1 title: dysregulation of rna editing may help explain ...1 1 title: dysregulation of rna editing...

26
1  Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 1 congenital Zika syndrome and Guillain-Barre syndrome 2 3 Helen Piontkivska 1, 2, * , Noel-Marie Plonski 2 , Michael M. Miyamoto 3 , and Marta L. 4 Wayne 3, 4 5 6 1 Department of Biological Sciences and 2 School of Biomedical Sciences, Kent State University, 7 Kent, OH 44242, USA 8 3 Department of Biology, University of Florida, Gainesville, FL 32611, USA 9 4 Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA 10 11 * Corresponding Author 12 Helen Piontkivska 13 Department of Biological Sciences 14 Kent State University 15 Kent, OH 44242, USA 16 Telephone: (330) 672-3620 17 Fax: (330) 672-3713 18 E-mail: [email protected] 19 20 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Upload: others

Post on 29-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

1  

Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 1 

congenital Zika syndrome and Guillain-Barre syndrome 2 

Helen Piontkivska 1, 2, *, Noel-Marie Plonski 2, Michael M. Miyamoto 3, and Marta L. 4 

Wayne 3, 4 5 

1 Department of Biological Sciences and 2 School of Biomedical Sciences, Kent State University, 7 

Kent, OH 44242, USA 8 

3 Department of Biology, University of Florida, Gainesville, FL 32611, USA 9 

4 Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA 10 

11 

* Corresponding Author 12 

Helen Piontkivska 13 

Department of Biological Sciences 14 

Kent State University 15 

Kent, OH 44242, USA 16 

Telephone: (330) 672-3620 17 

Fax: (330) 672-3713 18 

E-mail: [email protected] 19 

20 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 2: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

2  

Abbreviations: 21 

ADAR, Adenosine Deaminases Acting on RNA 22 

AGS6, Aicardi-Goutieres syndrome 6 23 

ALS, amyotrophic lateral sclerosis 24 

CDC, Centers for Disease Control and Prevention 25 

CDI, inhibitory Ca2+-feedback 26 

CMV, cytomegalovirus 27 

CZS, Congenital Zika syndrome 28 

GBS, Guillain-Barre syndrome 29 

IFN, interferon 30 

ISGs, interferon-stimulated genes 31 

ISREs, interferon-sensitive response elements 32 

WNV, West Nile virus 33 

Zika virus (ZIKV) 34 

35 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 3: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

3  

Abstract: 36 

Many Zika virus (ZIKV) pathogenesis-related studies have focused primarily on virus-driven 37 

pathology and neurotoxicity, instead of considering the possibility of pathogenesis as an 38 

(unintended) consequence of host innate immunity: specifically, as the side-effect of an 39 

otherwise well-functioning machine. The hypothesis presented here suggests a new way of 40 

thinking about the role of host immune mechanisms in disease pathogenesis, focusing on 41 

dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of 42 

observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants 43 

and adults linked with ZIKV infections. We collect and synthesize existing evidence of ZIKV-44 

mediated changes in expression of adenosine deaminases that act on RNA (ADARs), known 45 

links between abnormal RNA editing and pathogenesis, as well as ideas for potential 46 

translational applications, including genomic profile-based molecular diagnostic tools and/or 47 

treatment strategies. 48 

49 

50 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 4: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

4  

Introduction: ZIKV as a causative agent for an emergent public health crisis 51 

Following discovery of a link between Zika Virus (ZIKV, a flavivirus) infection in pregnancy 52 

and microcephaly in infants in 2015 [1], this public health crisis continues to present a significant 53 

hazard to human health. The Global Disease Burden study estimated that ~7·60 million ZIKV 54 

infections occurred in 2016, most of which were in Latin America and the Caribbean [2]. While 55 

the vast majority of these cases were asymptomatic infections, with only a small portion 56 

resulting in Zika-attributable Guillain-Barré syndrome (GBS) and congenital Zika syndrome 57 

(CZS) births, infants born with the CZS will face life-long profound disability [3] and their 58 

families face extreme economic burdens as well. Already over 6900 pregnancies with ZIKV 59 

infected mothers have been recorded in the US and the US territories as of July 17, 2018 (CDC), 60 

from which over 300 infants were born with CZS. Nor are adults immune: known consequences 61 

of ZIKV infection in adults include GBS [4, 5], a debilitating peripheral neuropathy that is 62 

potentially life-threatening and costly to treat [6]. However, there is currently no available vaccine 63 

for ZIKV, nor antiviral treatments. The efficacy of prevention strategies, such as protecting 64 

oneself from mosquito bites or sexual abstinence during confirmed infection, is compromised by 65 

the frequently asymptomatic nature of ZIKV infection [7] as well as the wiliness of mosquitoes. 66 

