14 madkour 335-345

12
Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010, 335-346 SEMICONDUCTIVITY BEHAVIOUR OF EGYPTIAN NATURAL SINTERED ORE FOR THERMOTECHNOLOGICAL APPLICATIONS Loutfy H. Madkour Chemistry Department, Faculty of Sciences and Arts, Al-Kamil, King Abdul-Aziz University, P.O. Box 80207 Jeddah 21589, Kingdom of Saudi Arabia E-mail: [email protected] [email protected] ABSTRACT The polymetal (Zn, Pb, Fe, Ca, Mg, Cd, Ba, Ni, Ti, and SiO2) complex Umm-Gheig carbonate ore is subjected to sintering treatment at 573, 773, 973 and 1273 K, respectively, for four hours. Chemical, spectral, X-ray and differential thermal analyses are applied for the native ore as well as for the samples preheated and sintered. The I-V characteristics, bulk density (Db), percent shrinkage (% S), activation energy (Ea) and energy gap (Eg) are established for the sintered ore. The electrical conductivity (s), thermal conductivity (K) and thermoelectric power coefficient (α) have been investigated as a function of applied temperature for the sintered ore materials. The electrical and thermal measurements show that the sintered ore has semiconductivity behaviour with temperature. The electrical conduction is mainly achieved by elec- trons or n-type. As the sintering temperature (Ts) increases the conduction of the ore is also increased owning to the recombination process taking place between the electrons and holes. Electrons hopping between Fe 2+ and Fe 3+ are the main charge carriers. The formation of Fe 3 O 4 at high sintering temperature acts as an active mineralizer, thus inducing an increased degree of crystallinity and the more ordered crystal structure is produced. Keywords: polymetal ore, sintering treatment, semiconductivity behaviour. Received 05 May 2009 Accepted 22 July 2010 INTRODUCTION The polymetal deposits of the Red Sea ore belt (a zone extending NW-SE for a distance of 130 km) represent a complex morphogenetic type of mineral- ization [1]. The chief minerals are hydrozincite, zinc blende, smithsonite and cerussite, while silica and car- bonates constitute the bulk of the gangue. The investi- gated sample contains 30.7 % Zn, 7.99 % Pb, 5.05 % Fe and 6.58 % SiO 2 . The minerals present in the complex ore are often so closely intergrown that it is either dif- ficult to obtain suitable high-grade concentrates at high recoveries [2] by physical methods, or the recovery of metals from the respective concentrates is poor. Madkour et al. [3-8] investigated experimentally the thermochemistry of the complex ores roasting, with giv- ing some theoretical thermodynamic calculations, for the recovery of metal value. It is possible to control the calcine composition by controlling the temperature and air-solid ratio. It is very important for the understand- ing of properties and conduction mechanism of ZnO [9-11]. The solid state sintering is classical method for obtaining of materials with wide application possibili- ties, as microwave materials [12], ferrite materials [13] and others. In this sense, the aim of the present work is

Upload: profloutfy-hmadkour

Post on 14-Jul-2015

65 views

Category:

Science


1 download

TRANSCRIPT

Page 1: 14 madkour 335-345

Loutfy H. Madkour

335

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010, 335-346

SEMICONDUCTIVITY BEHAVIOUR OF EGYPTIAN NATURAL SINTERED OREFOR THERMOTECHNOLOGICAL APPLICATIONS

Loutfy H. Madkour

Chemistry Department, Faculty of Sciences and Arts,

Al-Kamil, King Abdul-Aziz University,

P.O. Box 80207 Jeddah 21589,

Kingdom of Saudi Arabia

E-mail: [email protected]

[email protected]

ABSTRACT

!"##$$%&

$##'()(()*()+(),#$-.#.%#%#$/$#0!#..#

#$$#.#-#$1$.#$$#$#/2!3##$$

%4$5#$#46-#7#7#$$.#$##/

#%-$#%-,##1#..α--$$.%.#%#.#$###$/##$%#$$1

$##$$%--%#1#%#/#%$-!

#$#!/8$$##%#$#$$%.#$$#$1

##$$41#$$/7#$19)9#

####$/.#.):$##%#$$-#;#%$%

#$#.#$####$$#%%#$#%/

,1#$<#$##$%--%#/

Received 05 May 2009

Accepted 22 July 2010

INTRODUCTION

!"

#$% &

& ' &(

''!'%)

%*+,&*%--+.&/% /+0

1%/2+34%

(

' '

) #4$ &)

) %

5!' % #2$ )

&()

' &

))'%6

'

%6 )'

' ,3

#-$%

((

& () #4$& #$

%6 & (!

