12.memsfab

Upload: sibu444

Post on 02-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 12.MEMSFab

    1/27

    bkdas 1

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    MEMS FabricationProcesses

    Micro machiningBulk Micro machining, Surface MicromachiningDeep RIE, Advanced LithographyHEXIL & SCREAM ProcessPolymer molding and LIGA Process

    bkdas 2

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Bulk, Surface, DRIE

    Bulk micromachining involves removingmaterial from the silicon wafer itself Typically wet etched Traditional MEMS process Artistic design Inexpensive equipment Issues with IC compatibility

    bkdas 3

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Bulk, Surface, DRIE Surface micromachining leaves the wafer

    untouched, but adds/removes additionallayers above the wafer surface, First widelyused in 1990s Typically plasma etched IC-like design philosophy, relatively expensive

    equipment Different issues with IC compatibility

    Deep Reactive Ion Etch (DRIE) removessubstrate but looks like surfacemicromachining!

  • 8/10/2019 12.MEMSFab

    2/27

    bkdas 4

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Bulk Micromachining

    Many liquid etchants demonstrate dramatic etchrate differences in different crystal directions etch rate is slowest, and faster Fastest:slowest can be more than 400:1 KOH, EDP (ethylene diamine pyrocatechol), TMAH (tetra

    methyl ammonium hydroxide) most common anisotropicsilicon etchants

    Isotropic silicon etchants Acids

    HF, nitric, and acetic acids Lots of neat features, tough to work with

    XeF 2, BrF 3 gas phase, gentle

    bkdas 5

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Bulk Micromachining

    Choosing a method

    Desired shapes

    Etch depth and uniformity

    Surface roughness

    Process compatibility

    Safety, cost, availability, environmental impact

    bkdas 6

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Anisotropic Etching of Silicon

    Anisotropic etches have direction dependent etch rates in crystals Typically the etch rates are slower perpend icularly to the crystalline

    planes with the highest density Commonly used anisotropic etches in silicon include Potassium

    Hydroxide (KOH), Tetramethyl Ammonium Hydroxide (TMAH), andEthylene Diamine Pyrochatechol (EDP)

    Silicon Substrate

    54.7

  • 8/10/2019 12.MEMSFab

    3/27

    bkdas 7

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Anisotropic Etching of Silicon

    Crystal orientation relative etchrates

    {110}:{100}:{111} = 600:400:1

    {111} plane has three of its bondsbelow the surface

    {111} may form protective oxidequickly

    {111} smoother than other crystalplanes

    Etching of Si with KOH

    Si + 2OH - Si(OH) 22+ + 4e -

    4H2O + 4e - 4(OH) - + 2H 2

    bkdas 8

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    bkdas 9

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Undercutting

  • 8/10/2019 12.MEMSFab

    4/27

    bkdas 10

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    TMAH, Tetramethyl ammonium hydroxide, 10-40 wt.% (90C )Etch rate (100) = 0.5-1.5 m/minAl safe, IC compatibleEtch ratio (100)/(111) = 10-35Etch masks: SiO 2 , Si 3N4 ~ 0.05-0.25 nm/minBoron doped etch stop, up to 40 slower

    EDP (115C)Carcinogenic, corrosiveEtch rate (100) = 0.75 m/minAl may be etchedR(100) > R(110) > R(111)Etch ratio (100)/(111) = 35Etch masks: SiO 2 ~ 0.2 nm/min, Si 3N4 ~ 0.1 nm/minBoron doped etch stop, 50 slower

    Other Anisotropic Etchants

    bkdas 11

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Electrochemical Etching ofSilicon

    Application +ve voltage to Si makes holesavailable at Si-electrolyte interface.

