12.540 principles of the global positioning system lecture 03 prof. thomas herring room 54-820a;...

27
12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah @ mit . edu http:// geoweb . mit . edu /~ tah /12.540

Upload: madilyn-baron

Post on 15-Dec-2015

224 views

Category:

Documents


2 download

TRANSCRIPT

Page 2: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 2

Review

• In last lecture we looked at conventional methods of measuring coordinates

• Triangulation, trilateration, and leveling

• Astronomic measurements using external bodies

• Gravity field enters in these determinations

Page 3: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 3

Gravitational potential

• In spherical coordinates: need to solve

• This is Laplace’s equation in spherical coordinates

1r

∂ 2

∂r2 (rV )+1

r2 sinθ∂

∂θ(sinθ

∂V∂θ

)+1

r2 sin2 θ∂ 2V∂λ2 = 0

Page 4: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 4

Solution to gravity potential

• The homogeneous form of this equation is a “classic” partial differential equation.

• In spherical coordinates solved by separation of variables, r=radius, =longitude and =co-latitude

V (r,θ ,λ ) = R(r)g(θ )h(λ )

Page 5: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 5

Solution in spherical coordinates

• The radial dependence of form rn or r-n depending on whether inside or outside body. N is an integer

• Longitude dependence is sin(m) and cos(m) where m is an integer

• The colatitude dependence is more difficult to solve

Page 6: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 6

Colatitude dependence

• Solution for colatitude function generates Legendre polynomials and associated functions.

• The polynomials occur when m=0 in dependence. t=cos()

Pn (t) =1

2n n!dn

dt n (t 2 −1)n

Page 7: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 7

Legendre Functions

• Low order functions. Arbitrary n values are generated by recursive algorithms

Po (t) =1

P1(t) = t

P2 (t) =12

(3t 2 −1)

P3(t) =12

(5t 3 − 3t)

P4 (t) =18

(35t 4 − 30t 2+3)

Page 8: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 8

Associated Legendre Functions

• The associated functions satisfy the following equation

• The formula for the polynomials, Rodriques’ formula, can be substituted€

Pnm (t) = (−1)m (1− t 2 )m /2 d m

dt m Pn (t)

Page 9: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 9

Associated functions

• Pnm(t): n is called degree; m is order

• m<=n. In some areas, m can be negative. In gravity formulations m=>0

P00 (t) =1

P10 (t) = t

P11(t) = −(1− t 2 )1/2

P20 (t) =12

(3t 2 −1)

P21(t) = −3t(1− t 2 )1/2

P22 (t) = 3(1− t 2 )

http://mathworld.wolfram.com/LegendrePolynomial.html

Page 10: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 10

Orthogonality conditions

• The Legendre polynomials and functions are orthogonal:

Pn '(t)−1

1

∫ Pn (t)dt =2

2n +1δn 'n

Pn 'm (t)−1

1

∫ Pnm (t)dt =2

2n +1(n + m)!(n − m)!

δn 'n

Page 11: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 11

Examples from Matlab

• Matlab/Harmonics.m is a small matlab program to plots the associated functions and polynomials

• Uses Matlab function: Legendre

Page 12: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/1002/17/09 12.540 Lec 03 12

Polynomials

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Polynomials: Degrees 2-5; Order 0

Cos(theta)

Legendre FunctionTextEnd

P2 b, P3 g, P4 r, P5 mP2 b, P3 g, P4 r, P5 m

Page 13: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/1002/17/09 12.540 Lec 03 13

“Sectoral Harmonics” m=n

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1000

-800

-600

-400

-200

0

200Sectoral harmonics: Degrees 2-5, order m=n

Cos(theta)

Legendre FunctionTextEnd

P2 b, P3 g, P4 r, P5 mP2 b, P3 g, P4 r, P5 m

Page 14: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/1002/17/09 12.540 Lec 03 14

Normalized

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5Normalized Sectoral harmonics: Degrees 2-5, order m=n

Cos(theta)

Legendre FunctionTextEnd

P2 b, P3 g, P4 r, P5 m

22m +1

(n + m)!(n − m)!

Page 15: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 15

Surface harmonics

• To represent field on surface of sphere; surface harmonics are often used

• Be cautious of normalization. This is only one of many normalizations

• Complex notation simple way of writing cos(m) and sin(m)

Ynm (θ ,λ ) =2m +1

4π(n − m)!(n + m)!

