12 transcription and translation

58
8/13/2019 12 Transcription and Translation http://slidepdf.com/reader/full/12-transcription-and-translation 1/58 Chapter 16 How Genes Work

Upload: pebblesvip

Post on 04-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 1/58

Chapter 16

How Genes Work

Page 2: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 2/58

Genes

Genes  – units of genetic information (DNA) that

carry instructions for building polypeptides

(proteins) or functional RNA molecules along with

regulatory sequences 

Page 3: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 3/58

Gene Expression

Gene Expression  – process

of converting archived

information (DNA

sequences) into molecules(such as proteins) that

actually do things in the cell 

DNA(information

storage)

mRNA(information

carrier)

Proteins(melanocortin

receptor)

Forest mouse

TRANSLATION

TRANSCRIPTION

Mice with this DNA sequence

have dark coats.

Page 4: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 4/58

How Do Genes Specify the Production

of a Protein?

DNA does NOT directly catalyze protein production

reactions

DNA sequence acts as a code Carries information about how to make proteins

Eukaryotic organisms:

DNA – nucleus

Ribosomes (sites of protein production) – cytoplasm

Page 5: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 5/58

Messenger RNA Serves as Intermediary

Between Genes and Proteins

DNA 

mRNA Do mRNA

molecules

connect DNAto proteins? 

mRNA 

Ribosome  Protein 

DNA is

found

in the

nucleus  

Protein

synthesis

takes place in

the cytoplasm  

Page 6: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 6/58

Central Dogma of Molecular Biology

Francis Crick (1958) – The Central Dogma of Molecular

Biology –  summary of the flow of information in cells 

DNAin format ion

storage  

mRNA

in fo rmat ioncarrier  

Proteinact ive cel l

machinery  

5 3 

Transcription

Translation

Page 7: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 7/58

Central Dogma: Modifications 

Many genes code for RNA molecules (rRNA and tRNA)

that do not function as mRNA and are not translated

into proteins

Transfer RNA (tRNA) – “interpreter” molecule; transfers amino

acids to the ribosomes

Ribosomal RNA (rRNA) – component of ribosomes

Information flow is not always in one direction – in

some cases, information flows from RNA back to DNA

(example: retroviruses)

Page 8: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 8/58

DNA mRNA Protein

How does a sequence of nucleotide bases (in DNA

and then mRNA) code for a sequence of amino acids

in a protein? Transcription (DNA mRNA)

Complementary Base Pairing Rules 

Translation (mRNA  Protein)Genetic Code – rules that specify the relationship

between a nucleotide sequence and an amino acid

sequence 

Page 9: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 9/58

Complementary Base PairingDNA   RNA

DNA Nucleotide RNA Nucleotide

Guanine (G) Cytosine (C)

Cytosine (C) Guanine (G)Thymine (T) Adenine (A)

Adenine (A) Uracil (U)

Page 10: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 10/58

Genetic Code: A Triplet Code 

There are only 4 nucleotide bases, and they must specify 20 amino acids.

How many

bases specifya single amino

acid? 

5 3 

mRNAmolecule 

4 Bases?… 3 Bases? 2 Bases? 1 Base? 

Since there are only 4 bases,

a 1-base code could specifyonly 4 amino acids. 

A 2-base code could specify amaximum of 4 4 = 16 amino acids. 

4 < 20 : Not enough

16 < 20 : Not enough 64 > 20 : More than enough

A 3-base code could specify a maximum

of 4 4 4 = 64 amino acids. 

Page 11: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 11/58

Genetic Code: A Triplet Code 

Triplet Code – each amino acid is coded for by a

group of three bases

Codon  – group of three bases that specifies a

particular amino acid

Page 12: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 12/58

Cracking the Genetic Code

Marshall Nirenberg and Heinrich Matthaei – developmethod for synthesis of RNAs of known sequence (particularcodons)

Use known RNA sequences to determine genetic code… 

Example:

AAAAAAAAAAAA lys-lys-lys-lys

UUUUUUUUUUUU phe-phe-phe-phe

Page 13: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 13/58

The Genetic Code

Calvin distinguished alumnus FritzRottman helped decipher the genetic

code while working as a postdoc in

Marshall Nirenberg’s lab at the

University of Michigan. Nirenberg won

a Nobel Prize for this work in 1968.

