESUBLETTESUOBURYSUDDUTHSUFFIELDSUGAR LOAFSUISUNSULASULLYSULPHUR ASULTANSUMASSUMDUMSUMMASUMMERFIELOSUMMERSSUMMERVILLESUMMITSUMHITVILLESUMTERSUNSUNBURSTSUNBURYSUNCOOKSUNDSUNCELLSUNOERLANDSUNDOWNSUNFIELOSUNN I LANDSUNNYHAYSUNNY SIDESUNNYVALESUNRAYSUNRISESUNSETSUNSHINESUNSWEETSUNUPSUPANSUPERIORSUPERSTITIONSUPERVISORSUPPLEESURSURGEM

THE SOIL GROUP HAS NOT

CBBBDDDDCBAB/DDBBBB0CCCDCCECBCBBCBBBCBCBDB' ADBBDCB/CBBCCBDBBDBB/CDBCBCCBCDCBACCc/oBBCDBCBDBCCDBCACBBC

3EEN

SURGHSURPRISESURRENCYSURVYASUSIE CREEKSUSITNASUSQUEHANNASUTHERSUTHERLINSUTLEWSUTPHENSUTTLERSUTTONSVEASVERDRUPSVOLDSWAGERSWAKtNESWANSWANBOYSWANNERSWAN SONSWANTONSWANTOWNSWAPPSSWARTSWOODSWARTZSWtSEYSWASTIKASWATARASWAUKSWAWILLIASWEATMANSWEDESWEDENSWEENSWEENEYSWEETSWEETGRASSSWEETWATERSWENODASWIFTCREEKSWIFTONSWIMSSWINGLERSWINKSWIS80BSWITCHBACKSWITZERLANDSW3PESWYGERTSYCAM3RESYCANSYLACAUGASYLVANSYMERTONSYStREPSYRACUSESY*ENESYRETT

TABERNASHTABIONATABLE MOUNTAINTA8LERTABORTAC*NTACOMATACDOSHTAFTTAGGERTTAWOMATAHQUIHENONTAHQUATSTAINTORTAJOTAKEUJHITAKILMATAKOTNATtLAGT4LANTETtLAPUSTALBOTTTALCOTTALIHINATALKEETNATALLACTALLADEGATALLAPOOSATALLEYVILLETALLSTALLULA

DETERMINED

8BB/DCDB0CjB/C0BBBBCCccDDBB/DCCCDDCACACB8CBCB0BBAAC0DCBCCB/CAB/DBBBB0C

BBBDDB0DCCBDCCCC8B0CBCCDCBCCBBB

TWO SOIL GROUPS SUCH AS B/C INDICATES THE ORAINEO/UNORAINEO SITUATION

NEH Notice U-102, August 1972

B-19

Page 92: 1429 - SJRWMD

Table B-3—Continued

TALLYTALMAGETAL.tOTALOKATALPATAMATAMAHATAMALCOTAMBATAMELYTAMMANY CREEKTAMMANY RIOGETAMMSTAMPICOTANANATAN ANATANBERCTANDYTANEUHTANEYTANGAIRTANNATANNERTANSEHTANTALUSTANHAXTAOPITAOSTAPIATAPPENTARATARKIOTARKLINTARPOTARRANTTARRETETARRY ALLTASCOSATASSELTATETATIYEETATUTATUMTAUNT ONTAVAJESTAMASTAHCAHTAYLORTAYLOR CREfKTAYLORSFLATTAYLORSV1LUETAYSDHTAZLINATEALTEALSCNTEALUHITTE ANA WAYTEAPOTEASTEASDALETEBOTECHICKTECOLOTETECUHSAHTEOROMTEELTEHACHAPITEHANATEJATEJONTEKOATELATELEFONOTELEPHONETELFERTtLFERNERTEL IDATELLTELLERI ELL I COTELLMANTELSTAOTcMESCALTEMPLETEHVIKTENABOTENAHATENASTENCEETENERIFFETENEXTENIBAC

NOTES

BAB00BC0c/cBBCB000CCCCCCBA0C0C0B0CC00BB0BCCCCAA/0CC00CBA0CCCBCBBBBBBB0C(BCBC0AD0BBBBB0B/CB0BCDCAB

TENINQTENNOTENORIOTENOTTENRA6TENSASTENSEDTENSLEEFTEOCLU.IITEPEETE.PET6TERBIESTERESA:ERINOTERMINALTERMOTEROU€ETERRA CEIATERRA?TERRER*TERRETONTERRI,.TERRYTERWILL1GERTESAJOTESCOTTTESUOU6TETONTETONIATETONKATETOTUMTEUTEXTEXL1NETEIUMATHACKERYTHAOERTHAGETHANYONTHATCHERTHAT UNATHAYNETHEBESTHE BOTHEOALUNOTHENASTHEOTHERESATHERIOTTHERMALTKERKOPOLISTHESSTHETFOROTHIELTKI OKOlTHOENYTHOMASTHORNOALETHORNOIKETHORNOCKTHORNTONTHCRNWOODTHOROUGHFARETHORPTHORRTHORRELTHOMTHREE MILETHROCKTHUNDEKBIRDTHURBERTHURLON1THURLOHTHURMANTHURMONTTHURSTONTIAGOSTIAKTIBANTIBBITTSTICATICETICHIGANTICHNOAT1CKAPOOT1CKASONT I DWELLTIERRATIE TONTIFFANYTIFIONTIGER CREEK

A BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

B0BC80CBB0B/0CC00C0A/0DCCBBCACBABCCB/0BBCBCCABCBB0CCCB0C0BAAC000C/D00BBCBBB0CDCCCABBBCB6DCC00B0OBCBB

SOILB/C

TIGERONTIGIHONTIGRET1TIGUATIJERASTILFOROTILLED A.TILLICUMTILLMANT1LMATILSITTILTONT I MB ERGTIMBERLYTIM8LINTJMENrw*TIMKENT1MMERMAKTIMMONSTIMPAHUTETIMPANOGOSTIMPERTIMPOONEKET I HULATINATINDAHAYTINETINGEYTINSLEYTINTONTINYTOMNTIOCANOTIOGATIPPAHTIPPECANOETIPPERTIPPERARYTIPPIPAHTIPPOTIPTONTIPTONVILLETIROTISBURVTISCHTISH TANGTITUSVILLETIVERTONTIVOUTIYYTOAT06ICQTOBINTOBISHTOBLERTOBOSATOBYTOCCOATOOOTODDLERTOODVILLETOE HEADTOEJATOEMTOGOTOGUSTOHONATOINET 01 SNOTTOIYABETOKEENTOKULTOLBYTOLEDOTOLICHATOLKETOLLTOLLGATETOLLHOUSETOLMANTOLNATOLOTOLSONATOLSTOITOLTTOLTECTOLUCATOLVARTOMAHTOMASTOHASTTOMETOMEL

AB

DBBBBCCCBCB0B0BBDBDBBCAABAAB0BCBAA0CBBCBCBCAACC0BCBDBB.BB8CCCB0CC0CBCA0DBABDOBB00DCBBCBCB0

GROUP INDICATES THEINDICATES THE

TQMERATOM1CHITOMOKATONASKETTONATATON AH AN DATONEYTONGUE RIVERTONINITONKATONKEYTONKINTONKSTONOPAHTONORTONDKEKTONKATONS I NATONUCOTOOLETOOMESTOPTOP I ATOPPENISHTOPTONTOSUERVILLETOQUOPTORBDYTORCHLIGHTTOROIATORHUNTATORNINGTORODATORONTOTORPEDO LAKETORREONTORRESTORRINGTONTORROTORS I DOTORTUGASTOSTONTOTELAKETOTEMTOTTENTOUCHETTOUHEYTOULONTOURNTOURNQUISTTOURSTOUTLETOMERTOWHEETOWNERTOHNLEYTOWNSBURYTOWN SENDTOWSONTOXAWAYTOYTOYAHTOZETRABUCOTRACKTRACYTRAERTRAILTRAIL CREEKTRAMTRANSYLVANIATRAPPERTRAPPISTTRAPPSTRASKTRAVELERSTRAVERTRAVESSILLATRAVISTRAWICKTRAYTREAD WAYTREASURETREBLOCTREGOTRELONATREMANTTREMBLESTREMPETREMPEALEAUTRENARYTRENT

SOIL GROUP HAS NOT

DAA/DBCCDCBCDCB/DBCBABC00CDB/C

CABCDCBBCDCBBCDDDABBBBBCBBADDBCBCBDDBBCB/CBCABBBACBC0B/C0CBCD8DC0BBABBB

BEEN

TRENTONTHEPTRES HERMANOSTRETTENTREVINOTREXLERTRIAMITRIASSICTRICONTRIOELLTRIDENTTRIGOTRIMBLETRIMMERTRINCHERATRINITYTRI3MASTRIPITTRIPL6NTRIPOLIT*IPPTRITONTRIXTROJANTRDMMALOTROMPTRONSENTRDOKTRQPALTROSITROUPTROUT CREEKTR3UTDALETR3UT LAKETROUT RIVERTROUTVILLETROXELTROYTRUCETRUCKEETRUCKTONTRUEFISSURETRUESDALETRULLTRULOUTRUMANTRUMBULLTRUMPTRYONTSCHICOMATUBTU8ACTUCANNONTlCKERMANTUCSONTUCUMCARITUFF1TTUSHILLTUJUNGATUHEYTUKMILATULATUUANA 'TULARETULAROSATULIATULLAHASSEETULLERTULLOCKTULLYTULUKSAKTUHBEZ-TUMEYTUKITASTJMWATERTyJEHEANTUNICATUNISTUNITASTUNKHANNOCKTUNNELTUPELOTUPUKNUKTUQUETURBEVILLETURBOTVILLETURBYFILLTURINTURKTURKEYSPRINGSTURLEYTURLIN

3ETERMINED

DBBCDCC

CBDCBBC0BCBCBCBBDCCBD0ACBCA8BCCCBACCBBD0DBCCCDBB0DACDCC/DC/DBBCDBC0D0BAD0DBABDDBCCBBOCCB

DRAINED/UNORAINEO SITUATION

NEH Notice i»-102, August 1972

B-20

Page 93: 1429 - SJRWMD

Table B~l—Continued

TURNSGWTURNERTURNERV1LLETURNEYTURRAHTURRETTURRIATURSONTUSCANTUSCARAWASTUSCARORATUSCOLATUSCUMBIATUSELTUSKEEGOTUSLERTUS8U1TEETUSTINTUSTUMENATUTHILLTUTNITUTWILERTUXEDOTUXEKANTWIN CREEKTWININGTW1SPTWO DOTTYBOTYEETYGARTTYLERTYNDALLTYNERTYRONETYSON

UANAUBARUBLYUCOLAUCOLQUCOPIAUDELUOOLPHOUFFENSUGAKUHLANDUHLIGUINTAUKIAHULENULLOAULMULRICHERULUPALAKUAULYULYSSESUMAUHAPINEUM1ATUMIKOAUHILUMNAKUNPAUUP QUAUNAUNA01LLAUNAWEEPUNCOMUNCOHPAHGREUNEEDAUNGERSUNION'UNIONTOWNUNIONVILLSUN I SUNUPDIKEUPSALUPSATAUPSHURUPTONURACCAURbANAURBOURJCHURNEURSINEURTAHURWILUSALUSHAR

NJTES

CBBBDBCB/CDCCB0CCBBBBBBB

BBCBC0DCDB/CACC

DCB0CB0CDDBBBCBBBBBBBA6/CDBDBBBDBBBDBBCBCC0CACCBCDDB0C0Be

A

USINEUSKAUTALINEUTEUTICAUTLEYUTUADOUVADAUVALDEUWALA

VACHERIEVADERVADOVAIDENVAILTONVALBYVALCOVALDEZVALEVALENCIAVALENTVALENTINEVALERAVALKARIAVALLANVALLECITOSVALLEONOVALLERSVALHONTVALHYVALOISVAMERVANAJOVANANOAVAN BORENVANCEVANDAVANDAL I AVANDERDASSONVANOERGRIFTVANDERHOFFVANDERLIPVAN DUSENVANETVANGVANHORNVAN NOSTERNVAN KG YVANOSSVANTAGEVAN WAGONERVARCOVARELUMVARICKVAR1NAVARNAVARROVARYSBURGVASHTIVASQUEZVASSALBOROVASSARVASTINEVAUCLUSEVAUGHNSV1LLEVAYASVEALVEAZIEVEBARVECONTVEGAVEGA ALTAVEGA BAJAVEKOLVELOAVELMAVELVAVENAVENANGOVENATORVENETAVENEZIAVENICEVENLOVENUSVERBOORTVEKOfcVERDELVERDELLAVEROICOVERDIGRIS