    2

    42

    2

    He2H2

    cathodeAtH2SiFHF2SiF

    SiFh2F2Si

    anodeAt

    ====++++

    ++++++++

    ++++++++

    ++++

    ++++

    ++++

    H2 bubbles at the ve Pt electrode. Etch rate depend on the doping

    level. Heavily doped silicon etches faster

    through electrochemical etching Shinning light on the silicon can

    increase the etch rate.

    bkdas 12

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Electrochemical Etching ofSilicon

    Doping Dependence : Heavily doped silicon etches faster

    through electrochemical etching n+

    n-epi

    Electrochemicaletch

  • 8/10/2019 12.MEMSFab

    5/27

    bkdas 13

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Electrochemical Etching ofSilicon

    p & n type Si For voltages higher than Passivation Point (PP), SiO 2 is

    formed on surface and the dissolution stops. PP for p-Si is higher than that of n-Si.

    bkdas 14

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Etch Stops in AnisotropicSilicon Etching

    High boron doping Control etch depth precisely with

    boron doping (p ++) [B] > 10 26 m -3 reduces KOH etch

    rate by 20-100 Gaseous or solid boron diffusion At high dopant level, injected

    electrons recombine with holes invalence band and are unavailablefor reactions to give OH -

    bkdas 15

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y oxidation

    Lithography &B implant

    Diffusion

    orifice

    membrane

    Use of B Etch Stops

    AnisotropicEtch

    Stripping

  • 8/10/2019 12.MEMSFab

    6/27

    bkdas 16

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Micro-nozzle

    bkdas 17

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Micromachining Ink Jet Nozzles

    Microtechnologygroup, TU Berlin

    bkdas 18

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Electrochemical Etch Stops

    Etch stops at the p-n junction.

    Such stop defines thethickness of the membrane ofthickness of the n-Si epilayer.

    Electrochemical etch stop

    n-type epitaxial layer grown on p-type wafer forms p-n diode

    p-n diode in reverse bias Passivation potential potential

    at which thin SiO 2 layer forms,different for p- and n-Si

    p-substrate floating etched

    n-layer above passivationpotential not etched

  • 8/10/2019 12.MEMSFab

    7/27

    bkdas 19

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Etch Stops in AnisotropicSilicon Etching

    Electrochemical etching on preprocessed CMOS wafers N-type Si well with circuits suspended from SiO 2 support

    beam Thermally and electrically isolated TMAH etchant, Al bond pads safe

    Oxide Beam Support

    Al Metallization

    Circuit OxidePassivation

    Pit etched in substrate

    Suspended well

    P-type substrate

    bkdas 20

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    MEMS Pressure Sensor

    bkdas 21

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    MEMS Pressure Sensor

  • 8/10/2019 12.MEMSFab

    8/27

    bkdas 22

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Bulk Micromachining Anisotropic etching allows

    very precise machining ofsilicon

    Silicon also exhibit a strongpiezoresistive effect

    These properties, combinedwith silicons exceptionalmechanical characteristics,and well-developedmanufacturing base, makesilicon the ideal material forprecision sensors

    Pressure sensors andaccelerometers were the firstto be developed

    Silicon pressure sensor chip

    Packaged pressure sensor

    bkdas 23

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Bulk micromachined cavities

    Anisotropic KOH etch(Upperleft)

    Isotropic plasma etch (upperright)

    Isotropic BrF 3 etch with

    compressive oxide stillshowing (lower right)

    bkdas 24

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Bulk, Surface, DRIE Surface micromachining leaves the wafer

    untouched, but adds/removes additionallayers above the wafer surface, First widelyused in 1990s Typically plasma etched IC-like design philosophy, relatively expensive

    equipment Different issues with IC compatibility

    Deep Reactive Ion Etch (DRIE) removessubstrate but looks like surfacemicromachining!

  • 8/10/2019 12.MEMSFab

    9/27

    bkdas 25

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Surface Micromachining

    Deposit sacrificial layer Pattern contacts

    Deposit/pattern structural layer

    Cantilever Fabrication:

    Etch sacrificial layer

    anchor

    cantilever

    bkdas 26

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Surface Micromachining

    Cantilever Fabrication:

    Depositsacrificial layer& pattern

    Deposit structurallayer and pattern

    Etch awaysacrificial layer

    bkdas 27

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Surface Micromachining

    anchor

    cantilever

  • 8/10/2019 12.MEMSFab

    10/27

    bkdas 28

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Surface Micromachining

    1. Electrostatic forceis applied by adrive comb to asuspended shuttle

    2. Motion is detectedcapacitively by asense comb

    3. Operated atresonantfrequency

    Anchor

    Drive combcontact pad

    Sensecombcontactpad

    Sense

    comb

    Drive comb

    Suspendedshuttle

    Flexure

    y

    x

    C. T.-C. Nguyen and R. T. Howe, IEEE IEDM , 1993

    Lateral Resonator:

    bkdas 29

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Surface MicromachiningLateral Resonator:

    bkdas 30

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Surface MicromachiningLateral Resonator:One structural poly and one oxide process

