10.1 differentiation of vector chapter 10 vector calculus

39
10.1 Differentiation of vector Chapter 10 Vector Calculus k du u da j du u da i du u da u u a u u a du u a d u u u a k u a j u a i u a u a z y x u z y x ˆ ) ( ˆ ) ( ˆ ) ( ) ( ) ( lim ) ( point some at continuous is ) ( ˆ ) ( ˆ ) ( ˆ ) ( ) ( s coordinate Cartesian In 0 0 ) ( u a ) ( u u a ) ( ) ( u a u u a a able. differenti be may vector basis the general in fixed, are ˆ , ˆ , ˆ s, coordinate Cartesian in : Note ˆ ˆ ˆ ˆ ˆ ˆ ) ( ) ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ) ( ˆ ) ( ˆ ) ( ) ( : physics In 2 2 2 2 2 2 k j i k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv dt t v d t a k v j v i v k dt dz j dt dy i dt dx dt r d t v k t z j t y i t x t r z y x z y x

Upload: stuart-bond

Post on 27-Dec-2015

224 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 10.1 Differentiation of vector Chapter 10 Vector Calculus

10.1 Differentiation of vector

Chapter 10 Vector Calculus

kdu

udaj

du

udai

du

uda

u

uauua

du

uad

uuua

kuajuaiuaua

zyx

u

zyx

ˆ)(ˆ)(ˆ)(

)()(lim

)(

point someat continuous is )(

ˆ)(ˆ)(ˆ)()(

scoordinate Cartesian In

0

0

)(ua

)( uua

)()( uauuaa

able.differenti be may

vector basis the general in fixed, are ˆ ,ˆ ,ˆ s,coordinate Cartesian in :Note

ˆˆˆˆˆˆ)()(

ˆˆˆˆˆˆ)(

ˆ)(ˆ)(ˆ)()(

:physics In

2

2

2

2

2

2

kji

kdt

zdj

dt

ydi

dt

xdk

dt

dvj

dt

dvi

dt

dv

dt

tvdta

kvjvivkdt

dzj

dt

dyi

dt

dx

dt

rdtv

ktzjtyitxtr

zyx

zyx

Page 2: 10.1 Differentiation of vector Chapter 10 Vector Calculus

For two-dimensional plane polar coordinates

. and as changes direction

their but magnitudesconstant have ˆ and ˆ (2)

direction and magnitude inconstant are ˆ and ˆ (1)

ee

ji

Chapter 10 Vector Calculus

x

y

i

j

ee

ejdt

di

dt

d

dt

edjie

ejdt

di

dt

d

dt

edjie

ˆˆsinˆcosˆˆcosˆsinˆ

ˆˆcosˆsinˆˆsinˆcosˆ

)2(ˆ)(ˆ

)ˆˆ()()(

ˆˆˆ

ˆ)()(

onaccelerati and velocity the find ,ˆ)()(vector position :Ex

..2

..

ee

eedt

dtvta

eedt

ede

dt

dtrtv

ettr

Page 3: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Differentiation of composite vector expressions

Chapter 10 Vector Calculus

TFrFrvmv

vmdt

drvm

dt

rdvmr

dt

d

dt

Ld

vmrLFrT

bdu

ad

du

bdaba

du

d

bdu

ad

du

bdaba

du

d

adu

d

du

ada

du

d

)()(

is momentumangular the , torque :Ex

)( (3)

)( (2)

)( (1)

du

ada

du

adaaa

du

daaa

du

ds

ds

ad

du

sadusssaa

02)(constant a is if *

)()( and )(vector a if *

2

Page 4: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

10.2 Integration of vector

)()()(

vectorconstant a is )()()(

)(

12

2

1

uAuAduua

bbuAduuadu

uAdua

u

u

motion. the ofconstant a is

that show , ˆ ngravitatio of law sNewton' :Ex 2

2

dt

rdrr

r

GMm

dt

rdm

2

||||

2

1 rate changing its 2/|| is area in change the

0 interval time malinfinitesifor

vectorconstant a is

0)(

2

2

22

2

c

dt

rdr

dt

dArdrdA

rdrrdt

cdt

rdr

dt

rd

dt

rd

dt

rdr

dt

rdr

dt

d

rrr

GM

dt

rdr

Page 5: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

10.3 Space curves

dudu

rd

du

rds

du

rd

du

rd

du

ds

du

rd

du

rd

du

ds

dzdydxrdrddskdzjdyidxurd

kuzjuyiuxur

u

u

2

1

is length arc The

)(

)()()()(ˆˆˆ)(

ˆ)(ˆ)(ˆ)()(

2

2222

Ex: A curve lying in the xy-plane is given by y=y(x), z=0. Evaluate the arc length along the curve between x=a and x=b.

