11/05/2013phy 113 c fall 2013 -- lecture 191 phy 113 c general physics i 11 am-12:15 pm tr olin 101...

46
11/05/2013 PHY 113 C Fall 2013 -- Lecture 19 1 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids 1.Density and pressure 2.Variation of pressure with height 3.Buoyant forces

Upload: donald-isaac-morton

Post on 23-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 111/05/2013

PHY 113 C General Physics I11 AM-12:15 PM TR Olin 101

Plan for Lecture 19:

Chapter 14: The physics of fluids

1. Density and pressure

2. Variation of pressure with height

3. Buoyant forces

Page 2: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 211/05/2013

Page 3: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 311/05/2013

.m/s ˆ 15ˆ 10 NEv f

2212

1ff vmmK

125- E. 125 D.

ˆ225ˆ100 C. ˆ225ˆ100 B. 325 A.

?ˆ 15ˆ 10 of evaluationcorrect theisWhat 2

NENE

NE

Comment on exam

iclicker question:

Page 4: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 411/05/2013

Exam 2 feedback

iclicker question

For Exam 3 would you prefer:A. To have an in class exam only.B. To have both in class and take-home

components.

Page 5: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 511/05/2013

Webassign questions:

A driver travels northbound on a highway at a speed of 30.0 m/s. A police car, traveling southbound at a speed of 34.0 m/s, approaches with its siren producing sound at a frequency of 2500 Hz. (a) What frequency does the driver observe as the police car approaches?

(b) What frequency does the driver detect after the police car passes him?

(c) Repeat parts (a) and (b) for the case when the police car is traveling northbound.

toward

awayS

OSO vv

vvff

:Summary

Page 6: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 611/05/2013

Webassign questions -- continued:

A driver travels northbound on a highway at a speed of 30.0 m/s. A police car, traveling southbound at a speed of 34.0 m/s, approaches with its siren producing sound at a frequency of 2500 Hz. (a) What frequency does the driver observe as the police car approaches?

toward

awayS

OSO vv

vvff

:SummaryPolice vs

Driver vo

Page 7: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 711/05/2013

Webassign question:

A violin string has a length of 0.400 m and is tuned to concert G, with fG = 392 Hz.(a) How far from the end of the string must the violinist place her finger to play concert A, with fA = 440 Hz? cm from the bridge

(b) If this position is to remain correct to one-half the width of a finger (that is, to within 0.270 cm), what is the maximum allowable percentage change in the string tension?

a) Assuming the tension remains the same: lAfA=lGfG LAfA=LGfG

Page 8: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 811/05/2013

The physics of fluids.

•Fluids include liquids (usually “incompressible) and gases (highly “compressible”).

•Fluids obey Newton’s equations of motion, but because they move within their containers, the application of Newton’s laws to fluids introduces some new forms.

Pressure: P=force/area 1 (N/m2) = 1 Pascal

Density: r =mass/volume 1 kg/m3 = 0.001 gm/ml

Note: In this chapter Ppressure (NOT MOMENTUM)

Page 9: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 911/05/2013

Pressure

AP

F

Note: since P exerted by a fluid acts in all directions, it is a scalar parameter

Page 10: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1011/05/2013

Example of pressure calculation High heels (http

://www.flickr.com/photos/moffe6/3771468287/lightbox/)

F

Pam

N

A

mg

AP

heel

62

105.101.001.0

4/6004/

F

Page 11: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1111/05/2013

Pressure exerted by air at sea-level

1 atm = 1.013x105 Pa

Example: What is the force exerted by 1 atm of air pressure on a circular area of radius 0.08m?

F = PA = 1.013x105 Pa x p(0.08m)2

= 2040 N

Patm

Page 12: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1211/05/2013

Density = Mass/Volume

Page 13: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1311/05/2013

Relationship between density and pressure in a fluid

Effects of the weight of a fluid:

gdydP

dydP

yyPyyP

ygyyPyPA

mgA

yyFAyF

mgyyFyF

y

ρ

)()(lim

ρ)()(

)()(

)()(

0

yrgDy = mg/A

P(y+Dy)

P(y)

Note: In this formulation +y is defined to be in the up direction.