    Lateral resonator with electrostatic comb drives, Sandia Labs

  • 8/10/2019 12.MEMSFab

    11/27

  • 8/10/2019 12.MEMSFab

    12/27

    bkdas 34

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Surface Micromachining

    Lateral Resonator Fabrication:

    Microstructure Release

    HF to etch PSG

    Water rinse

    Dry, avoiding surface tension ofwater

    bkdas 35

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Surface Micromachining

    Meshing gears on amoveable platform, SandiaLab

    Digital Micromirror Device,Texas Instruments

    bkdas 36

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Surface MicromachiningHinges:

  • 8/10/2019 12.MEMSFab

    13/27

    bkdas 38

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    MEMS Hinged Mirror

    bkdas 39

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    MEMS Hinged Mirror

    bkdas 40

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Make structures with hinges as in nature hinge is asoft material in butterfly

    Polyimide hinges have been made ( butterfly wing)---

    movable structures E = 3 GPa against E = 140 GPafor poly-Si

    MEMS Hinged StructurePolyimide Hinges :

  • 8/10/2019 12.MEMSFab

    14/27

    bkdas 41

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Surface MicromachiningMaterial Systems

    Structural Sacrificial Etchantlayer layer

    Polysilicon SiO 2 /BPSG HF SiO 2 Polysilicon XeF 2 Aluminum Photoresist oxygen

    /plasma Photoresist Aluminum Al etch Poly-SiGe Poly-Ge H 2O2+hot H 2O

    bkdas 42

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    100-150Cl2 + SiCl 4660H3PO 4:HNO 3:CH3COOH

    Al

    35-3500O2>4000AcetonePhotoresist

    150-250SF 65H3PO 4Si3N4

    --40KIGold

    50-150CHF 3 + O 220-2000HF:NH 4FSiO 2

    170-920SF 6 + He120-600HNO 3:H2O:HFPoly Si

    Etch rate(nm/min)

    Dry etchantEtch rate(nm/min)

    Wet etchantMaterial

    Etch Systems

    bkdas 43

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Micromotor

    Nitride Poly 0 Oxide 1 Oxide 2Poly 1 Poly 2 Metal

    Deposit Poly 0On nitride

    MUMPSFoundryProcess

  • 8/10/2019 12.MEMSFab

    15/27

    bkdas 44

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Micromotor

    DepositOxide 1

    Pattern Poly 0

    bkdas 45

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Micromotor

    Etch foranchordefinition

    Etch dimplesInto Oxide 1

    bkdas 46

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Micromotor

    Poly 1patterned &etched

    Deposit Poly 1

  • 8/10/2019 12.MEMSFab

    16/27

    bkdas 47

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Micromotor

    PatternOxide 2

    DepositOxide 2

    bkdas 48

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Micromotor

    Deposit Poly 2

    Etch thrufor anchor

    bkdas 49

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Micromotor

    Depositmetal bylift-off

    Pattern Poly 2

  • 8/10/2019 12.MEMSFab

    17/27

    bkdas 50

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Micromotor

    Etch sacrificial oxide layer to give thestator and rotor of the micromotor

    rotorstator

    bkdas 51

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Required: high etch rates, high aspect ratios requires very high degrees of anisotropy

    Bosch process (German patent: Larmer and Schilp, 1994) uses recombinant species and side-wall polymer formation

    Sequential etch / polymer deposition high bias reactive ion etch: SF 6 / Ar typical low bias polymerization: C 4F 8, CHF 3 repeat

    Usually need high density plasma source inductively coupled/ECR

    Aspects ratios up to about 30:1 Etch rate: few microns per minute Selectivities

    to PR : 50-100 to oxide 100-200

    DRIE

    bkdas 52

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Deep Reactive Ion Etch

    BOSCH PatentSTS, Alcatel, Trion, Oxford Instruments

    Uses high density plasma to alternativelyetch silicon and deposit a etch-resistantpolymer on side walls