xudxdx

dys

du

dy

du

rd

du

rd

jdu

dyi

du

rdjuyiuurxu

b

a

for )(1)(1

ˆˆˆ)(ˆ)(Set

22

Page 6: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

point. given aat tovector

tangentunit a is ˆ curve, the along (s) length arc the is If

. increasing of direction the inpoint that at

totangent vector a is ,)( by described is curve a If

C

tds

rdu

u

Cdu

rdurC

tds

rd ˆ

)(ur

system. cordinate retangular handed-right a form ˆ and ˆ ,ˆ

vector binormal ˆˆˆ

vector normal principal the is ˆ ˆˆ

ˆˆ , 0

ˆˆ1|ˆ|

/1 curvature of radius The

|||ˆ

| torespect with

ˆvector tangent unit the of rate changing the : Curvature (1)

2

2

bnt

ntb

nnds

td

ds

tdt

ds

tdtt

ds

rd

ds

tds

t

z

x y

C

)(ur

n

bt

Page 7: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

ˆˆˆˆˆˆˆˆˆ

ˆˆ

ˆˆˆ (3)

torsion the of radius the 1

curve a of torsion the ˆ

ˆˆˆ

ˆˆ

ˆ and ˆ tolar perpendicu ˆ

ˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆ

)ˆˆ(00ˆˆfor

ˆˆ 0

ˆˆ1|ˆ| (2)

tbnbtnds

tdbt

ds

bd

ds

nd

tbn

ds

bdnn

ds

bd

nds

bdtb

ds

bd

ds

bdtt

ds

bdnbt

ds

bd

ds

tdbt

ds

bdtb

ds

dtb

ds

bdb

ds

bdbb

Frenet-Serret

formula:n

ds

bdtb

ds

ndn

ds

tdˆ

ˆ ˆˆˆ

ˆˆ

Page 8: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

curvature of radius the : normal principal the :ˆ

trajectory the totangent unit the :ˆ particle the of speed the :

ˆˆ)( by given is )(

trajectory a along travelling a of onaccelerati thethat Show :Ex2

n

tv

nv

tdt

dvtatr

tdt

dv ˆ

nv

ˆ2

onaccelerati lcentripeta :ˆ

onaccelerati tangential :ˆ

ˆˆ)(ˆˆˆˆ

ˆˆ)ˆ()(

ˆˆ)(

2

2

nv

tdt

dv

nv

tdt

dvtan

vnv

ds

td

dt

ds

dt

td

dt

tdvt

dt

dvtv

dt

d

dt

vdta

tvtdt

ds

dt

ds

ds

rd

dt

rdtv

Page 9: 10.1 Differentiation of vector Chapter 10 Vector Calculus

2

22

2

2

2

2

2

2

)(

])([)]([)(

parameter some is ),( curve aFor

dt

ud

du

rd

dt

du

du

rd

dt

ud

du

rd

dt

du

dt

du

du

rd

du

d

dt

ud

du

rd

dt

du

du

rd

dt

d

dt

du

du

rd

dt

d

dt

vda

dt

du

du

rd

dt

rdvuur

Chapter 10 Vector Calculus

10.4 Vector functions of several arguments

j

n

j jn

n

n

jn

j j

jj

i

jn

j ji

n

niii

niin

duu

adu

u

adu

u

adu

u

aad

uuu

v

u

u

a

v

a

dv

ad

vuuva

v

u

u

a

v

u

u

a

v

u

u

a

v

u

u

a

v

a

vvvuuuuuaa

12

21

1

21

1

1

2

2

1

1

2121

.....

,..., variablesdependent vector a of aldifferenti The (3)

)( scalars and of functionexplicit an is If (2)

......

