10-/12-/14-bit, 1200 msps dacs data sheet …...10-/12-/14-bit, 1200 msps dacs data sheet...

72
10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Pin-compatible family Excellent dynamic performance AD9736: SFDR = 82 dBc at fOUT = 30 MHz AD9736: SFDR = 69 dBc at fOUT = 130 MHz AD9736: IMD = 87 dBc at fOUT = 30 MHz AD9736: IMD = 82 dBc at fOUT = 130 MHz LVDS data interface with on-chip 100 Ω terminations Built-in self test LVDS sampling integrity LVDS-to-DAC data transfer integrity Low power: 380 mW (IFS = 20 mA; fOUT = 330 MHz) 1.8/3.3 V dual-supply operation Adjustable analog output 8.66 mA to 31.66 mA (RL = 25 Ω to 50 Ω) On-chip 1.2 V reference 160-lead chip scale ball grid array (CSP_BGA) package APPLICATIONS Broadband communications systems Cellular infrastructure (digital predistortion) Point-to-point wireless CMTS/VOD Instrumentation, automatic test equipment Radar, avionics GENERAL DESCRIPTION The AD9736, AD9735, and AD9734 are high performance, high frequency DACs that provide sample rates of up to 1200 MSPS, permitting multicarrier generation up to their Nyquist frequency. The AD9736 is the 14-bit member of the family, while the AD9735 and the AD9734 are the 12-bit and 10-bit members, respectively. They include a serial peripheral interface (SPI) port that provides for programming of many internal parameters and enables readback of status registers. A reduced-specification LVDS interface is utilized to achieve the high sample rate. The output current can be programmed over a range of 8.66 mA to 31.66 mA. The AD973x family is manufactured on a 0.18 µm CMOS process and operates from 1.8 V and 3.3 V supplies for a total power consumption of 380 mW in bypass mode. It is supplied in a 160-lead chip scale ball grid array for reduced package parasitics. FUNCTIONAL BLOCK DIAGRAM LVDS RECEIVER SYNCHRONIZER BAND GAP DATACLK_IN+ DATACLK_IN– DB[13:0]– DB[13:0]+ SPI 14-, 12-, 10-BIT DAC CORE IOUTA IOUTB SDO SDIO SCLK CSB LVDS DRIVER CONTROLLER REFERENCE CURRENT DACCLK– IRQ DACCLK+ I120 VREF RESET DATACLK_OUT+ DATACLK_OUT– S1S2S3 C1 C2 C3 C2 C1S1 S3 S2 C3 04862-001 CLOCK DISTRIBUTION Figure 1. PRODUCT HIGHLIGHTS 1. Low noise and intermodulation distortion (IMD) features enable high quality synthesis of wideband signals at inter- mediate frequencies up to 600 MHz. 2. Double data rate (DDR) LVDS data receivers support the maximum conversion rate of 1200 MSPS. 3. Direct pin programmability of basic functions or SPI port access offers complete control of all AD973x family functions. 4. Manufactured on a CMOS process, the AD973x family uses a proprietary switching technique that enhances dynamic performance. 5. The current output(s) of the AD9736 family are easily con- figured for single-ended or differential circuit topologies.

Upload: others

Post on 03-Feb-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736

Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2017 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Pin-compatible family Excellent dynamic performance

AD9736: SFDR = 82 dBc at fOUT = 30 MHz AD9736: SFDR = 69 dBc at fOUT = 130 MHz AD9736: IMD = 87 dBc at fOUT = 30 MHz AD9736: IMD = 82 dBc at fOUT = 130 MHz

LVDS data interface with on-chip 100 Ω terminations Built-in self test

LVDS sampling integrity LVDS-to-DAC data transfer integrity

Low power: 380 mW (IFS = 20 mA; fOUT = 330 MHz) 1.8/3.3 V dual-supply operation Adjustable analog output

8.66 mA to 31.66 mA (RL = 25 Ω to 50 Ω) On-chip 1.2 V reference 160-lead chip scale ball grid array (CSP_BGA) package

APPLICATIONS Broadband communications systems

Cellular infrastructure (digital predistortion) Point-to-point wireless CMTS/VOD

Instrumentation, automatic test equipment Radar, avionics

GENERAL DESCRIPTION The AD9736, AD9735, and AD9734 are high performance, high frequency DACs that provide sample rates of up to 1200 MSPS, permitting multicarrier generation up to their Nyquist frequency. The AD9736 is the 14-bit member of the family, while the AD9735 and the AD9734 are the 12-bit and 10-bit members, respectively. They include a serial peripheral interface (SPI) port that provides for programming of many internal parameters and enables readback of status registers.

A reduced-specification LVDS interface is utilized to achieve the high sample rate. The output current can be programmed over a range of 8.66 mA to 31.66 mA. The AD973x family is manufactured on a 0.18 µm CMOS process and operates from 1.8 V and 3.3 V supplies for a total power consumption of 380 mW in bypass mode. It is supplied in a 160-lead chip scale ball grid array for reduced package parasitics.

FUNCTIONAL BLOCK DIAGRAM

LVD

SR

ECEI

VER

SYN

CH

RO

NIZ

ER

BAND GAP

DATACLK_IN+DATACLK_IN–

DB[13:0]–DB[13:0]+

SPI

14-, 12-,10-BIT DAC

CORE

IOUTA

IOUTB

SDOSDIO

SCLKCSB

LVD

SD

RIV

ER

CONTROLLER

REFERENCECURRENT

DACCLK–IRQ DACCLK+

I120VREF

RESET

DATACLK_OUT+DATACLK_OUT–

S1S2S3

C1C2C3

C2C1S1

S3

S2

C3

0486

2-00

1

CLOCKDISTRIBUTION

Figure 1.

PRODUCT HIGHLIGHTS 1. Low noise and intermodulation distortion (IMD) features

enable high quality synthesis of wideband signals at inter-mediate frequencies up to 600 MHz.

2. Double data rate (DDR) LVDS data receivers support the maximum conversion rate of 1200 MSPS.

3. Direct pin programmability of basic functions or SPI port access offers complete control of all AD973x family functions.

4. Manufactured on a CMOS process, the AD973x family uses a proprietary switching technique that enhances dynamic performance.

5. The current output(s) of the AD9736 family are easily con-figured for single-ended or differential circuit topologies.

Page 2: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 2 of 72

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 3 Specifications ..................................................................................... 4

DC Specifications ......................................................................... 4 Digital Specifications ................................................................... 6 AC Specifications .......................................................................... 8

Absolute Maximum Ratings ............................................................ 9 Thermal Resistance ...................................................................... 9

Pin Configurations and Function Descriptions ......................... 10 Location of Supply and Control Pins ....................................... 16

Terminology .................................................................................... 17 Typical Performance Characteristics ........................................... 18

AD9736 Static Linearity, 10 mA Full Scale ............................. 18 AD9736 Static Linearity, 20 mA Full Scale ............................. 19 AD9736 Static Linearity, 30 mA Full Scale ............................. 20 AD9735 Static Linearity, 10 mA, 20 mA, 30 mA Full Scale ...................................................................................... 21 AD9734 Static Linearity, 10 mA, 20 mA, 30 mA Full Scale ...................................................................................... 22 AD9736 Power Consumption, 20 mA Full Scale ....................... 23 AD9736 Dynamic Performance, 20 mA Full Scale................ 24 AD9735, AD9734 Dynamic Performance, 20 mA Full Scale ...................................................................................... 27 AD973x WCDMA ACLR, 20 mA Full Scale .......................... 28

SPI Register Map ............................................................................. 29 SPI Register Details ........................................................................ 30

Mode Register (Reg. 0) .............................................................. 30 Interrupt Request Register (IRQ) (Reg. 1) .............................. 30 Full Scale Current (FSC) Registers (Reg. 2, Reg. 3) ............... 31 LVDS Controller (LVDS_CNT) Registers (Reg. 4, Reg. 5, Reg. 6) .......................................................................................... 31 SYNC Controller (SYNC_CNT) Registers (Reg. 7, Reg. 8) .......................................................................................... 32 Cross Controller (CROS_CNT) Registers (Reg. 10, Reg. 11) ........................................................................................ 32 Analog Control (ANA_CNT) Registers (Reg. 14, Reg. 15) ........................................................................................ 33

Built-In Self Test Control (BIST_CNT) Registers (Reg. 17, Reg. 18, Reg. 19, Reg. 20, Reg. 21) ........................................... 33 Controller Clock Predivider (CCLK_DIV) Reading Register (Reg. 22) ....................................................................................... 34

Theory of Operation ...................................................................... 35 Serial Peripheral Interface ............................................................. 36

General Operation of the Serial Interface ............................... 36 Short Instruction Mode (8-Bit Instruction) ........................... 36 Long Instruction Mode (16-Bit Instruction) .......................... 36 Serial Interface Port Pin Descriptions ..................................... 36

SCLK—Serial Clock ............................................................... 36 CSB—Chip Select ................................................................... 37 SDIO—Serial Data I/O .......................................................... 37 SDO—Serial Data Out .......................................................... 37

MSB/LSB Transfers .................................................................... 37 Notes on Serial Port Operation ................................................ 37 Pin Mode Operation .................................................................. 38 RESET Operation ....................................................................... 38 Programming Sequence ............................................................ 38 Interpolation Filter ..................................................................... 39 Data Interface Controllers ......................................................... 39 LVDS Sample Logic .................................................................... 40 LVDS Sample Logic Calibration ............................................... 40 Operating the LVDS Controller in Manual Mode via the SPI Port ........................................................................................ 41 Operating the LVDS Controller in Surveillance and Auto Mode ............................................................................................ 41

SYNC Logic and Controller .......................................................... 42 SYNC Logic and Controller Operation ................................... 42 Operation in Manual Mode ...................................................... 42 Operation in Surveillance and Auto Modes ........................... 42 FIFO Bypass ................................................................................ 42

Digital Built-In Self Test (BIST) ................................................... 44 Overview ..................................................................................... 44 AD973x BIST Procedure ........................................................... 45 AD973x Expected BIST Signatures.......................................... 45 Generating Expected Signatures .............................................. 46

Cross Controller Registers............................................................. 47 Analog Control Registers .............................................................. 48

Band Gap Temperature Characteristic Trim Bits................... 48 Mirror Roll-Off Frequency Control ........................................ 48

Page 3: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 3 of 72

Headroom Bits ............................................................................. 48 Voltage Reference ........................................................................ 48

Applications Information ............................................................... 50 Driving the DACCLK Input ...................................................... 50

DAC Output Distortion Sources ................................................... 51 DC-Coupled DAC Output ............................................................. 52 DAC Data Sources ........................................................................... 53

Input Data Timing .......................................................................... 54 Synchronization Timing ................................................................. 55 Power Supply Sequencing .............................................................. 56 AD973X Evaluation Board Schematics ........................................ 57 AD973X Evaluation Board PCB Layout ....................................... 62 Outline Dimensions ........................................................................ 69

Ordering Guide ........................................................................... 69

REVISION HISTORY 6/2017—Rev. A to Rev. B Change to SFLT <3.0> Bit, Table 14 .............................................. 32 Change to Data Interface Controller Section .............................. 39 Changes to Figure 78 ...................................................................... 40 Changes to Figure 80 and Figure 81 ............................................. 41 Changes to AD793x BIST Signatures Section ............................. 45 Change to Generating Expected Signatures Section .................. 46 Changes to Ordering Guide ........................................................... 69 9/2006—Rev. 0 to Rev. A Updated Format.................................................................. Universal Changes to Table 1 ............................................................................ 5 Changes to Table 2 ............................................................................ 6 Changes to Table 3 ............................................................................ 8 Inserted Table 5.................................................................................. 9

Replaced Pin Configuration and Function Descriptions Section .............................................................................................. 10 Changes to Figure 27 to Figure 38 ................................................ 21 Changes to Figure 40 ...................................................................... 23 Changes to Table 9 .......................................................................... 29 Changes to Figure 103 .................................................................... 56 Changes to Figure 105 .................................................................... 58 Changes to Figure 107 .................................................................... 60 Changes to Figure 108 .................................................................... 61 Changes to Figure 115 .................................................................... 68 Updated Outline Dimensions........................................................ 69 Changes to Ordering Guide ........................................................... 69 4/2005—Revision 0: Initial Version

Page 4: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 4 of 72

SPECIFICATIONS DC SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted.

Table 1. AD9736 AD9735 AD9734 Parameter Min Typ Max Min Typ Max Min Typ Max Unit RESOLUTION 14 12 10 Bits ACCURACY

Integral Nonlinearity (INL) −5.6 ±1.0 +5.6 −1.5 ±0.50 +1.5 −0.5 ±0.12 +0.5 LSB Differential Nonlinearity (DNL) −2.1 ±0.6 +2.1 −0.5 ±0.25 +0.5 −0.1 ±0.06 +0.1 LSB

ANALOG OUTPUTS Offset Error −0.01 ±0.005 +0.01 −0.01 ±0.005 +0.01 −0.01 ±0.005 +0.01 % FSR Gain Error (With Internal

Reference) ±1.0 ±1.0 ±1.0 % FSR

Gain Error (Without Internal Reference)

±1.0 ±1.0 ±1.0 % FSR

Full-Scale Output Current 8.66 20.2 31.66 8.66 20.2 31.66 8.66 20.2 31.66 mA Output Compliance Range −1.0 +1.0 −1.0 1.0 −1.0 +1.0 V Output Resistance 10 10 10 MΩ Output Capacitance 1 1 1 pF

TEMPERATURE DRIFT Offset 0 0 0 ppm/°C Gain 80 80 80 ppm/°C Reference Voltage1 40 40 40 ppm/°C

REFERENCE Internal Reference Voltage1 1.14 1.2 1.26 1.14 1.2 1.26 1.14 1.2 1.26 V Output Resistance2 5 5 5 kΩ

ANALOG SUPPLY VOLTAGES AVDD33 3.13 3.3 3.47 3.13 3.3 3.47 3.13 3.3 3.47 V CVDD18 1.70 1.8 1.90 1.70 1.8 1.90 1.70 1.8 1.90 V

DIGITAL SUPPLY VOLTAGES DVDD33 3.13 3.3 3.47 3.13 3.3 3.47 3.13 3.3 3.47 V DVDD18 1.70 1.8 1.90 1.70 1.8 1.90 1.70 1.8 1.90 V

SUPPLY CURRENTS 1× Mode, 1.2 GSPS

IAVDD33 25 25 25 mA ICVDD18 47 47 47 mA IDVDD33 10 10 10 mA IDVDD18 122 122 122 mA FIR Bypass (1×) Mode 380 380 380 mW

2× Mode, 1.2 GSPS IAVDD33 25 25 25 mA ICVDD18 47 47 47 mA IDVDD33 10 10 10 mA IDVDD18 234 234 234 mA FIR 2× Interpolation Filter

Enabled 550 550 550 mW

Page 5: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 5 of 72

AD9736 AD9735 AD9734 Parameter Min Typ Max Min Typ Max Min Typ Max Unit

Static, No Clock IAVDD33 25 25 25 mA ICVDD18 8 8 8 mA IDVDD33 10 10 10 mA IDVDD18 2 2 2 mA FIR Bypass (1×) Mode 133 133 133 mW

Sleep Mode, No Clock IAVDD33 2.5 3.15 2.5 3.15 2.5 3.15 mA FIR Bypass (1×) Mode 59 65 59 65 59 65 mW

Power-Down Mode3 IAVDD33 0.01 0.13 0.01 0.13 0.01 0.13 mA ICVDD18 0.02 0.12 0.02 0.12 0.02 0.12 mA IDVDD33 0.01 0.12 0.01 0.12 0.01 0.12 mA IDVDD18 0.01 0.11 0.01 0.11 0.01 0.11 mA FIR Bypass (1×) Mode 0.12 1.24 0.12 1.24 0.12 1.24 mW

1 Default band gap adjustment (Reg. 0x0E <2:0> = 0x0). 2 Use an external amplifier to drive any external load. 3 Typical wake-up time is 8 µs with recommended 1 nF capacitor on VREF pin.

Page 6: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 6 of 72

DIGITAL SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted. LVDS drivers and receivers are compliant to the IEEE-1596 reduced range link, unless otherwise noted.

Table 2. Parameter Min Typ Max Unit LVDS DATA INPUT (DB[13:0]+, DB[13:0]−) DB+ = VIA, DB− = VIB

Input Voltage Range, VIA or VIB 825 1575 mV Input Differential Threshold, VIDTH −100 +100 mV Input Differential Hysteresis, VIDTHH − VIDTHL 20 mV Receiver Differential Input Impedance, RIN 80 120 Ω LVDS Input Rate 1200 MSPS LVDS Minimum Data Valid Period (tMDE) 344 ps

LVDS CLOCK INPUT (DATACLK_IN+, DATACLK_IN−) DATACLK_IN+ = VIA, DATACLK_IN− = VIB

Input Voltage Range, VIA or VIB 825 1575 mV Input Differential Threshold,1 VIDTH −100 +100 mV Input Differential Hysteresis, VIDTHH − VIDTHL 20 mV Receiver Differential Input Impedance, RIN 80 120 Ω Maximum Clock Rate 600 MHz

LVDS CLOCK OUTPUT (DATACLK_OUT+, DATACLK_ OUT−) DATACLK_OUT+ = Voa, DATACLK_OUT− = Vob 100 Ω Termination

Output Voltage High, VOA or VOB 1375 mV Output Voltage Low, VOA or VOB 1025 mV Output Differential Voltage, |VOD| 150 200 250 mV Output Offset Voltage, VOS 1150 1250 mV Output Impedance, Single-Ended, RO 80 100 120 Ω RO Mismatch Between A and B, ∆RO 10 % Change in |VOD| Between 0 and 1, |∆VOD| 25 mV Change in VOS Between 0 and 1, ∆VOS 25 mV Output Current—Driver Shorted to Ground, ISA, ISB 20 mA Output Current—Drivers Shorted Together, ISAB 4 mA Power-Off Output Leakage, |IXA|, |IXB| 10 mA Maximum Clock Rate 600 MHz

DAC CLOCK INPUT (CLK+, CLK−) Input Voltage Range, CLK− or CLK+ 0 800 Differential Peak-to-Peak Voltage 400 800 1600 mV Common-Mode Voltage 300 400 500 mV Maximum Clock Rate 1200 MHz

SERIAL PERIPHERAL INTERFACE Maximum Clock Rate (fSCLK, 1/tSCLK) 20 MHz Minimum Pulse Width High, tPWH 20 ns Minimum Pulse Width Low, tPWL 20 ns Minimum SDIO and CSB to SCLK Setup, tDS 10 ns Minimum SCLK to SDIO Hold, tDH 5 ns Maximum SCLK to Valid SDIO and SDO, tDV 20 ns Minimum SCLK to Invalid SDIO and SDO, tDNV 5 ns

Page 7: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 7 of 72

Parameter Min Typ Max Unit INPUT (SDI, SDIO, SCLK, CSB)

Voltage in High, VIH 2.0 3.3 V Voltage in Low, VIL 0 0.8 V Current in High, IIH −10 +10 µA Current in Low, IIL −10 +10 µA

SDIO OUTPUT Voltage out High, VOH 2.4 3.6 V Voltage out Low, VOL 0 0.4 V Current out High, IOH 4 mA Current out Low, IOL 4 mA

1Refer to the Input Data Timing section for recommended LVDS differential drive levels.

