11/4/16 dyehsensiized%solar%cells%%...

7
11/4/16 1 CNSI Nanoscience Lab Experiment Session October 1 st , 2016 Nicholas De Marco, Taylor Aubry Rita Blaik, Elaine Morita DyeSensiIzed Solar Cells What is a Solar Cell? Silicon Solar Panels are Expensive to Fabricate Dye SensiIzed Solar Cells (DSSC) Advantages Inexpensive Disadvantages Lower efficiency Less stable Overview of DSSCs Components: 1. Transparent conducIve electrode 2. Titanium dioxide (TiO 2 ) 3. Dye (Anthocyanin) 4. Electrolyte (Iodine) 5. Counter conducIve electrode 3I I3 - - Making a Dye SensiIzed Solar Cells Conductive Substrate Catalyst Electrolyte Dye Porous Matrix Conductive Substrate Stage 1 Stage 2 Top of Device Bottom of Device Building the Bottom Electrical Contact Step 1: Affixing Substrate to Table Make sure that 4-5 mm* of this edge is covered in tape! *Note: 1 mm is about the thickness of a ATM card or driver’s license Conductive Side Down 4 – 5 mm Wide Conductive Side Up Scotch Tape Do not let the glass pipe[e rotate or roll Apply even downward pressure with each hand When sweeping back to the taped edge, use a single stroke to cover the enIre slide Apply Drops of TiO2 Slurry Glass Pipette Glass Pipette Slide Pipette ONCE 1 3 2 Helpful Tips: Building the Bottom Electrical Contact Step 2: Coating with Titania Move back and forth vertically Building the Bo[om Electrical Contact TiO2 Coated Substrate

Upload: others

Post on 18-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

1  

CNSI  Nanoscience  Lab    Experiment  Session  October  1st,  2016  

 Nicholas  De  Marco,  Taylor  Aubry  

Rita  Blaik,  Elaine  Morita  

Dye-­‐SensiIzed  Solar  Cells     What  is  a  Solar  Cell?   Silicon  Solar  Panels  are  Expensive  to  Fabricate  

Dye  SensiIzed  Solar  Cells  (DSSC)  

•  Advantages  –  Inexpensive  

•  Disadvantages  – Lower  efficiency  – Less  stable  

Overview  of  DSSCs  

Components:  1.  Transparent  conducIve  

electrode  2.  Titanium  dioxide  (TiO2)  3.  Dye  (Anthocyanin)  4.  Electrolyte  (Iodine)  5.  Counter  conducIve  

electrode  3I I3 - -

Making  a  Dye  SensiIzed  Solar  Cells  

Conductive Substrate Catalyst

Electrolyte

Dye

Porous Matrix

Conductive Substrate

Stage 1

Stage 2 Top of Device

Bottom of Device

Building the Bottom Electrical Contact Step 1: Affixing Substrate to Table

Make sure that 4-5 mm* of this edge is covered in tape!

*Note: 1 mm is about the thickness of a ATM card or driver’s license

Conductive Side Down

4 – 5 mm Wide

Conductive Side Up

Scotch Tape

•  Do  not  let  the  glass  pipe[e  rotate  or  roll  

•  Apply  even  downward  pressure  with  each  hand  

•  When  sweeping  back  to  the  taped  edge,  use  a  single  stroke  to  cover  the  enIre  slide  

Apply Drops of TiO 2 Slurry

Glass Pipette

Glass Pipette Slide Pipette ONCE

1

3

2

Helpful Tips:

Building the Bottom Electrical Contact Step 2: Coating with Titania

Move back and forth vertically

Building  the  Bo[om  Electrical  Contact  

TiO2 Coated Substrate

Page 2: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

2  

CoaIng  Challenge  

•  Do  not  let  the  glass  pipe[e  rotate  or  roll    

•  Apply  even  downward  pressure  with  each  hand    

•  When  sweeping  back  to  the  taped  edge,  use  a  single  stroke  to  cover  the  enIre  slide  

Apply Drops of TiO 2 Slurry Move Back and Forth

Glass Pipette

Glass Pipette Slide Pipette

1

3

2

Helpful Tips:

The  Transparent  ConducIve  Electrode    Q1:  Why  is  it  important  that  the  top  conducIve  electrode  be  transparent?  

Why  is  it  important  that  the  top  conducIve  electrode  is  transparent?  

What  do  you  think  of  as  an  electrical  conductor?    

Why  is  it  important  that  the  top  conducIve  electrode  is  transparent?  FTO: Fluorine doped tin oxide

A transparent conductor!

Bottom of Device

The  Titanium  Dioxide  NanoparIcles    Q2:  Why  is  it  important  that  the  TiO2  are  nanoparIcles?  