In the absence of effective prevention, insights into the mechanisms behind ZIKV-associated 67 

pathogenesis are critical to the development of treatments that can ameliorate potential ZIKV 68 

sequelae. 69 

70 

What is congenital Zika syndrome (CZS)? 71 

The link between ZIKV infection in pregnancy and congenital Zika syndrome (CZS) is a 72 

particularly pressing concern, in part because we do not yet fully understand the extent of 73 

neurodevelopmental defects – particularly those not obvious at birth - associated with it [8]. CZS 74 

includes a broad range of neurodevelopmental defects beyond microcephaly [9, 10], including 75 

ocular [11] and auditory defects [12]. The overall risk of ZIKV-linked birth defects has been 76 

estimated at up to ~15% for infections in the 1st trimester [13], potentially impacting thousands of 77 

infants in the US and US territories alone. However, the risk extends into infections that occur 78 

later in pregnancy [14], and central nervous system defects may be present without microcephaly 79 

[15, 16]. A recent CDC report showed an increase in prevalence of birth defects potentially 80 

consistent with CZS in US areas with documented local ZIKV transmission [8]. Flash flooding 81 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 5: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

5  

accompanying major hurricanes (such as those associated with 2017 hurricanes Harvey, Irma 82 

and Maria in TX, FL and PR, respectively) and the diverse set of ZIKV transmission routes, 83 

including non-vector-borne transmission via sexual contact and bodily fluids, such as sweat, 84 

saliva or tears [17], likely expand the portion of ZIKV-exposed US population, similar to the 85 

observed expansion of West Nile virus (WNV) infections following hurricane Katrina in 2005 86 

[18]. 87 

88 

ZIKV-mediated pathogenesis? 89 

Despite major efforts focused on ZIKV research over the last three years, our understanding of 90 

ZIKV-mediated pathogenesis remains limited, in part because the symptoms and sequelae of 91 

ZIKV infection span from asymptomatic to major birth defects in infants, as well as severe 92 

adverse outcomes in some adults. Below we highlight a broad variety of clinical symptoms and 93 

outcomes associated with ZIKV infection, with the explicit purpose of identifying connectedness 94 

of ZIKV sequelae across different life stages. For in-depth comprehensive surveys focused on 95 

fetal or adult outcomes, we refer the reader to the following studies [9, 19, 20]. 96 

97 

What do we know so far? On the one hand, most ZIKV infections in adults are benign and self-98 

limiting [21], with as many as 80% having asymptomatic infections [7]. It is worth noting that 99 

these asymptomatic carriers are still capable of infecting others [19]. Moreover, the risk of 100 

neurodevelopmental fetal defects appears to be similar between symptomatic and asymptomatic 101 

pregnant women [19]. While relatively few pediatric-focused studies of ZIKV infections are 102 

available, the available evidence suggests that the majority of acute ZIKV infections in children 103 

are similarly mild in nature to adult ones [22], although recent reports have begun to associate 104 

ZIKV with other clinical issues, such as acute abdominal symptoms [23] or post-infection 105 

vasculitis resulting in pediatric stroke [24]. 106 

107 

During pregnancy, ZIKV poses a substantial risk of fetal neurodevelopmental defects, resulting 108 

in profound long-term disability and immense costs of future care, influencing individuals and 109 

communities [21, 25]. The full spectrum of CZS is still being elucidated, coupled with concerns 110 

that ZIKV-related outcomes are underreported, particularly when ZIKV infections result in later 111 

onset of developmental delays and learning disabilities without visible microcephaly [26], or 112 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 6: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

6  

includes other systemic abnormalities that manifest postnatally, such as dysphagia [27], seizures 113 

[28], and hearing loss [29]. For example, recent evidence suggests that ZIKV infection in 114 

pregnancy may have been linked with microcephaly and other neurodevelopmental defects in the 115 