Page 8: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 8 of 72

AC SPECIFICATIONS AVDD33 = DVDD33 = 3.3 V, CVDD18 = DVDD18 = 1.8 V, maximum sample rate, IFS = 20 mA, 1× mode, 25 Ω, 1% balanced load, unless otherwise noted.

Table 3. AD9736 AD9735 AD9734 Parameter Min Typ Max Min Typ Max Min Typ Max Unit DYNAMIC PERFORMANCE

Maximum Update Rate 1200 1200 1200 MSPS SPURIOUS-FREE DYNAMIC RANGE (SFDR)

fDAC = 800 MSPS fOUT = 20 MHz 75 75 75 dBc

fDAC = 1200 MSPS fOUT = 50 MHz 80 76 76 dBc fOUT = 100 MHz 77 74 71 dBc fOUT = 316 MHz 63 63 60 dBc fOUT = 550 MHz 55 54 53 dBc

TWO-TONE INTERMODULATION DISTORTION (IMD)

fDAC = 1200 MSPS fOUT2 = fOUT + 1.25 MHz

fOUT = 40 MHz 88 84 83 dBc fOUT = 50 MHz 85 84 83 dBc fOUT = 100 MHz 84 81 79 dBc fOUT = 316 MHz 70.5 67 66 dBc fOUT = 550 MHz 65 60 60 dBc

NOISE SPECTRAL DENSITY (NSD) Single Tone fDAC = 1200 MSPS

fOUT = 50 MHz −165 −162 −154 dBm/Hz

fOUT = 100 MHz −164 −161 −154 dBm/Hz fOUT = 241MHz −158.5 −160.5 −159.5 −155 dBm/Hz fOUT = 316 MHz −158 −157 −152 dBm/Hz fOUT = 550 MHz −155 −155 −149 dBm/Hz

Eight-Tone fDAC = 1200 MSPS, 500 kHz Tone Spacing

fOUT = 50 MHz −166.5 −163 −154 dBm/Hz fOUT = 100 MHz −166 −163 −152 dBm/Hz fOUT = 241MHz −163.3 −165 −161.5 −150.5 dBm/Hz fOUT = 316 MHz −164 −162 −151 dBm/Hz fOUT = 550 MHz −162 −160 −150 dBm/Hz

Page 9: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 9 of 72

ABSOLUTE MAXIMUM RATINGS Table 4.

Parameter With Respect to Min Max

AVDD33 AVSS −0.3 V +3.6 V DVDD33 DVSS −0.3 V +3.6 V DVDD18 DVSS −0.3 V +1.98 V CVDD18 CVSS −0.3 V +1.98 V AVSS DVSS −0.3 V +0.3 V AVSS CVSS −0.3 V +0.3 V DVSS CVSS −0.3 V +0.3 V CLK+, CLK− CVSS −0.3 V CVDD18 + 0.18 V PIN_MODE DVSS −0.3 V DVDD33 + 0.3 V DATACLK_IN,

DATACLK_OUT DVSS −0.3 V DVDD33 + 0.3 V

LVDS Data Inputs DVSS −0.3 V DVDD33 + 0.3 V IOUTA, IOUTB AVSS −1.0 V AVDD33 + 0.3 V I120, VREF, IPTAT AVSS −0.3 V AVDD33 + 0.3 V IRQ, CSB, SCLK, SDO,

SDIO, RESET DVSS −0.3 V DVDD33 + 0.3 V

Junction Temperature 150°C Storage Temperature −65°C +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance Package Type θJA

1 Unit 160-Lead Ball, CSP_BGA 31.2 °C/W 1θJA measurement in still air.

ESD CAUTION

Page 10: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 10 of 72

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

A

B

C

D

E

F

DACCLK–

DACCLK+

G

H

J

K

L

MDB0 (LSB)

N

P

1413121110876321 954

0486

2-00

5

DB

1

DB

10

DB11

DB12

DB13 (MSB)

DB

9

DB

8

DB

7

DB

6

DA

TA

CL

K_

IN

DA

TA

CL

K_

OU

T

DB

5

DB

4

DB

3

DB

2

Figure 2. AD9736 Digital LVDS Input, Clock I/O (Top View)

Table 6. AD9736 Pin Function Descriptions Pin No. Mnemonic Description A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 CVDD18 1.8 V Clock Supply. A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11

AVSS Analog Supply Ground.

A7, B7, C7, D7 IOUTB DAC Negative Output. 10 mA to 30 mA full-scale output current. A8, B8, C8, D8 IOUTA DAC Positive Output. 10 mA to 30 mA full-scale output current. A12, A13, B12, B13, C12, C13, D12, D13 AVDD33 3.3 V Analog Supply. A14 DNC Do Not Connect. B14 I120 Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to

generate a 120 μA reference current. C14 VREF Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF

capacitor; output impedance is approximately 5 kΩ. D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 CVSS Clock Supply Ground. D14 IPTAT Factory Test Pin. Output current, proportional to absolute

temperature, is approximately 10 μA at 25°C with a slope of approximately 20 nA/°C.

E1, F1 DACCLK−/DACCLK+ Negative/Positive DAC Clock Input (DACCLK). E11, E12, F11, F12, G11, G12 AVSS Analog Supply Ground Shield. Tie to AVSS at the DAC. E13 IRQ/UNSIGNED If PIN_MODE = 0, IRQ: Active low open-drain interrupt request

output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned.

E14 RESET/PD If PIN_MODE = 0, RESET: 1 resets the AD9736. If PIN_MODE = 1, PD: 1 puts the AD9736 in the power-down state.

F13 CSB/2× See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description.

F14 SDIO/FIFO See the Pin Mode Operation section for pin description. G13 SCLK/FSC0 See the Pin Mode Operation section for pin description. G14 SDO/FSC1 See the Pin Mode Operation section for pin description. H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14

DVDD18 1.8 V Digital Supply.

Page 11: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 11 of 72

Pin No. Mnemonic Description K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12

DVSS Digital Supply Ground.

K13, K14 DB<13>−/DB<13>+ Negative/Positive Data Input Bit 13 (MSB). Conforms to IEEE-1596 reduced range link.

L1 PIN_MODE 0 = SPI Mode. SPI is enabled. 1 = PIN Mode. SPI is disabled; direct pin control.

L7, L8, M7, M8, N7, N8, P7, P8 DVDD33 3.3 V Digital Supply. L13, L14 DB<12>−/DB<12>+ Negative/Positive Data Input Bit 12. Conforms to IEEE-1596 reduced

range link. M2, M1 DB<0>−/DB<0>+ Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596

reduced range link. M13, M14 DB<11>−/DB<11>+ Negative/Positive Data Input Bit 11. Conforms to IEEE-1596 reduced

range link. N1, P1 DB<1>−/DB<1>+ Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced

range link. N2, P2 DB<2>−/DB<2>+ Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced

range link. N3, P3 DB<3>−/DB<3>+ Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced

range link. N4, P4 DB<4>−/DB<4>+ Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced

range link. N5, P5 DB<5>−/DB<5>+ Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced

range link. N6, P6 DATACLK_OUT−/

DATACLK_OUT+ Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link.

N9, P9 DATACLK_IN−/ DATACLK_IN+

Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link.

N10, P10 DB<6>−/DB<6>+ Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link.

N11, P11 DB<7>−/DB<7>+ Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced range link.

N12, P12 DB<8>−/DB<8>+ Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced range link.

N13, P13 DB<9>−/DB<9>+ Negative/Positive Data Input Bit 9. Conforms to IEEE-1596 reduced range link.

N14, P14 DB<10>−/DB<10>+ Negative/Positive Data Input Bit 10. Conforms to IEEE-1596 reduced range link.

Page 12: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 12 of 72

0486

2-11

5

ABCDEF

DACCLK–DACCLK+

GHJKLMNCNP

1413121110876321 954

NC

DB

8

DB9DB10DB11 (MSB)

DB

7D

B6

DB

5D

B4

DA

TAC

LK_I

N

DB

3D

ATA

CLK

_OU

T

DB

2D

B1

DB

0 (L

SB)

Figure 3. AD9735 Digital LVDS Input, Clock I/O (Top View)

Table 7. AD9735 Pin Function Descriptions Pin No. Mnemonic Description A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 CVDD18 1.8 V Clock Supply. A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11

AVSS Analog Supply Ground.

A7, B7, C7, D7 IOUTB DAC Negative Output. 10 mA to 30 mA full-scale output current. A8, B8, C8, D8 IOUTA DAC Positive Output. 10 mA to 30 mA full-scale output current. A12, A13, B12, B13, C12, C13, D12, D13 AVDD33 3.3 V Analog Supply. A14 DNC Do Not Connect. B14 I120 Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to

generate a 120 µA reference current. C14 VREF Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF

capacitor; output impedance approximately 5 kΩ. D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 CVSS Clock Supply Ground. D14 IPTAT Factory Test Pin; Output current, proportional to absolute

temperature, is approximately 10 µA at 25°C with a slope of approximately 20 nA/°C.

E1, F1 DACCLK−/DACCLK+ Negative/Positive DAC Clock Input (DACCLK). E11, E12, F11, F12, G11, G12 AVSS Analog Supply Ground Shield. Tie to AVSS at the DAC. E13 IRQ/UNSIGNED If PIN_MODE = 0, IRQ: Active low open-drain interrupt request

output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned.

E14 RESET/PD If PIN_MODE = 0, RESET: 1 resets the AD9735. If PIN_MODE = 1, PD: 1 puts the AD9735 in the power-down state.

F13 CSB/2× See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description.

F14 SDIO/FIFO See the Pin Mode Operation section for pin description. G13 SCLK/FSC0 See the Pin Mode Operation section for pin description. G14 SDO/FSC1 See the Pin Mode Operation section for pin description. H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14

DVDD18 1.8 V Digital Supply.

K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12

DVSS Digital Supply Ground.

Page 13: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 13 of 72

Pin No. Mnemonic Description K13, K14 DB<11>−/DB<11>+ Negative/Positive Data Input Bit 11 (MSB). Conforms to IEEE-1596

reduced range link. L1 PIN_MODE 0 = SPI Mode. SPI is enabled.

1 = PIN Mode. SPI disabled; direct pin control. L7, L8, M7, M8, N7, N8, P7, P8 DVDD33 3.3 V Digital Supply. L13, L14 DB<10>−/DB<10>+ Negative/Positive Data Input Bit 10. Conforms to IEEE-1596 reduced

range link. M1, M2 NC No Connect. M13, M14 DB<9>−/DB<9>+ Negative/Positive Data Input Bit 9. Conforms to IEEE-1596 reduced

range link. N1, P1 NC No Connect. N2, P2 DB<0>−/DB<0>+ Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596

reduced range link. N3, P3 DB<1>−/DB<1>+ Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced

range link. N4, P4 DB<2>−/DB<2>+ Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced

range link. N5, P5 DB<3>−/DB<3>+ Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced

range link. N6, P6 DATACLK_OUT−/

DATACLK_OUT+ Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link.

N9, P9 DATACLK_IN−/ DATACLK_IN+

Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link.

N10, P10 DB<4>−/DB<4>+ Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced range link.

N11, P11 DB<5>−/DB<5>+ Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced range link.

N12, P12 DB<6>−/DB<6>+ Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link.

N13, P13 DB<7>−/DB<7>+ Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced range link.

N14, P14 DB<8>−/DB<8>+ Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced range link.

Page 14: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 14 of 72

0486

2-11

4

A

B

C

D

E

F

DACCLK–

DACCLK+

G

H

J

K

L

MNC

N

P

1413121110876321 954

NC

DB

6

DB7

DB8

DB9 (MSB)

DB

5

DB

4

DB

3

DB

2

DB

1

DA

TA

CL

K_O

UT

DA

TA

CL

K_I

N

DB

0 (L

SB

)

NC

NC

Figure 4. AD9734 Digital LVDS Input, Clock I/O (Top View)

Table 8. AD9734 Pin Function Descriptions Pin No. Mnemonic Description A1, A2, A3, B1, B2, B3, C1, C2, C3, D2, D3 CVDD18 1.8 V Clock Supply. A4, A5, A6, A9, A10, A11, B4, B5, B6, B9, B10, B11, C4, C5, C6, C9, C10, C11, D4, D5, D6, D9, D10, D11

AVSS Analog Supply Ground.

A7, B7, C7, D7 IOUTB DAC Negative Output. 10 mA to 30 mA full-scale output current. A8, B8, C8, D8 IOUTA DAC Positive Output. 10 mA to 30 mA full-scale output current. A12, A13, B12, B13, C12, C13, D12, D13 AVDD33 3.3 V Analog Supply. A14 DNC Do Not Connect. B14 I120 Nominal 1.2 V Reference. Tie to analog ground via 10 kΩ resistor to

generate a 120 μA reference current. C14 VREF Band Gap Voltage Reference I/O. Tie to analog ground via 1 nF

capacitor; output impedance approximately 5 kΩ. D1, E2, E3, E4, F2, F3, F4, G1, G2, G3, G4 CVSS Clock Supply Ground. D14 IPTAT Factory Test Pin. Output current, proportional to absolute

temperature, is approximately 10 μA at 25°C with a slope of approximately 20 nA/°C.

E1, F1 DACCLK−/DACCLK+ Negative/Positive DAC Clock Input (DACCLK). E11, E12, F11, F12, G11, G12 AVSS Analog Supply Ground Shield. Tie to AVSS at the DAC. E13 IRQ/UNSIGNED If PIN_MODE = 0, IRQ: Active low open-drain interrupt request

output, pull up to DVDD33 with 10 kΩ resistor. If PIN_MODE = 1, UNSIGNED: Digital input pin where 0 = twos complement input data format, 1 = unsigned.

E14 RESET/PD If PIN_MODE = 0, RESET: 1 resets the AD9734. If PIN_MODE = 1, PD: 1 puts the AD9734 in the power-down state.

F13 CSB/2× See the Serial Peripheral Interface section and the Pin Mode Operation section for pin description.

F14 SDIO/FIFO See the Pin Mode Operation section for pin description. G13 SCLK/FSC0 See the Pin Mode Operation section for pin description. G14 SDO/FSC1 See the Pin Mode Operation section for pin description. H1, H2, H3, H4, H11, H12, H13, H14, J1, J2, J3, J4, J11, J12, J13, J14

DVDD18 1.8 V Digital Supply.

K1, K2, K3, K4, K11, K12, L2, L3, L4, L5, L6, L9, L10, L11, L12, M3, M4, M5, M6, M9, M10, M11, M12

DVSS Digital Supply Ground.

K13, K14 DB<9>−/DB<9>+ Negative/Positive Data Input Bit 9 (MSB). Conforms to IEEE-1596

Page 15: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 15 of 72

Pin No. Mnemonic Description reduced range link.

L1 PIN_MODE 0 = SPI Mode. SPI is enabled. 1 = PIN Mode. SPI is disabled; direct pin control.

L7, L8, M7, M8, N7, N8, P7, P8 DVDD33 3.3 V Digital Supply. L13, L14 DB<8>−/DB<8>+ Negative/Positive Data Input Bit 8. Conforms to IEEE-1596 reduced

range link. M1, M2 NC No Connect. M13, M14 DB<7>−/DB<7>+ Negative/Positive Data Input Bit 7. Conforms to IEEE-1596 reduced

range link. N1, P1 NC No Connect. N2, P2 NC No Connect. N3, P3 NC No Connect. N4, P4 DB<0>−/DB<0>+ Negative/Positive Data Input Bit 0 (LSB). Conforms to IEEE-1596

reduced range link. N5, P5 DB<1>−/DB<1>+ Negative/Positive Data Input Bit 1. Conforms to IEEE-1596 reduced

range link. N6, P6 DATACLK_OUT−/

DATACLK_OUT+ Negative/Positive Data Output Clock. Conforms to IEEE-1596 reduced range link.

N9, P9 DATACLK_IN−/ DATACLK_IN+

Negative/Positive Data Input Clock. Conforms to IEEE-1596 reduced range link.

N10, P10 DB<2>−/DB<2>+ Negative/Positive Data Input Bit 2. Conforms to IEEE-1596 reduced range link.

N11, P11 DB<3>−/DB<3>+ Negative/Positive Data Input Bit 3. Conforms to IEEE-1596 reduced range link.

N12, P12 DB<4>−/DB<4>+ Negative/Positive Data Input Bit 4. Conforms to IEEE-1596 reduced range link.

N13, P13 DB<5>−/DB<5>+ Negative/Positive Data Input Bit 5. Conforms to IEEE-1596 reduced range link.

N14, P14 DB<6>−/DB<6>+ Negative/Positive Data Input Bit 6. Conforms to IEEE-1596 reduced range link.

Page 16: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 16 of 72

LOCATION OF SUPPLY AND CONTROL PINS

0486

2-00

2

A

B

C

D

E

F

G

H

J

K

L

M

N

P

1413121110876321 954

AVSS, ANALOG SUPPLY GROUND

AVSS, ANALOG SUPPLY GROUND SHIELD

AVDD33, 3.3V, ANALOG SUPPLY

Figure 5. Analog Supply Pins (Top View)

A

B

C

D

E

F

G

H

J

K

L

M

N

P

1413121110876321 954

CVDD18, 1.8V CLOCK SUPPLY

CVSS, CLOCK SUPPLY GROUND 0486

2-00

3

Figure 6. Clock Supply Pins (Top View)

A

B

C

D

E

F

G

H

J

K

L

M

N

P

1413121110876321 954

0486

2-00

4

DVDD33, 3.3V DIGITAL SUPPLY

DVSS DIGITAL SUPPLY GROUND

DVDD18, 1.8V DIGITAL SUPPLY

Figure 7. Digital Supply Pins (Top View)

A

B

C

D

E

F

G

H

J

K

L

M

N

P

1413121110876321 954

I120

VREF

IPTAT PIN_MODE =SPI ENABLE

PIN_MODE =SPI DISABL

PIN_MODE UNSIGNED

FSC0

PD

FIFO

FSC1

IRQ

CSB

SCLK

RESE

SDIO

SDOIO

UT

B

IOU

TA

Figure 8. Analog I/O and SPI Control Pins (Top View)

Page 17: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 17 of 72

TERMINOLOGY Linearity Error (Integral Nonlinearity or INL) The maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale.

Differential Nonlinearity (DNL) The measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.

Monotonicity A DAC is monotonic if the output either increases or remains constant as the digital input increases.

Offset Error The deviation of the output current from the ideal of zero. For IOUTA, 0 mA output is expected when the inputs are all 0s. For IOUTB, 0 mA output is expected when all inputs are set to 1s.

Gain Error The difference between the actual and ideal output span. The actual span is determined by the output when all inputs are set to 1s minus the output when all inputs are set to 0s.

Output Compliance Range The range of allowable voltage at the output of a current output DAC. Operation beyond the maximum compliance limits can cause either output stage saturation or breakdown, resulting in nonlinear performance.

Temperature Drift Specified as the maximum change from the ambient (25°C) value to the value at either TMIN or TMAX. For offset and gain drift, the drift is reported in ppm of full-scale range (FSR) per °C. For reference drift, the drift is reported in ppm per °C.