    Silicon etch usingSF 6 chemistry

    Polymer deposition

    Polymer

  • 8/10/2019 12.MEMSFab

    18/27

    bkdas 53

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Deep Reactive Ion Etch

    Inductively Coupled Plasma : Intense plasma generation using

    induction power

    Pressure 1-10 mtorr

    Negative substrate bias - 1KV

    -Vbias

    Quartzvessel

    plasma

    Inductioncoil

    To pump

    bkdas 54

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    1111 mmmm

    Scalloping and Footing in DRIE

    S c a l l o p e

    d s i d e w a l

    l

    S c a l l o p e d

    s i d e w a l l

    S c a l l o p e d

    s i d e w a l l

    S c a l l o p e

    d s i d e w a l

    l

    Top wafer surfaceTop wafer surfaceTop wafer surfaceTop wafer surface

    cathode cathode cathode cathode Top wafer surfaceTop wafer surfaceTop wafer surfaceTop wafer surface

    anode anode anode anode

    Tip precursorsTip precursorsTip precursorsTip precursors

    S c a l l o p e

    d s i d e w a l

    l

    S c a l l o p e d

    s i d e w a l l

    S c a l l o p e d

    s i d e w a l l

    S c a l l o p e

    d s i d e w a l

    l

    Top wafer surfaceTop wafer surfaceTop wafer surfaceTop wafer surface

    cathode cathode cathode cathode Top wafer surfaceTop wafer surfaceTop wafer surfaceTop wafer surface

    anode anode anode anode

    Tip precursorsTip precursorsTip precursorsTip precursors

    10 micron gap

    microgrid Footing at the bottom ofdevice layer

    Milanovic et al, IEEE TED, Jan. 2001.

    bkdas 55

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    DRIE StructuresAdvantages : Increased capacitance

    for actuation andsensing

    Low-stress structures single-crystal Si only

    structural material

    Highly stiff in verticaldirection isolation of motion to

    wafer plane

    flat, robust structures2DoF Electrostatic actuator

    Thermal Actuator

    Comb-drive Actuator

  • 8/10/2019 12.MEMSFab

    19/27

  • 8/10/2019 12.MEMSFab

    20/272

    bkdas 59

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    SCREAM

    bkdas 60

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l yVariant of OpticalProjection Lithography

    Extreme UV Photolithography

    Immersion Lithography

    E-beam lithography

    X-ray lithography

    Soft Lithographic Processes

    Stereo Lithography

    Advanced Lithography

    bkdas 61

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Microcontact Printing(Developed by Whitesides, et. al. at Harvard) Elastomerics tamp Patterns of self-assembled monolayers (SAMs) and proteins SAMs allow a variety of surface modifications

    Thickness variation by changing tail lengthModification of tail group changes surface propertiesVariety available for different substrate materials

    Other SAM advantagesSelf healing and defect rejectingUltrathin resists and seed layersDo not require clean room facilitiesLow cost

    Fabricated using a PDMS mold of photoresist structure

    Soft Lithography

  • 8/10/2019 12.MEMSFab

    21/272

    bkdas 62

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Imprint Lithography

    Molecular Imprints Co.

    bkdas 63

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Imprint Lithography

    Advantages: Resolution not limited by wavelength of light or numerical aperture Tools have longer life High throughput at high resolution

    bkdas 64

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Imprint LithographyEtch Process :

    University of Texas

  • 8/10/2019 12.MEMSFab

    22/272

    bkdas 65

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Imprint Lithography

    10nm DiaPillar Mold 10nm Dia Resist Hole byImprint

    10nm Dia Metal Dotsby Imprint and Lift-off

    bkdas 66

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Stereo Lithography

    Light beam photo-polymerizes the liquid resin solidifying it. After one scan of the beam, the work is lowered to deposit the

    next layer. A 3-D pattern can be written.

    bkdas 67

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Stereo Lithography

    One can invert the processby shining the light from thebottom.

    A set of masks can be usedin place of scanning beamfor exposure.