BLANK HYDROLOGIC

B0BCABB0CB

CBBDBCCB/CBBAACB/0DC/DBCCBBDDD

CDC0CDA6DBBBBBC0ccDCCBBCBDBCCCDaBBDCCcDBBBCCDCDDDBDC0DDB

SOIL

VERDUNVERGENNESVERHALENVERMEJOVERNALVERNAL1SVERNIAVERNONVERONAVESSERVESTONVETALVETERANVEYOVIAVIANVI BORASVIBORGV1CKERYVICKSBURGVICTORVICTORIAVICTORYVICUVIDAV1DRINEVIEJAVIENNAVIEQUESVIEWVIGARVIGOVIGUSVIKINGVILVILASVILLA GROVEVILLARSVILLYVINAVINCENNESVINCENTVINEYARDVINGOVININCVINITAVINLANDVINSADVINTVI NT ONVIRAVIRATONVIRDENVIRGILVIRGIN PEAKVIRGIN RIVERVIRTUEVISALIAVISTAVIVESVIVIVLASATYVOCAVOOERMAIERVOLADORAVOLCOVOLE NT EVOLGAVOLINVOL1NIAVOLKEVOLKHARVOLMERVOLNEYVOLPERIEVOLTAIREVOLUSIAVONAVOREVROOMANVULCANVYLACH

WABANICAWABASHWABASHAWABASSAWABEKWACAWACOTAWACOUSTAWADAMS

GROUP INDICATES

0D0DBBADCC0AB0BB0BCBADBDBC0BBCCDCDDABBDBCCC6CCCCBBCCCB00CBc-BBCCBBDCDBBCB0BCDCBBBC0

DD0

WADDELLWADDOUPSWAOELLWADENAWADES BOROWADLEIGHWADMALAWWADSWORTHWAGESWAGNERWAGRAMWAHAWAHEEWAHIAWAWAHIKULIWAHKEENAWAHKIACUSWAHLUKEWAHHONIEWAHPETONWAHT1GUPWAHTUMWAIAHAWAIAKOAWAIALEALEWAIALUAWAIAWAWAIHUNAWAIKALOAWAIKANEWAIKAPUWAIKOMOWAILUKUWAIMEAWAINEEWAINOLAWAIPAHUWAISKAWAITSWAKEWAKEENWAKEF1ELDWAKELANOWAKDNDAWAKULLAWALCOTTWALDECKWALDOWALDRONWALDROUPWALESWALFDRDWALKEWALLWALLACEWALLA WALLAWALLERWALLINGTONWALL I SWALLKILLWALLMANWALLOWAWALLPACKWALLROCKWALLS BURGWALLSONWALPOLEWALSHWALSHVILLEWALTERSWALTONWALUMWALVANWAMBAWAMICWAMPSVILLEWANATAHWANBLEEWANDOWANETTAWAN R LAWANNWAPALWAPATOWAPELLOWAPINITIA

B/D WAPP1NGBCBC6

THE

WAPSIEWARBAWARDWARDBOROWARDELL

SOIL GROUP HAS NOT

BBBBBDDCBDACDBBBBBDCB0DCDBD0BBBDBBBACBB.DBBB/DCABCDDDBCCBBBB/0CBC/DCCCB/C0BCBDACBBB/CBBBDAACABC/DBBBBB0AD

BEEN

WARDENWASDWELLWAREWAtEHAMWARMANWARM SPRINGSWARNERSWARRENWARRENTONWARRIORWARSAWWARSINGWARWICKWASATCHWASEPIWASHBURNWASHINGTONWASHOEWASHOUGALWASHTENAWWASILLAW1SIOJAWASSAICWATABWATAUGAWATCHAUGWATCHUNGWATERBOROWATERBURYWATERINOWATERSWATKINSWATKINS RIDGEWATOWATDPAWATROUSWATSEKAWATSONWATSONIAWATSONVILLEWATTWATTONWAUBAYWAUBEEKWAUBONSIEWAUCHJLAWAUCOMAWAUCONDAWAUKEEWAUKEGANWAUKENAWAUKONWAUMBEK4AURIKAWAUSEONWAVERLYWAWAKAWAYCUPWAYDENWAYLANDWAYNEWAYNESBOROWAYSIDEWEAWEAVERWEBBWEBERWEBSTERWEDEKINDWEDERTZWEDGEWEDOWEEWEEDWEEDINGWEEDMARKWEEKSVILLEWEEPONWEHADKEEWEIKERTWEIMERWEINBACHWEIRWEIRMANWEISERWEISHAUPTWEISSWEITCHPECWELAKAWELBYWELCHWELDWELDA

