140912 elbc entek low erstatic.entek.com/140912-elbc_entek-low-er.pdf · 2014. 9. 24. · diffusion...

33
A Continuum of Separator Options for Next Generation LeadAcid Batteries R. Waterhouse, C. La, L. Keith, K. Hanawalt, D. Merritt, D. Walker, J. Moore, C. Rogers, J. Kim, J. Frenzel, M. Warren, J. Norris, D. Trueba, and R.W. Pekala September 12 , 2014

Upload: others

Post on 24-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • A Continuum of Separator Options for Next Generation Lead‐Acid BatteriesR. Waterhouse, C. La, L. Keith, K. Hanawalt, D. Merritt, D. Walker, J. Moore, C. Rogers, J. Kim, J. Frenzel, M. Warren, J. Norris, D. Trueba, and R.W. Pekala

    September 12 , 2014

  • Background

    ENTEK focused on providing new low resistance separator to EFB/ECL market (start‐stop) without compromising mechanical properties

    Explored key characteristics that influence electrical resistance % porosity Wettability  Tortuosity

    Improvements achieved through modifications to formulation and process conditions

    Worked with customers and verified improved battery performance

    2

  • Separator ER

    Separator resistance is a function of electrolyte resistivity (acid) plus the design, pore structure, and composition of the separator.

    Resistance of electrolyte within a porous structure (Ω): R = pLτ2 / P A 

    Where  p = resistivity of the electrolyte,  f ([C], T)L = thickness of the separator (design)τ = tortuosity of the pore path (structure)P = porosity filled with acid (structure and composition)A = cross‐sectional area through which ions flow

    New product attributes Higher porosity Lower tortuosity Sustained wettability through interface modification(s)

    3

  • Electrical resistance ‐‐‐ PALICO measurement

    Electrical resistance of a PE separator is traditionally measured using the Palico Low Resistance Measuring System: RSES: the areal resistance of the Separator‐Electrolyte System RPalico: The resistance value in milliohms measured by the Palico instrument 

    times the area of the aperture (32.26 cm²) RE: The areal resistance of the electrolyte that would occupy the same 

    volume as the SES 4

    V’1 V’2

    I

    V1 V2

    I

    R’ = (V’ 1-V’2)/I = R1 + RSES + R2With Separator

    R = (V 1-V2)/I = R1 + RE +R2Without Separator

    RPalico = (R’ – R) = (RSES – RE)

    R1 RSES R2 R1 RE R2

  • Separator ER Model

    5

    V2

    R SES

    The resistivity of the electrolyte‐filled separator can be calculated for various separators from the ER measurement data and the geometry of the rib profile.

    Separator schematic with major and minor ribs.The space filled by the acid‐containing separator and the space filled with acid comprise the separator‐electrolyte system (SES).

    Rmajor

    Relyte,bw

    Rbw

    Relyte,minor

    V1

    Rminor

  • Pore Structure

    The pore structure of PE/silica separator is characterized by its heterogeneity: Hydrophilic silica aggregates of different sizes Hydrophobic polyethylene fibrils Differences in structure between surface (polymer‐rich) and bulk 

    (silica‐rich) Not all pore volume is filled with electrolyte or stays filled with 

    electrolyte Total pore volume ≠ acid accessible pore volume

    6

    Constricted Pore

    BlindPore

    Variety of pores

  • SEM ‐‐‐ Bulk Structure

    7

    UHMWPE

    Silica Aggregates

  • SEM: Surface Structure ‐ Rib Side

    8

  • SEM: Surface Structure ‐ Flat Side

    9

  • Tortuosity – Electrical Resistance Measurement

    10

    1.00

    1.50

    2.00

    2.0 2.2 2.4 2.6 2.8 3.0

    Tort

    uosi

    ty

    SiO2/PE Ratio

    Tortuosity vs. SiO2/PE Ratio - 0.25mm BW: Determined from ER Measurement

    SiO2/PE Water Porosity Tortuosity2.3 57 1.372.75 60 1.312.9 60 1.28

  • Tortuosity – Diffusional Resistance Measurement

    Separator samples were boiled in DI water for 10 minutes, and equilibrated at room temperature prior to measurement: Conductivity of the solution in the diffusate compartment was 

    measured with time for 1 hour

    Tortuosity was determined from the measured diffusional resistance.

