12 vector spaces ii

16
(R 3 , +, ·) W 1 = {(x 1 ,x 2 ,x 3 ) R 3 :2x 1 4x 2 +2x 3 =5} W 2 = {(x 1 ,x 2 ,x 3 ) R 3 :3x 1 +2x 2 4x 3 =0}. (R 3 , +, ·) (0, 0, 0) (R 3 , +) W 1 2 · 0 4 · 0+2 · 0=0 =5 W 1 (R 3 , +, ·) (0, 0, 0) W 2 W 2 = λ, μ R x, y W 2 x =(x 1 ,x 2 ,x 3 ) y =(y 1 ,y 2 ,y 3 ) 3x 1 +2x 2 4x 3 =0 3y 1 +2y 2 4y 3 =0. λ μ λ(3x 1 +2x 2 4x 3 )+ μ(3y 1 +2y 2 4y 3 )=0, 20

Upload: gwgw-xypolia

Post on 20-Nov-2015

215 views

Category:

Documents


0 download

DESCRIPTION

Διανυσματικοί χώροι μαθηματικά

TRANSCRIPT

  • (2) Jewrome ton dianusmatik qro (R3,+, ) kai

    ta snola

    W1 = {(x1, x2, x3) R3 : 2x1 4x2 + 2x3 = 5}

    kai

    W2 = {(x1, x2, x3) R3 : 3x1 + 2x2 4x3 = 0}.

    Ja meletsoume poi ap ta parapnw snola

    enai dianusmatiko upqwroi tou (R3,+, ).

    Arqik, parathrome ti to mhdenik stoiqeo

    (0, 0, 0) th omda (R3,+) den ankei sto W1,

    afo 2 0 4 0 + 2 0 = 0 6= 5, opte to W1 den

    enai upqwro tou (R3,+, ).

    Antjeta, (0, 0, 0) W2, opte W2 6= . Epi-

    plon, an , R kai x,y W2, me

    x = (x1, x2, x3), y = (y1, y2, y3), tte

    3x1 + 2x2 4x3 = 0 kai 3y1 + 2y2 4y3 = 0.

    Pollaplasizonta ti parapnw do isthte

    me kai antstoiqa kai prosjtonta ti is-

    thte pou prokptoun, petai ti

    (3x1 + 2x2 4x3) + (3y1 + 2y2 4y3) = 0,20

  • opte

    3(x1 + y1) + 2(x2 + y2) 4(x3 + y3) = 0

    kai epomnw,

    x + y = (x1 + y1, x2 + y2, x3 + y3) W2,

    ra, bsei th Prtash 1, toW2 enai upqwro

    tou (R3,+, ).

    21

  • (3) 'Estw (M2,+, ) o pragmatik dianusmatik

    qro twn 2 2 mhtrn me pragmatik stoiqea

    kai

    W1 = {

    [

    2 1

    ]: , , R},

    W2 = {

    [4 3

    0

    ]: , , R}.

    Ja meletsoume poi ap ta parapnw snola

    enai upqwroi tou (M2,+, ).

    Arqik, parathrome ti to mhdenik stoiqeo[0 0

    0 0

    ]den ankei sto W1, opte to W1 den enai

    upqwro tou (M2,+, ).

    Antjeta,

    [0 0

    0 0

    ]W2, opte W2 6= .

    22

  • Epiplon, an , R kai[41 31

    1 0

    ],

    [42 32

    2 0

    ]W2,

    tte enai

    [41 31

    1 0

    ]+

    [42 32

    2 0

    ]

    =

    [41 31

    1 0

    ]+

    [42 32

    2 0

    ]

    =

    [4(1 + 2) 3(1 + 2)

    (1 + 2) 0

    ]W2.

    'Ara, bsei th Prtash 1, to W2 enai upqw-

    ro tou (M2,+, ).

    23

  • Tom dianusmatikn upoqrwn

    H tom do perissterwn upoqrwn en dianu-

    smatiko qrou enai upqwro. Sugkekrimna, an

    V1, V2 enai upqwroi tou (V,+, ), tte V1 V2 enai

    upqwro tou (V,+, ).

    Prgmati, epeid 0 V1 kai 0 V2, petai ti

    0 V1 V2, opte V1 V2 6= .

    An , F kai x,y V1 V2, tte epeid ta V1,

    V2 enai upqwroi kai x,y V1 kai x,y V2, petai

    ti

    x + y V1 kai x + y V2.

    Opte, x+y V1V2 kai smfwna me thn Prta-

    sh 1, petai ti V1 V2 enai upqwro tou (V,+, ).

    24

  • 'Enwsh dianusmatikn upoqrwn

    H nwsh do perissterwn upoqrwn en dianu-

    smatiko qrou den enai en gnei upqwro. Sugke-

    krimna, an V1, V2 enai upqwroi tou (V,+, ), tte

    V1 V2 enai upqwro tou (V,+, ) an kai mno an

    V1 V2 V2 V1.