Page 2: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

336

)

'

' 7/*&**&-*4*8&

)& ( ')

)'&

) %

EXPERIMENTAL

5/ !"( '

+' % %

''

'%9 % %/!

( '/ !4

' ' % (

/*& **& -* 4*8& )&

'' ' '% (

' (

' %

: #;$ ( '

<')5:'%

: ) (

' 535)(=:43

%( (

>?@' >? ) 7

9:&@ &<A4 9<&@/"%9

9:" )

( '' 'B9

%

B((

' ?'8α!%:.

B.*4- '

4θC42 %

8D "(

.!;

.!12 %

6E ' (

('86FGH

:& ) %

( ' ''(

'I %>?% '

(0%%

' ' '

#/$ (0%4%6

%

(

'' '(!(%

& '(

'

%J' (

' '

'' %

Fig. 1. Essential electric circuit.

Fig. 2. Cross-section of the apparatus used for thermalmeasurements.

Page 3: 14 madkour 335-345

Loutfy H. Madkour

337

K'

( '

( %:K!

((''&

' )'' '

%)''( F&

!')( %

')8( '

' 4; >?"% ( )

'

'( '

'( '%

RESULTS AND DISCUSSION

) E<)

( '/-%*1+,?3&1% 4+.?3

&

;%21+.3;&/% /+0&;%2;+?3&1%/2+3

4

4%/2+53 )%' &'

%6 '

03043

)%

0'&

4*8;"

03

;

03043

%

0%

9:"& ) <" ))

)9<") %

#1&*$'

( 7#,/?3

"43F"

1$A

,"A ,?3"' .?3

"%

>?

42%44+%6 )

(! 42 >?* >?&

)% '

(%0''

( ')

'; // >?!/ >?

% ' )

#1$& ( 7

%? )E<'%

!" ## $

% !"& & ' &

() !" * &

&& #

& (+ # )

,-. +

.,)/)01

Fig. 3. Thermal analysis of: (a) the native ore sample, (b)sintered ore samples for 4 h at 573 K (B), 773 K (C), 973 K(D) and 1273 K (E).

Page 4: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

338

043

400oC 0

3

;"

03450oC

043

"

043

500oC0

3

;"

6 )

043

"0

3

;"

& ' L'

'!03)043

03

; '%D

)&' '

#2$(

/*&**&-*4*8&

)%!)

'1 */ >?!1- >?

'

%

9

' /*&**&-*

4*8& )&' (0%%

9: )

' '

) %

B ' '

)E<'

/* 4*8&

)& ( 0% ;%B

( 0%;"

! ,?34θC%* &

4/% & /%4/& *%2 & ;1%; & ;%1 1%; "%

! .?374θC4/%2 &

1%; & ;%2 & 4-% & ;-%4 & 1%; ;*% "%

! .3;74θC4-%/ &

41%2 & ;;%/ & 4*%; 44% "%

! #,/?3

"43F"

1$ 7 4θC 1%; &

%* & 4-% & 4/% & %* 1%2 "%B (

( )

' %: /*&**&-*

4*8'' )&B

0%;"

!

( 7,34θC1% &%* %2 "%.34θC4-% &%1 &4%/&;2%* ;/%1 "%.3

44θC42%/&;-%//44%2 %.

43

C4-%/ & 4-%1 4*%; "%.3

; 4θC 41%4 & %1

4%/"%034θC;%-/&1%4 1% "%043

4θC%/ &/%1 /;%4 "%03

;4θC/%1 &14%;

4-%1 "%

B '

' 0%;"

' 043

;"(&C,

.% !

,043

;.0

43

;7 4θC/% &4-%1 &14% /&

/1%1 "4θC4%; &;1% &/1%2 &*;%; 1*%; "& )%0'&

!

' (

)

/*4*8% '

&

%

6 L' )E<

" "

( )0%/%

1**14 ν?C3 ' %

5 -2;#-$%

) 12-/

Fig. 4. X-ray diffraction pattern for the native ore sample(A) and sintered ore samples for 4 hrs. at 573 K (B), 773 K(C), 973 K (D), and 1273 K (E).

Page 5: 14 madkour 335-345

Loutfy H. Madkour

339

%:( L'

4420%/" '

) 53" &(5

C,&.0% (' (

'

22-;441 *

'3F" &F3F

F43!#4 $%

'

' &

!+"

L' (

'0%1"%'! 9

'

'

' 0%1% ' (

&'! ( !

'( '

'/*4*8% )'

' )' #4$

' '&

' %: '

& ''

'% )

Fig. 5. Infrared spectra of the native ore sample (A) andsintered ore samples for 4 hrs. at 573 K (B), 773 K (C), 973 K(D) and 1273 K (E).