Page 14: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 14/58

Genetic Code

The genetic code… 

is redundant  – more than one

triplet may specify the same

amino acid

is unambiguous  – each codon

has only one meaning

is universal  – same geneticcode is used by all living things

is conservative  – first two

bases of codons that specify

same amino acid are identical

Page 15: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 15/58

Genetic Code

The genetic code… 

has start and stop codons

Start Codon (AUG) – 

identifies the site at

which protein synthesis

should start; codes for

methionine

Stop Codons (UAA,UAG, UGA) – signify that

protein synthesis is

complete

Page 16: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 16/58

Using the Genetic Code

1. Transcribe and translate as much of this gene as you can,

assuming this sequence is part of a template strand …… 

3’ – C G T A C C A G T T C G G A T C G C A G T – 5’ 

a. …near the beginning of a gene (i.e., it contains a start codon). 

b. …near the end of a gene (i.e., it contains a stop codon).

Page 17: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 17/58

Mutations

Mutation  – any permanent change in an organism’s DNA 

Effects? – Depend upon location of mutation

TRANSLATION 

TRANSCRIPTION 

DNA(information

storage) 

mRNA(information

carrier) 

Proteins(active cellmachinery) 

5 3 

TRANSCRIPTION 

TRANSLATION 

Page 18: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 18/58

Mutations

Point Mutation – replacement of one nucleotide

with another

Silent Mutation – does not alter amino acid sequence

Missense (Replacement) Mutation – changes one aminoacid to another

Nonsense Mutation – changes codon for an amino acid

to STOP codon – polypeptide chain is too short – non-

functional protein

Base Insertion or Deletion (Frameshift Mutation)

 – alter reading frame of mRNA triplets

Page 19: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 19/58

Missense Mutation: Example 

Mutant 

Normal 

DNA sequenceof non-template(coding) strand 

DNA sequenceof non-template(coding) strand 

Amino acidsequence 

Amino acidsequence 

Sickled red blood cells 

Normal red blood cells 

Page 20: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 20/58

Frameshift Mutations

Insertion or deletion of bases, alters reading frame

(grouping of codons)

Affects all codons (and therefore amino acids) positioned

after site of insertion or deletion

Generally, results in non-functional  protein

Page 21: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 21/58

Mutations: Summary  

Page 22: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 22/58

Chapter 17

Transcription

& Translation 

Page 23: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 23/58

From DNA to Proteins: Gene

Expression

Gene Expression  – process by which genetic information

flows from genes to proteins; the transcription and

translation of a gene; protein production

Transcription  – process by

which messenger RNA

(mRNA) is made from a

DNA template

Translation  – process by

which proteins and

peptides are synthesized

from mRNA

Page 24: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 24/58

Transcription

Page 25: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 25/58

Transcription

Transcription  – process by which RNA is made

from a DNA template

catalyzed by RNA polymerase

proceeds in 5’ 3’ direction 

template-directed (complementary to DNA); only one of DNA

strands is transcribed (template strand) for a particular geneNon-template(coding) strand   DNA 

RNA 

Temp late Strand

3 3 

Page 26: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 26/58

Transcription

Non-template(coding) strand  DNA 

RNA 

RNA 

Temp late strand

3 3 

3 DNAtemplate 

5  Phosphodiester bond is

formed by RNA polym erase

after base pairing occurs 

Hydrogen bonds form betweencom plementary base pairs  

Note: RNA utilizes uracil instead of thymine;

therefore A (DNA) pairs with U (RNA)

Page 27: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 27/58

Transcription

Where should RNA

 polymerase begin

transcribing?