),...,( of function a also is ,),.....,( If (1)

Page 10: 10.1 Differentiation of vector Chapter 10 Vector Calculus

2

1

21

curve ofvector tangent the is (b)

curve ofvector tangent the is a)(

curves. coordinate called are and

is )( totangent vector The

))(),(()()( and )(

by drepresente be can surface

the on )( curve any ,parameter aFor

ˆ),(ˆˆ),(),( (4)

0),,( (3)

),( (2)

ˆ),(ˆ),(ˆ),(),( (1)

:is equation surface the coordinate Cartesian In

cvu

r

cuv

r

cvcud

dv

v

r

d

du

u

r

d

rdr

vurrgvfu

r

kvufjviuvuryxfz

zyxg

yxfz

kvuzjvuyivuxvur

10.5 Surface

Chapter 10 Vector Calculus

Page 11: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

RRdudvndudv

v

r

u

rdSA

dudvndudvv

r

u

rdv

v

rdu

u

rdS

dvv

rdu

u

rrd

rdv

r

u

rn

v

r

u

r

||||

area Total

||||||

ramparallelog linfitesima an is Pat area ofelement The

is nt displacemevector malinfinitesi an P, of oodneighbourh the In

isvector normal a S, surface smooth the on Ppoint aFor

P.point theat T planetangent the define to

vectors two the use can we t,independen linearly are and If

Page 12: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

Ex: Find the element of area on the surface of a sphere of radius a,

and hence calculate the total surface area of the sphere.

2

0

2

0

222

2

1

4sinsinsin||

0cossinsinsin

sinsincoscoscos

ˆˆˆ

vector Normal

ˆcossinˆsinsin

is curve the totangent vector The (2)

ˆsinˆsincosˆcoscos

is curve the totangent vector The (1)

ˆcosˆsinsinˆcossin),(

addaAddadSan

aa

aaa

kjirr

n

jaiar

c

kajaiar

c

kajaiar

Page 13: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

10.7 Vector operator

vectortangent unit the is ˆ ˆ

curve the along length arc the , If

parameter a is ,)( If

)ˆˆˆ()ˆˆˆ(

to from in change The

ˆˆˆ grad),,( fieldscalar aFor

coordinate Cartesian in ˆˆˆ del

ttds

rd

ds

d

sudu

rd

du

duurr

ddzz

dyy

dxx

dzkdyjdxiz

ky

jx

ird

rdrr

zk

yj

xizyx

zk

yj

xi

Gradient of a scalar field

Page 14: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

||)()0(ˆ||

||||cos||ˆ

is vector particular a in distance

the torespect with of rate changing The

max

ds

da

ds

da

ds

d

as

Ex: For a function at a point (1,2-1), find its rate of change with distance in the direction . At the same point, what is the greatest possible rate of change with distance and in which direction does it occur?

yzyx 2kjia ˆ3ˆ2ˆ

20||)(ˆ2ˆ4 direction the In (2)

14

10)64(

14

1ˆ )ˆ3ˆ2ˆ(

14

1

||ˆ )1(

)1,2,1(point at ˆ2ˆ4ˆˆ)(ˆ2

max

2

ds

dki

ads

dkji

a

aa

kikyjzxixy

Page 15: 10.1 Differentiation of vector Chapter 10 Vector Calculus

)( to from field electric in change the :Ex

ˆ

operator aldifferentiscalar the by found be could ˆ of direction

the in distance with field scalar)(or vector a of change of rate The

ErdEdrdrr

za

ya

xaa

a

zyx

Chapter 10 Vector Calculus

.derivative normal called is ,ˆ along rate changing || (3)

points. everyat ),,( surface the tovector normal a is ˆ (2)

point someat surface this tovector tangent a is ˆ (1)

ˆ0ˆ

)ˆˆˆ()ˆˆˆ(

and 0(constant) ),,( If

nn

czyxnn

t

ttds

rd

ds

dzk

ds

dyj

ds

dxi

zk

yj

xi

ds

dz

zds

dy

yds

dx

xds

dds

dczyx

Page 16: 10.1 Differentiation of vector Chapter 10 Vector Calculus

yxjaxiay

kakazjyixkarr

azazakarr

akakzjyix

azyx

nrrn

r

nrr

n

kzjyixr

zyx

axis z the is 00ˆ2ˆ2

0ˆ2)ˆ)(ˆˆ(0ˆ2)(

a)(0,0,at sphere the normal line The )4(

0)(20ˆ2)( is planetangent The

)),0,0((at ˆ2ˆ2ˆ2ˆ2

surface theFor (3)

0)(

along P through passing linestraight the on is If (2)

0)( surfacetangent The

|vector Normal

ˆˆˆat PPoint (1)

0

0

2222

000

00

0,,

000

000

Chapter 10 Vector Calculus

Ex: Find the expression for the equations of the tangent plane and the line normal to the surface at the point P with the coordinates . Use the results to find the equations of the tangent plane and the line normal to the surface of the sphere at the point .

