10_biodegradation_models

Upload: vikash-jaiswal

Post on 08-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 10_BIodegradation_models

    1/27

    Numerical Modeling of

    Biodegradation

    Analytical and Numerical Methods

    ByPhilip B. Bedient

  • 8/7/2019 10_BIodegradation_models

    2/27

    Modeling Biodegradation

    Three main methods for modeling biodegradation

    Monod kinetics

    First-order decay

    Instantaneous reaction

    Methods can be used where appropriate for

    aerobic, anaerobic, hydrocarbon, or chlorinated

  • 8/7/2019 10_BIodegradation_models

    3/27

    Microbial Growth Region 1:Lag phase microbes are adjusting to

    the new substrate (food

    source)

    Region 2Exponential growth phase,

    microbes have acclimated

    to the conditions

    Region 3Stationary phase,

    limiting substrate or

    electron acceptor limits thegrowth rate

    Region 4Decay phase,

    substrate supply has been

    exhausted

    Time

    log [ X]32 41

  • 8/7/2019 10_BIodegradation_models

    4/27

    Monod Kinetics

    The rate of biodegradation or biotransformation is

    generally the focus of environmental studies

    Microbial growth and substrate consumption rates

    have often been described using Monod kinetics

    Cis the substrate concentration [mg/L]

    Mtis the biomass concentration [mg/ L]

    max is the maximum substrate utilization rate [sec-1]

    KCis the half-saturation coefficient [mg/L]

    dC

    dt!Qmax

    CMt

    KC

    C

  • 8/7/2019 10_BIodegradation_models

    5/27

    Monod Kinetics

    First-order region,

    C> KC, the equationcan be approximated by

    linear decay

    (C= C0 kt)

    dC

    dt

    C

    First-orderregion

    Zero-orderregion

    dC

    dt!kCM

    t

    KC

    dCdt

    ! QmaxMt

  • 8/7/2019 10_BIodegradation_models

    6/27

    Modeling Monod Kinetics

    Reduction of concentration expressed as:

    Mt = total microbial concentration

    max = maximum contaminant utilization rate per massof microorganisms

    KC = contaminant half-saturation constant

    t = model time step size

    C = concentration of contaminant

    (C! MtQ

    max

    C

    Kc C

    (t

  • 8/7/2019 10_BIodegradation_models

    7/27

    Bioplume II Equation - Monod

    Including the previous equation for reaction

    results in this advection-dispersion-reaction

    equation:

    xC

    xt! Dx

    x2C

    xx

    2 v

    xC

    xx tQmax

    C

    Kc

    C

  • 8/7/2019 10_BIodegradation_models

    8/27

    Multi-Species Monod Kinetics

    For multiple species, one must track the species

    together, and the rate is dependent on the

    concentrations of both species

    (C! Mt max

    C

    Kc C

    O

    Ko O

    (t

    (O ! Mt maxFC

    Kc C

    O

    Ko O

    (t

  • 8/7/2019 10_BIodegradation_models

    9/27

    Multi-Species

    Adding these equations to the advection-

    dispersion equation results in one equation for

    each component (including microbes)

    BIOPLUME III doesnt model microbes

    xC

    xt=

    1

    Rc

    (DC C) Mt

    Qmax

    Rc

    C

    Kc C

    O

    Ko O

    xO

    xt

    = (DO O) MtQmax

    FC

    Kc C

    O

    Ko O

    xMs

    xt=

    1

    Rm

    (DMs - vMs ) MsQmaxYC

    Kc C

    O

    Ko O

    kcY(OC)

    Rm

    bMs

  • 8/7/2019 10_BIodegradation_models

    10/27

    Modeling First-Order Decay

    Cn+1 = Cn ekt

    Generally assumes nothing about limiting

    substrates or electron acceptors

    Degradation rate is proportional to the

    concentration

    Generally used as a fitting parameter,

    encompassing a number of uncertain parameters

    BIOPLUME III can limit first-order decay to the

    available electron acceptors (this option has bugs)

  • 8/7/2019 10_BIodegradation_models

    11/27

    Modeling

    Instantaneous Biodegradation Excess Hydrocarbon: Hn > On/F

    On+1 = 0 Hn+1 = Hn - On/F

    Excess Oxygen: Hn < On/F

    On+1 = On - HnF Hn+1 = 0

    All available substrate is biodegraded, limited only by theavailability of terminal electron acceptors