…at a promoter

Page 28: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 28/58

Promoters

Promoter  – short sequence of DNA that facilitates binding of

RNA polymerase; enables transcription of downstream

genes; acts as “start transcription here”  signal

Promoter  (on non-template strand) 

+1 site 

Upstream DNA  Downstream DNA

Template strand of

gene to be

transcribed

Page 29: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 29/58

Transcription: Initiation 

Promoter  (on non-template strand) 

UpstreamDNA 

Activesite 

DownstreamDNA 

RNA polymerase 

Initiation: RNA polymerase binds to promoter

Page 30: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 30/58

Transcription: Elongation 

RNA 

RNA exitsite 

UpstreamDNA 

Downs tream DNA(contains genetic info that is

being transcribed) 

Elongation: RNA polymerase moves along DNA, synthesizing

RNA in the 5’3’ direction 

RNApolymerase 

5’ end 

Page 31: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 31/58

Transcription: Termination 

Hairpinloop 

RNApolymerase 

Upstream DNA 

DownstreamDNA Stop

sequence 

RNA 

RNA polymerase reaches a DNA stop sequence,which codes for RNA that forms a hairpin. The RNA hairpin causes the RNA strand to separatefrom the RNA polymerase, terminating transcription.

RNA 

DNA 

Termination: transcription stops when RNA polymerase

reaches a DNA stop sequence – codes for RNA that forms

a hairpin

Page 32: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 32/58

Transcription

Page 33: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 33/58

Products of Transcription

Transcribed genes may code for… 

Messenger RNA (mRNA) – carries genetic

information from DNA in nucleus to

ribosomes in the cytoplasm

Transfer RNA (tRNA) – serves as

“interpreter” molecule; transfers amino

acids to the ribosomes

Ribosomal RNA (rRNA) – component of

ribosomes (along with ribosomal proteins)

Ribozymes  – RNA molecules that catalyze

chemical reactions 

E k ti T i ti

Page 34: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 34/58

Eukaryotic Transcription:mRNA Processing 

In eukaryotes, the mRNA transcript that

is released from RNA polymerase (pre-mRNA) is not ready to be translated; it

must first be processed… 

mRNA processing occurs in thenucleus before mRNA is exported tothe cytoplasm for translation

1. Addition of 5’-cap

2. Addition of 3’-polyA tail

3. Removal of introns (self-splicing)

E k ti T i ti

Page 35: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 35/58

5’-cap – composed of modified guanine nucleotide;

serves as a recognition signal for translation machinery

(ribosome)

3’-poly(A) tail – composed of 100-250 adenine

nucleotides; facilitates transport out of nucleus; protects

mRNA message from degradation in the cytoplasm

Eukaryotic Transcription:mRNA Processing 

3 5 

Poly(A) tail 5 cap 

Coding region 

E k ti T i ti

Page 36: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 36/58

Eukaryotic Transcription:mRNA Processing 

Eukaryotic genes (unlike prokaryotic genes) contain

noncoding regions

Exons  – Expressed (coding) regions

Introns  – Intervening/Interrupting (noncoding) regions

Pre-mRNA transcript: 

DNA: 

Promoter  

Intron 1  Intron 2 

Exon 1  Exon 2  Exon 3 

Spliced transcript: 

Page 37: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 37/58

Removal of Introns: RNA Splicing 

Splicing is catalyzed by

small nuclear RNAs – 

snRNAs

Form a multiprotein

complex called a

spliceosome

Page 38: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 38/58

Translation

Page 39: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 39/58

Translation

Translation  – process by which proteins and peptides

are synthesized from mRNA

Occurs at ribosomes

Uses transfer RNA (tRNA) as an “interpreter” molecule

Page 40: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 40/58

Prokaryotic Translation

In prokaryotes… transcription and translation are tightly

coupled – translation begins before transcription is

complete

Ribosome translatesmRNA as it is beingsynthesized by RNApolymerase 

5   endof mRNA  

1  1 

Protein  

Ribosome 

RNA polymerase 

(3 end of template strand) Start of gene  End of gene 

(5 end of template strand)

This does not occur in

eukaryotes – why not?