Power Supply Rejection The maximum change in the full-scale output as the supplies are varied from nominal to minimum and maximum specified voltages.

Settling Time The time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition.

Glitch Impulse Asymmetrical switching times in a DAC give rise to undesired output transients that are quantified by a glitch impulse. It is specified as the net area of the glitch in pV-s.

Spurious-Free Dynamic Range The difference, in dB, between the rms amplitude of the output signal and the peak spurious signal over the specified bandwidth.

Total Harmonic Distortion (THD) The ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal. It is expressed as a percentage or in decibels (dB).

Multitone Power Ratio The spurious-free dynamic range containing multiple carrier tones of equal amplitude. It is measured as the difference between the rms amplitude of a carrier tone to the peak spurious signal in the region of a removed tone.

Page 18: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 18 of 72

TYPICAL PERFORMANCE CHARACTERISTICS AD9736 STATIC LINEARITY, 10 mA FULL SCALE

0486

2-00

8

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

–1.00

–1.25

–1.50

–1.75

–2.00

Figure 9. AD9736 INL, −40°C, 10 mA FS

0486

2-00

8

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

–1.00

–1.25

–1.50

–1.75

–2.00

Figure 10. AD9736 INL, 25°C, 10 mA FS

0486

2-00

9

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

–1.00

–1.25

–1.50

–1.75

–2.00

Figure 11. AD9736 INL, 85°C, 10 mA FS

0486

2-01

0

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 12. AD9736 DNL, −40°C, 10 mA FS

0486

2-01

1

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 13. AD9736 DNL, 25°C, 10 mA FS

0486

2-01

2

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 14. AD9736 DNL, 85°C, 10 mA FS

Page 19: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 19 of 72

AD9736 STATIC LINEARITY, 20 mA FULL SCALE

0486

2-01

3

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

Figure 15. AD9736 INL, −40°C, 20 mA FS

04

862-

014

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

Figure 16. AD9736 INL, 25°C, 20 mA FS

0486

2-01

5

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

Figure 17. AD9736 INL, 85°C, 20 mA FS

0486

2-01

6

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Figure 18. AD9736 DNL, −40°C, 20 mA FS

0486

2-01

7

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Figure 19. AD9736 DNL, 25°C, 20 mA FS

0486

2-01

8

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Figure 20. AD9736 DNL, 85°C, 20 mA FS

Page 20: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 20 of 72

AD9736 STATIC LINEARITY, 30 mA FULL SCALE

0486

2-01

9

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

Figure 21. AD9736 INL, −40°C, 30 mA FS

04

862-

020

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

Figure 22. AD9736 INL, 25°C, 30 mA FS

0486

2-02

1

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

2.01.51.00.5

0000

–0.5–0.5

–1.0–1.0–1.5–1.5–2.0

Figure 23. AD9736 INL, 85°C, 30 mA FS

0486

2-02

2

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

0.6

0.3

0.4

0.5

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Figure 24. AD9736 DNL, −40°C, 30 mA FS

0486

2-02

3

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

0.6

0.3

0.4

0.5

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

Figure 25. AD9736 DNL, 25°C, 30 mA FS

0486

2-02

4

CODE163840 2048 4096 6144 8192 10240 12288 14336

ERR

OR

(LSB

)

1.0

0

0.5

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

Figure 26. AD9736 DNL, 85°C, 30 mA FS

Page 21: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 21 of 72

AD9735 STATIC LINEARITY, 10 mA, 20 mA, 30 mA FULL SCALE

0486

2-02

5

0.4

0.2

0.3

0.1

–0.1

0

–0.240963584307225602048153610240 512

CODE

ER

RO

R (

LS

B)

Figure 27. AD9735 INL, 25°C, 10 mA FS

0486

2-02

6

0.15

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

40963584307225602048153610240 512

CODE

ER

RO

R (

LS

B)

Figure 28. AD9735 INL, 25°C, 20 mA FS

0486

2-02

7

0.2

0

0.1

–0.2

–0.1

–0.4

–0.5

–0.3

–0.640963584307225602048153610240 512

CODE

ER

RO

R (

LS

B)

Figure 29. AD9735 INL, 25°C, 30 mA FS

0486

2-02

8

40963584307225602048153610240 512

0.100

0.050

0

–0.050

–0.100

–0.150

–0.200

–0.250

CODE

ER

RO

R (

LS

B)

Figure 30. AD9735 DNL, 25°C, 10 mA FS

0486

2-02

9

0.100

0.075

0.025

0.050

0

–0.025

–0.075

–0.050

–0.100

–0.12540963584307225602048153610240 512

CODE

ER

RO

R (

LS

B)

Figure 31. AD9735 DNL, 25°C, 20 mA FS

0486

2-03

0

40963584307225602048153610240 512

CODE

ER

RO

R (

LS

B)

0.050

0

–1.000

–0.050

–1.150

–0.200

–0.300

–0.250

–0.350

–0.400

Figure 32. AD9735 DNL, 25°C, 30 mA FS

Page 22: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 22 of 72

AD9734 STATIC LINEARITY, 10 mA, 20 mA, 30 mA FULL SCALE

0486

2-03

1

0.06

0.04

0.02

0

–0.02

–0.04

–0.0610248967686405123842560 128

CODE

ERR

OR

(LSB

)

Figure 33. AD9734 INL, 25°C, 10 mA FS

0486

2-03

2

ERRO

R (L

SB)

0.03

0.02

0.01

0

–0.01

–0.03

–0.02

–0.04

–0.05

–0.0610248967686405123842560 128

CODE

Figure 34. AD9734 INL, 25°C, 20 mA FS

0486

2-03

3

ERR

OR

(LSB

)

10248967686405123842560 128CODE

0.06

0.04

0.02

0

–0.02

–0.06

–0.04

–0.08

–0.10

–0.12

Figure 35. AD9734 INL, 25°C, 30 mA FS

0486

2-03

4

ERR

OR

(LSB

)

10248967686405123842560 128CODE

0.04

0.03

0.02

0.01

0

–0.01

–0.02

Figure 36. AD9734 DNL, 25°C, 10 mA FS

0486

2-03

5

ERR

OR

(LSB

)

10248967686405123842560 128CODE

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

Figure 37. AD9734 DNL, 25°C, 20 mA FS

0486

2-03

6

ERR

OR

(LSB

)

10248967686405123842560 128CODE

0.01

0

–0.01

–0.02

–0.03

–0.04

–0.05

–0.06

Figure 38. AD9734 DNL, 25°C, 30 mA FS

Page 23: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 23 of 72

AD9736 POWER CONSUMPTION, 20 mA FULL SCALE

0486

2-03

7

DVDD18

DVDD33

CVDD18

AVDD33

TOTAL

fDAC (MHz)15000 250 500 750 1000 1250

POW

ER (W

)

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

Figure 39. AD9736 1× Mode Power vs. fDAC at 25°C

0486

2-03

8

fDAC (MHz)15000 250 500 750 1000 1250

POW

ER (W

)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

DVDD18

DVDD33

CVDD18

AVDD33

TOTAL

Figure 40. AD9736, 2× Interpolation Mode Power vs. fDAC at 25°C

Page 24: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 24 of 72

AD9736 DYNAMIC PERFORMANCE, 20 mA FULL SCALE

0486

2-03

9

800MSPS

1GSPS

1.2GSPS

fOUT (MHz)6000 50 100 150 200 250 300 350 400 450 500 550

SFDR

(dBc

)

80

75

70

65

60

55

50

Figure 41. AD9736 SFDR vs. fOUT over fDAC at 25°C

0486

2-04

0

fOUT (MHz)6000 50 100 150 200 250 300 350 400 450 500 550

SFDR

(dBc

)

80

75

70

65

60

55

50

+85°C

+25°C

–40°C

Figure 42. AD9736 SFDR vs. fOUT over Temperature

0486

2-04

1

5500 50 100 150 200 250 300 350 400 450 500

7678

7274

706866646260

5654

58

52

fOUT (MHz)

SFD

R (d

Bc)

Figure 43. AD9736 SFDR vs. fOUT over 50 Parts, 25°C, 1.2 GSPS

0486

2-04

2

5500 50 100 150 200 250 300 350 400 450 500

92

868890

8280

84

787674

7072

6668

6260

64

58

fOUT (MHz)

IMD

(dB

c)

Figure 44. AD9736 IMD vs. fOUT over 50 Parts, 25°C,1.2 GSPS

0486

2-04

3

fOUT (MHz)6000 100 200 300 400 500

IMD

(dBc

)

90

85

80

75

70

65

60

55

50

800MSPS

1GSPS

1.2GSPS

Figure 45. AD9736 IMD vs. fOUT over fDAC at 25°C

0486

2-04

4

fOUT (MHz)6000 100 200 300 400 500

IMD

(dBc

)

90

85

80

75

70

65

60

55

50

+85°C +25°C

–40°C

Figure 46. AD9736 IMD vs. fOUT over Temperature, 1.2 GSPS

Page 25: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 25 of 72

0486

2-04

5

fOUT (MHz)1000 10

IMD

AND

SFDR

(dBc

)

95

90

85

80

75

70

65

60

55

IMD

SFDR

Figure 47. AD9736 Low Frequency IMD and SFDR vs. fOUT, 25°C, 1.2 GSPS

0486

2-04

6

fOUT (MHz)3500 50 100 150 200 250 300

SFDR

, IM

ID (d

Bc)

90

85

80

75

70

65

60

55

50

THIRD-ORDER IMD

SFDR

Figure 48. AD9736 IMD and SFDR vs. fOUT, 25°C, 1.2 GSPS, 2× Interpolation

0486

2-04

7

fOUT (MHz)6000 100 200 300 400 500

SFDR

(dBc

)

80

75

70

65

60

55

50

45

40

0dBFS

–6dBFS

–12dBFS

Figure 49. AD9736 SFDR vs. fOUT over AOUT, 25°C, 1.2 GSPS

0486

2-04

8

fOUT (MHz)6000 100 200 300 400 500

IMD

(dBc

)

90

85

80

75

70

65

60

55

50

0dBFS

–6dBFS –12dBFS

Figure 50. AD9736 IMD vs. fOUT over AOUT, 25°C, 1.2 GSPS

0486

2-04

9

fOUT (MHz)3500 50 100 150 200 250 300

SFDR

, IM

D (d

Bc)

90

85

80

75

70

65

60

55

50

SFDR_1×

SFDR_2×

Figure 51. AD9736 SFDR vs. fOUT, 25°C, 1.2 GSPS, 1× and 2× Interpolation

0486

2-05

0

fOUT (MHz)3500 50 100 150 200 250 300

SFDR

, IM

D (d

Bc)

90

85

80

75

70

65

60

55

50

THIRD-ORDER IMD_1×

THIRD-ORDER IMD_2×

Figure 52. AD9736 IMD vs. fOUT, 25°C, 1.2 GSPS, 1× and 2× Interpolation

Page 26: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 26 of 72

0486

2-05

1

fOUT (MHz)6000 100 200 300 400 500

NSD

(dBm

/Hz)

–150

–154

–156

–152

–158

–160

–162

–164

–166

–168

–170

1GSPS

1.2GSPS

Figure 53. AD9736 1-Tone NSD vs. fOUT over fDAC, 25°C 04

862-

052

fOUT (MHz)6000 100 200 300 400 500

NSD

(dBm

/Hz)

–150

–154

–156

–152

–158

–160

–162

–164

–166

–168

–170

+85°C

+25°C

–40°C

Figure 54. AD9736 1-Tone NSD vs. fOUT over Temperature, 1.2 GSPS

0486

2-05

3

fOUT (MHz)6000 100 200 300 400 500

NSD

(dBm

/Hz)

–150

–154

–156

–152

–158

–160

–162

–164

–166

–168

–170

1GSPS

1.2GSPS

Figure 55. AD9736 8-Tone NSD vs. fOUT over fDAC, 25°C

0486

2-05

4

fOUT (MHz)6000 100 200 300 400 500

NSD

(dBm

/Hz)

–150

–154

–156

–152

–158

–160

–162

–164

–166

–168

–170

+85°C

+25°C

–40°C

Figure 56. AD9736 8-Tone NSD vs. fOUT over Temperature, 1.2 GSPS

0486

2-05

5

5500 50 100 150 200 250 300 350 400 450 500

–159

–158

–160

–157

–161

–162

–163

–164

–165

–166

fOUT (MHz)

NSD

(dB

m/H

z)

Figure 57. AD9736 1-Tone NSD vs. fOUT over 50 Parts, 1.2 GSPS, 25°C

0486

2-05

6

5500 50 100 150 200 250 300 350 400 450 500

–162

–163

–161

–164

–165

–166

–167

fOUT (MHz)

NSD

(dB

m/H

z)

Figure 58. AD9736 8-Tone NSD vs. fOUT over 50 Parts, 1.2 GSPS, 25°C

Page 27: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 27 of 72

AD9735, AD9734 DYNAMIC PERFORMANCE, 20 mA FULL SCALE

0486

2-06

0

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

SF

DR

(d

Bc)

80

75

70

65

60

55

50

800MSPS

1GSPS

1.2GSPS

Figure 59. AD9735 SFDR vs. fOUT over fDAC, 1.2 GSPS

0486

2-06

1

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

SF

DR

(d

Bc)

80

75

70

65

60

55

50

800MSPS

1GSPS

1.2GSPS

Figure 60. AD9734 SFDR vs. fOUT over fDAC, 1.2 GSPS

0486

2-06

2

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

IMD

(d

Bc)

90

85

80

75

70

65

60

55

50

800MSPS

1GSPS

1.2GSPS

Figure 61. AD9735 IMD vs. fOUT over fDAC, 1.2 GSPS

0486

2-06

3

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

IMD

(d

Bc)

90

85

80

75

70

65

60

55

50

800MSPS

1GSPS

1.2GSPS

Figure 62. AD9734 IMD vs. fOUT over fDAC, 1.2 GSPS

0486

2-06

4

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

NS

D (

dB

c/H

z)

–150

–152

–154

–156

–158

–160

–162

–164

–166

–168

–170

1 TONE

8 TONES

Figure 63. AD9735 NSD vs. fOUT, 1.2 GSPS

0486

2-06

5

fOUT (MHz)

6000 50 100 150 200 250 300 350 400 450 500 550

NS

D (

dB

c/H

z)

–149

–147

–145

–151

–153

–155

–157

–159

–161

–163

–165

1 TONE

8 TONES

Figure 64. AD9734 NSD vs. fOUT, 1.2 GSPS

Page 28: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 28 of 72

AD973x WCDMA ACLR, 20 mA FULL SCALE

0486

2-05

7

#ATTEN 6dB

PAVG10W1 S2CENTER 134.83MHz#RES BW 30kHz

VBW 300kHz SPAN 33.88MHzSWEEP 109.9ms (601pts)

REF –22.75dBm#AVGLOG 10dB/

RMS RESULTS OFFSET FREQ REF BW dBc dBm dBc dBmCARRIER POWER 5.00MHz 3.840MHz –81.65 –92.37 –81.39 –92.11–10.72dBm/ 10.0MHz 3.840MHz –82.06 –92.78 –82.43 –93.163.84000MHz 15.0MHz 3.884MHz –82.11 –92.83 –82.39 –93.11

LOWER UPPER

Figure 65. AD9736 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS

0486

2-05

8

RMS RESULTS OFFSET FREQ REF BW dBc dBm dBc dBmCARRIER POWER 5.00MHz 3.840MHz –80.32 –91.10 –80.60 –91.38–10.72dBm/ 10.0MHz 3.840MHz –81.13 –91.91 –80.75 –91.533.84000MHz 15.0MHz 3.884MHz –80.43 –91.21 –81.36 –92.13

LOWER UPPER

PAVG10 S2CENTER 134.83MHz#RES BW 30kHz

VBW 300kHz

#ATTEN 6dB

SPAN 33.88MHzSWEEP 109.9ms (601pts)

REF –22.75dBm#AVGLOG 10dB/

Figure 66. AD9735 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS

0486

2-05

9

RMS RESULTS OFFSET FREQ REF BW dBc dBm dBc dBmCARRIER POWER 5.00MHz 3.840MHz –71.07 –81.83 –71.23 –81.99–10.76dBm/ 10.0MHz 3.840MHz –70.55 –81.31 –71.42 –82.193.84000MHz 15.0MHz 3.884MHz –70.79 –81.56 –71.25 –82.01

LOWER UPPER

PAVG10 S2CENTER 134.83MHz#RES BW 30kHz

VBW 300kHz

#ATTEN 6dB

SPAN 33.88MHzSWEEP 109.9ms (601pts)

REF –22.75dBm#AVGLOG 10dB/

Figure 67. AD9734 WCDMA Carrier at 134.83 MHz, fDAC = 491.52 MSPS

Page 29: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 29 of 72

SPI REGISTER MAP Write 0 to unspecified or reserved bit locations. Reading these bits returns unknown values.

Table 9. SPI Register Map Reg. Addr. Default Pin Mode

Dec. Hex. Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (Hex) (Hex)

0 00 MODE SDIO_DIR LSBFIRST RESET LONG_INS 2X MODE FIFO MODE DATAFRMT PD 00 00

1 01 IRQ LVDS SYNC CROSS RESERVED IE_LVDS IE_SYNC IE_CROSS RESERVED 00 00

2 02 FSC_1 SLEEP FSC<9> FSC<8> 02 02 3 03 FSC_2 FSC<7> FSC<6> FSC<5> FSC<4> FSC<3> FSC<2> FSC<1> FSC<0> 00 00

4 04 LVDS_CNT1 MSD<3> MSD<2> MSD<1> MSD<0> MHD<3> MHD<2> MHD<1> MHD<0> 00 00

5 05 LVDS_CNT2 SD<3> SD<2> SD<1> SD<0> LCHANGE ERR_HI ERR_LO CHECK 00 00

6 06 LVDS_CNT3 LSURV LAUTO LFLT<3> LFLT<2> LFLT<1> LFLT<0> LTRH<1> LTRH<0> 00 00

7 07 SYNC_CNT1 FIFOSTAT3 FIFOSTAT2 FIFOSTAT1 FIFOSTAT0 VALID SCHANGE PHOF<1> PHOF<0> 00 00 8 08 SYNC_CNT2 SSURV SAUTO SFLT<3> SFLT<2> SFLT<1> SFLT<0> RESERVED STRH<0> 00 00

9 09 RESERVED

10 0A CROS_CNT1 UPDEL<5> UPDEL<4> UPDEL<3> UPDEL<2> UPDEL<1> UPDEL<0> 00 00

11 0B CROS_CNT2 DNDEL<5> DNDEL<4> DNDEL<3> DNDEL<2> DNDEL<1> DNDEL<0> 00 00

12 0C RESERVED

13 0D RESERVED

14 0E ANA_CNT1 MSEL<1> MSEL<0> TRMBG<2> TRMBG<1> TRMBG<0> C0 C0

15 0F ANA_CNT2 HDRM<7> HDRM<6> HDRM<5> HDRM<4> HDRM<3> HDRM<2> HDRM<1> HDRM<0> CA CA

16 10 RESERVED 17 11 BIST_CNT SEL<1> SEL<0> SIG_READ LVDS_EN SYNC_EN CLEAR 00 00

18 12 BIST<7:0>

19 13 BIST<15:8>

20 14 BIST<23:16>

21 15 BIST<31:24>

22 16 CCLK_DIV RESERVED RESERVED RESERVED RESERVED CCD<3> CCD<2> CCD<1> CCD<0> 00 00

Page 30: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 30 of 72

SPI REGISTER DETAILS Reading these registers returns previously written values for all defined register bits, unless otherwise noted. Reset value for write registers in bold text.