    11

    Conductivity Probe

    Separator

    KCl Feed Compartment: C0 = 1.0M

    D = 1.9 X 10‐9 m2/sec

    Diffusate Compartment

    Reference: C. Labbez, et al., Desalination, 141 (2001) p. 291

    Cf(t) Cd(t)

  • Tortuosity Measurement – Diffusional Resistance

    12

    Diffusion through a membrane separating two compartments:

    Slope of the left‐hand‐side of eq. (2) vs. time can be used to calculate the diffusional resistance

    C0: initial concentration in the feed compartmentCf(t): concentration of electrolyte in the feed compartment at time tCd(t): concentration of electrolyte in the diffusate compartment at time tA: Separator area exposed to the solutionsV: volume of solution in one compartmentRd: Diffusional resistance of separator

    εDτtR

    2

    d

    t: separator thicknessτ : tortuosityD: Diffusivity of soluteε : porosity

    ln[(C0-2Cd(t))/C0] vs. Time

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0.00

    0 500 1000 1500 2000 2500 3000 3500 4000Time (sec.)

    ln[(C

    0-2C

    d(t))

    /C0]

    Slope = -(2*A)/(V*Rd)

    Diffusional resistance is related to tortuosity by:

    (1)

    ln (2)

  • Tortuosity Comparison

    Difference between the two methods is 12‐15%: Electrolyte: H2SO4 vs. KCl Concentration: ~ 5M for H2SO4 vs. 1M for KCl

    Increasing SiO2/PE ratio from 2.3 to 2.9 only results in a small increase in water porosity and a small decrease in tortuosity.

    13

    1.00

    1.50

    2.00

    2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

    Tort

    uosi

    ty

    SiO2/PE Ratio

    Tortuosity vs. SiO2/PE Ratio - 0.25mm BW: Determined from Diffusional and Electrical Resistance Measurement

    Diffusional Resistance Electrical Resistance

  • How does the new Low Resistance Separator differ from a traditional PE/SiO2 Separator?

    14

    New 2.6

    New 2.3

    New 2.1

    New 1.8

  • Low ER separator ‐ Tortuosity

    Change in % porosity and pore size distribution leads to lower tortuosity.

    15

    1.00

    1.50

    2.00

    1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

    Tort

    uosi

    ty

    SiO2/PE Ratio

    Tortuosity vs. SiO2/PE Ratio: Determined from Diffusional and Electrical Resistance Measurement

    Determined from Diffusional Resistance

    Determined from Electrical Resistance

    Standard Separator

    LER SeparatorProduct SiO2/PE

    Water Porosity (%)

    Tortuosity - Diffusion

    Standard Separator 2.3 57 1.63Standard Separator 2.75 60 1.49Standard Separator 2.9 60 1.51

    LER Separator 1.8 60 1.30LER Separator 2.6 64 1.35

  • Electrical Resistance

    16

    New

    New

    New

  • Initial product Launch ‐ 162‐0.8‐0.25 GE_LR

    17

    ‐ 34%

    + 22%+ 21%

    + 13%

  • Battery Performance Results

    Lower internal resistance:  Rbatt decreased by 0.07‐0.16 mΩ

    Better Cold Cranking Performance EN U10: increased by 100 to 300mv. EN U30: increased by 60 to 140mv.

    Excellent cycle life 50% DOD cycles 17.5% DOD cycles

    Low water consumption

    18

  • Advanced Development Activities

  • MOTIVATION

    20

    1. Low Resistance Separator2. Melt blown polymer fiber mats3. High porosity silica‐filled sheets4. Crosslinked polymer gels

    Porosity Range

    55%PE/SiO2 

    Separators

    93%AGM

    How can we create separators with 60‐90% porosity ?

  • Melt‐blown Fiber Technology

    21

    Air In

    Polymer Melt In

    Attenuated Fiber

    Air

    Spinning Nozzles

    Spinning Nozzles

    Air Gap

    Bottom View

    Sectional View

    Air Gap

    Orifice

    Polymer Melt In

    Bottom View Sectional View

    1. AGM Substitute2. Extraction‐Free SLI separators

  • AGM – BGO Grade

    SEM Comparison

    Fiber size comparable to AGM can be achieved. Polymer fiber mats exhibit sustained wettability

    22

    Polymer Melt Blown Fiber Mat

  • Porosity and Wicking Behavior

    Wicking height was determined after 2 minutes in H2SO4, 1.28 SG.

    Wicking height varied between 62mm to 72mm: Comparable to the H&V AGM sample –

    65mm 23

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    1 2 3 4 5

    Percen

    t Porosity

    Lane Number

    Run #1 Run #3 Run #4 Run #9

    Porosity between 86% and 89% was achieved.0

    10

    20

    30

    40

    50

    60

    70

    80

    1 2 3 4 5Wicking

     Height (mm)

    Lane Number

    Run #1 Run #3 Run #4 Run #9

  • Compressibility Behavior

    24

    Melt blown fiber mat and AGM samples had the same initial thickness –about 1.7mm measured at 10kPa, dry.