    Prgmati, an V1V2 enai upqwro tou (V,+, ) kai

    V1 * V2, ja apodeiqje ti V2 V1. 'Estw, x V2.

    Epeid V1 * V2, ja uprqei y V1, me y / V2.

    Epeid x,y V1V2, petai ti x+y V1V2, opte

    x+y V1 x+y V2. An x+y V2, tte epeid

    x V2 (afo x V2), petai ti y = x+(x+y)

    V2, to opoo enai topo. 'Ara, x + y / V2, opte

    x+y V1 kai epeid y V1 (afo y V1), petai

    ti x = (x + y) + (y) V1. 'Ara, V2 V1.

    25

  • 'Ajroisma dianusmatikn upoqrwn

    To jroisma do perissterwn upoqrwn en

    dianusmatiko qrou enai upqwro. Sugkekrimna,

    an V1, V2 enai upqwroi tou (V,+, ), tte to snolo

    V1 + V2 = {x1 + x2 : x1 V1,x2 V2}

    onomzetai jroisma twn upoqrwn V1, V2 kai enai

    upqwro tou (V,+, ).

    Prgmati, epeid 0 V1 kai 0 V2, petai ti

    0 = 0 + 0 V1 + V2, opte V1 + V2 6= . Epiplon,

    an , F kai x,y V1 + V2, tte x = x1 + x2kai y = y1 + y2, pou x1,y1 V1 kai x2,y2 V2.

    Epeid oi V1, V2 enai upqwroi, petai ti

    x1 + y1 V1 kai x2 + y2 V2.

    Tte mw, epeid

    x + y = (x1 + x2) + (y1 + y2)

    =(x1 + y1) + (x2 + y2) V1 + V2

    kai smfwna me thn Prtash 1, petai ti V1 + V2

    enai upqwro.

    26

  • Shmeinoume ti V1 V2 V1 + V2. Prgmati,

    epeid gia kje x V1 isqei ti x = x+0 V1+V2,

    petai ti V1 V1 + V2. Omow apodeiknetai ti

    V2 V1 + V2, opte telik V1 V2 V1 + V2.

    27

  • Grammik sunduasm

    'Estw (V,+, ) dianusmatik qro ep tou sma-

    to (F,+, ) kai

    x1,x2, . . . ,xn V.

    Tte, kje stoiqeo x V pou mpore na grafe sth

    morf

    x = 1x1 + 2x2 + + nxn,

    pou 1, 1, . . . , n F , onomzetai grammik

    sunduasm twn x1,x2, . . . ,xn.

    Oi telest 1, 2, . . . , n onomzontai suntele-

    st tou grammiko sunduasmo. Profan, kje

    grammik sunduasm enai stoiqeo tou V .

    28

  • Pardeigma: 'Estw o pragmatik dianusmatik

    qro (R3,+, ). Na exetasje an to dinusma x =

    (10,5, 5) R3 enai grammik sunduasm twn dia-

    nusmtwn

    x1 = (3,1, 2), x2 = (1, 0, 4), x3 = (1, 1, 1).

    Ja exetsoume an uprqoun 1, 2, 3 R, me x =

    1x1 + 2x2 + 3x3. Enai

    x = 1x1 + 2x2 + 3x3

    (10,5, 5)=1(3,1, 2) + 2(1, 0, 4) + 3(1, 1, 1)

    (10,5, 5)=(31,1, 21)+(2, 0, 42)+(3, 3, 3)

    (10,5, 5)=(31+23,1+3, 21+42+3)

    31 + 2 3 = 10

    1 + 3 = 5

    21 + 42 + 3 = 5

    Epilonta to parapnw ssthma, prokptei ti

    1 = 2, 2 = 1 kai 3 = 3, opte x = 2x1+x23x3kai epomnw to x enai grammik sunduasm twn

    x1,x2,x3.

    29

  • Grammik jkh sunlou

    'Estw (V,+, ) dianusmatik qro ep tou sma-

    to (F,+, ) kai stw S = {x1,x2, . . . ,xn} na pe-

    perasmno uposnolo tou V . To snolo lwn twn

    grammikn sunduasmn twn x1,x2, . . . ,xn onomze-

    tai grammik jkh ( apl jkh ) tou S kai sum-

    bolzetai me < S > < x1,x2, . . . ,xn >, dhlad

    < x1,x2, . . . ,xn >

    ={1x1 + 2x2 + + nxn : 1, 1, . . . , n F}.

    An U =< x1,x2, . . . ,xn >, tte lgetai ti to s-

    nolo U pargetai genntai ap ta diansmata

    x1,x2, . . . ,xn ( ap to snolo S). Mia llh isod-

    namh kfrash enai ti ta diansmata x1,x2, . . . ,xn

    ( to snolo S) pargoun gennon to snolo

    U .