MODE REGISTER (REG. 0) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x00 MODE SDIO_DIR LSB/MSB RESET LONG_INS 2× MODE FIFO MODE DATAFRMT PD

Table 10. Mode Register Bit Descriptions Bit Name Read/Write Description SDIO_DIR WRITE 0, input only per SPI standard.

1, bidirectional per SPI standard. LSB/MSB WRITE 0, MSB first per SPI standard.

1, LSB first per SPI standard. NOTE: Only change LSB/MSB order in single-byte instructions to avoid erratic behavior due to bit order errors.

RESET WRITE 0, execute software reset of SPI and controllers, reload default register values except Registers 0x00 and 0x04. 1, set software reset, write 0 on the next (or any following) cycle to release the reset.

LONG_INS WRITE 0, short (single-byte) instruction word. 1, long (two-byte) instruction word, not necessary since the maximum internal address is REG31 (0x1F).

2×_MODE WRITE 0, disable 2× interpolation filter. 1, enable 2× interpolation filter.

FIFO_MODE WRITE 0, disable FIFO synchronization. 1, enable FIFO synchronization.

DATAFRMT WRITE 0, signed input DATA with midscale = 0x0000. 1, unsigned input DATA with midscale = 0x2000.

PD WRITE 0, enable LVDS Receiver, DAC, and clock circuitry. 1, power down LVDS Receiver, DAC, and clock circuitry.

INTERRUPT REQUEST REGISTER (IRQ) (REG. 1) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x01 IRQ LVDS SYNC CROSS RESERVED IE_LVDS IE_SYNC IE_CROSS RESERVED

Table 11. Interrupt Register Bit Descriptions Bit Name Read/Write Description LVDS WRITE Don’t care. READ 0, no active LVDS receiver interrupt.

1, interrupt in LVDS receiver occurred. SYNC WRITE Don’t care. READ 0, no active SYNC logic interrupt.

1, interrupt in SYNC logic occurred. CROSS WRITE Don’t care. READ 0, no active CROSS logic interrupt.

1, interrupt in CROSS logic occurred. IE_LVDS WRITE 0, reset LVDS receiver interrupt and disable future LVDS receiver interrupts.

1, enable LVDS receiver interrupt to activate IRQ pin. IE_SYNC WRITE 0, reset SYNC logic interrupt and disable future SYNC logic interrupts.

1, enable SYNC logic interrupt to activate IRQ pin.

IE_CROSS WRITE 0, reset CROSS logic interrupt and disable future CROSS logic interrupts. 1, enable CROSS logic interrupt to activate IRQ pin.

Page 31: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 31 of 72

FULL SCALE CURRENT (FSC) REGISTERS (REG. 2, REG. 3) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x02 FSC_1 SLEEP – – – – – FSC<9> FSC<8> 0x03 FSC_2 FSC<7> FSC<6> FSC<5> FSC<4> FSC<3> FSC<2> FSC<1> FSC<0>

Table 12. Full Scale Current Output Register Bit Descriptions Bit Name Read/Write Description SLEEP WRITE 0, enable DAC output.

1, set DAC output current to 0 mA. FSC<9:0> WRITE 0x000, 10 mA full-scale output current. 0x200, 20 mA full-scale output current. 0x3FF, 30 mA full-scale output current.

LVDS CONTROLLER (LVDS_CNT) REGISTERS (REG. 4, REG. 5, REG. 6) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x04 LVDS_CNT1 MSD<3> MSD<2> MSD<1> MSD<0> MHD<3> MHD<2> MHD<1> MHD<0> 0x05 LVDS_CNT2 SD<3> SD<2> SD<1> SD<0> LCHANGE ERR_HI ERR_LO CHECK 0x06 LVDS_CNT3 LSURV LAUTO LFLT<3> LFLT<2> LFLT<1> LFLT<0> LTRH<1> LTRH<0>

Table 13. LVDS Controller Register Bit Descriptions Bit Name Read/Write Description MSD<3:0> WRITE 0x0, set setup delay for the measurement system. READ If ( LAUTO = 1), the latest measured value for the setup delay.

If ( LAUTO = 0), readback of the last SPI write to this bit. MHD<3:0> WRITE 0x0, set hold delay for the measurement system. READ If ( LAUTO = 1), the latest measured value for the hold delay.

If ( LAUTO = 0), readback of the last SPI write to this bit. SD<3:0> WRITE 0x0, set sample delay. READ If ( LAUTO = 1), the result of a measurement cycle is stored in this register.

If ( LAUTO = 0), readback of the last SPI write to this bit. LCHANGE READ 0, no change from previous measurement.

1, change in value from the previous measurement. NOTE: The average filter and the threshold detection are not applied to this bit.

ERR_HI READ One of the 15 LVDS inputs is above the input voltage limits of the IEEE reduced link specification. ERR_LO READ One of the 15 LVDS inputs is below the input voltage limits of the IEEE reduced link specification. CHECK READ 0, phase measurement—sampling in the previous or following DATA cycle.

1, phase measurement—sampling in the correct DATA cycle. LSURV WRITE 0, the controller stops after completion of the current measurement cycle.

1, continuous measurements are taken and an interrupt is issued if the clock alignment drifts beyond the threshold value.

LAUTO WRITE 0, sample delay is not automatically updated. 1, continuously starts measurement cycles and updates the sample delay according to the measurement. NOTE: LSURV (Reg. 6, Bit 7) must be set to 1 and the LVDS IRQ (Reg. 1, Bit 3) must be set to 0 for AUTO mode.

LFLT<3:0> WRITE 0x0, average filter length, Delay = Delay + Delta Delay/2^ LFLT <3:0>, values greater than 12 (0x0C) are clipped to 12.

LTRH<2:0> WRITE 000, set auto update threshold values.

Page 32: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 32 of 72

SYNC CONTROLLER (SYNC_CNT) REGISTERS (REG. 7, REG. 8) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x07 SYNC_CNT1 FIFOSTAT3 FIFOSTAT2 FIFOSTAT1 FIFOSTAT0 VALID SCHANGE PHOF<1> PHOF<0> 0x08 SYNC_CNT2 SSURV SAUTO SFLT<3> SFLT<2> SFLT<1> SFLT<0> RESERVED STRH<0>

Table 14. Sync Controller Register Bit Descriptions Bit Name Read/Write Description FIFOSTAT<2:0> READ Position of FIFO read counter ranges from 0 to 7. FIFOSTAT<3> READ 0, SYNC logic OK.

1, error in SYNC logic. VALID READ 0, FIFOSTAT<3:0> is not valid yet.

1, FIFOSTAT<3:0> is valid after a reset. SCHANGE READ 0, no change in FIFOSTAT<3:0>.

1, FIFOSTAT<3:0> has changed since the previous measurement cycle when SSURV = 1 (surveillance mode active).

PHOF<1:0> WRITE 00, change the readout counter. READ Current setting of the readout counter (PHOF<1:0>) in surveillance mode (SSURV = 1) after an interrupt.

Current calculated optimal readout counter value in AUTO mode (SAUTO = 1). SSURV WRITE 0, the controller stops after completion of the current measurement cycle.

1, continuous measurements are taken and an interrupt is issued if the readout counter drifts beyond the threshold value.

SAUTO WRITE 0, readout counter (PHOF<3:0>) is not automatically updated. 1, continuously starts measurement cycles and updates the readout counter according to the measurement. NOTE: SSURV (Reg. 8, Bit 7) must be set to 1 and the SYNC IRQ (Reg. 1, Bit 2) must be set to 0 for AUTO mode.

SFLT<3:0> WRITE 0x0, average filter length, FIFOSTAT = FIFOSTAT + Delta FIFOSTAT/2 ^ SFLT<3:0>; values greater than 12 (0x0C) are not valid.

STRH<0> WRITE 0, if FIFOSTAT<2:0> = 0 or 7, a sync interrupt is generated. 1, if FIFOSTAT<2:0> = 0, 1, 6 or 7, a sync interrupt is generated.

CROSS CONTROLLER (CROS_CNT) REGISTERS (REG. 10, REG. 11) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x0A CROS_CNT1 – – UPDEL<5> UPDEL<4> UPDEL<3> UPDEL<2> UPDEL<1> UPDEL<0> 0x0B CROS_CNT2 – – DNDEL<5> DNDEL<4> DNDEL<3> DNDEL<2> DNDEL<1> DNDEL<0>

Table 15. Cross Controller Register Description Bit Name Read/Write Description UPDEL<5:0> WRITE 0x00, move the differential output stage switching point up, set to 0 if DNDEL is non-zero. DNDEL<5:0> WRITE 0x00, move the differential output stage switching point down, set to 0 if UPDEL is non-zero.

Page 33: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 33 of 72

ANALOG CONTROL (ANA_CNT) REGISTERS (REG. 14, REG. 15) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x0E ANA_CNT1 MSEL<1> MSEL<0> – – – TRMBG<2> TRMBG<1> TRMBG<0> 0x0F ANA_CNT2 HDRM<7> HDRM<6> HDRM<5> HDRM<4> HDRM<3> HDRM<2> HDRM<1> HDRM<0>

Table 16. Analog Control Register Bit Descriptions Bit Name Read/Write Description MSEL<1:0> WRITE 00, mirror roll off frequency control = bypass.

01, mirror roll off frequency control = narrowest bandwidth. 10, mirror roll off frequency control = medium bandwidth. 11, mirror roll off frequency control = widest bandwidth. NOTE: See the plot in the Analog Control Registers section.

TRMBG<2:0> WRITE 000, band gap temperature characteristic trim. NOTE: See the plot in the Analog Control Registers section.

HDRM<7:0> WRITE 0xCA, output stack headroom control. HDRM<7:4> set reference offset from AVDD33 (VCAS centering). HDRM<3:0> set overdrive (current density) trim (temperature tracking). Note: Set to 0xCA for optimum performance.

BUILT-IN SELF TEST CONTROL (BIST_CNT) REGISTERS (REG. 17, REG. 18, REG. 19, REG. 20, REG. 21) ADDR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x11 BIST_CNT SEL<1> SEL<0> SIG_READ – – LVDS_EN SYNC_EN CLEAR 0x12 BIST<7:0> BIST<7> BIST<6> BIST<5> BIST<4> BIST<3> BIST<2> BIST<1> BIST<0> 0x13 BIST<15:8> BIST<15> BIST<14> BIST<13> BIST<12> BIST<11> BIST<10> BIST<9> BIST<8> 0x14 BIST<23:16> BIST<23> BIST<22> BIST<21> BIST<20> BIST<19> BIST<18> BIST<17> BIST<16> 0x15 BIST<31:24> BIST<31> BIST<30> BIST<29> BIST<28> BIST<27> BIST<26> BIST<25> BIST<24>

Table 17. BIST Control Register Bit Descriptions Bit Name Read/Write Description SEL<1:0> WRITE 00, write result of the LVDS Phase 1 BIST to BIST<31:0>.

01, write result of the LVDS Phase 2 BIST to BIST<31:0>. 10, write result of the SYNC Phase 1 BIST to BIST<31:0>. 11, write result of the SYNC Phase 2 BIST to BIST<31:0>.

SIG_READ WRITE 0, no action. 1, enable BIST signature readback.

LVDS_EN WRITE 0, no action. 1, enable LVDS BIST.

SYNC_EN WRITE 0, no action. 1, enable SYNC BIST.

CLEAR WRITE 0, no action. 1, clear all BIST registers.

BIST<31:0> READ Results of the built-in self test.

Page 34: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 34 of 72

CONTROLLER CLOCK PREDIVIDER (CCLK_DIV) READING REGISTER (REG. 22) ADR Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x16 CCLK_DIV RESERVED RESERVED RESERVED RESERVED CCD<3> CCD<2> CCD<1> CCD<0>

Table 18. Controller Clock Predivider Register Bit Descriptions Bit Name Read/Write Description CCD<3:0> WRITE 0x0, controller clock = DACCLK/16.

0x1, controller clock = DACCLK/32. 0x2, controller clock = DACCLK/64 … 0xF, controller clock = DACCLK/524288. NOTE: The 100 MHz to 1.2 GHz DACCLK must be divided to less than 10 MHz for correct operation. CCD<3:0> must be programmed to divide the DACCLK so that this relationship is not violated. Controller clock = DACCLK/(2 ^ ( CCD<3:0> + 4 )).

Page 35: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 35 of 72

THEORY OF OPERATION The AD9736, AD9735, and AD9734 are 14-bit, 12-bit, and 10-bit DACs that run at an update rate up to 1.2 GSPS. Input data can be accepted up to the full 1.2 GSPS rate, or a 2× interpolation filter can be enabled (2× mode) allowing full speed operation with a 600 MSPS input data rate. The DATA and DATACLK_IN inputs are parallel LVDS, meeting the IEEE reduced swing LVDS specifications with the exception of input hysteresis. The DATACLK_IN input runs at one-half the input DATA rate in a double data rate (DDR) format. Each edge of DATACLK_IN transfers DATA into the AD9736, as shown in Figure 79.

The DACCLK−/DACCLK+ inputs (Pin E1 and Pin F1) directly drive the DAC core to minimize clock jitter. The DACCLK signal is also divided by 2 (1× and 2× mode), then output as the DATACLK_OUT. The DATACLK_OUT signal clocks the data source. The DAC expects DDR LVDS data (DB<13:0>) aligned with the DDR input clock (DATACLK_IN) from a circuit simi-lar to the one shown in Figure 96. Table 19 shows the clock relationships.

Table 19. AD973x Clock Relationship MODE DACCLK DATACLK_OUT DATACLK_IN DATA 1× 1.2 GHz 600 MHz 600 MHz 1.2 GSPS 2× 1.2 GHz 600 MHz 300 MHz 600 MSPS

Maintaining correct alignment of data and clock is a common challenge with high speed DACs, complicated by changes in temperature and other operating conditions. Using the DATACLK_OUT signal to generate the data allows most of the internal process, temperature, and voltage delay variation to be cancelled. The AD973x further simplifies this high speed data capture problem with two adaptive closed-loop timing controllers.

One timing controller manages the LVDS data and data clock alignment (LVDS controller), and the other manages the LVDS data and DACCLK alignment (sync controller).

The LVDS controller locates the data transitions and delays the DATACLK_IN so that its transition is in the center of the valid data window. The sync controller manages the FIFO that moves data from the LVDS DATACLK_IN domain to the DACCLK domain.

Both controllers can operate in manual mode under external processor control, in surveillance mode where error conditions generate external interrupts, or in automatic mode where errors are automatically corrected.

The LVDS and sync controllers include moving average filtering for noise immunity and variable thresholds to control activity. Normally, the controllers are set to run in automatic mode, making any necessary adjustments without dropping or dupli-cating samples sent to the DAC. Both controllers require initial calibration prior to entering automatic update mode.

The AD973x analog output changes 35 DACCLK cycles after the input data changes in 1× mode with the FIFO disabled. The FIFO adds up to eight additional cycles of delay. This delay is read from the SPI port. Internal clock delay variation is less than a single DACCLK cycle at 1.2 GHz (833 ps).

Stopping the AD973x DATACLK_IN while the DACCLK is still running can lead to unpredictable output signals. This occurs because the internal digital signal path is interleaved. The last two samples clocked into the DAC continue to be clocked out by DACCLK even after DATACLK_IN has stopped. The result-ing output signal is at a frequency of one-half fDAC, and the amplitude depends on the difference between the last two samples.

Control of the AD973x functions is via the serially programmed registers listed in Table 9. Optionally, a limited number of func-tions can be directly set by external pins in pin mode.

Page 36: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 36 of 72

SERIAL PERIPHERAL INTERFACE The AD973x serial port is a flexible, synchronous serial communications port, allowing easy interface to many industry-standard microcontrollers and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI® and Intel® SSR protocols. The interface allows read/write access to all registers that configure the AD973x. Single- or multiple-byte transfers are supported, as well as most significant bit first (MSB-first) or least significant bit first (LSB-first) transfer formats. The AD973x serial interface port can be configured as a single pin I/O (SDIO) or two unidirectional pins for in/out (SDIO/SDO).

SDO (PIN G14)

SDIO (PIN F14)

SCLK (PIN G13)

CSB (PIN F13)

AD973xSPI PORT

0486

2-06

6

Figure 68. AD973x SPI Port

The AD973x can optionally be configured via external pins rather than the serial interface. When the PIN_MODE input (Pin L1) is high, the serial interface is disabled and its pins are reassigned for direct control of the DAC. Specific functionality is described in the Pin Mode Operation section.

GENERAL OPERATION OF THE SERIAL INTERFACE There are two phases to a communication cycle with the AD973x. Phase 1 is the instruction cycle, which is the writing of an instruction byte into the AD973x, coincident with the first eight SCLK rising edges. The instruction byte provides the AD973x serial port controller with information regarding the data transfer cycle, which is Phase 2 of the communication cycle. The Phase 1 instruction byte defines whether the upcoming data transfer is read or write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer. The first eight SCLK rising edges of each communication cycle are used to write the instruction byte into the AD973x.

The remaining SCLK edges are for Phase 2 of the communica-tion cycle. Phase 2 is the actual data transfer between the AD973x and the system controller. Phase 2 of the communica-tion cycle is a transfer of 1, 2, 3, or 4 data bytes as determined by the instruction byte. Using one multibyte transfer is the preferred method. Single-byte data transfers are useful to reduce CPU overhead when register access requires one byte only. Registers change immediately upon writing to the last bit of each transfer byte.

CSB (Chip Select) can be raised after each sequence of 8 bits (except the last byte) to stall the bus. The serial transfer resumes when CSB is lowered. Stalling on nonbyte boundaries resets the SPI.

SHORT INSTRUCTION MODE (8-BIT INSTRUCTION) The short instruction byte is shown in the following table:

MSB LSB I7 I6 I5 I4 I3 I2 I1 I0 R/W N1 N0 A4 A3 A2 A1 A0

R/W, Bit 7 of the instruction byte, determines whether a read or a write data transfer occurs after the instruction byte write. Logic high indicates read operation. Logic 0 indicates a write operation. N1, N0, Bit 6, and Bit 5 of the instruction byte determine the number of bytes to be transferred during the data transfer cycle. The bit decodes are shown in Table 20.

A4, A3, A2, A1, A0, Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0 of the instruction byte, determine which register is accessed during the data transfer portion of the communications cycle. For multibyte transfers, this address is the starting byte address. The remaining register addresses are generated by the AD973x, based on the LSBFIRST bit (Reg. 0, Bit 6).