DETERMINED

BCBC0CA/D

B/D

BBAAB

BCBC/D0BBCBBD

0CCBBBBBCCDD0CBBBB/0BBBB0BBDB/DB/DCB0C/DBB

BCCBC0CAOBA/CBB/D0DC/DDCDBC0ABABCCC

TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNORAINED SITUATIDN

NEH Notice U-102, August 1972

B-21

Page 94: 1429 - SJRWMD

Table B-l__Continued

WE LOONwELDuNAWELLERWELLINGTONWELLMANWELLNERWELLS60ROWELLSTONWELLSVILLcWELRINGWEMPLEHENASWENATCHEQMENDELWENHANWENONAWENTWORTHWERLOWWERNERWESOWESSELWESTBROOKWESTBURYweSTCREEKWESTERVILLEWESTFALLHESTFIELDWESTFORDWESTLANDWESTMINSTERWESTMOREWESTMORELANDWESTONWESTPHALIAWESTPLAINWESTPORTweSTviLLEWETHERSFIELOWETHEYWETTERHORNWETZELWEYMOUTHWHAKANAWHALANMHARTONHHATCOMWHATELYWHEATLEYWHEATRIOGgKHEATV1LL6WHEELERWHEELINGWHEELONWHELCHELWHETSTONEWHIOBEYWH1PPANYWHIPSTOCKMHIKLQWHITWHI TAKERWHITCOMBWHITE BIROWH1TECAPMHITEFISHWHITEFOROWH1TEHORS6WHITE HOUSEWHITELAKEWHITELAHWHITEMANWHITEROCKWHITESBURSWHITE STOREWHITE SWANWHITEWATERWHITEWOODWHITLEYWHITLOCKWHITMANWHITNEYWHI TO REWHITSOLWH1TSONWHIT WELLMHOLANWIBAUXWICHITAWICHUPWICKERSHAMWICKETTWICKHAM

NOTES

0BC0BBCBB0Be/cCB/C

CBCBCB0CBCC

B/0C/DBBiiBCABCB/CC0BBBCC00CBBB0BBCCCBaccc0BaBcBB00c0cBC8BDBAa0ccccDBCB

A

WICKIUPWICKLIFFEWICKSBURGWIDTSOEW1EHLMIENWIGGLETONWIGTONHILBRAHAMWILBURWILCOW1LCOXWILCGXSONWILDCATWILDERWILDERNESSWILDKOSEWILD WOODWILEYWILKESWILKESONWILKIMSMILLWILLACYWILLAKENZIEWILLAMARWILLAMETTEWILLAPAWILLARDWILLETTEWILLHANDWILLIAMSWILLIAMSBURGWILLIAMSONWILLISWILLITSWILLOUGHBYWILLOW CREEKWILLOWDALEWILLOWSMILLWOODWILMERWILPARWILSONWILTSHIREKINANSWINBERRYWINCHESTERWIKCHUCKWINDERWINDHAMWINS KILLWINDOMWIND RIVERWINDSORWINDTHORSTWINDYWINEGWINEMAWINETTIWINFIELDWINGWINGAIEWINGERWINGVILLEWINIFREDWINKWINKELWINKLEMANWINKLERWINLOWINLOCKWINNWINNEBAGOWINNEMUCCAHINNESHIEKWINNETTWINONAWINOCSK1WINSTONWINTERSWINTERSBURGWINTERSETWINTHROPW1NTONERWINUWINZWIOTAWI SHARDWISHEYLUW I SHKAHWISKAH

BLANK HYDROLOGICTWO SOIL GROUPS SUCH AS

CDBCC0BACCc0cDBCDDCCCDDBCDBCBA/DBBBCCBBBB0ACDDCB/CDACB/DB8BBACC*

C8C0BCB/DCBDCA0CCB8BDDBACCcACCCBACCC

SOILB/C

HISNERWITBECKWITCHWITHAMW1THEEWITTWUZELHCOENWODSKQWWOLCOTTSBURGWOLDALEWOLFHOLFESENWOLFESONWOLFORDWOLF POINTWOLFTEVERWOLVERINEWOODBINEWOODBRIOGEWOODBURNWOODBURYWOODCOCKWOODENVILLEWOODGLENWOODHALLWOOD HURSTWOODINVILLEWOODLYWOOOLYNWOODMANSIEWOODMEREHOOD RIVERWOOD ROCKWOODROWWOODS CROSSWOODSF1ELOWOODS IDEWOODSONWOODSTOCKWOOOSTDWNWOODWARDWOOLMANWOOLPERWOOLSEYWOOSLEYWOOSTERWOOSTERNWOOTENWORCESTERWORFWORKWORLANDHORLEYWORMSERWOROCKWORSHAMWORTHWORT HENWORTHINGHORTHINGTONWORTMANWRENTHAMWRIGHTWRIGHT KANWRIGHTSVILLEWUNJEYWURTSBOROWYALUSINGWYARDWYARNOWYATTWYEASTWYEVILLEWYGANTWYKOFFWYMANWYMOREWYNNWY NOOSEWYOWYOCENA

XAVIER

YACOLTYAHARAYAHOLAYAKIYAKIMAYAKUSYALLANI

GROUP INDICATES

DDDDCBDBB/C

C/DBCCBDCABCCDBCDBAC/DBC/DBB0CC0CADC/DCBBCCccBAB0CBCCBD

. CBDCCCCCDBCDBBCCCCBBCBDBB

B

BBBDBDB

YALMERYAMACYAMHILLYAMPAYAMSAYYANAYANCYYARDLEYYATESYAUCOYAWOIMYAWKEYYAXONYEAHYYEATES HOLLOWYEGENYELHYENRABYEOMANYESUMYETULLYQDERYOKOHLYOLLA80LLYYOLOYOLOGOYOMBAYOMONTYONCALLAYONGESYONNAYORDYYORKYORKVILLEYOSTYOUGAYOUMANYOUNGSTONYOURAMEVOVIMPAYSIDCRAYTURBIDEYUBAYUKOYUKONYUNESYUNOUE

ZAARZACAZACHARIASZACHARYZAFRAZAHILLZAHLZALESKIZALLAZAMORAZANEZANEISZANESVILLEZANONEZAPATAZAVALAZAVCOZEBZEESIXZELLZENZEKDAZENIAZENIFFZEONAZIEGLERZIGWEIOZILLAHZIMZIMMERMANZINGZ INZERZIONZIPPZITAZOARZOATEZOHNERZOOKZORRAVISTAZUFELTZUKANZUMBROZUMWALT

THE SOIL GROUP HAS NOT

B8CCD8tC0CDCBCCBBABBAB00BDCBCDB/D8CDCBCBADDADCDDC

D0BDBBBCAecBCCCBCBCBCCBBACBB/C0ACBCC/D8C0B/DCAB/DDBC

BEEN

ZUNOELLZUNHALLZUNIZURICH2WINGLE

.