Titania  Nanopar'cles  Serve  as  a  Docking  Site  for  the  Dye  

Journal of Photochemistry and Photobiology A: Chemistry 213, 2010 30

Ruthenium  Dye   Anthocyanin  Dye  

~$300/g   Cheap!

Scanning  Electron  Microscope  Image  of  TiO2  NanoparIcles  

How  Small  is  “Nano”?   Why  is  it  important  that  the  TiO2  are  nanoparIcles?  

Hint:  Le`  and  right  images  take  up  approximately  the  same  area…  

 What’s  different?  

NanoparIcles  have  more  surface  area!  

Why  is  it  important  that  the  TiO2  are  nanoparIcles?  

Page 3: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

3  

Why  is  it  important  that  the  TiO2  are  nanoparIcles?  

More  surface  area  means  more  dye  molecules  can  adsorb  to  the  TiO2  and  more  electrons  (current)  can  be  generated!  

3I I3 - -

Anthocyanin  Dye  

Where  Does  Anthocyanin  Come  From?   Anthocyanin:  our  dye  sensiIzer  comes  from  plants!  

Anthocyanin responsible for purple pigment in food and plants!

Food  Source   Anthrocyanin  Content  (mg/100g)  

Cherry   375  

Raspberry   365  

Blueberry   558  

Black  Raspberry   589  

Purple  corn   1642  

An Anthocyanin Fourth of July Cake!

Anthocyanin:  our  dye  sensiIzer  comes  from  plants!  

The  Anthocyanin  Dye    Q3:  How  can  dye  selecIon  affect  solar  cell  performance?  

Anthocyanin  appears  purple/red,    at  what  wavelength  does  it  absorb  light?  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Colorful dyes absorb sunlight (that’s why they are colored) and generate electrons that can be collected by electrodes to provide an electrical current

We  can  pick  dyes  that  absorb  anywhere!   So  what  goes  into  our  choice?  

Wavelength 750 nm 400 nm Energy 1.65 eV 3.1 eV

Inte

nsity

Different  wavelengths  of  light  have  different  energy!  

Higher  energy  Lower  energy  

What  if  my  dye  absorbed  blue  light  instead  of  green  light?  

Wavelength 750 nm 400 nm Energy 1.65 eV 3.1 eV

Inte

nsity

Ene

rgy

ΔE = 3.1eVΔE = 2.2eV

Each  electron  would  absorb  more  energy!  

Page 4: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

4  

So  why  don’t  we  make  all  our  solar  cells  absorb  blue  light?  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

1)  The  sun  produces  light  over  a  large  spectrum!  2)  Need  to  balance  current  and  voltage  to  opImize  power    

What  if  I  increase  the  intensity  of  light?  

Wavelength 750 nm 400 nm Energy 1.65 eV 3.1 eV

Inte

nsity

Ene

rgy

Would  each  electron  would  absorb  more  energy?  

ΔE = 3.1eV

What  if  I  increase  the  intensity  of  light?  

Wavelength 750 nm 400 nm Energy 1.65 eV 3.1 eV

Inte

nsity

Ene

rgy

No!  But  more  electrons  can  be  excited  and  thus  

ΔE = 3.1eVmore  current  can    be  generated!  

Which  light  has  more  energy?  (per  photon)  

Wavelength 750 nm 400 nm Energy 1.65 eV 3.1 eV

Inte

nsity

Current  vs.  voltage  analogy  

Suppose  4  people  are  at  the  bo[om  of  a  cliff…  

Current  vs.  voltage  analogy  

If  the  cliff  is  very  high,  they  might  not  all  make  it  up  

Current  vs.  voltage  analogy  But  when  they  jump  down,  they  have  super  strength!  

Current  vs.  voltage  analogy  

If  the  cliff  is  very  low,  they  all  have  enough  energy  to  jump  up!  

Current  vs.  voltage  analogy  

When  they  jump  down  they  have  a  lower  strength  score,  but  there  was  more  of  them!  

Page 5: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

5  

The  Iodine  Electrolyte    Q4:  Why  does  the  Iodine  need  to  be  there  anyway?  

Let’s  break  down  the  redox  reacIon  

3I − → I3−

→ [I − I − I ]−I −

I −I −

e-­‐  e-­‐   e-­‐  

e-­‐  

Energy  Level  Diagram  of  our  DSSC  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E

Energy  GeneraIon  Step  1:  Excite  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E Incident Light

PotenIal  Pathway:  Energy  Loss  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E Emitted Light

Energy  GeneraIon  Part  2:  Transfer  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E (Needs to be FAST!)