Page 14: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1411/05/2013

For an “incompressible” fluid (such as mercury):

r = 13.585 x 103 kg/m3 (constant)

)(ρ ρ 00 yygPPgdydP

= 13.595 r x 103 kg/m3

Example:

m 76.0

m/s 8.9kg/m 1013.595

Pa 10013.1

ρ

233

5

00

g

Pyyh

Page 15: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1511/05/2013

Barometric pressure readingsHistorically, pressure was measured in terms of inches of mercury in a barometer

)(ρ ρ 00 yygPPgdydP

= 13.595 r x 103 kg/m3

in93.290.0254m

1in0.76mm 76.0

m/s 8.9kg/m 1013.595

Pa 10013.1

ρ

233

5

00

g

Pyyh

Page 16: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1611/05/2013

Weather report:

m763.0in

0.0254min03.30in03.30

Page 17: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1711/05/2013

Question: Consider the same setup, but replace fluid with water (r = 1000 kg/m3). What is h?

= 1000r kg/m3

iclicker equation:Will water barometer have h:

A. Greater than mercury.B. Smaller than mercury.C. The same as mercury.

Page 18: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1811/05/2013

Question: Consider the same setup, but replace fluid with water (r = 1000 kg/m3). What is h?

)(ρ ρ 00 yygPPgdydP

= 1000r kg/m3

m34.10

m/s 8.9kg/m 0001Pa 10013.1

ρ

23

5

00

g

Pyyh

Page 19: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 1911/05/2013

m 5.0

kg/m 1000 3

h

Pa 10013.1 5atmP

iclicker question:A 0.5 m cylinder of water is inverted over a piece of paper. What will happen

A. The water will flow out of the cylinder and make a mess.

B. Air pressure will hold the water in the cylinder.

Page 20: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2011/05/2013

ρ

ρ

ρ :gas idealan For 0

0

0

0

P

gP

dy

dP

PP

mi

yy

m

yyyyP

g

ePePePyP 50

800000

0000

0

)( :Solution

)(ρ (constant) :etc mercury, For water, 00 yygPP

General relationship between P and :r

gdy

dPρ :surface sEarth'near fluids allFor

Page 21: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2111/05/2013P (atm)

y-y 0

(mi)

mi

yy

m

yyyyP

g

ePePePyP 50

800000

0000

0

)( :Solution

Approximate relation of pressure to height above sea-level

Page 22: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2211/05/2013

iclicker question:Have you personally experienced the effects of atmospheric pressure variations?

A. By flying in an airplaneB. By visiting a high-altitude location (such as

Denver, CO etc.)C. By visiting a low-altitude location (such as

Death Valley, CA etc.)D. All of the above.E. None of the above.

Page 23: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2311/05/2013

Example:

Hydraulic press

incompressible fluid

A1Dx1=A2Dx2

F1/A1= F2/A2

Page 24: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2411/05/2013

Buoyant forces in fluids(For simplicity we will assume that the fluid is incompressible.)

Image from the web of a floating iceberg.

Image from the web of a glass of ice water

Page 25: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2511/05/2013

Buoyant force for fluid acting on a solid:

FB=rfluidVdisplacedg

submergedB

topbottomB

gVyAgAyyPyPF

FFF

ygyyPyP

fluidfluid

fluid

ρρ)()(

:forceBuoyant

ρ)()(

mg

FB - mg = 0

rfluidVsubmergedg - rsolidVsolidg = 0

fluid

solid

solid

submerged

V

V

ρ

ρ

A

Dy

Page 26: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2611/05/2013

Summary:

submergedB gVF fluidρ :forceBuoyant

fluid

solid

solid

submerged

V

V

ρ

ρ

Some densities: ice r = 917 kg/m3

fresh water r = 1000 kg/m3

salt water r = 1024 kg/m3

Page 27: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2711/05/2013

iclicker question:Suppose you have a boat which floats in a fresh water lake,

with 50% of it submerged below the water. If you float the same boat in salt water, which of the following would be true?

A. More than 50% of the boat will be below the salt water. B. Less than 50% of the boat will be below the salt water. C. The submersion fraction depends upon the boat's total

mass and volume. D. The submersion fraction depends upon the barometric

pressure.

Page 28: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2811/05/2013

Archimede’s method of finding the density of the King’s “gold” crown

Wwater Wair

waterair

airwaterobject

objectobjectair

objectwaterobjectobjectBwater

WWW

gVmgW

gVgVFmgW

Page 29: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 2911/05/2013

(water) 1000kg/mρ :example

)(ρ :fluid ibleIncompress

ρ

3

00

yygPP

gdydP

Application of Newton’s second law to fluid (near Earth’s surface)

(air) kg/m29.1ρ :example

)1)(ρ

(for )(ρ

:fluid leCompressib

3

00

0000

)(ρ

0

00

0

yyP

gyygP

ePPyy

P

g

Summary:

Page 30: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3011/05/2013

ρ

ρ

ρ :gas" ideal"an For

d;complicate more isequation fluid, lecompressibFor

0

0

0

0

P

gP

dy

dP

PP

0000

50

800000

)( , smallFor

)(00

00

0

yygPyPyy

ePePePyP mi

yy

m

yyyyP

g

)(ρ (constant) fluid, ibleincompressFor 00 yygPP

Review of equations describing static fluids in terms of pressure P and density :r

gdy

dPρ :surface sEarth'near fluids allFor

Page 31: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3111/05/2013

Buoyant force

submergedB gVF fluidρ :forceBuoyant

Ftop

Fbottom

ADy

gVF

gyAFFF

submergedB

topbottomB

fluid

fluid

ρ

ρ

:fluid from cubeon forceNet

Page 32: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3211/05/2013

Scale reading due to buoyant force:

mg

FB

T

Bscale

B

FmgTF

mgFT

0

:reading Scale

gVmg

gVF

solid

submergedB

solid

fluid

ρ

ρ

scaleBfluid

solid

solidsubmerged

Fmg

mg

F

mg

ρ

ρ

VV

:usingdensity solid Measure

ρρ If solidfluid

Page 33: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3311/05/2013

Scale reading due to buoyant force:

mg

FB

T

Bscale

B

FmgTF

mgFT

0

:reading Scale

gVmg

gVF

solid

submergedB

solid

fluid

ρ

ρ

solid

submerged

fluid

solid

solidsubmerged

V

V

ρ

ρ

T

VV

:usingdensity solid Measure ;0

ρρ If solidfluid

Page 34: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3411/05/2013

Fluid dynamics (for incompressible fluids)

2211

2211

2211

21

fluid of massgiven aConsider

(constant)

:fluid ible"incompress"an For

vAvA

tvAtvAM

xAxAM

VVM

Page 35: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3511/05/2013

Approximate energy conservation in fluid dynamics Bernoulli’s equation

22

222

111

212

1

2222

1121

212

1

2222

1

121212

1

222111

fluid of piece""

on iprelationshwork -Energy

PgyvPgyv

gyvPPgyv

VM

MgyMv

VPPMgyMv

UKWUK

UKWUK

M

fffiii

Page 36: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3611/05/2013

Bernoulli’s equation:

22222

111

212

1 PgyvPgyv

21

2

1

2222

1

2222

11

212

1

221121

1

PPA

Av

PvPv

vAvAyy

Page 37: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3711/05/2013

22222

111

212

1 PgyvPgyv Bernoulli’s equation:

2

2

1

01

1122

01212

1

2222

1

1

22

AA

PPghv

vAvA

Pgyv

Pgyv

Page 38: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3811/05/2013

m/s 7.24

1000

10013.11818

10 :Example

2

50

1

0

01

Pv

PP

PPv

Possibilities:

Fire extinguisher P>>P0

Page 39: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 3911/05/2013

m/s 1.3

/5.08.92

m 0.5 :Example

2

1

1

smv

h

ghv

Possibilities:

Open top: P=P0

Page 40: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4011/05/2013

iclicker question:Notice that if P<<P0, v1 could become very small. How might this happen?

A. Put an air-tight lid on the top.

B. Remove the lid on the top.

C. This will never happen.

2

2

1

01

1

22

AA

PPghv

Page 41: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4111/05/2013

Siphon

0Av

ghv

PvPghvA

2

02

21

02

21

Page 42: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4211/05/2013

Simplistic statement:

1222

212

1

22222

1

11212

1

PPvv

Pgyv

Pgyv

v1, P1

v2, P2

Page 43: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4311/05/2013

Webassign question:

The gravitational force exerted on a solid object is 5.30 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (figure). Find the density of the object.

Page 44: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4411/05/2013

Page 45: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4511/05/2013

21

1

: thatNote

2

2

yAhA

yhgg

zyhg

zggP

HgOH

Hg

HgOH

22A

M

OH

Dy

Dz

Page 46: 11/05/2013PHY 113 C Fall 2013 -- Lecture 191 PHY 113 C General Physics I 11 AM-12:15 PM TR Olin 101 Plan for Lecture 19: Chapter 14: The physics of fluids

PHY 113 C Fall 2013 -- Lecture 19 4611/05/2013

2

1

2

1

21

1

1

2

2

2

AA

h

A

Aghg

yAhA

yhgg

Hg

OH

HgOH

HgOH

m0049.02113600

1000m2.0

:2/ m, 0.2For 21

h

AA