  • 8/10/2019 12.MEMSFab

    23/272

    bkdas 68

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Sub-Micron Stereo Lithography

    Layer build up

    bkdas 69

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Sub-Micron Stereo Lithography

    Micro Electro Mechanical SystemsJan., 1998 Heidelberg, Germany

    gear wit h f our t ee th ge ar wit h eight t eet h

    bkdas 70

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Micro Electro Mechanical SystemsJan., 1998 Heidelberg, Germany

    micro-turbine.

    An object made of three imbricated springs. This structureconsists of 1000 layers of 5mm each, built along the axisdirection.

    Sub-Micron Stereo Lithography

  • 8/10/2019 12.MEMSFab

    24/272

    bkdas 71

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Micro Electro Mechanical SystemsJan., 1998 Heidelberg, Germany

    Plastic watch gear, total height:1.4 mm.

    Two level SU-8 structure with anadded axle.

    Sub-Micron Stereo Lithography

    bkdas 72

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Microfabrication Technology

    bkdas 73

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    Polymers for Microfabrication

    Advantages over silicon Inexpens ive Flexible Transparent to visible/ UV Easily molded Surface properties easily modified Improved biocompatibility or bioactivity

    Disadvantages Low thermal stability Low thermal and electrical conductivity Techniques for fabrication on microscale

    not as well developed

  • 8/10/2019 12.MEMSFab

    25/272

    bkdas 74

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    Polymers for MicrofabricationExamples diverse polymers used

    PDMS PMMA Polyurethane Polyimide Polystyrene

    Polydimethylsiloxane (PDMS)Advantages Deforms reversibly Can be molded with high fidelity Optically transparent down to ~300 nm Durable and chemically inert Non-toxic Inexpens ive

    bkdas 75

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    LIGA ( lithographie, g alvanoformung, abformtechnik)uses x-ray l ithography (PMMA), electro-deposition andmolding to produce very high aspect ratio (>100)microstructures up to 1000 m tall (1986)

    LIGA Process

    LI thographie LithographyGalvanoformung ElectroformingA bformung Moulding

    Dr. Ehrfeld, Karlsruhe Nuclear Research Centre, Germany (1986)

    bkdas 76

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    LIGA Process

    X-ray

    Mask

    Resist

    Substrate

    DevelopResist

    Electro-plate

    Metal Mold

    Embossing

    - structure

  • 8/10/2019 12.MEMSFab

    26/272

    bkdas 77

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    LIGA Process

    1st electroforming: X-ray exposure

    (irradiation) developing electroforming for

    final metal productor for mold insert

    bkdas 78

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    LIGA ProcessPlastic molding

    and 2 ndElectroforming/casting slip

    Plastic finalstructures or lostmold

    Metal or ceramicfinal parts

    bkdas 79

    F o r u s e o

    f B P U T M

    . T e c

    h . S

    t u d e n

    t s o n

    l y

    LIGA Process

    Exposure station and masks Mask :

    low Z membrane

    high Z absorber

    Alignment of substrate with mask is

    difficult since no visible light can

    pass through the mask membrane

    Sample is moved vertically through

    the irradiation band with a precision

    scanner

    Absorber structure Bemembrane

    MaskFrame

  • 8/10/2019 12.MEMSFab

    27/27

    bkdas 80

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n l y

    LIGA Process

    Mask Materials: Handling ring Pyrex,

    glass, metal

    Carrier Si(B), SiC,

    SiN, Si, Be, Ti, C thickness from

    ~2-5 m up to 200 m

    Absorber Au,W(Si,N), Ta(Si,N)

    thickness from

    ~0.5-1 m up to 50 m

    bkdas 81

    F o r u s e o

    f B P U T M

    . T e c

    h .

    S t u d e n

    t s o n

    l y

    Molding Reaction injection molding

    (RIM): Mixed reagents pumped into

    the mold Injection molding:

    Mold is kept above the glasstransition temperature andmolten plastic is injected (e.g.,CDs)

    Compression molding (also hotembossing):

    A molding tool is pressed intothe plastic material attemperatures above the glasstransition temperature

    LIGA Process

    Demolding :Demolding requires extra smooth walls and internal mold release agents