Fig. 6. Effect of sintering temperature Ts on the bulk density

Db and shrinkage (% S) of the ore samples.

Fig. 7. D.C. current voltage characteristic of sintered oresamples.

Page 6: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

340

)' 9+"( '

'

''')

' #44$%

6J ) '

'

' /*4*8& )&

(0%*%6 6) %E

(&

' % ) 6) %E&

0%2%6 )

) αC" (

**8%)'

'%D'

**8& &6≡Eα& %

α (

' L' %/4%-/

(' & )%

α M"6E') & '

'?G?"% ) (

6E ) '

' %

(') !

(%('

&)! &')σ

)ε '

' <D")! 4&'

)σ4)ε

4%6 '

σMMσ

4%6 E

E

4)

<D& )&ECEN

E4 )%)

(! '%%E≅

)

+

2

345

1

#

&

"671&671

#

4% )" '

'%

Fig. 8. Logarithmic current voltage characteristic of sintered ore samples.

Page 7: 14 madkour 335-345

Loutfy H. Madkour

341

E4"%6'Ω

"'

''<D Ω4" (

"&'6CΩ

NΩ4N

%'

Ω4OO

≅ 6%' &6E

)

≅ E4

α%

' '

)'

%:) &

%%**8

"' 'αC"%6 ''

OOΩ4

≅ &

%:

#4$&6E') 7

• ('&

4*8αC %-"A• '&

**8α6C%/4&α

EC%-/"&(

αα

'"& )' =('

& )A

• '

/*8αC"%! 6E

**8 (

)E( ! /) %

)

' ) 4%

)

' %

')) ' '

σ @" )

( ' 0%-%0

σ ) %@ & (0%-&

'))'(

'; // 8D

'#4;$7

σ = σ

@!"

σ&( )

@C

L'&!D D

''%F()&

()

' J&(

)()L' 7

σ Cσ @!%

( )

' '

% '

0%-"%

)' ) '

'% (0% %

' 0 %-

') L'

) (

'%

')0%-"@)0% "

(

)' ' ))' )

4%: & ' (

(!#4/$

'' '%

Fig. 9. Temperature dependence of electrical conductivitys for sintered ore samples.

Fig. 10. Effect of sintering temperature on the activationenergy Ea for electrical conductivity of the ore samples.

Page 8: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

342

' &)

) ') %<&

'' )

&%%'

)%D'( '

" )

& )( '

) &%%

' %&'

'')

)('

'& ' %

'&'

'' '%

' &'#41$ '

%

' 'P

( & ' %

'

) '' )%)

'

%:

))

) '

)%

' '('

) )

%

)L'

% )

'%

' '&

'&'%

)

' '&'

"

'P ( %6 &'

'6 66

' &%%6C6N6

%

'&

"

"L'%F()&6

M6

'

%

)))

'%&

µC)

C)

@%

6(&

) CJ@%

? &

' (

#41$%

6C

)

C

µ

6C

)

C

µ

(

%

'' ' 7

6C6N6

C

)

N

)

C

µ

N

µ

'&

L' '&%%

C

C

6Cµ

"

6 ' " ' '

' +%

) 'E<

' )

'P )

%

%' & '

)

%0 &

'('%

04N 0N %

#4$

&( '

704N 0NN

(

L' )

JD"'?D" L'(#4*$

)&%%C4

%

)

+

2

14

)5

7

)5)

)7

#

% ' "

)' %

Page 9: 14 madkour 335-345

Loutfy H. Madkour

343

)'

)

' ')

%

')

( ' '7

QC6J@RC8:@B

(Q L' '

' ! B&RR'P

&6&E&@B&:' &

) ) &'

@" 4"& )%

' )

" '

' % ')

' (

#42$&) "&

"%

8C8N8

6( '

' 04N0N'

&'('

& ' ' '

( %:' (

9'&

'

')%6

( '&

8( %D'

' 9'&

'

''

) ) (

'%

' ')

L'' %6

8 ) '

8≡"%

'8)

(0%%:

')( '

)' '%

(

' L' )

% ))

'

((' ' 8%

' &')8

('' )

'

'9'%:)

'9 '

(

' '

((' ' 8%:

(0%)' ')8

'

%:

'

%

& '

) '8%

')' ')

/*&**-*8(

( 72 &4 - 8@" &

)& ( 0% % '

')8 '

( )'

')σ ' %(α(

')

Fig. 11. Temperature dependence of thermal conductivityK for sintered ore samples.