Table 20. Byte Transfer Count N1 N2 Description 0 0 Transfer 1 byte 0 1 Transfer 2 bytes 1 0 Transfer 3 bytes 1 1 Transfer 4 bytes

LONG INSTRUCTION MODE (16-BIT INSTRUCTION) The long instruction bytes are shown in the following table:

MSB LSB I15 I14 I13 I12 I11 I10 I9 I8 R/W N1 N0 A12 A11 A10 A9 A8 I7 I6 I5 I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0

If LONG_INS = 1 (Reg. 0, Bit 4), the instruction byte is extended to 2 bytes where the second byte provides an additional 8 bits of address information. Address 0x00 to Address 0x1F are equivalent in short and long instruction modes. The AD973x does not use any addresses greater than 31 (0x1F), so always set LONG_INS = 0.

SERIAL INTERFACE PORT PIN DESCRIPTIONS SCLK—Serial Clock

The serial clock pin is used to synchronize data to and from the AD973x and to run the internal state machines. The maximum frequency of SCLK is 20 MHz. All data input to the AD973x is registered on the rising edge of SCLK. All data is driven out of the AD973x on the rising edge of SCLK.

Page 37: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 37 of 72

CSB—Chip Select

Active low input starts and gates a communication cycle. It allows more than one device to be used on the same serial communications lines. The SDO and SDIO pins go to a high impedance state when this input is high. Chip select should stay low during the entire communication cycle.

SDIO—Serial Data I/O

Data is always written into the AD973x on this pin. However, this pin can be used as a bidirectional data line. The configu-ration of this pin is controlled by SDIO_DIR at Reg. 0, Bit 7. The default is Logic 0, which configures the SDIO pin as unidirectional.

SDO—Serial Data Out

Data is read from this pin for protocols that use separate lines for transmitting and receiving data. In the case where the AD973x operates in a single bidirectional I/O mode, this pin does not output data and is set to a high impedance state.

MSB/LSB TRANSFERS The AD973x serial port can support both MSB-first or LSB-first data formats. This functionality is controlled by LSBFIRST at Reg. 0, Bit 6. The default is MSB first (LSBFIRST = 0).

When LSBFIRST = 0 (MSB first), the instruction and data bytes must be written from the most significant bit to the least significant bit. Multibyte data transfers in MSB-first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes should follow in order from high address to low address. In MSB-first mode, the serial port internal byte address generator decrements for each data byte of the multibyte communication cycle.

When LSBFIRST = 1 (LSB first), the instruction and data bytes must be written from least significant bit to most significant bit. Multibyte data transfers in LSB-first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The serial port internal byte address generator increments for each byte of the multibyte communication cycle.

The AD973x serial port controller data address decrements from the data address written toward 0x00 for multibyte I/O operations if the MSB-first mode is active. The serial port controller address increments from the data address written toward 0x1F for multibyte I/O operations if the LSB-first mode is active.

NOTES ON SERIAL PORT OPERATION The AD973x serial port configuration is controlled by Reg. 0, Bit 4, Bit 5, Bit 6, and Bit 7. Note that the configuration changes immediately upon writing to the last bit of the register.

For multibyte transfers, writing to this register can occur during the middle of the communication cycle. Care must be taken to compensate for this new configuration for the remaining bytes of the current communication cycle. The same considerations apply to setting the software reset, RESET (Reg. 0, Bit 5). All registers are set to their default values except Reg. 0 and Reg. 4, which remain unchanged.

Use of only single-byte transfers when changing serial port configurations or initiating a software reset is highly recommended. In the event of unexpected programming sequences, the AD973x SPI can become inaccessible. For example, if user code inadvertently changes the LONG_INS bit or the LSBFIRST bit, the following bits experience unexpected results. The SPI can be returned to a known state by writing an incomplete byte (1 to 7 bits) of all 0s followed by 3 bytes of 0x00. This returns to MSB-first short instructions (Reg. 0 = 0x00), so the device can be reinitialized.

R/W N1 N0 A4 A3 A2 A1 A0 D7N D6N D5N D00D10D20D30

INSTRUCTION CYCLE DATA TRANSFER CYCLE

CSB

SCLK

SDIO 0486

2-06

7

Figure 69. Serial Register Interface Timing, MSB-First Write

R/W N1 N0 A4 A3 A2 A1 A0

D7

D6N D5N D00D10D20D30

D6N D5N D00D10D20D30

INSTRUCTION CYCLE DATA TRANSFER CYCLE

CSB

SCLK

SDIO

SDO 0486

2-06

8

D7 Figure 70. Serial Register Interface Timing, MSB-First Read

A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20 D7ND6ND5ND4N

INSTRUCTION CYCLE DATA TRANSFER CYCLE

CSB

SCLK

SDIO 0486

2-06

9

Figure 71. Serial Register Interface Timing, LSB-First Write

INSTRUCTION CYCLE DATA TRANSFER CYCLE

CSB

SCLK

SDIO

SDO

A0 A1 A2 A3 A4 N0 N1 R/W D10 D20 D7ND6ND5ND4N

D10 D20 D7ND6ND5ND4N

0486

2-07

0

D0

D0

Figure 72. Serial Register Interface Timing, LSB-First Read

Page 38: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 38 of 72

INSTRUCTION BIT 6INSTRUCTION BIT 7

CSB

SCLK

SDIO

tDS

tDS tDH

tPWH tPWL

tSCLK

0486

2-07

1

Figure 73. Timing Diagram for SPI Register Write

I1 I0 D7 D6 D5

tDVtDNV

CSB

SCLK

SDIO

0486

2-07

2

Figure 74. Timing Diagram for SPI Register Read

After the last instruction bit is written to the SDIO pin, the driving signal must be set to a high impedance in time for the bus to turn around. The serial output data from the AD973x is enabled by the falling edge of SCLK. This causes the first output data bit to be shorter than the remaining data bits, as shown in Figure 74.

To assure proper reading of data, read the SDIO or SDO pin prior to changing the SCLK from low to high. Due to the more complex multibyte protocol, multiple AD973x devices cannot be daisy-chained on the SPI bus. Multiple DACs should be controlled by independent CSB signals.

PIN MODE OPERATION When the PIN_MODE input (Pin L1) is set high, the SPI port is disabled. The SPI port pins are remapped, as shown in Table 21. The function of these pins is described in Table 22. The remain-ing PIN_MODE register settings are shown in Table 9.

Table 21. SPI_MODE vs. PIN_MODE Inputs Pin Number PIN_MODE = 0 PIN_MODE = 1 E13 IRQ UNSIGNED F13 CSB 2× G13 SCLK FSC0 E14 RESET PD F14 SDIO FIFO G14 SDO FSC1

Table 22. PIN_MODE Input Functions Mnemonic Function UNSIGNED 0, twos complement input data format 1, unsigned input data format 2× 0, interpolation disabled 1, interpolation = 2× enabled FSC1, FSC0 00, sleep mode 01, 10 mA full-scale output current 10, 20 mA full-scale output current 11, 30 mA full-scale output current PD 0, chip enabled 1, chip in power-down state FIFO 0, input FIFO disabled 1, input FIFO enabled

Care must be taken when using PIN_MODE because only the control bits shown in Table 22 can be changed. If the remaining register default values are not suitable for the desired operation, PIN_MODE cannot be used. If the FIFO is enabled, the controller clock must be less than 10 MHz. This limits the DAC clock to 160 MHz.

RESET OPERATION The RESET pin forces all SPI register contents to their default values (see Table 9), which places the DAC in a known state. The software reset bit forces all SPI register contents, except Reg. 0 and Reg. 4, to their default values.

The internal reset signal is derived from a logical OR operation on the RESET pin state and from the software reset state. This internal reset signal drives all SPI registers to their default values, except Reg. 0 and Reg. 4, which are unaffected. The data registers are not affected by either reset.

The software reset is asserted by writing 1 to Reg. 0, Bit 5. It may be cleared on the next SPI write cycle or a later write cycle.

PROGRAMMING SEQUENCE The AD973x registers should be programmed in this order:

1. Reset hardware. 2. Make changes to SPI port configuration, if necessary. 3. Input format, if unsigned. 4. Interpolation, if in 2× mode. 5. Calibrate and set the LVDS controller. 6. Enable the FIFO. 7. Calibrate and set the sync controller.

Step 1 through Step 4 are required, while Step 5 through Step 7 are optional. The LVDS controller can help assure proper data reception in the DAC with changes in temperature and voltage. The sync controller manages the FIFO to assure proper transfer of the received data to the DAC core with changes in temperature and voltage. The DAC is intended to operate with both controllers active unless data and clock alignment is managed externally.

Page 39: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 39 of 72

INTERPOLATION FILTER In 2× mode, the input data is interpolated by a factor of 2 so that it aligns with the DAC update rate. The interpolation filter is a hard-coded, 55-tap, symmetric FIR with a 0.001 dB pass-band flatness and a stop-band attenuation of about 90 dB. The transition band runs from 20% of fDAC to 30% of fDAC. The FIR response is shown in Figure 75 where the frequency axis is normalized to fDAC. Figure 76 shows the pass-band flatness and Table 23 shows the 16-bit filter coefficients.

Table 23. FIR Interpolation Filter Coefficients Coefficient Number Coefficient Number Tap Weight 1 55 −7 2 54 0 3 53 +24 4 52 0 5 51 −62 6 50 0 7 49 +135 8 48 0 9 47 −263 10 46 0 11 45 +471 12 44 0 13 43 −793 14 42 0 15 41 +1273 16 40 0 17 39 −1976 18 38 0 19 37 +3012 20 36 0 21 35 −4603 22 34 0 23 33 +7321 24 32 0 25 31 −13270 26 30 0 27 29 +41505 28 +65535

0486

2-07

3

FREQUENCY NORMALIZED TO fDAC

0.500 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

MA

GN

ITU

DE

(dB

)

0

–10

–20

–30

–40

–50

–60

–70

–80

–90

–100

Figure 75. Interpolation Filter Response

0486

2-07

4

FREQUENCY NORMALIZED TO fDAC

0.250 0.100.05 0.15 0.20

MA

GN

ITU

DE

(dB

)

0.10

0.06

0.08

0.02

–0.02

–0.06

0.04

0

–0.04

–0.08

–0.10

Figure 76. Interpolation Filter Pass-Band Flatness

DATA INTERFACE CONTROLLERS Two internal controllers are utilized in the operation of the AD973x. The first controller helps maintain optimum LVDS data sampling; the second controller helps maintain optimum synchronization between the DACCLK and the incoming data. The LVDS controller is responsible for optimizing the sampling of the data from the LVDS bus (DB13:0), while the sync controller resolves timing problems between the DAC_CLK (CLK+, CLK−) and the DATACLK. A block diagram of these controllers is shown in Figure 77.

DATACLK_OUT

DATACLK

DATACLK_IN

FIFO DAC

LVDSSAMPLELOGIC

CLKCONTROL

LVDSCONTROLLER

DB<13:0>

DATASOURCEi.e., FPGA

SYNCLOGIC

SYNCCONTROLLER

0486

2-07

5

Figure 77. Data Controllers

The controllers are clocked with a divided-down version of the DAC_CLK. The divide ratio is set utilizing the controller clock predivider bits (CCD<3:0>) located at Reg. 22, Bits 3:0 to generate the controller clock as follows:

Controller Clock = DAC_CLK/(2^(CCD<3:0> + 4))

Note that the controller clock cannot exceed 10 MHz for correct operation. Until CCD<3:0> is properly programmed to meet this requirement, the DAC output may not be stable. This means the FIFO cannot be enabled in PIN_MODE unless the DACCLK is less than 160 MHz.

Page 40: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 40 of 72

The LVDS and sync controllers are independently operated in three modes via SPI port Reg. 6 and Reg. 8:

Manual mode Surveillance mode Auto mode

In manual mode, all of the timing measurements and updates are externally controlled via the SPI.

In surveillance mode, each controller takes measurements and calculates a new optimal value continuously. The result of the measurement is passed through an averaging filter before evaluating the results for increased noise immunity. The filtered result is compared to a threshold value set via Reg. 6 and Reg. 8 of the SPI port. If the error is greater than the threshold, an interrupt is triggered and the controller stops.

Reg. 1 of the SPI port controls the interrupts with Bit 3 and Bit 2 enabling the respective interrupts and Bit 7 and Bit 6 indicating the respective controller interrupt. If an interrupt is enabled, it also activates the AD973x IRQ pin. To clear an interrupt, the interrupt enable bit of the respective controller must be set to 0 for at least 1 controller clock cycle (controller clock <10 MHz).

Auto mode is almost identical to surveillance mode. Instead of triggering an interrupt and stopping the controller, the controller automatically updates its settings to the newly calculated optimal value and continues to run.

LVDS SAMPLE LOGIC A simplified diagram of the AD973x LVDS data sampling engine is shown in Figure 78 and the timing diagram is shown in Figure 79.

The incoming LVDS data is latched by the data sampling signal (DSS), which is derived from DATACLK_IN. The LVDS controller delays DATACLK_IN to create the data sampling signal (DSS), which is adjusted to sample the LVDS data in the center of the valid data window. The skew between the DATACLK_IN and the LVDS data bits (DB<13:0>) must be minimal for proper operation. Therefore, it is recommended that the DATACLK_IN be generated in the same manner as the LVDS data bits (DB<13:0>) with the same driver and data lines (that is, it should just be another LVDS data bit running a constant 01010101… sequence, as shown in Figure 96).

If the DATACLK_IN signal is stopped, the DACCLK continues to generate an output signal based on the last two values clocked into the registers that drive D1 and D2, as shown in Figure 78. If these two registers are not equal, a large output at a frequency of one-half fDAC can be generated at the DAC output.

DB<13:0>

DATACLK_IN LVDSRX

DELAYEDCLOCKSIGNAL

CLOCKSAMPLINGSIGNAL

CHECK

D1

D2DATA SAMPLINGSIGNAL

LVDSRX

MSD<3:0>DELAY

MHD<3:0>DELAY

FF

SD<3:0>SAMPLE DELAY

FF

FF

DBL

DBU

0486

2-07

6

Figure 78. Internal LVDS Data Sampling Logic

SAMPLEDELAY

PROP DELAYTO LATCH

PROP DELAYTO LATCH

CLK TO DB SKEW

DB13:0

D1

D2

DATACLK_IN

DATA SAMPLINGSIGNAL (DSS)

0486

2-07

7

Figure 79. Internal LVDS Data Sampling Logic Timing

LVDS SAMPLE LOGIC CALIBRATION The internal DSS delay must be calibrated to optimize the data sample timing. Once calibrated, the AD973x generates an IRQ or automatically corrects its timing if temperature or voltage variations change the timing too much. This calibration is done using the delayed clock sampling signal (CSS) to sample the delayed clock signal (DCS). The LVDS sampling logic finds the edges of the DATACLK_IN signal and, from this measurement, the center of the valid data window is located.

The internal delay line that derives the delayed DSS from DATACLK_IN is controlled by SD3:0 (Reg. 5, Bits 7:4), while the DCS is controlled by MSD3:0 (Reg. 4, Bits 7:4), and the CSS is controlled by MHD3:0 (Reg. 4, Bits 3:0).

DATACLK_IN transitions must be time aligned with the LVDS data (DB<13:0>) transitions. This allows the CSS, derived from the DATACLK_IN, to find the valid data window of DB<13:0> by locating the DATACLK_IN edges. The latching (rising) edge of CSS is initially placed using Bits SD<3:0> and can then be shifted to the left using MSD<3:0> and to the right using MHD<3:0>. When CSS samples the DCS and the result is 1 (which can be read back via the check bit at Reg. 5, Bit 0), the sampling occurs in the correct data cycle.

Page 41: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 41 of 72

To find the leading edge of the data cycle, increment the measured setup delay until the check bit goes low. To find the trailing edge, increment the measured hold delay (MHD) until check goes low. Always set MHD = 0 when incrementing MSD and vice versa.

The incremental units of SD, MSD, and MHD are in units of real time, not fractions of a clock cycle. The nominal step size is 80 ps.

OPERATING THE LVDS CONTROLLER IN MANUAL MODE VIA THE SPI PORT The manual operation of the LVDS controller allows the user to step through both the setup and hold delays to calculate the optimal sampling delay (that is, the center of the data eye).

With SD<3:0> and MHD<3:0> set to 0, increment the setup time delay (MSD<3:0>, Reg. 4, Bits 7:4) until the check bit (Reg. 5, Bit 0) goes low and record this value. This locates the leading DATACLK_IN (and data) transition, as shown in Figure 80.

With SD<3:0> and MSD<3:0> set to 0, increment the hold time delay (MHD<3:0>, Reg. 4, Bits 3:0) until the check bit (Reg. 5, Bit 0) goes low and record this value. This locates the trailing DATACLK_IN (and DB<13:0>) transition, as shown in Figure 81.

Once both DATACLK_IN edges are located, the sample delay (SD<3:0>, Reg. 5, Bits 7:4) must be updated by

Sample Delay = (MHD − MSD)/2

After updating SD<3:0>, verify that the sampling signal is in the middle of the valid data window by adjusting both MHD and MSD with the new sample delay until the check bit goes low. The new MHD and MSD values should be equal to or within one unit delay if SD<3:0> was set correctly.

MHD and MSD may not be equal to or within one unit delay if the external clock jitter and noise exceeds the internal delay resolution. Differences of 2, 3, or more are possible and can require more filtering to provide stable operation.

The sample delay calibration should be performed prior to enabling surveillance mode or auto mode.

SETUP TIME (tS)

SAMPLE DELAY

MSD<3:0> = 0 1 2 3 4 5

CSS SAMPLE DCS

CHECK = 1

SD<3:0>

DB<13:0>

DATACLK_IN

CSS WITHMHD<3:0> = 0

DCS DELAYEDBY MSD<3:0>

0486

2-07

8

Figure 80. Setup Delay Measurement

SETUP TIME (tS) HOLD TIME (tH)

CSS SAMPLE DCS

CHECK = 1 1 1 1 1 0 CHECK = 1

SD<3:0>

0486

2-07

9

MSD<3:0> = 0 1 2 3 4 5SAMPLE DELAY

DB<13:0>

DATACLK_IN

CSS WITHMHD<3:0> = 0

DCS DELAYEDBY MSD<3:0> = 0

Figure 81. Hold Delay Measurement

OPERATING THE LVDS CONTROLLER IN SURVEILLANCE AND AUTO MODE In surveillance mode, the controller searches for the edges of the data eye in the same manner as in the manual mode of operation and triggers an interrupt if the clock sampling signal (CSS) has moved more than the threshold value set by LTRH<1:0> (Reg. 6, Bits 1:0).

There is an internal filter that averages the setup and hold time measurements to filter out noise and glitches on the clock lines.

Average Value = (MHD – MSD)/2 New Average = Average Value + (Δ Average/2 ^ LFLT<3:0>)

If an accumulating error in the average value causes it to exceed the threshold value (LTHR<1:0>), an interrupt is issued.

The maximum allowable value for LFLT<3:0> is 12. If LFLT<3:0> is too small, clock jitter and noise can cause erratic behavior. In most cases, LFLT can be set to the maximum value.

In surveillance mode, the ideal sampling point should first be found using manual mode and then applied to the sample delay registers. Set the threshold and filter values depending on how far the CSS signal is allowed to drift before an interrupt occurs. Then, set the surveillance bit high (Reg. 6, Bit 7) and monitor the interrupt signal either via the SPI port (Reg. 1, Bit 7) or the IRQ pin.