DETERMINEDINDICATES THE DRAINED/UNDRAINED SITUATION

B/CB/CD

NEH Notice U-102, August 1972

B-22

Page 95: 1429 - SJRWMD

near the surface, and shallow soils over nearly impervious

material. These soils have a very slow rate of water trans-

mission (0 - 0.15 in./hr.).

The infiltration rate is the rate at which water enters the

soil at the soil surface and is controlled by surface conditions.

The transmission rate is the rate at which the water moves in the

soil and is controlled by the soil profile.

In the situation where high water table limits the storage

capacity of a soil, a dual classification is given to the soil.

For instance, a Pompano sand is classified as A/D. The first

letter applies to the artificial drained condition and the second

to the undrained natural condition. Higher hydrologic soil group

should be used if the water table is lowered by an artificial

drainage such as a network of canals or ditches.

Very often, soil profiles are disturbed and altered by ur-

banization to an extent that the existing hydrologic soil group

is no longer applicable. Under this circumstance, Table B-2

should be used to determine the new hydrologic soil group based

on soil texture of the new surface soil.

Table B-2.—Approximate Hydrologic Grouping of Soil Textures forDisturbed Soils (2).

Hydrologic Soil Group Soil Textures

A Sand, loamy sand, and sandy loamB Silt loam and loamC Sandy clay loamD Clay loam, silty clay loam, sandy

clay, silty clay, and clay

B-23

Page 96: 1429 - SJRWMD

REFERENCES

1. Soil Conservation Service, 1972. National_EngineeringHandb,QQki_S.ection_41._HydEQlo.gy, pp. 7.6-7.26, USDA-SCS,Washington, B.C.

2. Soil Conservation Service, 1983. Urban_Hyd£QlQgy_for_gmallW§teE§beds (Revised), Technical Release No. 55, USDA-SCS,Washington, D.C. (Draft)

B-24

Page 97: 1429 - SJRWMD

APPENDIX C

OBSCBIETIQM.QE-SBliECTEO.iAHD.aSES

The SCS has provided a description of cover complex clas-

sification for the following land covers (1):

EallQW. is the agricultural land use and treatment with the

highest potential for runoff because the land is kept as bare as

possible to conserve moisture for use by a succeeding crop.

BQW._CEQP. is any field crop (maize, sorghum, soybeans, sugar

beets, tomatoes, tulips) planted in rows far enough apart that

most of the soil surface is exposed to rainfall impact throughout

the growing season. At planting time, it is equivalent to fallow

and may be so again after harvest. In most evaluations, average

seasonal condition can be assumed.

Sm§ll_gcaiD (wheat, oats, barley, flax, etc.) is planted in

rows close enough that the soil surface is not exposed during

planting and shortly thereafter.

ClQ§er§egded_legumt§_QE_EQtatiQn_meadQw. (alfalfa, sweet

clover, timothy, etc., and combinations) are either planted in

close rows or broadcast.

HatiYe_pa§tUEe._QE_ESQge is evaluated based on cover effec-

tiveness as shown in the table below.

c-i

Page 98: 1429 - SJRWMD

Table C-1.—Classification of Hydrologic Condition for NativePasture or Range (1)

Vegetative Condition Hydrologic Condition

Heavily grazed (plant cover 50%) Poor

Not heavily grazed (50% plant cover 75%) Fair

Lightly grazed (plant cover 75%) Good

is a field on which grass is continuously grown,

protected from grazing, and generally mowed for hay. Drained

meadows (those having low water tables) have little or no surface

runoff except during storms that have high rainfall intensities.

Undrained meadows (those having high water tables) may be so wet

as to be the equivalent of water surfaces. If a wet meadow is

drained, its soil-group classification as well as its land use

and treatment class may change.

WQQds are usually small isolated groves of trees being raised

for farm or ranch use. Woods are evaluated based on cover effec-

tiveness as shown in the table below:

C-2

Page 99: 1429 - SJRWMD

Table C-2.—Classification of Hydrologic Conditions for Woods (1)

Vegetative Condition Hydrologic Condition

Heavily grazed or regularly burned. Litter,small trees, and brush are destroyed. Poor

Grazed but not burned. There may be somelitter but these woods are not protected. Fair

Protected from grazing. Litter and shrubscover the soil. Good

In addition to the land uses described above, there are two

distinct types of land cover that are common in Florida: pine

flatwoods and wetlands. The pine flatwoods is a major forest

type of Florida. Wetlands can be classified into two groups:

forested wetlands and non-forested wetlands. The following

descriptions of pine flatwoods and wetlands were extracted from

the Phase I report of Water Resource Management, Appendix G (2).

EiDg_fl§tWQQd§ consist of more than one pine species with a

dense shrub and herbaceous plants (e.g. saw palmetto, gallberry,

runner oak and wire grass) growing underneath. Flatwoods are

frequently subjected to fire because of the understory density.

The flatwoods occur on a variety of soil types (e.g. Leon,

Immokalee, St. Johns, Plummer, Rutledge, and Bladen), all of

which are poorly to very poorly drained. These soils generally

occur on areas which have flat topography and clay layer or or-

ganic hardpan 2-4 feet below the ground. Water table is often

located near the ground surface.

C-3

Page 100: 1429 - SJRWMD

During the dry months, high loss rate of moisture due to

evapotranspiration from the top horizons exceeds the rate of

moisture supplied from the lower horizons, which is impeded by

the hardpan. This condition makes the flatwoods extremely dry in

the dry months. During the heavy rains of the summer months,

water may perch above the hardpan, often flooding the flatwoods

to above ground level.

EQEggted_w.gtlarid§ include floodplain forests (river swamps) ,

bayheads, lake border swamps, bog swamps, and cypress domes.

Floodplain forests (river swamps) are wetland forests occupy-

ing stream floodplains and backswamp wetlands formerly in contact

with a stream. River swamps are found on alluvial river deposits

rich in clay, organic deposits, peats and mucks. Flooding occurs

annually, or more frequently.

Bayheads are wetland forests dominated by evergreen and

broad-leafed bay trees that grow in acid, peat forming

depressions. Bayheads occur in depressions in the flatwoods or

as marginal growth mound flatwoods ponds with stable water

levels. Bay swamps are maintained by a high water table or

seepage from higher terrain.