Page 10: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

344

''%α '

( ))' & (

(04N0N

(

' "%9 0

( )

'

%6'

'(

'%6

'''

) '

%0&''

) '

'' &'

' '%

) L' (

#4-$%I %J%%

4/ %?

)

# &$ ' &(

)

%'

') (

'D '#4;$%' &

)'

' (

'''

'

'

'

(L' 7

"'

#4$

043

&.3

4&,3"3

4 ' %

4"' (#$%

"? ' )

#4*&;$%: !(!&

(

#/$% ' )

%'

#LJ@4!"$#1&*$%

;"6 '

' )'

&%% '

'' '%

' ( ' (

' ) '(%

)' ' %

0' ( K'

'%6(

%%) ' (

' &K'( '

)%6 K'

' %

/"

) '(

' '

'"( %

1".' ''

('''

'% '

! ' (& ' )

& ')

) %

CONCLUSIONS

'

) )@

)'

):5% (( )

%

0 ) 6E &

σ ) %@8) %)' ) ' &( '

(' %

'))'( '%

• '

'%

• D)'

J (

'/*

4*8%? L'')σ '

' %

• )

')

8)'

' %

Page 11: 14 madkour 335-345

Loutfy H. Madkour

345

• ' &

'))') &

& '

' %

REFERENCES

%:%F% &J%D% )&J%.%D )&J%:%

D !&9%%8' )&F%:%F!&:

<'):

?J6%-2 &-*1%

4%:%5%&5%5%:6&5'

,.3 3E<9

& 9 <')5

9&&-1&44%

%.%J%J (&D%J%%H)&%%) &.%.%

D& '9)

0' 5 &)%66&?&-12%

;%F%F%8&:?)('L'

& %5':%6%5%%&-1;&

4 144%

/%<%% R&R%%F(R&D9)

'. ?'

3 %5':%6%5%%&

-14&44;24*%

1%0%&%%:&G%F%5!'&R%6 '

5'' &%6%5%%"&-24&!"%

*%:%.%!&J%5%H'!&G'

F'?'.,

6.' &' R'0

' 5 &##$ -1/&**%

2%G%F%5!'&' '

,( ?

3&R%?%%D%&%&&-2/&-*%

-%5%%&R%:%. %&&#&-2*&/14%

%%3 &<%G%R%9'&R%:%. %&&&&-2-&

111%

%,%0&?,'&R%:%. %&'($4&--1& %

4%J%.))&6%6)&G%6!)&

() &

R%E)%?%%5%"&!#&;&4 1&;1

;11%

%D%D)& ?'

' D3?3

,340

43

D33,3

40

43

& R%E)%

?%%5%"&!#&&4 1&11;%

;%%5!&?: 5

&5!&9 -*&%

/%:%:%:(<&&5%:%:&.%5

. %%&-*1&#)&-%

1%9%%&: 5 &:'

. & -*1%

*%G%F%5!'&0(

G,

.3%R%?%%D%&%*+&

-2/& 2;%

2%G%F%5!'&5%5%:'!!&3%5%F&

. ' 635

.'?? &R%!,$

/&--1& -%

-% G%R% D& 6 ?

5' &&-*/&?F

G%&G%

4 %8%!& 6 6

??' &&(H!&-* %

4%.%R%R &.&

%<%<%8' !&F&%:%&<&?%0%

<SD%(H!&-1*&!(%

44%F% & &J

?D &: 76?&

(H!G&-*;%

4%D%8%8'&<%D%R%) )&R%:%. %&"*$

& --;& 1/%

4;%R%3% &:)%. %3%?%&#&&-*2&/-%

4/%9%%!&%<%R%? &R%:%?

%&!'$ 1&-1/&421%

41%%!'&0' 5 &

5.' &5 (&-22%

4*%8%D!&%: J&F%R%' &:%

. %&")&4&--4&/*4%

42%R%%D!&. &4&

5.' &-22&%2&1-%

4-%%5&%:&)*&-2 &**%

%5%<&F' .

&D&0%G7??. &-2-%

%.%J%8&78 ? 5

' &5%<&8%8 '& %"

59!!&(H!&--&*/%

4%.%.%&?%<%R%0 &R%?%%?%

?'%&-2&/4 %

%5%<&75:

&%%&R%3P5%D! &D%%?(& %"&

.'. &(H!&-2%

;%.%D&%: J&R%%?%&

Page 12: 14 madkour 335-345

Journal of the University of Chemical Technology and Metallurgy, 45, 3, 2010

346

--;& *-& ;/%

/%%F%!&%F% &5'

? &4%&?&3&-22%

1%%!&%%&. %)%&'"&-/4&2/%

*%:%%<)&.

' 9) &&(H!&-1*%