US (Hawaii) as early as 2007, with several (likely travel-related) births in 2009 and 2011 being 116 

definitively linked to maternal ZIKV-positive antibodies [30]. In part due to lack of long term, 117 

longitudinal studies, the long-term consequences of an in utero ZIKV infection are poorly 118 

understood, particularly in infants lacking visible symptoms of CZS and/or from asymptomatic 119 

infections; however, there are reported cases of CZS being diagnosed post-birth because the 120 

infants showed neurodevelopmental delays and developed postnatal microcephaly [31, 32]. Recent 121 

abnormal imaging from normocephalic infants from ZIKV-positive pregnancies [33] and pregnant 122 

pigtail macaques [16] further underscores challenges associated with detection of ZIKV-mediated 123 

brain injury that may appear subtle, yet could have profound neurocognitive and psychiatric 124 

consequences later. 125 

126 

In addition to causing severe neurodevelopmental defects in prenatal infections, ZIKV infections 127 

have also been linked to severe neurotoxicity in some adults, including Guillain-Barre Syndrome 128 

(GBS) [4, 5, 34]. GBS is an acute paralytic neuropathy, an inflammatory disorder of the peripheral 129 

nervous system, and is one of the leading causes of acute flaccid paralysis worldwide [35, 36]. 130 

Despite recent progress in immunotherapy [37], GBS remains a life-threatening condition, often 131 

requiring complex and expensive care [38]. Up to 20% of GBS cases result in severe disability, or 132 

even death [36], while many other patients experience ongoing motor or sensory issues, fatigue 133 

and pain [39]. Compared to other morbidities, ZIKV-triggered GBS represents a very small 134 

fraction of the global disease burden [3]. Nonetheless, GBS is associated with substantial risks 135 

(including death) as well as financial costs for affected individuals [21]. Moreover, there are 136 

challenges with early GBS diagnosis, particular in atypical presentations and/or pediatric patients 137 

[38]. For example, cranial nerve enhancement - thought to be a part of GBS in pediatric patients 138 

[40] - was recently described from an imaging study of seemingly normal infant born after ZIKV-139 

positive pregnancy. However, not all infants from ZIKV-positive pregnancies receive the 140 

recommended postnatal imaging [13, 41]. Moreover, the molecular mechanisms behind GBS 141 

remain poorly understood [5, 42]. In addition to its association with GBS, the list of neurological 142 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 7: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

7  

and other consequences of ZIKV infection in adults and children – including 143 

meningoencephalitis, paresis, and vasculitis - keeps growing [11, 24, 43]. 144 

145 

In other words, ZIKV infection appears to be associated with a broad and disparate range of 146 

clinical and subclinical symptoms and outcomes. We would like to propose a novel hypothesis 147 

that can help explain the multitude of diverse ZIKV infection outcomes both pre- and post-148 

natally. While it requires experimental validation, this hypothesis is firmly grounded in evidence 149 

from multiple areas of study, and allows us to make connections between previously un-150 

connectable observations. It also enables us to generate new, testable hypotheses that may enable 151 

development of effective treatment and prevention strategies. 152 

153 

Hypothesis: Connecting the dots 154 

We now build the case that ZIKV-mediated pathogenicity – both fetal and adult - is due to 155 

dysregulation of the activity of the RNA-editing enzymes, ADARs (Adenosine Deaminases 156 

Acting on RNA), which in turn leads to inappropriate levels of post-transcriptional editing of 157 

key proteins involved in metabolism of calcium and other ions, and homeostasis in neural 158 

cells, thereby triggering a cascade of diverse neurological effects (Figure 1). We propose that 159 

viral-triggered dysregulation of ADAR editing results in a handful of amino acid changes in key 160 

neural proteins involved in ion transport and neurotransmitter metabolism. Either an excess or a 161 

paucity of developmentally-appropriate edits lead to changes in ion permeability and excitability, 162 

ultimately resulting in excitotoxicity and neuronal demise [44-46]. 163 

164 

What are ADARs? 165 

ADARs (adenosine deaminases that act on RNA) are RNA editing enzymes that deaminate 166 

adenosines (A) to produce inosines (I) within double-stranded RNAs [47]. These A-to-I changes 167 

are translated as A-to-G substitutions in mRNA transcripts, thereby modulating proteome 168 

diversity and expression by introducing nonsynonymous (amino acid changing) substitutions or 169 

splice site changes, and serving as a mechanism of dynamic and nuanced post-transcriptional 170 

regulation of gene expression [48]. There are three mammalian ADAR loci - ADAR, ADARB1 171 

and ADARB2 [49]. Only ADAR and ADARB1 have proven deaminase activity [50], while 172 