In auto mode, follow the same steps to set up the sample delay, threshold, and filter length. To run the controller in auto mode, both the LAUTO (Reg. 6, Bit 6) and LSURV (Reg. 6, Bit 7) bits need to be set to 1. In auto mode, the LVDS interrupt should be set low (Reg. 1, Bit 3) to allow the sample delay to be automati-cally updated if the threshold value is exceeded.

Page 42: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 42 of 72

SYNC LOGIC AND CONTROLLER A FIFO structure is utilized to synchronize the data transfer between the DACCLK and the DATACLK_IN clock domains. The sync controller writes data from DB<13:0> into an 8-word memory register based on a cyclic write counter clocked by the DSS, which is a delayed version of DACCLK_IN. The data is read out of the memory based on a second cyclic read counter clocked by DACCLK. The 8-word FIFO shown in Figure 82 provides sufficient margin to maintain proper timing under most conditions. The sync logic is designed to prevent the read and write pointers from crossing. If the timing drifts far enough to require an update of the phase offset (PHOF<1:0>), two samples are duplicated or dropped. Figure 83 shows the timing diagram for the sync logic.

8 WORDMEMORY

READCOUNTER

PHOF<1:0>

DACCLK

FIFOSTAT<2:0>

DSS

M0

M7ZD

DAC<13:0>

ADDERWRITE

COUNTER

FF

DAC<13:0>

0486

2-08

0

Figure 82. Sync Logic Block Diagram

SYNC LOGIC AND CONTROLLER OPERATION The relationship between the readout pointer and the write pointer initially is unknown because the startup relationship between DACCLK and DATACLK_IN is unknown. The sync logic measures the relative phase between the two counters with the zero detect block and the flip-flop in Figure 82. The relative phase is returned in FIFOSTAT<2:0> (Reg. 7, Bits 6:4), and sync logic errors are indicated by FIFOSTAT<3> (Reg. 7, Bit 7). If FIFOSTAT<2:0> returns a value of 0 or 7, the memory is sampling in a critical state (read and write pointers are close to crossing).

If the FIFOSTAT<2:0> returns a value of 3 or 4, the memory is sampling at the optimal state (read and write pointers are farthest apart). If FIFOSTAT<2:0> returns a critical value, the pointer can be adjusted with the phase offset PHOF<1:0> (Reg. 7, Bits 1:0). Due to the architecture of the FIFO, the phase offset can only adjust the read pointer in steps of 2.

OPERATION IN MANUAL MODE To start operating the DAC in manual mode, allow DACCLK and DATACLK_IN to stabilize, then enable FIFO mode (Reg. 0, Bit 2). Read FIFOSTAT<2:0> (Reg. 7, Bits 6:4) to determine if adjustment is needed. For example, if FIFOSTAT<2:0> = 6, the timing is not yet critical, but it is not optimal.

To return to an optimal state (FIFOSTAT<2:0> = 4), the PHOF<1:0> (Reg. 7, Bits 1:0) needs to be set to 1. Setting PHOF<1:0> = 1 effectively increments the read pointer by 2. This causes the write pointer value to be captured two clocks later, decreasing FIFOSTAT<2:0> from 6 to 4.

OPERATION IN SURVEILLANCE AND AUTO MODES Once FIFOSTAT<2:0> is manually placed in an optimal state, the AD973x sync logic can run in surveillance or auto mode. To start, turn on surveillance mode by setting SSURV = 1 (Reg. 8, Bit 7), then enable the sync interrupt (Reg. 1, Bit 2). If STRH<0> = 0 (Reg. 8, Bit 0), an interrupt occurs if FIFOSTAT<2:0> = 0 or 7. If STRH<0> = 1 (Reg. 8, Bit 0), an interrupt occurs if FIFOSTAT<2:0> = 0, 1, 6, or 7. The interrupt is read at Reg. 1, Bit 6 at the AD973x IRQ pin.

To enter auto mode, complete the preceding steps then set SAUTO = 1 (Reg. 8, Bit 6). Next, set the sync interrupt = 0 (Reg. 1, Bit 2), to allow the phase offset (PHOF<1:0>) to be automatically updated if FIFOSTAT<2:0> violates the threshold value. The FIFOSTAT signal is filtered to improve noise immunity and reduce unnecessary phase offset updates. The filter operates with the following algorithm:

FIFOSTAT = FIFOSTAT + ΔFIFOSTAT/2 ^ SFLT<3:0>

where:

0 ≤ SFLT<3:0> ≤ 12

Values greater than 12 are set to 12. If SFLT<3:0> is too small, clock jitter and noise can cause erratic behavior. Normally, SFLT can be set to the maximum value.

FIFO BYPASS When the FIFO_MODE bit (Reg. 1, Bit 2) is set to 0, the FIFO is bypassed with a mux. When the FIFO is enabled, the pipeline delay through the AD973x increases by the delta between the FIFO read pointer and write pointer plus 4 more clock periods.

Page 43: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 43 of 72

D

INTERNAL DELAY

DACCLK

DATACLK_OUT

DATACLK_IN

DATA_IN A

A

B

B

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

4 5 6 7 0 1 2 3 4 1 2 3 45 6 7 0

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

K

L

L

M

A B C D E F G H I J K L M

M

N

N

IA

O

O Q

P

P

Q R

DSS1

DSS2

D2

WRITE_PTR1

SAFE ZONE

DATA 'A' CAN BESAFELY READ FROMTHE FIFO IN THESAFE ZONE. IN THEERROR ZONE, THEPOINTERS MAYBRIEFLY OVERLAPDUE TO CLOCK JITTEROR NOISE.

FIFOSTAT IS SETEQUAL TO THEWRITE POINTEREACH TIME THEREAD POINTERCHANGES FROM7 TO 0.

ERROR ZONE

M0

M1 B

C

E

F

G

4 44

H

J

M2

M3

M4

M5

M6

M7

READ_PTR1

FIFOSTAT

DAC_DATA

D1

EXTERNAL DELAY

SAMPLE_HOLDSAMPLE_SETUP

SAMPLE_DELAY

0486

2-08

1

Figure 83. Sync Logic Timing Diagram

Page 44: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 44 of 72

DIGITAL BUILT-IN SELF TEST (BIST) OVERVIEW The AD973x includes an internal signature generator that processes incoming data to create unique signatures. These signatures are read back from the SPI port, allowing verification of correct data transfer into the AD973x. BIST vectors provided on the AD973x-EB evaluation board CD check the full width data input or individual bits for PCB debug, utilizing the procedure in the AD973x BIST Procedure section. Alterna-tively, any vector can be used provided the expected signature is calculated in advance.

The MATLAB® routine, in the Generating Expected Signatures section, calculates the expected signature. BIST verifies correct data transfer because not all errors are always evident on a spectrum analyzer. There are four BIST signature generators that can be read back using Reg. 18 to Reg. 21, based on the setting of the BIST selection bits (Reg. 17, Bits 7:6), as shown in Table 24. The BIST signature returned from the AD973x depends on the digital input during the test. Because the filters in the DAC have memory, it is important to put the correct idle value on the DATA input to flush the memory prior to reading the BIST signature.

Placing the idle value on the data input also allows the BIST to be set up while the DAC clock is running. The idle value should be all 0s in unsigned mode (0x0000) and all 0s except for the MSB in twos complement mode (0x2000).

The BIST consists of two stages; the first stage is after the LVDS receiver and the second stage is after the FIFO. The first BIST stage verifies correct sampling of the data from the LVDS bus while the second BIST stage verifies correct synchronization between the DAC_CLK domain and the DATACLK_IN domain. The BIST vector is generated using 32-bit LFSR signature logic. Because the internal architecture is a 2-bus parallel system, there are two 32-bit LFSR signature logic blocks on both the LVDS and SYNC blocks. Figure 84 shows where the LVDS and SYNC phases are located.

Table 24. BIST Selection Bits Bit SEL<1> SEL<0> LVDS Phase 1 0 0 LVDS Phase 2 0 1 SYNC Phase 1 1 0 SYNC Phase 2 1 1

LVDSRX

DB<13:0>

DATACLK_IN

SYNC LOGIC

FIFO 2x

D1

D2

DAC

LVDSBISTPH1

(RISE)

LVDSBISTPH2

(FALL)

SYNCBISTPH1

(RISE)

SYNCBISTPH2

(FALL)

SPI PORT

0486

2-08

2

Figure 84. Block Diagram Showing LVDS and SYNC Phase 1 and SYNC Phase 2

Page 45: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 45 of 72

AD973x BIST PROCEDURE 1. Set RESET pin = 1. 2. Set input DATA = 0x0000 for unsigned (0x2000 for twos

complement). 3. Enable DATACLK_IN if it is not already running. 4. Run for at least 16 DATACLK_IN cycles. 5. Set RESET pin = 0. 6. Run for at least 16 DATACLK_IN cycles. 7. Set RESET pin = 1. 8. Run for at least 16 DATACLK_IN cycles. 9. Set RESET pin = 0. 10. Set desired operating mode (1× mode and signed data are

default values and expected for the supplied BIST vectors).

11. Set CLEAR (Reg. 17, Bit 0), SYNC_EN (Reg. 17, Bit 1), and LVDS_EN (Reg. 17, Bit 2) high.

12. Wait 50 DATACLK_IN cycles to allow 0s to propagate through and clear sync signatures.

13. Set CLEAR low. 14. Read all signature registers (Reg. 21, Reg. 20, Reg. 19, and

Reg. 18) for each of the four SEL (Reg. 17, Bits 7:6) values and verify they are all 0x00.

LVDS Phase 1 a. Reg. 17 set to 0x26 (SEL1 = 0, SEL0 = 0,

SIG_READ = 1, LVDS_EN = 1, SYNC_EN = 1). b. Read Reg. 20, Reg. 19, Reg. 18, and Reg. 17.

LVDS Phase 2 a. Reg. 17 set to 0x66 (SEL1= 0, SEL0 = 1,

SIG_READ = 1, LVDS_EN = 1, SYNC_EN = 1). b. Read Reg. 20, Reg. 19, Reg. 18, and Reg. 17.

SYNC Phase 1 a. Reg. 17 set to 0xA6 (SEL1= 1, SEL0 = 0,

SIG_READ = 1, LVDS_EN = 1, SYNC_EN = 1). b. Read Reg. 20, Reg. 19, Reg. 18, and Reg. 17.

SYNC Phase 2 a. Reg. 17 set to 0xE6 (SEL1= 1, SEL0 = 1,

SIG_READ = 1, LVDS_EN = 1, SYNC_EN = 1). b. Read Reg. 20, Reg. 19, Reg. 18, and Reg. 17.

15. Clock the BIST vector into the AD973x. 16. After the BIST vector is clocked into the part, hold DATA =

0x0000 for unsigned (0x2000 for twos complement); otherwise, the additional nonzero data changes the signature.

17. Read all signature registers (Reg. 21, Reg. 20, Reg. 19, and Reg. 18, as described in Step 14 ) for each of the four SEL (Reg. 17, Bits 7:6) values, and verify that they match the expected signatures shown in Table 25.

18. Flush the BIST circuitry. This must be done once before valid data can be read. Loop back to Step 11 and rerun the test to obtain the correct result.

19. Each time BIST mode is entered, this flush needs to be performed once. Multiple BIST runs can be performed without reflushing as long as the device remains in BIST mode.

AD973x EXPECTED BIST SIGNATURES The BIST vectors provided on the AD973x-EB CD are in signed mode, so no programming is necessary for the part to pass the BIST. The BIST vector is for 1×, no FIFO, and signed data.

For testing all 14 input bits, use the vector all_bits_unsnew.txt and verify against the signatures in Table 25.

Table 25. Expected BIST Data Readback for All Bits LVDS Phase 1 LVDS Phase 2 SYNC Phase 1 SYNC Phase 2

CF71487C 66DF5250 CF71487C 66DF5250

For individual bit tests, use the vectors named bitn.txt (where n is the desired bit number being tested) and compare them against the values in Table 26.

Table 26. Expected BIST Data Readback for Individual Bits

Vector Bit Number

LVDS Rise Expected

LVDS Fall Expected

bit0.txt 0 AABF0A00 2A400500 bit1.txt 1 2BBF0A00 6B400500 bit2.txt 2 29BE0A00 E9400500 bit3.txt 3 2DBC0A00 ED410500 bit4.txt 4 25B80A00 E5430500 bit5.txt 5 35B00A00 F5470500 bit6.txt 6 15A00A00 D54F0500 bit7.txt 7 55800A00 955F0500 bit8.txt 8 D5C00A00 157F0500 bit9.txt 9 D5410A00 153E0500 bit10.txt 10 D5430B00 15BC0500 bit11.txt 11 D5470900 15B80400 bit12.txt 12 D54F0D00 15B00600 bit13.txt 13 D55F0500 15A00200

Note the following for Table 26:

• The term rise refers to Phase 1 and fall refers to Phase 2. • Byte order is Decimal Register Address 21, Address 20,

Address 19, and Address 18. • SYNC phase should always equal LVDS phase in 1× mode.

Page 46: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 46 of 72

GENERATING EXPECTED SIGNATURES The following MATLAB code duplicates the internal logic of the AD973x. To use it, save this code in a file called bist.m. --- begin bist.m --- function [ ret1 , ret2] = bist(vec) ret1 = bist1(vec(1:2:length(vec)-1)); ret2 = bist1(vec(2:2:length(vec))); function ret = bist1(v) sum = zeros(1,32); for i = 1 :length(v) if v(i) ~= 0 su(1) = ~xor(sum(32) ,bitget(v(i),1)); su(2) = ~xor(sum(1) ,bitget(v(i),2)); su(3) = ~xor(sum(2) ,bitget(v(i),3)); su(4) = ~xor(sum(3) ,bitget(v(i),4)); su(5) = ~xor(sum(4) ,bitget(v(i),5)); su(6) = ~xor(sum(5) ,bitget(v(i),6)); su(7) = ~xor(sum(6) ,bitget(v(i),7)); su(8) = ~xor(sum(7) ,bitget(v(i),8)); su(9) = ~xor(sum(8) ,bitget(v(i),9)); su(10) = ~xor(sum(9) ,bitget(v(i),10)); su(11) = ~xor(sum(10) ,bitget(v(i),11)); su(12) = ~xor(sum(11) ,bitget(v(i),12)); su(13) = ~xor(sum(12) ,bitget(v(i),13)); su(14) = ~xor(sum(13) ,bitget(v(i),14)); su(15) = sum(14); su(16) = sum(15); su(17) = sum(16); su(18) = sum(17); su(19) = sum(18); su(20) = sum(19); su(21) = sum(20); su(22) = sum(21); su(23) = sum(22); su(24) = sum(23); su(25) = sum(24); su(26) = sum(25); su(27) = sum(26); su(28) = sum(27); su(29) = sum(28); su(30) = sum(29); su(31) = sum(30); su(32) = sum(31); sum = su; end end % for ret = dec2hex( 2.^[0:31]* sum',8); --- end bist.m ---

To generate the expected BIST signatures, follow this procedure:

1. Start MATLAB and type the following at the command prompt:

t = round(randn(1,100) × 213/8+213) ; [ b1 b2 ] = bist(t)

2. The first statement creates a random vector of 14-bit words, with a length of 100.

3. Set t equal to any desired vector, or take this random vector and input it to the AD973x.

4. Alter the command randn(1,100) to change the vector length as desired.

5. Type b1 at the command line to see the calculated signature for the LVDS BIST, Phase 1.

6. Type b2 to see the value for LVDS BIST, Phase 2.

The values returned for b1 and b2 each are 32-bit hex values. They correspond to Reg. 18, Reg. 19, Reg. 20, and Reg. 21, where b1 is the value read for SEL<1:0> = 0, 0 (see Table 17) and b2 is the value read for SEL<1:0> = 0, 1.

When the DAC is in 1× mode, the signature at SYNC BIST, Phase 1 should equal the signature at LVDS BIST, Phase 1. The same is true for Phase 2.

Page 47: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 47 of 72

CROSS CONTROLLER REGISTERS The AD973x differential output stage is adjustable to equalize the charge injection into the positive and negative outputs. This adjustment impacts certain performance characteristics, such as harmonic distortion or IMD. System performance can be en-hanced by adjusting the cross controller.

If the system is calibrated after manufacture, adjust the cross controller offsets to provide optimum performance. To start, increment DNDEL<5:0> (Reg. 11, Bits 5:0) while observing HD2 (second harmonic distortion) and/or IMD to find the desired optimum. If DNDEL does not influence the perform-ance, set it to 0 and increment UPDEL<5:0> (Reg. 10, Bits 5:0). Based on system characterization, set one of these controls to the maximum value to yield the best performance.

Figure 85 shows the effect of UPDEL and DNDEL.

0486

2-08

3

INCREMENT DNDEL TO MOVETHE CROSSING TOWARD THEIDEAL VALUE

IDEAL DIFFERENTIAL OUTPUTCROSSING ALIGNMENT

INCREMENT UPDEL TO MOVETHE CROSSING TOWARD THEIDEAL VALUE

Figure 85. Effect of UPDEL and DNDEL

Page 48: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 48 of 72

ANALOG CONTROL REGISTERS The AD973x includes some registers for optimizing its analog performance. These registers include temperature trim for the band gap, noise reduction in the output current mirror, and output current mirror headroom adjustments.

BAND GAP TEMPERATURE CHARACTERISTIC TRIM BITS Using TRMBG<2:0> (Reg. 14, Bits 2:0), the temperature characteristic of the internal band gap can be trimmed to minimize the drift over temperature, as shown in Figure 86.

–50 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90

TEMPERATURE (C)

VR

EF

(V

)

1.23

1.22

1.21

1.2

1.19

1.18 0486

2-08

4

000

010

001

011

101

110

111

100

Figure 86. Band Gap Temperature Characteristic for Various TRMBG Values

The temperature changes are sensitive to process variations, and Figure 86 may not be representative of all fabrication lots. Optimum adjustment requires measurement of the device operation at two temperatures and development of a trim algorithm to program the correct TRMBG<2:0> values in external nonvolatile memory.

MIRROR ROLL-OFF FREQUENCY CONTROL With MSEL <1:0> (Reg. 14, Bits 7:6), the user can adjust the noise contribution of the internal current mirror to optimize the 1/f noise. Figure 87 shows MSEL vs. the 1/f noise with 20 mA full-scale current into a 50 Ω resistor.

F (kHz)

NO

ISE

(Id

Bm

/Hz)

–110

–115

–120

–125

–130

–140

–135

1 10 100

0486

2-0-

085

MSEL0

MSEL2

MSEL1

MSEL3

Figure 87. 1/f Noise with Respect to MSEL Bits

HEADROOM BITS HDRM<7:0> (Reg. 15, Bits 7:0) are for internal evaluation. Changing the default reset values is not recommended.

VOLTAGE REFERENCE The AD973x output current is set by a combination of digital control bits and the I120 reference current, as shown in Figure 88.