    Melt blown polymer fiber mat demonstrates minimal shrinkage upon wetting, and more compression resistance under stress.

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    1.60

    1.70

    1.80

    1.90

    2.00

    0 10 20 30 40 50 60

    Fibe

    r She

    et T

    hick

    ness

    (mm

    )

    Compressive Stress (KPa)

    Melt Blown Fiber Mat: Sheet Thickness vs. Compressive Stress

    MBFM, Dry State MBFM, Wet StateAGM, Dry State AGM, Wet State

    AGM

    Melt Blown Polymer Fiber Mat

  • Calendered Sheet

    The fiber mats were calendered using one groove roll and one flat roll: Longitudinal rib profile was introduced on the calendered fiber mats Precusor fiber mats were densified more aggressively

    75%‐80% densification Final backweb thickness ~ 0.4mm

    Preferred thickness is 0.15‐0.25mm

    25

    Rib profile

  • Electrical Resistivity

    Samples were soaked in H2SO4, 1.28 SG, at room temperature for 20 minutes prior to ER measurement.

    Electrical resistance depends on the extent of calendering and the final porosity. The instantaneous wettability in H2SO4 allows the calendered polymer fiber mats to 

    achieve soaked electrical resistivity that is better than the boiled electrical resistivity of a standard PE/SiO2 separator.

    26

    0

    1000

    2000

    3000

    4000

    5000

    6000

    MBFM140407.4

    MBFM140421.1

    MBFM140421.3

    MBFM140421.4

    MBFM140421.9

    0.25mmStandard PE

    Separator

    Elec

    tric

    al R

    esis

    tivity

    (mΩ

    -cm

    ) Boiled ER Value

  • Mechanical Properties – BW Puncture

    When normalized for backweb thickness, the calendered polymer fiber mats exhibit puncture strength comparable to a PE/SiO2separator

    27

    0

    10

    20

    30

    40

    50

    60

    0

    5

    10

    15

    20

    25

    MBFM140407.4

    MBFM140421.1

    MBFM140421.3

    MBFM140421.4

    MBFM140421.9

    0.25mmStandard PE

    Separator

    Nor

    mal

    ized

    Pun

    ctur

    e St

    reng

    th (N

    /mm

    )

    Punc

    ture

    Str

    engt

    h (N

    )Puncture Strength Normalized Puncture Strength

  • SEM: High OA Silica‐filled Sheets

    FG silica‐filled sheet at SiO2/PE=5 has similar porosity with larger amount of PE fibrils that enhance mechanical properties

    28

    TX; SiO2/PE = 10FG; SiO2/PE =5

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0.0010.010.1110

    Log diffe

    rential intrusion

     (mL/g)

    Pore size diameter (μm)

    FG/PE=5

    AB/PE=5

    TX/PE=10

    UK 0.15 mm 2.6 control

    Hg Porosimetry ‐ Pore Size Distribution

    Highly filled silica sheets show larger pore size distribution and higher tortuosity compared with standard separator 29

  • Crosslinked Polymer Gel Formation in Sulfuric Acid

    30

    O

    NH2

    acrylamideHN

    HN

    O

    H2N

    O O

    H2N

    O

    HN

    C OC O

    H2NO

    NH

    O

    NH

    N,N'-methylene-bis-acrylamide

    C O

    H2N

    C O

    HN

    (NH4)2S2O8+

    Lead

    10% PA gel in H2SO4

  • SEM: Polyacrylamide Gel (Supercritical Drying)

    31

  • Cycle Performance

    Test conditionCharge rate=1CCut-off voltage in charge= 2.45 VCut-off voltage in discharge= 1.3 V

    Cell performance is similar to controls with AGM separator

    320

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 10 20 30 40 50 60

    Resistance (Ω)

    Cycle

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 10 20 30 40 50 60

    Discharge capacity (A

    h)

    Cycle

    PAM009 (10% polymer in prismatic cell )

    Prismatic cell assembly

  • Summary

    Value creation through product and manufacturing innovation is the foundation of ENTEK

    ENTEK is working on next generation separators for deep cycle, start‐stop, and high power battery applications

    ENTEK would like to work with battery manufacturers on new growth opportunities that could change the way that separators are integrated into Pb‐acid cell designs

    33