czyx ),,(000 , , zyx

2222 azyx ),0,0( a

z

yx

0n az

a

),0,0( a

Page 17: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

Divergence of a vector field

volumeunit per fluid of outflow of ratenet the is

fluid a in velocity local a is ),,( :Ex

Solenoidal 0 If

V

zyxV

a

z

a

y

a

x

aaadiv zyx

Scalar differential operator

zxyxz

zxy

zyx

232

32

2

2

2

2

2

2

22

62

fieldscalar the of Laplacian the Find :Ex

of Laplacian the

Page 18: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Curl of a vector

]ˆˆ)(ˆ[2

)20(ˆ)22(ˆ)20(ˆ

ˆˆˆ

ˆˆˆ :Ex

alIrrotation 0 If

ˆˆˆ

ˆ)(ˆ)(ˆ)(

222222

222222

2222222

2222222

kyzxjzyxxzizy-

zyxkyzxxzjzyi

zxzyzyxzyx

kji

a

kzxjzyizyxa

a

aaazyx

kji

ky

a

x

aj

x

a

z

ai

z

a

y

aaacurl

zyx

xyxxyz

Chapter 10 Vector Calculus

Page 19: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

0

0 wheel paddle small A

point.that of odneighborho the in fluid the of velocityangular

the to related is fluid, a in velocity local the is ),,( If

vrotatedoesnot

vrotate

vzyxv

2ˆ2

0

ˆˆˆ

ˆˆ)ˆˆˆ()ˆ(

. then ,ˆ andvector position the is If :Ex

k

xyzyx

kji

v

iyjxkzjyixkv

rvkr

Page 20: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Useful formulas:

Chapter 10 Vector Calculus

baababbaba

aaa

baabba

aaa

abbaabbaba

baba

baba

)()()()()( (9)

)( (8)

)()()( (7)

)( (6)

)()()()()( (5)

)( (4)

)( (3)

)( (2)

)( (1)

Page 21: 10.1 Differentiation of vector Chapter 10 Vector Calculus

10.8 Vector operator formula

Chapter 10 Vector Calculus

kk

jji

iijkijkjji

i

ijjiji

ijkijkjji

ik

aa

aa

aaaa

aaa

)()(

)(

][)()]([

)(that Show :Ex

,,

,,

Useful special cases:

rdr

d

r

kzjyix

dr

d

kz

r

dr

dj

y

r

dr

di

x

r

dr

dk

zj

yi

xr

rdr

dr

zyxrrkzjyixr

ˆ)ˆˆˆ(

ˆˆˆˆˆˆ)(

ˆ)( 1)(

)(|| vector position a is ˆˆˆ 2/1222

Page 22: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

dr

d

r

zyx

dr

d

r

z

z

r

dr

d

r

y

y

r

dr

d

r

x

x

r

dr

d

r

z

dr

d

zr

y

dr

d

yr

x

dr

d

xr

dr

ddr

rd

dr

rd

rr

dr

dr

dr

dr

dr

drr

rrr

zyx

rr

r

x

rzyxx

x

zyx

z

zyx

y

yzyx

x

xr

dr

rdrrr

dr

dr

z

z

y

y

x

x

rrrr

2

2

2

222

2

2

2

2

2

2

2

2

2

22

3

222

3

22/1222

222222222

)(

)()()(

)()()(ˆ)( :term 2nd thefor

)()(2ˆ)()ˆ()ˆ())(()( (4)

213

r

similar are termsanother 1

])([ :term1st thefor

)()()(ˆ (3)

)()(3ˆ)(

])([ (2)

Page 23: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

rkzjyixrr

zk

r

yj

r

xi

z

rk

y

rj

x

rir

dr

d

r

yx

dr

d

r

xyk

dr

d

r

zx

dr

d

r

xzj

dr

d

r

zy

dr

d

r

yzir

dr

d

r

z

zdr

d

r

y

ydr

d

r

x

x

r

dr

d

x

yx

xyk

zx

xzj

zy

yzi

zyxzyx

kji

r

y

x

x

yk

z

x

x

zj

z

y

y

zi

zyxzyx

kji

r

rrrr

ˆ)ˆˆˆ(1ˆˆˆˆˆˆ (6)

0)(ˆ)(ˆ)(ˆ

for

)(ˆ)(ˆ)(ˆ

ˆˆˆ

(b)

0)(ˆ)(ˆ)(ˆ

ˆˆˆ

(a)

0])([ (5)

Page 24: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

],[ if 0

],[ if )()()(

for 0)(

function delta Dirac is )(

)(4)1

()1

()ˆ

( (9)