    First used in BIOPLUME II - 1987

  • 8/7/2019 10_BIodegradation_models

    12/27

    Sequential Electron Acceptor

    Models Newer models, such as BIOPLUME III, RT3D,

    and SEAM3D allow a sequential process - 1998

    After O2 is depleted, begin using NO3

    Continue down the list in this order

    O2

    > NO3

    > Fe3+ > SO4

    2> CO2

  • 8/7/2019 10_BIodegradation_models

    13/27

    Superposition of Components

    Electron donor and acceptor are each modeled

    separately (advection/dispersion/sorption)

    The reaction step is performed on the resulting

    plumes

    Each cell is treated independently

    Technique is called Operator Splitting

  • 8/7/2019 10_BIodegradation_models

    14/27

    Principle of Superposition

    Background D.O.

    Initial HydrocarbonConcentration

    Reduced OxygenConcentration

    OxygenDepletion

    Reduced HydrocarbonConcentration

    + =

  • 8/7/2019 10_BIodegradation_models

    15/27

    Oxygen Utilization of Substrates

    Benzene: C6H6 + 7.5O2 > 6CO2 + 3H2O

    Stoichiometric ratio (F) of oxygen to benzene

    Each mg/L of benzene consumes 3.07 mg/L of O2

    F!7.5 molO21 molC6H6

    32 mgO21 molO2

    1 molC 6H6

    (12 y6 1y6) mgC6H6

    F! 3.07 mgO2 mgC6H6

  • 8/7/2019 10_BIodegradation_models

    16/27

    Biodegradation in BIOPLUME II

    A A'

    B B'

    Zoneof reatmentZoneofReducedHydrocar on Concentrations

    BackgroundD.O.

    ZoneofReducedOxygen Concentration

    ZoneofOxygenDepletion

    A A'

    H

    WithoutOxygen

    B B'

    D.O.

    BackgroundD.O.

    DepletedOxygen

    WithOxygen

  • 8/7/2019 10_BIodegradation_models

    17/27

    Initial Contaminant Plume

    x x

    o o

    Con ce n tra tion

    x

    8.8 9e + 2 o Production ell7 .78e + 26.67e + 22.22e + 21.11e + 2

    1.00e + 3

    0.00e + 0o

    x

    Values representupper li itsfor corresponding color.

    Injection ell

  • 8/7/2019 10_BIodegradation_models

    18/27

    Model Parameters

    Grid Size 20 x 20 cells

    Cell Size 50 ft x 50 ft

    Transmissivity 0.002 ft2

    /sec

    Thickness 10 ft

    Hydraulic Gradient .001 ft/ft

    Longitudinal Dispersivity 10 ft

    Transverse Dispersivity 3 ft

    Effective Porosity 0.3

  • 8/7/2019 10_BIodegradation_models

    19/27

    Biodegrading Plume

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 1 0 0 0 0

    0 0 0 1 11 1 0 0 0

    0 0 0 6 123 6 0 0 0

    0 0 1 38 1000 38 1 0 0

    0 0 4 71 831 71 4 0 0

    0 0 7 97 710 97 7 0 0

    0 1 9 104 600 104 9 1 0

    0 0 9 90 449 90 9 0 0

    0 0 5 54 285 54 5 0 0

    0 0 2 19 109 19 2 0 0

    0 0 0 4 24 4 0 0 0

    0 0 0 1 4 1 0 0 0

    0 0 0 0 1 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 1 1 1 1 1 0 0

    0 0 2 3 4 3 2 0 0

    0 0 3 7 12 8 3 1 0

    0 0 4 11 20 13 5 0 0

    0 0 2 8 11 8 2 0 0

    0 0 0 2 4 2 0 0 0

    0 0 0 0 1 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    Original Plume Concentration Plume after two years

    Extraction Only - No Added O2

  • 8/7/2019 10_BIodegradation_models

    20/27

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 2 6 2 0 0 0 0 0 3 7 15 8 3 0 0