CURRENTSCALING

FSC<9:0>

AD973x

DAC

IFULL-SCALE10k

1nF

VREF

I120AVSS

I120

VBG1.2V

+

0486

2-08

6

Figure 88. Voltage Reference Circuit

The reference current is obtained by forcing the band gap voltage across an external 10 kΩ resistor from I120 (Pin B14) to ground. The 1.2 V nominal band gap voltage (VREF) generates a 120 μA reference current in the 10 kΩ resistor. This current is adjusted digitally by FSC<9:0> (Reg. 2, Reg. 3) to set the output full-scale current IFS:

0.9

102419272 FSC

RV

I REFFS

Page 49: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 49 of 72

The full-scale output current range is approximately 10 mA to 30 mA for register values from 0x000 to 0x3FF. The default value of 0x200 generates 20 mA full scale. The typical range is shown in Figure 89.

35

30

25

20

I FS

(mA

)

15

10

5

00 200 400 600 800

DAC GAIN CODE1000

0486

2-08

7

Figure 89. IFS vs. DAC Gain Code

Always connect a 10 kΩ resistor from the I120 pin to ground and use the digital controls to vary the full-scale current. The AD973x is not a multiplying DAC. Applying an analog signal to I120 is not supported.

VREF (Pin C14) must be bypassed to ground with a 1 nF capacitor. The band gap voltage is present on this pin and can be buffered for use in external circuitry. The typical output impedance is near 5 kΩ. If desired, an external reference can be used to overdrive the internal reference by connecting it to the VREF pin.

IPTAT (Pin D14) is used for factory testing. Leave this pin floating.

Page 50: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 50 of 72

APPLICATIONS INFORMATION DRIVING THE DACCLK INPUT The DACCLK input requires a low jitter differential drive signal. It is a PMOS input differential pair powered from the 1.8 V supply, so it is important to maintain the specified 400 mV input common-mode voltage. Each input pin can safely swing from 200 mV p-p to 800 mV p-p about the 400 mV common-mode voltage. While these input levels are not directly LVDS compatible, DACCLK can be driven by an offset ac-coupled LVDS signal, as shown in Figure 90.

0486

2-08

8

LVDS_P_IN CLK+

50Ω

50Ω

0.1µF

0.1µFLVDS_N_IN CLK–

VCM = 400mV

Figure 90. LVDS DACCLK Drive Circuit

If a clean sine clock is available, it can be transformer-coupled to DACCLK, as shown in Figure 107. Use of a CMOS or TTL clock can also be acceptable for lower sample rates. It is routed through a CMOS to LVDS translator, then ac-coupled, as described previously. Alternatively, it can be transformer-coupled and clamped, as shown in Figure 91.

0486

2-08

9

50Ω

50Ω

TTL OR CMOSCLK INPUT CLK+

CLK–

VCM = 400mV

BAV99ZXCTHIGH SPEEDDUAL DIODE

0.1µF

Figure 91. TTL or CMOS DACCLK Drive Circuit

A simple bias network for generating VCM is shown in Figure 92. It is important to use CVDD18 and CVSS for the clock bias circuit. Any noise or other signal that is coupled onto the clock is multiplied by the DAC digital input signal and may degrade the DAC performance.

0486

2-09

0

0.1µF 1nF1nF

VCM = 400mV

CVDD1.8V

CVSS

1kΩ

287Ω

Figure 92. DACCLK VCM Generator Circuit

Page 51: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 51 of 72

DAC OUTPUT DISTORTION SOURCES The second harmonic is mostly due to an imbalance in the output load. The dc transfer characteristic of the DAC is capable of second harmonic distortion of at least −75 dBc. Output load imbalance or digital data noise coupling onto DACCLK causes additional second harmonic distortion.

The DAC architecture inherently generates third harmonics, the levels of which depend on the output frequency and amplitude generated. If any output signal is rectified and coupled back onto the DAC clock, it can generate additional third-harmonic energy.

The distortion components should be identical in amplitude and phase at both AD973x outputs. Even though each single-ended output includes a large amount of second-harmonic energy, a careful differential-to-single-ended conversion can remove most of it. Optimum performance at high intermediate frequency (IF) output is obtained with the output circuit shown in Figure 93.

This is the configuration implemented on the evaluation board (Figure 107). The 20 Ω series resistors allow the DAC to drive a less reactive load, which improves distortion. Further improvement is realized by adding the Balun T3 to help provide an equal load to both DAC outputs.

0486

2-09

1

IOUTA

IOUTB

J2, 50Ω OUTPUT

AVSSR1720Ω

1 5 65

1

3 4 4 3

R1920Ω

T3

T1AVSS

R850Ω

R650Ω

Figure 93. IF Signal Output Circuit

Because T1 has a differential input, but a single-ended output, Pin 4 of T1 has a higher capacitance to ground due to parasitics to Pin 3. T1 Pin 6 has lower parasitic capacitance to ground because it drives 50 Ω at Pin 1. This presents an unbalanced load to the DAC output, so T3 is added to improve the load balancing. Refer to Figure 107 for the transformer part numbers.

Page 52: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 52 of 72

DC-COUPLED DAC OUTPUT In some cases, it may be desirable to dc-couple the AD973x output. The best method for doing this is shown in Figure 94. This circuit can be used with voltage or current feedback amplifiers. Because the DAC output current is driving a virtual ground, this circuit may offer enhanced settling times. The settling time is limited by the op amp rather than by the DAC. This circuit is intended for use where the amplifiers can be powered by a bipolar supply.

0486

2-09

2

IOUTA

DACOUTPUT

20mAFULL SCALE

IOUTB

100Ω

100Ω

100Ω

500Ω

500Ω

100Ω

500Ω

500Ω

AVSS

AVSS OUTPUT

2V p-p+1V TO –1V

2V p-p0V TO –2V

Figure 94. Op Amp I to V Conversion Output Circuit

An alternate circuit is shown in Figure 95. It suffers from dc offset at the output unless the DAC load resistors are small, relative to the amplifier gain and feedback resistors.

0486

2-09

3

IOUTA

OUTPUT

AVSSIOUTB

25Ω

25Ω2kΩ

AVSS

2kΩ1kΩ

1kΩ

DAC OUTPUT20mA

FULL SCALE

2V p-p0V TO –2V

0.5V p-p0V TO –0.5V

Figure 95. Differential Op Amp Output Circuit

Page 53: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 53 of 72

DAC DATA SOURCES The circuit shown in Figure 96 allows optimum data alignment when running the AD973x at full speed. This circuit can be easily implemented in the FPGA or ASIC used to drive the digital input. It is important to use the DATACLK_OUT signal because it helps to cancel some of the timing errors. In this configuration, DATACLK_OUT generates the DDR LVDS DATACLK_IN to drive the AD973x. The circuit aligns the DATACLK_IN and the digital input data (DB<13:0>) as required by the AD973x. The LVDS controller in the AD973x uses DATACLK_IN to generate the internal DSS to capture the incoming data in the center of the valid data window.

0486

2-09

4

MUX

MUX

D1

DATACLK_OUTFROM AD9736 (DDR)

DATACLK_INTO AD9736 (DDR)

DB(13:0) TO AD9736

DATA SOURCE

LOGIC 0LOGIC 1

DATA2

DATA1

D2

Figure 96. Recommended FPGA/ASIC Configuration for Driving AD9736 Digital Inputs, 1× Mode

0486

2-09

5

DATA1

DATA2

A C

A C

E

B

A B C

D

B D

D1

D2

DB

DATACLK_OUT+

DATACLK_IN+

Figure 97. FPGA/ASIC Timing for Driving AD973x Digital Inputs, 1× Mode

To operate in 2× mode, the circuit in Figure 96 must be modified to include a divide-by-2 block in the path of DATACLK_OUT. Without this additional divider, the data and DATACLK_IN runs 2× too fast. DATACLK_OUT is always DACCLK/2.

Contact FPGA vendors directly regarding the maximum output data rates supported by their products.

0486

2-09

6

MUX

MUX

D1

DATACLK_OUTFROM AD9736 (DDR)

DATACLK_INTO AD9736 (DDR)

DB(13:0) TO AD9736

DATA SOURCE

LOGIC 1LOGIC 0

DATA2

DATA1

D2

2

Figure 98. Recommended FPGA/ASIC Configuration for Driving AD9736 Digital Inputs, 2× Mode

0486

2-09

7

CLK_OUT+/2

DATA2

DATA1 A C

A C

E

B

A B C

D

B D

D1

D2

DB

DATACLK_OUT+

DATACLK_IN+

Figure 99. FPGA/ASIC Timing for Driving AD973x Digital Inputs, 2× Mode

Page 54: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 54 of 72

INPUT DATA TIMING The AD973x is intended to operate with the LVDS and sync controllers running to compensate for timing drift due to voltage and temperature variations. In this mode, the key to correct data capture is to present valid data for a minimum amount of time. The AD973x minimum valid data time is measured by increasing the input data rate to the point of failure. The nominal supply voltages are used and the temperature is set to the worst case of 85°C. The input data is verified via the BIST signature registers, because the DAC output does not run as fast as the input data logic. The following example explains how the minimum data valid period is calculated for the typical performance case.

These factors must be considered in determining the minimum valid data window at the receiver input:

• Data rise and fall times: 100 ps (rise + fall) • Internal clock jitter: 10 ps

(DATACLK_OUT + DATACLK_IN) • Bit-to-bit skew: 50 ps • Bit-to-DATACLK_IN skew: 50 ps • Internal data sampling signal resolution: 80 ps

For nominal silicon, the BIST typically indicates failure at 2.15 GSPS or a DACCLK period of 465 ps. The valid data window is calculated by subtracting all the other variables from the total data period:

Minimum Data Valid Time = DACCLK Period − Data Rise − Data Fall − Jitter − Bit-to-Bit Skew − Bit-to-DATACLK_IN Skew − Data Sampling Signal Resolution

For the 400 mV p-p LVDS signal case:

Minimum Data Valid = 465 ps − 100 ps − 10 ps − 50 ps − 80 ps = 465 ps − 240 ps = 225 ps

For correct data capture, the input data must be valid for 225 ps. Slower edges, more jitter, or more skew require an increase in the clock period to maintain the minimum data valid period. Table 27 shows the typical minimum data valid period (tMDE) for 400 mV p-p differential and 250 mV p-p differential LVDS swings.

The ability of the AD973x to capture incoming data is dependent on the speed of the silicon, which varies from lot to lot. The typical (or average) silicon speed operates with data that is valid for 225 ps at 85°C. Statistically, the worst extreme for slow silicon may require up to a 344 ps valid data period, as specified in Table 2.

Table 27. Typical Minimum Data Valid Times Differential Input Voltage

BIST Max fCLK

Min Clock Period

Typ Min Data Valid at Receiver

400 mV 2.15 GHz 465 ps 225 ps 250 mV 2.00 GHz 500 ps 260 ps

At 1.2 GHz, the typical 400 mV p-p minimum data valid period of 225 ps leaves 608 ps for external factors. Under the same conditions, the worst expected minimum data valid period of 344 ps leaves 489 ps for external data uncertainty.

The 100 mV LVDS VOD threshold test is a dc test to verify that the input logic state changes. It does not indicate the operating speed. The ability of the receiver to recover the data depends on the input signal overdrive. With a 250 mV input, there is a 150 mV overdrive, and with a 400 mV signal, there is a 300 mV overdrive. The relationship between overdrive level and timing is very nonlinear. Higher levels of overdrive result in smaller minimum valid data windows.

For typical silicon, decreasing the LVDS swing from 400 mV p-p to 250 mV p-p requires the minimum data valid period to increase by 15%. This is illustrated in Figure 100.

225ps

400mV

260ps

250mV

0486

2-09

8

Figure 100. Typical Minimum Valid Data Time (tMDE) vs. LVDS Swing

The minimum valid data window changes with temperature, voltage, and process. The maximum value presented in the specification table was determined from a 6σ distribution in the worst-case conditions.

Page 55: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 55 of 72

SYNCHRONIZATION TIMING When more than one AD973x must be synchronized or when a constant group delay must be maintained, the internal controllers cannot be used. If the FIFO is enabled, the delay between multiple AD973x devices is unknown. If the DATACLK_OUT from multiple devices is used, there is an uncertainty of two DACCLK periods because the initial phase of DATACLK_OUT with respect to DACCLK cannot be controlled. This means one DAC must be used to provide DATACLK_OUT for all synchronized DACs and all timing must be externally managed. The following timing information allows system timing to be calculated so that multiple AD973xs can be synchronized.

DATACLK_OUT changes relative to the rising edge of DACCLK+ and is delayed, as shown in Figure 101. Because DACCLK is divided by 2 to create DATACLK_OUT, the phase of DATACLK_OUT can be 0° or 180°. There is no way to predict or control this relationship. It can be different after each power cycle and is not affected by hardware or software resets.

tDDCO

DACCLK

DATACLK_OUT

0486

2-09

9

Figure 101. DACCLK to DATACLK_OUT Delay

The incoming data is de-interleaved internally as shown in Figure 78. In Figure 78, DBU (upper) and DBL (lower) represent the de-interleaved data paths. Each edge of DATACLK_IN latches an incoming sample in two alternating registers. The DATACLK_IN to data setup and hold definitions are illustrated in Figure 102. All the data input must be valid during the setup-and-hold period. External skew effectively increases the setup and hold times that the data source must meet.

0486

2-10

0

DATACLK_INOR DATACLK_OUT

DATA_IN

tDH

tDSU

Figure 102. Standard Definitions for DATACLK_IN or DATACLK_OUT to

Data Setup and Hold, SD = 0

While correct DATA_IN vs. DATACLK_IN timing is critical, the transition of the incoming data to the DACCLK domain is equally critical. By referencing the incoming DATA and DATACLK_IN timing to the DATACLK_OUT signal, some timing uncertainty can be removed. The DATACLK_OUT timing very closely tracks the timing of the DACCLK-controlled registers. Any variation in the path delay affects both paths in almost the same way. If DATACLK_OUT is not used, the full DACCLK to DATACLK_OUT path variation reduces the external timing margin. Figure 101 shows a simplified view of the internal clocking scheme with the relevant delay paths.

The internal architecture is interleaved such that each phase has twice as long to make the transition across the clock domains. This results in an extremely narrow window where the incoming data must be held stable.

Table 28 shows the timing parameters for Figure 101 and Figure 102. These parameters were measured for a sample of five devices from five silicon lots. Worst-case fast and slow skew lots were included in addition to the nominal (or average) lot. The typical −40°C to typical +85°C spread illustrates the variability with temperature for a single lot. Adding in lot-to-lot variation with the fast and slow lots indicates the worst-case spread in timing.

The timing varies such that all of the parameters move in the same direction. For example, if the DATACLK_IN to data setup time is fast, the hold time is similarly fast. The DACCLK to DATACLK_OUT delay and the DATACLK_OUT to data setup and hold is also at the fast end of the range.

Note that the polarities of setup-and-hold values in Table 28 conform to the standard convention of setup time occurring prior to the latching edge and hold time occurring after the latching edge, as shown in Figure 102.

Table 28. AD973x Clock and Data Timing Parameters Symbol and Definition Fast −40°C Typ −40°C All +25°C Typ +85°C Slow +85°C Unit tDDCO − DACCLK to DATACLK_OUT Delay +1650 +1800 +1890 +2050 +2350 ps tDCISU − DATACLK_IN to DATA Setup −100 −120 −150 −170 −220 ps tDCIH − DATACLK_IN to DATA Hold +210 +220 +240 +280 +360 ps tDISU − DATACLK_OUT to DATA Setup +1310 +1440 +1611 +1710 +1970 ps tDIH − DATACLK_OUT to DATA Hold −1250 −1360 −1548 −1640 −1890 ps

Page 56: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 56 of 72

POWER SUPPLY SEQUENCING The 1.8 V supplies should be enabled prior to enabling the 3.3 V supplies. Do not enable the 3.3 V supplies when the 1.8 V supplies are off.

0486

2-10

1

LVDSRX

DATACLK_IN

DATACLK_IN DOMAIN DACCLK DOMAIN

DB<13:0>

PATH A

PATH B

DATACLK_OUT

D1A

DAC_DATADAC_OUTPUT

D1

D2 D2A

SD<3:0>SAMPLE DELAY

DACCLK

FF

FF

÷ 2 CLKRX

FF

FF

SD<3:0>SAMPLE DELAY

DATA SAMPLINGSIGNAL DAC SAMPLING

SIGNAL

COMMON SYSTEM CLOCKDELAYS THROUGH PATH A AND B WILL TRACK,THUS REDUCING TIMING UNCERTAINTY IN THE SYSTEM

LVDSRX

LVDSTX

DACCORE

Figure 103. Simplified Internal Clock Routing

Page 57: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 57 of 72

AD973X EVALUATION BOARD SCHEMATICS

L1, L3, L4, L5, L6, AND L7FERRITE BEAD CORE:PANASONIC EXC–CL3225U1DIGIKEY PN: P9811CT–ND

VSSTP5BLK

33DIG

VSS

TB1 1

TB1 2

L6 FERRITETP4RED

VDD33LC1210

C1410µF6.3V

ACASE+

VSSATP3BLK

33ANA

VSSA

TB2 1

TB2 2

L1 FERRITETP1RED

VDDA33LC1210

C110µF6.3V

ACASE+

VSSATP11BLK

18ANA

VSSA

TB2 3

TB2 4

L3 FERRITETP9RED

VDDCLC1210

C1010µF6.3VL4 FERRITE

LC1210

ACASE+

VSS

TP13BLK

TP6RED

TP14BLK

VDD18A

VDD18B

VSS

TP7RED

C2210µF6.3V

L7 FERRITE

LC1210

L5 FERRITE

LC1210

18DIGTB1 3

VSSTB1 4

ACASE+

C1810µF6.3V

ACASE+

POWER INPUT FILTERS

VSSAVSS

UNDER DUT

JP1

0486

2–10

2

Figure 104. Power Supply Input for AD973x Evaluation Board, Rev. F

Page 58: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 58 of 72

0486

2-10

3

IN1

IN2

IN3

IN4

IP1

A8

B8

C8

D8

A9

C19

4.7µ

F6.

3V

VSSA

VDD

18B

VSS

C23

4.7µ

F6.

3VC

240.