ADARB2 is thought to play a regulatory role through competition with other ADARs for 173 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 8: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

8  

substrate [51]. It should be noted that expression and editing activities of one family member can 174 

be influenced by expression and editing activities of the other ADARs [52, 53]. ADARs play a 175 

particularly prominent role in the nervous system as the majority of ADAR editing target genes 176 

are expressed in the nervous system, including brain [49]. 177 

178 

ADAR expression is elevated in ZIKV-infected cells that exhibit cytopathic effects 179 

This piece of evidence comes from a recent study that examined consequences of ZIKV infection 180 

in three cell lines of primary human neural stem cells originally derived from three individual 181 

fetal brains [54]. Two lines (K048 and K054) exhibited signs of reduced neuronal differentiation 182 

(which is consistent with other ZIKV infected brain studies, including in vivo), while such signs 183 

were not noticed in the third line, G010 [54]. Differential gene expression analysis showed global 184 

similarities in transcriptome changes in K048 and K054, which were not shared with G010, 185 

particularly among genes involved in innate immune pathways [54]. Their supplementary list of 186 

differentially expressed genes reported that ADAR gene expression increased significantly in 187 

K048 and K054 cells in response to ZIKV infection, while remained the same in G010 cells 188 

(with 1.63 and 1.1-fold change, with the false discovery rate P values < 0.05 in K048 and K054, 189 

but not in G010, respectively). In other words, only the cells with the observable cytopathic 190 

effects exhibited an increase in ADAR expression (of course, the relationship between 191 

expression and editing may not necessarily be linear [55]). While no significant change in 192 

expression of ADARB1 and ADARB2 was reported, it should be noted that changes in the 193 

ADAR gene expression can interfere with specific editing activity of the other ADARB1 enzyme 194 

[52, 56]. 195 

196 

Our re-analysis of the McGrath et al. (2017) transcriptome data [54] shows that ADAR editing 197 

activity per se, not merely expression of ADAR, appears to be higher in the cells with more 198 

prominent cytopathic effects. Using the SnpEff variant annotation tool implemented in GATK, 199 

we tallied nucleotide changes between mock and ZIKV-infected cells and found that ZIKV-200 

infected samples harbor significantly higher numbers of A-to-G-changes (i.e., changes that can 201 

be attributed to ADAR activity) in K048 cells compared to mock-infected cells (Mood’s median 202 

test, P = 0.014). However, no significant differences were observed in K054 cells, where 203 

cytopathic effects were not as prominent as in K048, and in G010 cells (P > 0.05). An alternative 204 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 9: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

9  

variant calling was performed using GATK Haplotype caller, and the distribution of missense A-205 

to-G variants was examined in K048 cells, which had the highest read depth. Of the genes with 206 

variants not shared between mock and ZIKV-infected cells (in other words, those less likely to 207 

be genetic polymorphisms), there was a significantly higher fraction of genes with variants in at 208 

least 2 samples in ZIKV-infected cells compared to mock-infected cells (10 versus 70 in mock 209 

cell, and 59 versus 127 in ZIKV-infected cells), including well-known editing target GRIA3. 210 

However, these preliminary analyses have significant limitations, one of which is the significant 211 

difference in sequencing depth between samples (K048 had twice as many reads as the other two 212 

cell lines) Thus, these preliminary findings offer only an initial glimpse into the potential effects 213 

of ADAR editing in ZIKV infection, and require further experimental confirmation, including 214 

careful validation of editing changes (if any) of specific key neural genes and/or whether 215 

potential differences of normal editing patterns among individuals may be contributing to 216 

pathogenesis mechanisms. Nonetheless, these preliminary findings are consistent with the 217 

proposed hypothesis about the role of dysregulated editing changes in ZIKV infections; although 218 

it remains to be determined whether these changes result from the redirection of ADAR p150 219 

editing activity away from the host editome to ZIKV, or through changes in normal host editing 220 

patterns because of increased ADAR p150 editing activity and/or interference between different 221 