Page 41: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 41/58

Eukaryotic Translation

In eukaryotes…

transcription and

translation areseparated in space

and time

mRNA 

DNA 

MaturemRNA 

Transcription andRNA processing

in nucleus 

Mature

mRNA 

Translationin cytoplasm 

Protein 

Ribosome 

Page 42: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 42/58

Translation

Translation between the language of nucleic acids

(nucleotides) and the language of proteins (amino

acids) requires an “interpreter” (adapter)

Aminoacids 

Interpreter

molecules  

mRNA 

Codon  Codon  Codon  Codon 

Page 43: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 43/58

Transfer RNA (tRNA): the “Interpreter”  

tRNA structure

Cloverleaf shape due to complementary base pairing

between portions of molecule

T f RNA (tRNA) th

Page 44: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 44/58

Transfer RNA (tRNA): the

“Interpreter”  

tRNA structure

Contains amino acid binding

site (3’ end) 

Contains an anticodon at

opposite end – complementary

to mRNA codon

Bind ing si te for

amino acid  

Ant icodon

(b inding site for

mRNA codon)  

Transfer RNA (tRNA)

Page 45: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 45/58

There are 64 codons; 61 code for amino acids

But… there are only ~40 different tRNA molecules

Wobble Hypothesis – non-standard base

pairing (between codon and anticodon) is

acceptable in the third position as long as

it does not change the amino acid for

which the codon codes

Transfer RNA (tRNA)Wobble Hypothesis 

Page 46: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 46/58

Ribosomes: Site of Protein Synthesis

Ribosomes  – site of protein synthesis; composed of

ribosomal RNA (rRNA) and proteins

Small subunit – holds mRNA in place

Large subunit – has three binding sites for tRNAs; containsactive site for peptide bond formation

 protein synthesis is catalyzed by

rRNA - ribozymes

5  3 Codon 

Large

subun i t  

Smallsubun i t  

mRNA  Anticodon 

Page 47: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 47/58

Ribosomes

Page 48: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 48/58

Ribosomes

E (exit) site - holds tRNA

that will exit (amino acid

no longer attached)

P (peptide) site - holds

the tRNA with growing

polypeptide attached

A (amino acid) site -

holds incoming tRNA

(with attached amino

acid)

Page 49: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 49/58

Translation: Initiation 

Page 50: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 50/58

Page 51: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 51/58

Translation: Elongation 

Arrival of tRNA/amino acid - appropriate tRNA (carrying anamino acid) binds to the mRNA codon in the A site viacomplementary base pairing

Page 52: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 52/58

Translation: Elongation 

Peptide bond formation – peptide chain is covalently linkedto amino acid in the A site; reaction catalyzed by a ribozyme

Page 53: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 53/58

Translation: Elongation 

Translocation – ribosome moves down the mRNA (5’3’ direction) 

moves empty tRNA into E site (exit site)

moves tRNA containing polypeptide into P site

open A site exposes new mRNA codon

Page 54: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 54/58

Translation: Elongation 

Elongation requires energy

and assistance from

elongation factors

Multiple ribosomes can

translate a single mRNA at

one time - polyribosomes

5  3 mRNA 

Ribosomes 

Growing polypeptides 

Page 55: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 55/58

Translation: Termination 

Stop codon is exposed in A site; release factor fills A site

Bond linking P site tRNA with polypeptide is hydrolyzed;

polypeptide is released from ribosome

Small and large subunit of ribosome and mRNA dissociate 

Page 56: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 56/58

Page 57: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 57/58

Post-Translational Modification

Post-translational modifications – processing steps that

are required to make a protein functional; such as… 

Protein folding – may require molecular chaperones

Addition of chemical groups (eukaryotes – in ER and Golgi)

Phosphorylation / dephosphorylation

Page 58: 12 Transcription and Translation

8/13/2019 12 Transcription and Translation

http://slidepdf.com/reader/full/12-transcription-and-translation 58/58

Summary of Gene Expression