Lake border swamps are cypress or ash-gum-cypress swamp oc-

curring on lake borders.

Bog swamps are a mixture of cypress swamp, marshes and

prairies, lakes and shrub bogs. Bog swamps occur on thick peat

deposits above sand with the peat tending to build up to the

water surface.

C-4

Page 101: 1429 - SJRWMD

Cypress domes are forested wetlands which are commonly found

in flatwoods regions. They occur in lens shaped depressions and

are usually underlain by a clay or hardpan layer which impedes

seepage. Cypress domes are seasonally or permanently wet. Water

is supplied directly by rainfall and indirectly by seepage from

surrounding terrain. During drought periods, many cypress domes

go dry and burn along with the surrounding flatwoods.

HQn::£Qrested_w.etXands include wet prairies and fresh water

marsh.

Wet prairies are dominated by grass, sedges, herbs and oc-

casionally shrubs. Wet prairies occur on coarse to fine grained,

poorly to very poorly drained sandy soils. Due to the nature of

sandy soils, their low capillary activity and their occurrence on

upland areas, prairies become dry and burn during drought

periods.

The water which maintains wet prairies comes primarily from

rainfall, local runoff, and seepage. Water is lost principally

through evapotranspiration, as prairies generally do not drain

freely.

Fresh water marsh, like wet prairies, is dominated by

grasses, sedges and herbs. It remains wetter than prairies

during dry periods, because it occurs in low areas on organic

soils with high water holding capacity.

C-5

Page 102: 1429 - SJRWMD

REFERENCES

1. Soil Conservation Service, 1972. National.EngineeringHa.ndbQQkI._S.gctiQn_4i_Hyd£QlQgy, pp. 8.1-8.6; USDA-SCS,Washington, D.C.

2. St. Johns River Water Management District, 1977. WaterEgsQuccg.Managgmgnt.Blaru.Phase.!, Appendix G, Palatka,Florida.

C-6

Page 103: 1429 - SJRWMD

APPENDIX D

APPLICATIONS OF SCS RUNOFF PROCEDURES

Determine a design storm hydrograph using the fol-lowing data:

Drainage area = 200 acresTime of concentration = 0.75 hoursRainfall depth =5.0 inchesStorm duration =6.0 hoursRainfall interval = 0.25 hoursRainfall distribution (see computer printout)Pervious area = 20%; CN=60Noneffective impervious area = 50%; CN = 100Effective impervious area = 30%; CN = 100

A. TIA_MetbQ3: CN = (0.20) (60) + (0.80) (100) = 92.0

B. M,Qdif_ied_T.IA_Mgth.Qd: Since the TR-20 program cannotmodel the EIA Method, CN has to be adjusted in order toobtain the same runoff volume as computed from the EIAMethod. The steps used to find the equivalent CN isgiven below:

Step 1. Compute watershed storage:

S = 1QQQ - 10 = 6.67 inches60

Step 2. Adjust rain for the pervious area:

P1 = (1 + 0.50) (5.0) = 17.5 inches0.20

Step 3. Compute runoff from the pervious area:

Q v = (17.5 - 0.2(6.67))2 (.20)/100 = 2.289 inches

17.5 + 0.8(6.67)

Step 4. Compute runoff from the effective impervious area:

Qei = (5.0)(30) (100) = 1.50 inches

Step 5. Compute total runoff:

Q = 2.289 + 1.50 = 3.789 inches

Step 6. Compute the equivalent S from the following equation:

S = 5[5.0 + 2(3.789) - (4 (3 .789) 2 + 5 (5 .0) (3 .789) )° ' 5 ] = 1.215D-l

Page 104: 1429 - SJRWMD

Step 7. Compute the equivalent CN:

CN = 1000/(1.215+10) = 89.16

The resulting runoff hydrographs generated from the TIAMethod (Page D-3) and modified TIA Method (Page D-4) are plottedin Figure D-l.

D-2

Page 105: 1429 - SJRWMD

ExaffiPlg_Dr2• Determine a design storm hydrograph using the datagiven in Example D-l.

If one third of effective impervious area in Example D-l isconverted into swales, then the basin t would be increased. In

this example, the new basin t is assumed to be 1.0 hour. Forcdesign purpose, swales are assumed to be saturated prior to stormevent and can be treated as effective impervious area. As aresult, the basin CN remains the same (CN = 89.16). This examplewill show the effect of two methods used in estimating peak ratefactor on storm hydrographs.

A. Using standard SCS peak rate factor: K1 = 484

B. Using adjustment factor:

Step 1. Determine the adjustment factor according to % ofponding areas and storm frequency. If swales areassumed to spread throughout the basin, then theadjustment factor can be obtained from Table 10.For 10% as swales and a 25-year design storm, theadjustment factor is 0.65. Therefore, the adjustedK1 would be (0.65) (484) = 314.6.

Step 2. Draw a triangular dimensionless unit hydrograph(DUH) .

For t = 1.0 hour, tb = - = 4.10 hours

The resulting DUH is shown on Page D-6.

Step 3. Tabulate the ratios of t/t, and q/q . If unit hydrographU £r

time increment is 0.25 hours, then the interval of t/t,

ratio is 0.25/4.10 = 0.061. The ordinates of q/qp cor-

responding to t/t are determined from the following

equations:

q/qp = t/tp ; o<t/tp<i.oq/qp = 1.0 - 0.3226(t/tp - 1.0) ;1.0<t/tp<tb

The resulting storm hydrographs obtained from the standard K1

(Page D-8) and adjusted K1 (Pages D-9 through D-10) are comparedin Figure D-2 .