ˆ)

1( (8)

3 (7)

0

000

00

22

2

bax

baxxfdxxxxf

xxxx

r

rrrr

rr

r

r

r

b

a

Page 25: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Combinations of grad, div, and curl

Chapter 10 Vector Calculus

solenoidal is 0)( (4)

alirrotation is 0)( (3)

0///

///

)(

0)( (2)

0)(ˆ)(ˆ)(ˆ

///

///

ˆˆˆ

)(

0)( (1)

fieldvector : fieldscalar :

222222

babab

aaa

aaa

zyx

zyx

a

a

xyyxk

zxxzj

yzzyi

zyx

zyx

kji

a

zyx

Page 26: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

0)()()( (8)

them. onact can so ,

constantnot are vectorsunit the s,coordinate spherical and lcylindrica In

them. onact not does

operator the so constant, arevector unit the s,coordinate Cartesian In :

)ˆˆˆ)((

)()( (7)

)(ˆ)(ˆ)(ˆ

))(ˆˆˆ()( (6)

)( (5)

2

2

2

2

2

2

2

22

2

2

2222

2

2222

2

2

2

2

2

2

2

22

Note

kajaiazyx

a

aaa

z

a

yz

a

xz

ak

zy

a

y

a

xy

aj

zx

a

yx

a

x

ai

z

a

y

a

x

a

zk

yj

xia

zyx

zyx

zyxzyxzyx

zyx

Page 27: 10.1 Differentiation of vector Chapter 10 Vector Calculus

10.9 Cylindrical and spherical polar coordinates

Chapter 10 Vector Calculus

A. Cylindrical polar coordinates

zz

zz

edzedededzeded

dzz

rd

rd

rrd

kekz

re

jiejir

e

jiejir

e

kzjir

z

zzyx

ˆˆˆ

ˆˆ ˆ

ˆcosˆsinˆ ˆcosˆsin

ˆsinˆcosˆ ˆsinˆcos

ˆˆsinˆcos:Ppoint for

20 0

sin cos

Page 28: 10.1 Differentiation of vector Chapter 10 Vector Calculus

ly.respective ,ˆ and ,ˆ ,ˆ directions along

1 and , ,1 are factors Scale

is ˆ (3) is ˆ (2) is ˆ (1)

along distance the of change The

),,( to ),,( from Position

z

z

z

eee

hhh

dzedede

dzzddz

Chapter 10 Vector Calculus

z

aaaa

ez

ee

eaeaeaaz

dzddedzededdV

dddA

dzddrdrddsds

z

z

zz

z

1)(

1 (2)

ˆˆ1

ˆ )1(

ˆˆˆ fieldvector a and ),,,( fieldscalar aFor

|)ˆˆ(ˆ|

iselement volume The

is plane y-x in area The

])()()[()()( 2/122222/12

Page 29: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

.vector intoput are above The

sin cos

ˆˆ ˆcosˆsinˆ ˆsinˆcosˆ

ˆˆ ˆcosˆsinˆ ˆsinˆcosˆ

scoordinate lcylindrica in expressed ˆˆˆ :Ex

1)(

1 (4)

ˆˆˆ

1 (3)

2

2

2

2

2

22

a

zzyx

ek eejeei

kejiejie

kxzjyiyza

z

aaaz

eee

a

z

z

z

z

Page 30: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

B. Spherical polar coordinates

jieee

kjieee

kjiee

reree

jrirr

e

kjrirr

e

kjir

re

krjrirr

r

rzryrx

rr

r

r

ˆcosˆsin||/ˆ

ˆsinˆsincosˆcoscos||/ˆ

ˆcosˆsinsinˆcossinˆ

sin|| || 1||

ˆcossinˆsinsin

ˆsinˆsincosˆcoscos

ˆcosˆsinsinˆcossin

ˆcosˆsinsinˆcossin

20 0 0

cos sinsin cossin

Page 31: 10.1 Differentiation of vector Chapter 10 Vector Calculus

ddrdredrerdedrdV

ddaeadedadA

drdrdr

rdrddsd

edrerdedr

edededr

dr

dr

drr

rrd

r

r

r

sin|)ˆsinˆ(ˆ|

:element volume The

sin|ˆˆsin|

a radius a with sphere a of surface the onelement area The

)(sin)()(

)(s

:ntdisplaceme of Magnitude

ˆsinˆˆ

:ntDisplaceme

2

2

222222

2

Chapter 10 Vector Calculus

Page 32: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

2

2

2222

22

2

22

sin

1)(sin

sin

1)(

1 (4)

sin

ˆˆˆ

sin

1 (3)

sin

1)(sin

sin

1)(

1 (2)