    0 0 2 6 10 7 1 0 0 0 0 0 1 3 1 0 0 0

    0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    Plume Concentrations

    Plume after two years Plume after two years

    O2 Injected at 20 mg/L O2 Injected at 40 mg/L

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 1 2 9 3 1 0 0

    0 0 1 5 8 5 1 0 0 0 0 0 1 3 1 0 0 0

    0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 8/7/2019 10_BIodegradation_models

    21/27

    Biodegradation Models

    Bioscreen -GSI

    Biochlor - GSI

    BIOPLUME II and III - Bedient & Rifai RT3D - Clement

    MT3D MS

    SEAM 3D

  • 8/7/2019 10_BIodegradation_models

    22/27

    Name D im ension D escription Author

    X 1 aer ob ic, microcolon

    , M onod M olz, e tal. ( 19 86 )

    BI O

    L UM E 1 aer ob ic, Mo nod Borden, et al. (1 98 6)

    X 1 anal

    tical first-order D omen ico ( 19 8 7)

    BI O ID 1 aer ob ic and ana erobic, M onod Srinivasan and M ercer (1 98 8)

    X 1 com e tabolic, Monod Se m prini a nd McCarty(1991)

    X 1aer obic, an ae robic, n utrient

    limitations, microcolony, MonodWiddowson, et al. ( 19 88)

    X 1aerobic, cometa bolic, m u ltiple

    sub strates, fermenta tive, MonodC elia, et a l. (1 98 9)

    BI OSCR EEN 1 anal ytical first-order, ins tantaneou s Newell, e tal. (1996)

    BI OCH LO R 1 anal ytical Aziz, et a l. (1 99 9)

    BI O

    L UM E II 2 aer ob ic, instantaneo us R ifa i, e ta l. (19 88 )

    X 2 M onod MacQuarrie, et a l. (1 99 0)

    X 2 de nitrification Kinze lba c h , et al. (1 99 1)

    X 2 M onod, biofilm O dencrantz , et al. ( 19 90)

    BI O L UM E III 2 aer ob ic and an aerobic R ifa i, e ta l. (19 97 )

    R T3 D 3 aer ob ic and an aerobic C le me n t(19 98 )

    Biodegradation Models

  • 8/7/2019 10_BIodegradation_models

    23/27

    Dehalogenation of PCE

    PCE (perchloroethylene

    or tetrachloroethylene)

    TCE (trichloroethylene)

    DCE (cis-, trans-,

    and1,1-dichloroethylene

    VC (vinyl chloride)

    C C

    Cl Cl

    Cl Cl

    C C

    Cl

    Cl

    C C

    Cl

    Cl Cl

    C C

    Cl

    C CCl Cl

    C C

    Cl

    Cl

    PCE

    TCE

    DCE's

    VC

  • 8/7/2019 10_BIodegradation_models

    24/27

    Dehalogenation

    Dehalogenation refers to the process of stripping

    halogens (generally Chlorine) from an organic

    molecule

    Dehalogenation is generally an anaerobic process,

    and is often referred to as reductive dechlorination

    RCl + 2e+ H+ > RH + Cl

    Can occur via dehalorespiration or cometabolism Some rare cases show cometabolic dechlorination

    in an aerobic environment

  • 8/7/2019 10_BIodegradation_models

    25/27

    Chlorinated Hydrocarbons

    Multiple pathways

    Electron donor similar to hydrocarbons

    Electron acceptor depends on human-added electron

    donor

    Cometabolic

    Mechanisms hard to define

    First-order decay often used due to uncertainties inmechanism

  • 8/7/2019 10_BIodegradation_models

    26/27

    Modeling Dechlorination

    Few models specifically designed to simulate

    dechlorination

    Some general models can accommodate

    dechlorination

    Dechlorination is generally modeled as a first-

    order biodegradation process

    Often, the first dechlorination step results in asecond compound that must also be dechlorinated

  • 8/7/2019 10_BIodegradation_models

    27/27

    Sequential Dechlorination

    Models the series of dechlorination steps between

    a parent compound and a non-hazardous product

    Each compound will have a unique decay constant

    For example, the reductive dechlorination of PCE

    requires at least four constants

    PCE k 1> TCE

    TCE k 2> DCE DCE k 3> VC

    VC k4> Ethene