    30

  • To snolo < x1,x2, . . . ,xn > enai upqwro tou

    (V,+, ), afo gia , F kai

    x = 1x1 + 2x2 + + nxn,

    y = 1x1 + 2x2 + + nxn,

    to stoiqeo

    x + y = (1 + 1)x1+(2 + 2)x2+

    +(n + n)xn

    ankei sto < x1,x2, . . . ,xn >.

    Epiplon xi < x1,x2, . . . ,xn >, gia kje i [n],

    afo

    xi = 0x1 + + 0xi1 + 1xi + 0xi+1 + + 0xn.

    Tlo, an W upqwro tou (V,+, ), me xi W ,

    gia kje i [n], tte < x1,x2, . . . ,xn > W , a-

    fo kje grammik sunduasm ap stoiqea en

    dianusmatiko qrou (tou W ) enai stoiqeo tou.

    Ap ta prohgomena prokptei h epmenh prtash.

    Protash 2.H grammik jkh < x1,x2, . . . ,xn >

    enai o mikrtero dianusmatik qro pou periqei

    ta x1,x2, . . . ,xn.31

  • Paratrhsh: Ap thn prohgomenh prtash pro-

    kptei ti an ta diansmata y1,y2, . . . ,yn enai gram-

    miko sunduasmo twn dianusmtwn x1,x2, . . . ,xn, t-

    te isqei ti

    < x1,x2, . . . ,xn,y1,y2, . . . ,yn >=< x1,x2, . . . ,xn > .

    Pardeigma: Ston pragmatik dianusmatik qro

    (Rn,+, ) an

    ei = (0, 0, . . . , 0, 1i, 0, . . . , 0), i [n],

    tte kje x Rn enai grammik sunduasm twn

    e1, e2, . . . , en, afo, an x = (x1, x2, . . . , xn), tte

    x = x1(1, 0, 0, . . . , 0) + x2(0, 1, 0, . . . , 0)+

    + xn(0, . . . , 0, 1)

    = x1e1 + x2e2 + + xnen.

    'Ara, isqei ti Rn =< e1, e2, . . . , en >. Exllou,

    ap thn prohgomenh paratrhsh, prokptei ti

    Rn =< e1, e2, . . . , en >=< e1 + e2, e1, e2, . . . , en >

    =< e1 + e2, e2, . . . , en >,

    dhlad gia nan dianusmatik qro mpore na upr-

    qoun perisstera ap na snola, me to dio pljo

    stoiqewn, pou ton pargoun.

    32

  • Grammik anexarthsa

    'Estw (V,+, ) dianusmatik qro ep tou sma-

    to (F,+, ). Ta diansmata x1,x2, . . . ,xn V enai

    grammik exarthmna tan uprqoun

    1, 2, . . . , n F,

    qi la sa me to mhdenik stoiqeo tou F , ttoia

    ste

    1x1 + 2x2 + + nxn = 0.

    An ta x1,x2, . . . ,xn den enai grammik exarthmna,

    tte enai grammik anexrthta.

    Isodnama, ta x1,x2, . . . ,xn enai grammik ane-

    xrthta an kai mno an, gia kje 1, 2, . . . , n F ,

    isqei

    1x1+2x2+ +nxn = 0 1=2= =n=0.

    33

  • Paradegmata:

    (1) Ta diansmata

    ei = (0, 0, . . . , 0, 1i, 0, . . . , 0), i [n],

    tou dianusmatiko qrou (Rn,+, ) enai grammi-

    k anexrthta, afo, gia kje 1, 2, . . . , n

    R, enai

    1e1 + 2e2 + + nen = 0

    1(1, 0, 0, . . . , 0) + 2(0, 1, 0, . . . , 0)+

    + n(0, . . . , 0, 1) = (0, 0, . . . , 0)

    (1, 0, 0, . . . , 0) + (0, 2, 0, . . . , 0)+

    + (0, . . . , 0, n) = (0, 0, . . . , 0)

    (1, 2, . . . , n) = (0, 0, . . . , 0)

    1 = 2 = = n = 0.

    34

  • (2) Ta diansmata

    x1 = (2,1, 0), x2 = (1, 3, 1), x3 = (1, 0, 2)

    tou dianusmatiko qrou (R3,+, ) enai grammi-

    k anexrthta, afo gia kje 1, 2, 3 R,

    isqei ti

    1x1 + 2x2 + 3x3 = 0

    1(2,1, 0) + 2(1, 3, 1) + 3(1, 0, 2) = (0, 0, 0)

    (21,1, 0)+(2, 32, 2)+(3, 0, 23)=(0, 0, 0)

    21 + 2 3 = 0

    1 + 32 = 0

    2 + 23 = 0

    1 = 2 = 3 = 0.

    35