ˆsin

1ˆ (1)

ˆˆˆ fieldvector a ,),,( fieldscalar A

rrrr

rr

arraar

eee

ra

a

ra

rar

rra

er

er

er

eaeaeaar

r

r

r

r

rr

Page 33: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

10.10 General curvilinear coordinate

|| || || :factors Scale

1

ˆ 1

ˆ 1

ˆ :vectorsUnit

|| || ||

Pat curve- totangent vector a

Pat curve- totangent vector a

Pat curve- totangent vector a

Ppoint at vector position the is ),,(

),,( ),,( ),,(

),,( ),,( ),,(

33

22

11

333

222

111

332211

33

3

22

2

11

1

321

332211

321321321

u

rh

u

rh

u

rh

u

r

he

u

r

he

u

r

he

hehehe

uu

re

uu

re

uu

re

uuur

zyxuuzyxuuzyxuu

uuuzzuuuyyuuuxx

Page 34: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

333222111

332211

33

22

11

1

ˆˆˆ

sin 1 :coordinate Spherical

1 1 :coordinate lCylindrica

is changing ofelement distance The

eduheduheduh

edueduedu

duu

rdu

u

rdu

u

rrd

rhrhh

hhh

duhdu

r

z

ii

321321333222111

332211

23

23

22

22

21

21

2

|)ˆˆ(ˆ|

|)(| iselement volume The

3,2,1for ˆ)(

vector the by defined pedparallelpi malinfinitesi The

)()()()(

is length arc ofelement the lar,perpendicu

mutually are ˆ s,coordinater curvilinea orthogonalFor

dududuhhheduheduheduh

edueduedudV

ieduheduduu

r

duhduhduhrdrdds

e

iiiiiii

i

Page 35: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

3322113

32

21

1

332211332211

333

33

222

22

111

11

:vectors of sets Two

surface the to normal ||

ˆ

surface the to normal ||

ˆ

surface the to normal ||

ˆ

:vectorsunit three usefulAnother

uuuu

r

u

r

u

r

eeea

u

u

re

cuu

u

cuu

u

cuu

u

ii

ii

Page 36: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

vectors of system reciprocal are }{ and }{ iie

otherwise 0

if 1

)ˆˆˆ()ˆˆˆ(

jie

u

u

z

u

u

z

y

u

u

y

x

u

u

x

kz

uj

y

ui

x

uk

u

zj

u

yi

u

x

uu

re

ji

i

jj

i

j

i

j

i

jjj

iii

ji

ji

Page 37: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

Gradient

333

222

111

332211

33

22

11

ˆ1

ˆ1

ˆ1

)ˆˆˆ(

euh

euh

euh

kduhj duhiduhrd

duu

duu

duu

d

Divergence

)]()()([1

ˆˆˆ

3213

2132

1321321

332211

ahhu

ahhu

ahhuhhh

a

eaeaeaa

Proof:

)()()(

)()ˆ(

ˆˆˆ

3232132321

3232111

3322321

uuhhauuhha

uuhhaea

uhuheee

Page 38: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

)(1

)ˆ( and )(1

)ˆ(

)ˆ( and )ˆ( for same the

)(1

ˆ)()

ˆˆ()()ˆ(

0)(0)( 10.43 eq. From

3213321

332132321

22

3322

3211321

32

1321

3

3

2

232111

32

ahhuhhh

eaahhuhhh

ea

eaea

hhauhhh

hh

ehha

h

e

h

ehhaea

uu

Laplacian

)]()()([1

ˆ1

ˆ1

ˆ1

33

21

322

13

211

32

1321

2

333

222

111

uh

hh

uuh

hh

uuh

hh

uhhha

euh

euh

euh

a

Page 39: 10.1 Differentiation of vector Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

Curl

332211

321

332211

321332211

ˆˆˆ1

ˆˆˆ

ahahahuuu

eheheh

hhhaeaeaeaa

Proof:

)ˆ( and )ˆ(for same the

)(ˆ

)(ˆ

ˆ]ˆ)(

1ˆ)(

1ˆ)(

1[

ˆ)(

)()()ˆ(

3322

11221

311

313

2

1

1311

33211

22111

11

1

111

11111111111

eaea

hauhh

eha

uhh

e

h

eeha

uheha

uheha

uh

h

eha

uhauhauhaea