Pnm (θ )eimλ

Page 16: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/1002/17/09 12.540 Lec 03 16

Surface harmonics

Zonal ---- Tesserals ------------------------Sectorials

Page 17: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 17

Gravitational potential

• The gravitational potential is given by:

• Where is density, • G is Gravitational constant 6.6732x10-11 m3kg-

1s-2 (N m2kg-2)• r is distance• The gradient of the potential is the

gravitational acceleration

V =Gρr

dV∫∫∫

Page 18: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 18

Spherical Harmonic Expansion

• The Gravitational potential can be written as a series expansion

• Cnm and Snm are called Stokes coefficients€

V = −GM

rar

⎛ ⎝ ⎜

⎞ ⎠ ⎟

n=0

∑n

Pnm (cosθ ) Cnm cos(mλ )+ Snm sin(mλ )[ ]m=0

n

Page 19: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 19

Stokes coefficients

• The Cnm and Snm for the Earth’s potential field can be obtained in a variety of ways.

• One fundamental way is that 1/r expands as:

• Where d’ is the distance to dM and d is the distance to the external point, is the angle between the two vectors (figure next slide)

1

r=

′ d n

dn+1n=0

∞∑ Pn (cosγ )

Page 20: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 20

1/r expansion• Pn(cos) can be expanded in

associated functions as function of ,

P

γ

dd'

dM

x

Page 21: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10

Computing Stoke coefficients• Substituting the expression for 1/r and

converting to co-latitude and longitude dependence yields:

12.540 Lec 03 21

Pn (γ) =4π

2n +1Ynm

*

m=0

n∑ ( ′ θ , ′ λ )Ynm (θ,λ )

V =GdM

r∫∫∫ = 4π

dM

2n +1

′ d n

dn+1Ynm

*

m=0

n∑ ( ′ θ , ′ λ )Ynm (θ,λ )

n=0

∞∑∫∫∫

The integral and summation can be reversed yielding integrals for the Cnm and Snm Stokes coefficients.

Page 22: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10

Low degree Stokes coefficients

• By substituting into the previous equation we obtain:

C10 =GM ′ zdM C11 =GM∫∫∫ ′ xdM∫∫∫S11=GM ′ ydM∫∫∫

C20 =GM2

2z2∫∫∫ −x2−y2dM

C21=GM xzdM S21=GM yzdM∫∫∫∫∫∫

C22 =GM4

x2−y2dM S22 =GM2

xydM∫∫∫∫∫∫

2212.540 Lec 03

Page 23: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10

Moments of Inertia

• Equation for moments of inertia are:

• The diagonal elements in increasing magnitude are often labeled A B and C with A and B very close in value (sometimes simply A and C are used)

I=y2 + z2dM∫∫∫ xydM∫∫∫ xzdM∫∫∫xydM∫∫∫ z2 +x2dM∫∫∫ yzdM∫∫∫xzdM∫∫∫ yzdM∫∫∫ x2 +y2dM∫∫∫

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

2312.540 Lec 03

Page 24: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10

Relationship between moments of inertia and Stokes coefficients

• With a little bit of algebra it is easy to show that:

C20 = GM(A + B

2− C)

C22 =1

4GM(B − A)

S22 =1

2GMI12

C21 S21 are related to I13 and I23

2412.540 Lec 03

Page 25: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 25

Spherical harmonics

• The Stokes coefficients can be written as volume integrals

• C00 = 1 if mass is correct

• C10, C11, S11 = 0 if origin at center of mass

• C21 and S21 = 0 if Z-axis along maximum moment of inertia

Page 26: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 26

Global coordinate systems

• If the gravity field is expanded in spherical harmonics then the coordinate system can be realized by adopting a frame in which certain Stokes coefficients are zero.

• What about before gravity field was well known?

Page 27: 12.540 Principles of the Global Positioning System Lecture 03 Prof. Thomas Herring Room 54-820A; 253-5941 tah@mit.edu tah/12.540

02/10/10 12.540 Lec 03 27

Summary• Examined the spherical harmonic expansion of the

Earth’s potential field.• Low order harmonic coefficients set the coordinate.

– Degree 1 = 0, Center of mass system; – Degree 2 give moments of inertia and the orientation can be

set from the directions of the maximum (and minimum) moments of inertia. (Again these coefficients are computed in one frame and the coefficients tell us how to transform into frame with specific definition.) Not actually done in practice.

• Next we look in more detail into how coordinate systems are actually realized.