1µF

C25

1nF

H1

VDD

1VD

D2

VDD

3

VDD

5VD

D4

VDD

6VD

D7

VDD

8VS

S1VS

S2VS

S3VS

S4VS

S5VS

S6VS

S7VS

S8VS

S9VS

S10

VSS2

1N

CK

1VS

S22

VDD

16VD

D15

VDD

14

VDD

12VD

D13

VDD

11VD

D10

VDD

9VS

S20

VSS1

9VS

S18

VSS1

7VS

S16

VSS1

5VS

S14

VSS1

3VS

S12

VSS1

1LV

DS1

3NLV

DS1

3PLV

DS1

2NLV

DS1

2PLV

DS1

1NLV

DS1

1PLV

DS1

0NLV

DS1

0PLV

DS9

NLV

DS9

PLV

DS8

NLV

DS8

PLV

DS7

NLV

DS7

PLV

DS6

NLV

DS6

P

VDD

338

VDD

337

VDD

336

VDD

335

SPI_

MO

DE

LVD

S0N

LVD

S0P

LVD

S1N

LVD

S1P

LVD

S2N

LVD

S2P

LVD

S3N

LVD

S3P

LVD

S4N

LVD

S4P

LVD

S5N

LVD

S5P

LVD

SCLK

OU

TNLV

DSC

LKO

UTP

LVD

SCLK

INN

LVD

SCLK

INP

VDD

331

VDD

332

VDD

333

VDD

334

BO

TTO

M

H2

H3

H4

J1 J2 J3 J4 K3

K4

L3 L4 L5 L6 M3

M4

M5

M6

K2

K1

L2 L1 M2

M1

N1

P1 N2

N3

P2 P3 N4

P4 N5

P5 N6

P6 L7 M7

N7

P7

H14

H13

H12

H11

J14

J13

J12

J11

K11

K12

L9 L10

L11

L12

M9

M10

M11

M12

K13

K14

L13

L14

M13

M14

N14

P14

N13

N12

P13

P12

N11

P11

N10

P10

N9

P9 L8 M8

N8

P8

VSSC34

DN

P

C20

0.1µ

FC

211n

F

VDD

18A

C7

DN

P

VSS

VDD

33JP

15

JP8

A 23

B

C6

DN

P

IRQ

IPTA

TSP

AR

E

C9

1nF

R16

10kΩ

TP2

WH

T

TP12

WH

T

WH

TTP

8W

HT

TP10

TP16

WH

T

JP4 IRQ

RES

ET_A

RES

ET

SPC

SBSP

SDI

JP3

4 3

SW1

VDD

33

VSS;

5

VSS

SPC

LKSP

SDO

VREF

I120

VDD

33

C15

4.7µ

F6.

3V

C16

0.1µ

FC

171n

F

CC

060

A10

A11

B9

B10

B11

C9

C10

C11

D9

D10

D11

A12

A13

B12

B13

C12

C13

D12

D13

A14

IP2

IP3

IP4

TOP

33DDV

A5

A4

VSSA

331

VSSA

332

VSSA

333

VSSA

334

VSSA

335

VSSA

336

VSSA

337

VSSA

338

VSSA

339

VSSA

3310

VSSA

3311

VSSA

3312

VDD

C1

VDD

C2

VDD

C3

VDD

C4

VDD

C5

VDD

C6

VDD

C7

VDD

C8

VDD

C9

VDD

C11

VDD

C10

VSSC

1C

LKN

CLK

PVS

SC2

VSSC

3VS

SC4

VSSC

5VS

SC6

VSSC

7VS

SC8

VSSC

9VS

SC10

VSSC

11

VDD

A33

1VD

DA

332

VDD

A33

3VD

DA

334

VDD

A33

5VD

DA

336

VDD

A33

7VD

DA

338

SPA

RE

I120

VREF

IPTA

TSI

GN

ED_I

RQ

PD_R

ESET

2X_C

SBFI

FO_S

DIO

FSC

0_SC

LKFS

C1_

SDO

SHIE

LD1

SHIE

LD2

SHIE

LD3

SHIE

LD4

SHIE

LD5

SHIE

LD6

HYD

RO

GEN

U1

U1

HYD

RO

GEN

VSSA

R5

10kΩ

RC1206

VSSA

3314

VSSA

3313

VSSA

3315

VSSA

3316

VSSA

3317

VSSA

3318

VSSA

3319

VSSA

3320

VSSA

3321

VSSA

3322

VSSA

3323

VSSA

3324

B4

D6

D5

D4

C6

C5

C4

D1 E1 F1 E2 E3 E4 F2 F3 F4 G1

G2

G3

G4

D3

C2

C1

B2

B1

A3

A2

D2

D14

E13

E14

F13

F14

G13

G14

E11

E12

F11

F12

G11

G12

C14

B14

A6

B5

A1

C5

CC

063

DN

P

C3

B6

B3

SS V

12

DB

0N

C8

DN

P

DB

0PD

B1N

DB

1PD

B2N

DB

2PD

B3N

DB

3PD

B4N

DB

4PD

B5N

DB

5PD

B6N

DB

6PD

B7N

DB

7PD

CLK

NIN

DC

LKPI

N

IN IP

AD

9736

AD

9736

A7

B7

C7

D7

CLK

NC

LKP

VDD

C

C11

6.3V

VSSA

4.7µ

FC

120.

1µF

C13

1nF

AC

AS

EC

C06

03C

C06

03

CC

0603

CC

0603

CC

0603

CC

0603

CC

0603

CC

0603

CC

0603

VSSA

VSSA

DB

13N

DB

13P

DB

12N

DB

12P

DB

11N

DB

11P

DB

10N

DB

10P

DB

9ND

B9P

DB

8ND

B8P

DC

LKN

OU

TD

CLK

POU

T

R1

0.1%

10kΩ

CC

0603

RC

0603

CC

0603

CC

0603

CC

0603

CC

0603

A 211

3B

AC

AS

E

AC

AS

E

AC

AS

E

AC

AS

E

NO

TE: A

D97

36 M

SB–L

SB B

IT O

RD

ER IS

REV

ERSE

DFR

OM

TH

E C

ON

NEC

TOR

BIT

OR

DER

.

C4

1nF

C3

0.1µ

FC

24.

7µF

6.3V

VDD

A33

Figure 105. Circuitry Local to AD973x, Evaluation Board, Rev. F

Page 59: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 59 of 72

DB

13N

DB

12N

DB

13P

DB

12P

VSS

DB

11P

DB

10P

DB

8P

DB

7P

DB

7ND

B6N

DB

0ND

B1N

DB

2ND

B3N

DB

4ND

B5N

DB

0PD

B1P

DB

2PD

B3P

DB

4PD

B5P

G2S2

G3G4S3S4G5G6S5S6G7G8S7S8G9G10S9S10

G11G12S11S12G13G14S13S14G15G16S15S16G17G18S17S18G19G20S19S20G21G22S21S22G23G24S23S24G25G26S25S26G27G28S27S28G29G30S29S30G31G32S31S32G33G34S33S34G35G36S35S36G37G38S37S38G39G40S39S40G41G42S41S42G43G44S43S44G45G46S45S46G47G48S47S48G49G50

G1S1

J3

DC

LKN

IND

CLK

NO

UT

DB

8ND

B9N

DB

10N

DB

11N

DB

6P

DC

LKPI

ND

CLK

POU

T

DB

9P

TEST

OU

TN

EXTC

LK

TEST

OU

TP

NO

TE: A

D97

36 M

SB-L

SB B

IT O

RD

ER IS

REV

ERSE

DFR

OM

TH

E C

ON

NEC

TOR

BIT

OR

DER

.

CO

NN

ECTO

R

DB

13

DB

0

AD

9736

DB

0

DB

13

TP15

WH

T

JACK

JACK

FCN–268 F024–G/0 D

0486

2–10

4

Figure 106. High Speed Digital I/O Connector, AD973x Evaluation Board, Rev. F

Page 60: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 60 of 72

SP

SP

VSSA

653

42 1

1

43

6

J2R4

300Ω

3 154

415m

V C

OM

MO

NM

OD

E VO

LTA

GE

400m

V p–

p

NO

TE:

T1, T

3, A

ND

T3B

AR

E IN

STA

LLED

,R

6 A

ND

R8

= 50

Ω,

R7

= D

NP

R17

AN

D R

19 =

20Ω

,R

161

AN

D R

162

= 0Ω

,

JUM

PER

AD

DED

FR

OM

T1

PIN

3 T

OT1

PIN

2 O

N T

HE

REV

. C E

VAL

BO

AR

D.

J1 VSSA

;3,4

,5SM

A20

0UP VS

SA

T3A

T3B

T3

AD

TL1–

12XX

ETC

1–1–

13 SP

NC

=2

ETC

1–1–

13ET

C1–

1–13

T2A

DT2

–1T–

1P 4 513

PS

NC

=2

C35

C36

0.1µ

F

0.1µ

F

CC0603 CC0603

CC

0603

CC

0603

CC

0603

CC

0603

CC

0603

R20

R21 R

3

1kΩ

R6

50Ω

C26

DN

P

C27

DN

PC

38

1nF

C29

1nF

C28

0.1µ

F

CLK

P

CLK

N

VDD

C

VSSA

25Ω

25Ω

RC

0603

RC

0603

RC0603

RC0603

RC

0603

RC

0603

RC0603R

C06

03

RC

0603

R7

DN

P

R17

20Ω

R16

10Ω R

162

R18

DN

PR

1920

Ω

RC0603

R8

50Ω

RC0603

RC0603

AN

LVD

S SI

GN

AL

MA

Y B

E U

SED

TO D

RIV

E C

35 A

ND

C36

IF R

20 A

ND

R21

AR

E IN

CR

EASE

D T

O 5

0Ω E

AC

H.

R17

AN

D R

19 C

AN

BE

REM

OVE

D A

ND

T1

REP

LAC

ED W

ITH

A 1

:1 T

RA

NSF

OR

MER

FO

RH

IGH

ER O

UTP

UT

AM

PLIT

UD

E IF

MO

RE

H2

IS A

CC

EPTA

BLE

(TYP

ICA

LLY

AT

LOW

ER F

OU

T).

R17

AN

D R

19 P

RES

ENT

AM

OR

E R

EAL

LOA

D T

O T

HE

DA

C W

HIC

H IM

PRO

VES

H2

PER

FOR

MA

NC

E.

T2 A

ND

T4B

AR

E N

OT

POPU

LATE

D

T1:M

INI-C

IRC

UIT

S–3

dB: 8

-600

MH

z–1

dB: 1

3-30

0MH

z

THIS

CO

NFI

GU

RA

TIO

N P

RO

VID

ES O

PTIM

UM

AC

PER

FOR

MA

NC

E FO

R IF

SIG

NA

L G

ENER

ATI

ON

.TY

PIC

AL

SIG

NA

L LE

VELS

SH

OW

N F

OR

50Ω

LO

AD

.

VSSA

VSSA

VSSA

VSSA

IN IP

T3:M

/A-C

OM

–1dB

: 4.5

-100

0MH

z

SP

653

42 1

T4B

T1A

DT2

–1T–

1P 4 5

3 1P

SN

C=2

VSSA

;3,4

,5SM

A20

0UP

0486

2–10

5

T3A

IS N

OT

POPU

LATE

D

Figure 107. Clock Input and Analog Output, AD973x Evaluation Board, Rev. F

Page 61: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 61 of 72

IRQ

RES

ET_A

2RC0603

RC0603

2

B3

1

2

L9

61 2 4 53

P1

VSS

L8

RC

0805

9kΩ

R11

RC

0805

9kΩ

R10

RC

0805

9kΩ

R12

33DDV

VSS

VSS

VSS

VSS

VSS

VSS

USE

TH

ESE

JUM

PER

S TO

SET

PIN

_MO

DE

CO

NTR

OL

SIG

NA

LS O

R C

ON

NEC

T SP

I PO

RT

SIG

NA

LS IN

SPI

_MO

DE.

VDD

33

VDD

33

VDD

33

VDD

33

VDD

33

VDD

33

SPC

SB

SPC

LK

SPSD

I

SPSD

O

JP13

JP6

JP7

JP2

JP5

JP14

JP9

JP10

JP12

JP11

A

B3

1

2A

B3

1

2A

B3

1

2A

B3

1

2A

B3

1

2A

R13

10kΩ

R14

10kΩ

LC12

10

LC12

10FER

RIT

E

FER

RIT

E

FER

RIT

E B

EAD

CO

RE:

PAN

ASO

NIC

EXC

-CL3

225U

1D

IGIK

EY P

N: P

9811

CT-

ND

74A

C14

12

U5

VSS;

7VD

D33

;14

74A

C14

34

U5

VSS;

7VD

D33

;14

74A

C14

56

U5

VSS;

7VD

D33

;14

74A

C14

43

U6

VSS;

7VD

D33

;14

74A

C14

65

U6

VSS;

7VD

D33

;14

74A

C14

1213

U6

VSS;

7VD

D33

;14

74A

C14

21

U6

VSS;

7VD

D33

;14

74A

C14

1312

U5

VSS;

7VD

D33

;14

74A

C14

1110

U5

VSS;

7VD

D33

;14

74A

C14

98

U5

VSS;

7VD

D33

;14

VSS

74A

C14

1011

U6

VSS;

7VD

D33

;14

74A

C14

89

U6

VSS;

7VD

D33

;14

AC

ASE

CC

0805

+C

304.

7µF

6.3V

C31

0.1µ

FA

CA

SEC

C08

05+

C32

4.7µ

F6.

3V

C33

0.1µ

F

SPI P

OR

T

0486

2–10

6

Figure 108. SPI Port Interface, AD973x Evaluation Board, Rev. F

Page 62: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 62 of 72

AD973X EVALUATION BOARD PCB LAYOUT

0486

2-10

7

SIL

KS

CR

EE

N E

RR

OR

:S

PI A

ND

PIN

AR

E R

EV

ER

SE

D.

NO

TE:

THE

AD

9736

ISS

OLD

ER

ED

DIR

EC

TLY

TO T

HE

PC

B. T

HE

SO

CK

ET

IS N

OT

INS

TALL

ED

.

Figure 109. CB Layout Top Placement, AD973x Evaluation Board, Rev. F

Page 63: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 63 of 72

0486

0-10

8

Figure 110. PCB Layout Layer 1, AD973x Evaluation Board, Rev. F

Page 64: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 64 of 72

0486

1-10

9

Figure 111. PCB Layout Layer 2, AD973x Evaluation Board, Rev. F

Page 65: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 65 of 72

0486

2-11

0

Figure 112. PCB Layout Layer 3, AD973x Evaluation Board, Rev. F

Page 66: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 66 of 72

0148

62-1

11

Figure 113. PCB Layout Layer 4, AD973x Evaluation Board, Rev. F

Page 67: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 67 of 72

0486

2-11

2

Figure 114. PCB Layout Bottom Placement, AD973x Evaluation Board, Rev. F

Page 68: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 68 of 72

0486

2-11

3

NO

TES

1. M

ATE

RIA

L: F

OU

R L

AYE

R, F

R4

GLA

SS–E

POXY

LA

MIN

ATE

.062

+/-

.007

TH

ICK

1/4

OZ.

CO

PPER

CLA

D–

EXTE

RN

AL

LAYE

RS

PLA

TED

TO

1 O

UN

CE

2 O

Z. C

OPP

ER C

LAD

– IN

TER

NA

L LA

YER

S2.

PLA

TED

TH

RU

HO

LES

AN

D T

HE

CO

ND

UC

TIVE

PA

TTER

NEL

ECTR

OPL

ATE

D W

ITH

.001

INC

H M

IN. T

HIC

K C

OPP

ER.

TER

MIN

AL

AR

EAS

AN

D E

XPO

SED

PLA

TED

TH

RU

HO

LES

TO B

EC

OA

TED

WIT

H S

OLD

ER A

ND

HO

T A

IR L

EVEL

ED.

3. P

RO

CES

SIN

G T

OLE

RA

NC

ES:

A. C

ON

DU

CTI

VE P

ATT

ERN

FR

ON

TO

BA

CK

REG

ISTR

ATI

ON

+/–

.002

INC

H T

OTA

LB

. MIN

IMU

M A

NN

ULA

R R

ING

SU

RR

OU

ND

ING

HO

LES

.002

INC

H.

C. F

INIS

HED

CO

ND

UC

TIVE

PA

TTER

N +

/– .0

005

INC

HO

F A

PER

TUR

E SI

ZE.

4. W

AR

P A

ND

TW

IST

+/–

.005

INC

H P

ER IN

CH

.5.

DIM

ENTI

ON

S: A

RE

FOR

TH

E FI

NIS

HED

PA

RT

6. S

OLD

ER M

ASK

: LIQ

UID

PH

OTO

IMA

GA

BLE

SO

LDER

MA

SK C

OLO

R G

REE

N, B

OTH

SID

ES U

SIN

G T

HE

PATT

ERN

(S) P

RO

VID

ED. N

O M

ASK

IS P

ERM

ITTE

D O

N T

HE

EXPO

SED

AR

EAS.

SO

LDER

MA

SK T

O E

TCH

REG

ISTR

ATI

ON

+/–

.002

INC

H T

OTA

L7.

SC

REE

NIN

G: S

CR

EEN

CO

MPO

NEN

T O

UTL

INES

AN

DN

OM

ENC

LATU

RE

USI

NG

OPA

QU

E W

HIT

E IN

K O

N T

HE

PRIM

AR

Y A

ND

SEC

ON

DA

RY

SID

ES (A

S R

EQU

IRED

).N

OM

ENC

LATU

RE

SHA

LL B

E LE

GIB

LE. S

CR

EEN

TO

ETC

HR

EGIS

TRA

TIO

N +

/– .0

05 IN

CH

TO

TAL.

8. S

UR

FAC

ES: P

UN

CH

ED O

R M

AC

HIN

ED S

UR

FAC

ES 1

25 M

ICR

OIN

CH

ES R

MS

MA

X.9.

BR

EAK

ALL

SH

AR

P ED

GES

.015

R M

AX.

10. F

AB

RIC

ATI

ON

VEN

DO

R T

O A

DD

UL

VEN

DO

R ID

NU

MB

ERIN

TH

IS A

REA

ON

TH

E SE

CO

ND

AR

Y SI

DE

11. D

O N

OT

DR

ILL.

FO

R G

OLD

PLA

TED

SO

CK

ETED

VER

SIO

N O

NLY

.

Figure 115. PCB Fabrication Detail, AD973x Evaluation Board, Rev. F

Page 69: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 69 of 72

OUTLINE DIMENSIONS 12.1012.00 SQ11.90

SEATINGPLANE

0.43 MAX0.25 MIN

DETAIL A

0.550.500.45

0.12 MAXCOPLANARITY

1.00 MAX0.85 MIN

BALL DIAMETER

0.80 BSC0.80REF

10.40BSC SQ

ABCDEFGHJKLMNP

1413

1211

10 87

63

219 5

4

A1 CORNERINDEX AREA

TOP VIEW

BALL A1INDICATOR

DETAIL A

BOTTOMVIEW

1.40 MAX

COMPLIANT TO JEDEC STANDARDS MO-205-AE. Figure 116. 160-Lead Chip Scale Package Ball Grid Array [CSP_BGA]

(BC-160-1) Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option AD9734BBCRL −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9734BBCZ −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9734BBCZRL −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9735BBCZ −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9735BBCZRL −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9736BBC −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9736BBCRL −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9736BBCZ −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9736BBCZRL −40°C to +85°C 160-Lead Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-1 AD9734-DPG2-EBZ Evaluation Board AD9735-DPG2-EBZ Evaluation Board AD9736-DPG2-EBZ Evaluation Board

1 Z = RoHS Compliant Part.

Page 70: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 70 of 72

NOTES

Page 71: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

Data Sheet AD9734/AD9735/AD9736

Rev. B | Page 71 of 72

NOTES

Page 72: 10-/12-/14-Bit, 1200 MSPS DACS Data Sheet …...10-/12-/14-Bit, 1200 MSPS DACS Data Sheet AD9734/AD9735/AD9736 Rev. B Document Feedback Information furnished by Analog Devices is believed

AD9734/AD9735/AD9736 Data Sheet

Rev. B | Page 72 of 72

NOTES

©2005–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04862-0-6/17(B)