Energy  GeneraIon  Part  3:  Replenish  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E (Needs to be FAST!)

Energy  GeneraIon  Part  5:  Circuit  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E

Unhappy.

=(

(Would rather sit here at lower energy)

The electron on the top left is in a high energy state and would like to return to

the unoccupied level on the lower right… but right now it can’t!

Energy  GeneraIon  Part  5:  Circuit  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E

We can offer the electron an external connection to the far side of the device

To Conductive Glass

From Conductive Glass & Graphite

(Graphite  is  a  catalyst  for  the  iodine  redox  reacIon)  

Page 6: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

6  

Energy  GeneraIon  

Anthocyanin Dye Iodide Solution

Titanium Dioxide

E

The difference in energy levels determines the amount of voltage the

device will produce!

ΔE = qV

Energy  GeneraIon  

Both the # of electrons (current) and the energy they come with (voltage) contribute to the overall power production of our device!

I is current.

P = IV

What is the equation for power?

.  

The  cycle  is  now  complete!  

3I I3 - -

Preparing  Catalyst  

Slide without Titania

Step  Two:  Building  The  Device  

Titania Slide

Step  Two:  Building  The  Device  

Glass PlateWith Dye

Figure 6

A

B

C

Glass PlateWith Carbon

Glass PlatesAre Offset

AssembledSolar Cell

Binder Clips

Step  Two:  Building  The  Device  

Glass PlateWith Dye

Figure 6

A

B

C

Glass PlateWith Carbon

Glass PlatesAre Offset

AssembledSolar Cell

Binder Clips

X  Iodide  Solu'on  Goes  Here  

X  

TesIng  Your  Solar  Cell  

Projector

Multimeter

TesIng  Your  Solar  Cell  

Projector  

Mul'meter  

Current  (A)  Voltage  (V)  

Theoretical Power = Current x Voltage P = IV

Page 7: 11/4/16 DyeHSensiIzed%Solar%Cells%% Whatis%aSolar%Cell?%marshallwong.weebly.com/uploads/7/0/6/6/706636/dye...11/4/16 6 Energy%Generaon% Anthocyanin Dye Iodide Solution Titanium Dioxide

11/4/16  

7  

Thank You!

P=IV  Current    1uA  =  1x10-­‐6  A  Voltage    1mV=1x10-­‐3V  

P=IV  Current    1uA  =  1x10-­‐6  A  Voltage    1mV=1x10-­‐3V  

Let’s  compare!  

Team  Name   Current  (uA)   Voltage  (mV)   Power  (nW)   Power(W)  Dr.  Jin   0.1   22.5   2.25   2.25E-­‐09  Solar  Baby   130   290   37700   3.77E-­‐05  Team  Mareeps   170   66   11220   1.12E-­‐05  Sunny  Side  Up   2   130   260   2.60E-­‐07  Team  DJ   7.1   250   1775   1.78E-­‐06  Team  Red   4.5   100   450   4.50E-­‐07  Yoshi  &  Alina   23   177   4071   4.07E-­‐06  It's  Always  Sunny  At  UCLA   16   50   800   8.00E-­‐07  Team  Raspberries   5   136   680   6.80E-­‐07  Team  Blue   70   115   8050   8.05E-­‐06  

Team  3  Tries  

Team  Name   Current  (uA)   Voltage  (mV)  Power  (nW)   Power(W)  Projector   39   230   8970   8.97E-­‐06  In  the  sun   20   275   5500   5.50E-­‐06  

Let’s  Compare!  

Team  Name   Current  (uA)   Voltage  (mV)   Power  (nW)   Power  (W)  ★ 29   8   232   2.32E-­‐07  No  name   34   126   4284   4.28E-­‐06  Israchel   29   271   7859   7.86E-­‐06  Unknowns   80   306   24480   2.45E-­‐05  Trojans   65   370   24050   2.41E-­‐05  Bruins   95   700   66500   6.65E-­‐05  Blank  space  1   27   365   9855   9.86E-­‐06  DK   36   406   14616   1.46E-­‐05  Asian  Squad   27   262   7074   7.07E-­‐06  Blank  space  2   40   170   6800   6.80E-­‐06  Team   30   300   9000   9.00E-­‐06  � 17   160   2720   2.72E-­‐06  RA   30   132   3960   3.96E-­‐06  (=   440   460   202400   2.02E-­‐04  EIenne+Rohit   619   380   235220   2.35E-­‐04  

Debrief  quesIons  

•  What  color  do  plants  absorb?  •  Why  is  ba[ery  technology  so  important?  •  What  happens  if  you  run  the  solar  cell  in  reverse-­‐  Apply  a  voltage  to  your  solar  cell