ADARs. 222 

223 

Appropriate ADAR editing is required for proper neuronal development 224 

Severe CNS phenotypes are observed in ADAR knockouts and ADAR deficiency or loss of 225 

function studies (e.g., [57]), including embryonic lethality [58], epilepsy, motor neuron death [59], 226 

microcephaly and neural tube defects [60], as well as shortened life-span in worms [61]. Likewise, 227 

decreased ADARB1 editing activity plays a role in the pathogenesis of a common motor neuron 228 

disease, sporadic amyotrophic lateral sclerosis (ALS) [62], and various brain and neurological 229 

cancers [52, 63]. 230 

231 

Mutations and polymorphisms in ADAR loci, such as the ADARB2 locus polymorphisms, have 232 

been implicated in complex neurological phenotypes such as migraines [64], autism [65], and 233 

genetic epilepsy [66]. Likewise, mutations in the ADAR gene that affect efficacy of RNA binding 234 

and/or of A-to-I editing [67] have been associated with a rare human Mendelian disease, Aicardi-235 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 10: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

10  

Goutieres syndrome (AGS6) [68]. In its typical form, the damage caused by AGS resembles 236 

neurodevelopmental pathology due to in utero infection [69], and is associated with an increased 237 

level of interferon and upregulation of interferon-stimulated genes [70]. 238 

239 

ADAR editing is enriched in the nervous system [71]. One prominent example of ADAR editing 240 

in the brain is the Q/R site of the glutamate receptor subunit GRIA2 (also known as GluA2), 241 

where virtually complete (~100%) editing [72] of genomic glutamine codon 607 (Q607) to 242 

arginine (R) results in multiple changes of the receptor properties, including cellular permeability 243 

to calcium (Ca2+) [73]. Underediting of Q607R GRIA2 site (e.g., in the case of ADARB1 244 

deficiency) results in increased influx of calcium, and neuronal death [74]. GRIA2 has an 245 

additional ADAR editing site, R764G, which is edited mostly by ADAR, and results in different 246 

electrophysiological properties. Editing at R764G gradually increases during neural 247 

development, with the edited isoform fraction in adult brains ranging from 50% to 85% [75]. 248 

249 

Another well-documented ADAR editing event (via ADARB1) results in I-to-M, Q-to-R, and Y-250 

to-C amino acid changes in the mammalian calcium voltage-gated channel subunit alpha1 D 251 

channel CACNA1D (also known as CaV1.3) within the IQ domain, a calmodulin-binding site 252 

responsible for regulating sensitivity to inhibitory Ca2+-feedback (CDI) [76]. Edited CACNA1D 253 

proteins are expressed in both brain tissue and the surface membranes of primary neurons; 254 

neurons with edited CACNA1D proteins show decreased CDI, as part of likely selective fine-255 

tuning of Ca2+ feedback for low-voltage activated Ca2+ influx [76]. 256 

257 

GRIA2 and CACNA1D are not the only ADAR editing targets critical for neural function. 258 

Functionally relevant editing targets include other glutamate receptors, such as glutamate 259 

receptor subunit GRIA3 (also known as GluA3) [77], receptors for other neurotransmitters, 260 

including excitatory and inhibitory neurotransmitters, such as serotonin 2C receptor 5HT2CR [78] 261 

and the alpha3 subunit of gamma-aminobutyric acid (GABA) receptor (Gabra3) [79], respectively, 262 

as well as ion channels (e.g., voltage-dependent potassium channel KCNA1 [80]), and 263 

microRNAs [81]. Disruption of editing of these targets is known to lead to changes in excitability, 264 

kinetics and other crucial functions of these receptors and ion channels, ultimately resulting in 265 

neurodevelopmental defects, decreased proliferation and neuronal death [45]. In other words, 266 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 11: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

11  

seemingly minor amino acid changes in these proteins have the potential to significantly change 267 

electrophysiology, calcium permeability and metabolism, among other properties, in neural (and 268 

likely glial) cells, thus initiating a broad array of downstream neurophysiological changes such 269 

as those observed in CZS and GBS. Indeed, because of glutamate’s fundamental role as a major 270 

excitatory neurotransmitter in as many as 80 to 90% of brain neurons, most neurons and many 271 

glial cells have glutamate receptors in their membranes [82]. Glutamatergic signaling also plays a 272 

critical role in regulation of neural development, including neurotoxic effects of increased 273 

calcium permeability due to, for example, inappropriate editing of GRIA2 [83]. 274 