D-3

Page 106: 1429 - SJRWMD

*««HHHHHH»*w*#*80-80 LIST OF INPUT DATA FOR TR-20 HYDRQLQ6Yi»iin»H»»H»«i

JOB FULLPRINTTITLE EXAMPLE D-1ATITLE USING TOTAL IMPERVIOUS AREA METHOD5 RAINFL 1 0.258 .000 .017 .035 .055 .0808 .107 .135 .180 .230 .4108 .600 .650 .700 .740 .7808 .810 .835 .860 .880 .9008 .920 .940 .960 .980 1.009 ENDTBL6 RUNOFF 1 01 1 0.3125 92.0 0.75 1 1 1ENDATA

7 INCREM 6 0.107 COMPUT 7 01 01 0.0 5.00 1.0 1 2 1 1

ENDCMP 1ENDJQB 2

*««**w**#w**t**««*«««END OF 80-80 LIST**iniHH«mimmiuiiinm

TR20 XEQ EXAMPLE D-1A JOB 1 PASS 1REV 09/01/83 USING TOTAL IMPERVIOUS AREA METHOD

EXECUTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT = 0.10 HOURS RECORD ID

EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD IDSTARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ANT. WIST. COND= 2ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS

OPERATION RUNOFF STRUCTURE 1OUTPUT HYDR06RAPH= 1AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 92. TIME OF CONCENTRATION 0.75 HOURSINTERNAL HYDR06RAPH TIME INCREMENT^ 0.1000 HOURS

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)2.76 481.89 (RUNOFF)

TIME(HRS) FIRST HYDRQ6RAPH POINT = 0.00 HOURS TIME INCREMENT = 0.10 HOURS DRAINAGE AREA = 0.31 SQ.MI.0.001.00

2.003.004.005.006.007.00

DISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHG

0.005.5884.10400.34143.0884.9578.723.60

0.009.57

104.35349.35137.0183.0577.516.16

VuVTD

14.59138.10302.46127.2881.7273.844.42

0.0020.39194.60266.48119.3330.7666.043.16

0.0026.64270.40239.10112.6930.0855.072.25

0.0033.02353.79217.60106.6879.6143.271.60

V m SO

39.94427.26199.99101.0279.2732.301.13

0.3348.03475.03185.5295.8079.0423.100.79

1.1258.30479.33172.3991.2778.8816.500.54

2.7970.63448.07159.9087.6178.7811.900.37

8.00 DISCHG 0.24 0.14 0.07 0.02 0.00

RUNOFF VOLUME ABOVE BASEFLOH = 4.09 WATERSHED INCHES, 824.07 CFS-HRS, 68.10 ACRE-FEET; BASEFLOH = 0.00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

D-4

Page 107: 1429 - SJRWMD

5 RAINFL 18 .0003 .1078 .6008 .8108 .9209ENDTBL6 RUNOFF 1 01ENDATA

7 INCREM 67 COMPUT 7 01ENDCMP 1ENDJOB 2

0.25.017.135.650.835.940

1 0.3125

0.1001 0.0

«rt*******#*******80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY******************

JOB FULLPRINTTITLE EXAMPLE D-1BTITLE USING ADJUSTED CURVE NUMBER

.035 .055 .080

.180 .230 .410

.700 .740 .780

.860 .880 .900

.960 .980 1.00

89.16 0.75 1 1 1

5.00 1 . 0 1 2 1 1

M**«HH»********««t*t*******END OF 80-80 LIST********************************

TR20 XEQ EXAMPLE D-1B JOB 1 PASS 1REV 09/01/83 USING ADJUSTED CURVE NUMBER

EXECUTIVE CONTROL OPERATION INCREH MAIN TIME INCREMENT = 0.10 HOURS RECORD ID

EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD IDSTARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ANT. MOIST. COND= 2ALTERNATE H0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS

OPERATION RUNOFF STRUCTURE 1OUTPUT HYDROGRAPH= 1AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 89. TIME OF CONCENTRATION= 0.75 HOURSINTERNAL HYDR06RAPH TIME INCREMENT= 0.1000 HOURS

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)2.77 445.99 (RUNOFF)

TIME(HRS)0.001.002.003.004.005.006.007.00

FIRST HYDROGRAPH POINTDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHG

0.00

1.3764.74375.78143.3482.9677.148.43

0.003.2083.21329.39132.8181.1475.976.04

= 0.00 HOURS TIME INCREMENT = 0.100.006.06

114.23286.35123.5479.8772.384.34

0.00

9.90166.47253.26115.9578.9664.763.10

0.0014.53237.46228.07109.6278.3354.002.21

0.0019.68317.01208.25103.8677.8942.441.57

HOURS0.0025.56388.66191.9798.4377.5931.681.11

DRAINAGE0.0032.62437.02178.5593.4177.3822.660.78

AREA = i0.0841.64444.71166.2889.0577.2516.180.53

0.31 SQ.MI.0.4352.57418.38154.5385.5277.1811.670.36

8.00 DISCHG 0.23 0.14 0.07 0.02 0.00

RUNOFF VOLUME ABOVE BASEFLOH = 3.79 WATERSHED INCHES, 763.46 CFS-HRS, 63.09 ACRE-FEET; BASEFLOH = 0.00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

D-5

Page 108: 1429 - SJRWMD

500

DISCHAR3E

a

IN

CFS

400 .jTIA METHODMOD. TIA METHOD

300 _

200 .

100

0

Figure D-l.

10

TIME IN HOURSRunoff Hydrographs of Example D-l using TIA and Modified TIA Methods,

Page 109: 1429 - SJRWMD

5 RAINFL 1883889 ENDTBL6 RUNOF 1ENDATA

7 INCREM 67 CO«PUT 7ENDCHP 1ENDJOB 2

.000

.107

.600

.810

.920

01

01

0.25.017.135.650.835.940

1 0.3125

0.1001 0.0

««mnHHHHHmmni8g-8g LIST OF INPUT DATA FOR TR-20 HYDROLOSY***»**»*»«*«««*

JOB FULLPRINTTITLE EXAMPLE D-2ATITLE USIN6 STANDARD PEAK RATE FACTOR (484)

.035 .055 .080

.130 .230 .410

.700 .740 .780

.860 .880 .900

.960 .980 1.00

89.16 1.00 1 1 1

5.00 1 . 0 1 2 1 1

*w*ww«Hrt««w**««****«*END OF 80-80 LIST«HHHmmHmHHHnmHH»«w«w

TR20 XEQ EXAMPLE D-2A JOB 1 PASS 1REV 09/01/83 USING STANDARD PEAK RATE FACTOR (484!

EXECUTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT = 0.10 mm RECORD ID

EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD IDSTARTING TIRE = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TARE N0.= 1 ANT. MOIST. COND= 2ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS

OPERATION RUNOF STRUCTURE 1OUTPUT HYDROGRAPH= 1AREA= 0.31 SQ MI INPUT RUNOF CURVE= 89. TIME OF CONCENTRATION^ 1.00 HOURSINTERNAL HYDR06RAPH TIME INCREMENT= 0.0952 HOURS

PEAK TINE(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)2.96 376.51 (RUNOFF)

TIME(HRS)0.00

1.00

2.003.004.005.006.007.008.009.00

FIRST HYDROGRAPH POINTDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHG

0.000.6745.46375.20172.4693.9178.0920.331.660.05

0.00

1.5658.54360.88160.4790.2677.2815.821.280.02

= 0.00 HOI0.00

3.0978.17336.83149.4287.2475.4112.370.990.00

LJRS TIME INCREMENT = 0.100.005.34

107.51303.48139.3784.8171.899.690.75

0.008.33

149.73279.71130.3682.9066.167.570.57

0.0012.04203.11253.81122.3981.4258.565.900.42

HOURS0.0016.53260.21232.53115.3180.2850.054.600.31

DRAINAGE0.0121.94312.84214.92108.9479.4441.433.570.22

AREA = 0.31 SQ.MI0.0528.44352.75199.63103.2278.8433.352.770.15

0.2336.28373.73185.5698.2278.4126.222.150.10

RUNOFF VOLUME ABOVE BASEFLOW = 3.73 WATERSHED INCHES, 763.15 CFS-HRS, 63.07 ACRE-FEET; BASEFLOH = 0.00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

D-7

Page 110: 1429 - SJRWMD

«*m**«HHHHHU**80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOfiY«**#**»»*«*w#*

JOB FULLPRINTTITLE EXAMPLE D-2BTITLE USING ADJUSTED PEAK RATE FACTOR4 DIHHYD 0.06188889 ENDTBL5 RAINFL888889 ENDTBL6RUNOFF

ENDATA7 LIST7 INCREM7 CQMPUT

ENDCMPENDJOB

0.0000.9190.5160.112

1.000.107.600.810.920

1 01

67 0112

0.2500.8390.4350.031

0.25.017.135.650.835.940

1 0.3125

0.1001 0.0

0.5000.7580.3540 gtaatWtfv

.035

.180

.700

.860

.960

89.16

5.00

0.7500.6770.2740.000

.055

.230

.740

.880

.980

1.00

1.0

1.0000.5960.193V m tflSlff

.080

.410

.730

.9001.00

1 1 1

1 2 1 1

W»«»*tHHmHHHHHHHHHHHf*«*«*END OF 80-80 LIST«*«**«W#«*«**H*«#**«***

TR20 XEQ EXAMPLE D-2B JOB 1 PASS 1REV 09/01/83 USINS ADJUSTED PEAK RATE FACTOR

EXECUTIVE CONTROL OPERATION LIST RECORD IDTIME INCREMENT

4 DIMHYD 0.0588 (INPUT VALUE OF 0.061 NOT EQUAL TO COMPUTED VALUE? COMPUTED VALUE USED.)

8 0.9190 0.8390 0.7580 0.6770 0.59608 0.5160 0.4350 0.3540 0.2740 0.19308 0.1120 0.0310 0.0000 0.0000 0.00009 ENDTBLCOMPUTED PEAK RATE FACTOR = 314.64

TABLE NO. TIME INCREMENT

0.0550 0.08000.23000.7400

5 RAINFL 1888889 ENDTBL

6 RUNOFF 1ENDATA

g oostamW&BW

0.10700.60800.81000.9200

STANDARD1 1

0.25000.01700.13500.65000.83500.9400

CONTROL0.3125

0.03500.18000.70000.86000.9600

INSTRUCTIONS89.1600 1.00001 1 0 1 0 0

END OF LISTING

D-8

Page 111: 1429 - SJRWMD

TR20 XEQ EXAMPLE D-2B JOB 1 PASS 1REV 09/01/83 USING ADJUSTED PEAK RATE FACTOR

EXECUTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT = 0.10 HOURS RECORD ID

EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD IDSTARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ANT. MOIST. COND= 2ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 8.10 HOURS

OPERATION RUNOFF STRUCTURE 1OUTPUT HYDR06RAPH= 1AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 89. TIME OF CONCENTRATION 1.00 HOURSINTERNAL HYDR06RAPH TIME INCREMENT^ 0.0952 HOURS

PEAK TIME(HRS)3.14

TIME(HRS)0.001.002.003.004.005.006.007.008.00

PEAK DISCHARGE(CFS)276.23

FIRST HYDR06RAPH POINTDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHGDISCHG

0.000.6731.74270.75227.49111.5480.6438.796.46

0.001.3643.21275.72216.72104.8478.8334.334.74

PEAK ELEVATION(FEET)(RUNOFF)

= 0.00 HOURS TIME INCREMENT = 0.100.00

2.4060.08275.39205.1699.8176.4130.153.28

0.003.8782.47273.29193.1895.8673.3126.242.10

0.005.80

110.70270.16130.7492.5969.5322.601.19

0.00

8.22143.80265.94168.0589.7464.9919.240.55

HOURS0.00

11.33178.08260.39155.2387.2859.6916.140.19

DRAINAGE0.0115.19210.66253.67142.5885.1753.9713.310.05

AREA =0.0719.85237.46245.96130.7983.3948.5910.760.00

0.31 SQ.HI0.2725.37257.75237.23120.2781.8843.548.47

RUNOFF VOLUME ABOVE BASEFLOW = 3.79 NATERSHED INCHES, 763.95 CFS-HRS, 63.13 ACRE-FEET; BASEFLOH = 0.00 CFS

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

D-9

Page 112: 1429 - SJRWMD

DISCHARGE

0 IN

CFS

400 j

300 „

200 .

100 .

0

K, « 484K « 315

Figure D-2.

TIME IN HOURSRunoff Hydrographs of Example D-2 using Different Peak Rate Factors,