275 

These examples offer a potential common explanation to the breadth of the observed clinical 276 

symptoms and defects in both fetal and adult ZIKV infections, where variation in specific 277 

manifestations across developmental stage at the time of infection can be attributed to the 278 

nuanced spatio-temporal regulation of ADAR editing – and/or its infection-mediated 279 

dysregulation, particularly in neural cells [84]. 280 

281 

ADAR is part of the antiviral response 282 

Expression of ADARs, specifically, the ADAR1 p150 isoform, is regulated by interferon as part 283 

of cell-autonomous immunity [85], with ADAR editing playing a role in an anti-viral activity, as 284 

part of the innate immune response [86]. Recent experimental ZIKV studies have shown that the 285 

interferon (IFN) type I response plays a role in ZIKV infection, that is that in human ZIKV 286 

infections, expression of IFN cytokines increases, followed by increased expression of IFN-287 

regulated genes, including ADARs [54]. Because the interactions between ZIKV and IFN pathway 288 

activation are complex (e.g., may include mechanisms that suppress IFN signaling, such as 289 

through action of viral NS5 protein [87], or by targeting STAT1 [88] and STAT2 [89]), and may 290 

vary between ZIKV strains and/or specific variants of human genes or combination of the two 291 

phenomena, that may help explain why not all ZIKV-positive pregnancies – or even fetuses from 292 

the same pregnancy – show neurodevelopmental defects [90]. 293 

294 

Our recent work showed that ADAR editing plays a role in the molecular evolution of RNA 295 

viruses [91], including ZIKV [92]. These results indicate that ADAR editing is active during ZIKV 296 

infection. While it remains to be determined whether observed ADAR editing footprints were 297 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 12: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

12  

due to ADAR action in the mosquito or mammalian host (or both) [92], studies of the mammalian 298 

immune response support the hypothesis that ADAR (specifically, the IFN-induced ADARp150 299 

isoform) is activated in ZIKV infections. 300 

Dysregulation of ADAR editing could potentially contribute to ZIKV pathogenesis via decreased 301 

host editing (i.e., if ADAR editing activity is re-directed from the host editome to ZIKV) or via 302 

increased host editing due to elevated expression of ADAR p150. ADAR p150 might directly 303 

alter editing patterns, or do so indirectly if a stoichiometric change between ADAR p150 and 304 

other ADARs modifies editing patterns. As noted previously, in mice both ADAR and ADARB1 305 

knockouts can be fatal, e.g., due to underediting of key transcripts such as GRIA2 [58, 74, 93]. There 306 

is mounting evidence that off-target editing by ADAR is also deleterious in humans [94]. 307 

308 

Thus, one of the potential explanations for mechanisms of congenital Zika syndrome may be 309 

attributed to the disruption of editing and regulatory function of ADAR genes due to ZIKV-310 

mediated IFN pathway activation (Figure 1). Specifically, physiological consequences of ADAR 311 

editing dysregulation may be particularly critical for key synaptic signaling proteins, which in 312 

turn result in shifts in calcium metabolism and homeostasis in the developing brain. For example, 313 

changes in ADAR editing patterns can be linked to changes in (i) calcium permeability, and thus, 314 

channel conductivity of GRIA2 and GRIA3 [95], and (ii) changes in how multiple isoforms of 5-315 

HT2C – that have different binding affinities and functional potencies of agonists [96] – are 316 

distributed within the brain. Appropriate ADAR editing thus could influence synaptic 317 

transmission, as well as regulation of cell proliferation and neuronal differentiation [97], in 318 

proliferative zones of the developing brain [98]. The changes of 5-HT2C editing have been linked 319 

to mental disorders and suicide [99], although the full extent of editing consequences remains to 320 

be elucidated [100]. Dysregulation of ADAR activity can also be potentially connected to the 321 

neurodegeneration observed in GBS, where IFN-triggered elevated expression of ADAR results 322 

in abnormal editing of proteins involved in synaptic signaling, thereby changing the ion 323 

homeostasis of neurons, and hence, triggering the subsequent cascade of effects, similar to what 324 

is observed in CZS. 325 

326 

327 

328 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 13: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

13  

Conclusions and prospects 329 

We posit that the experimental evidence from both the CZS and the GBS cases available so far is 330 

consistent with the expectations of the hypothesis presented here. However, a causal link 331 

between ADAR editing and subsequent neurodevelopmental or neurodegenerative sequelae in 332 

CZS or GBS remains to be demonstrated. A critical first step would be to document ADAR 333 

expression and ADAR editing levels in ZIKV infection in pregnancy and GBS, including self-334 

regulation aspects of ADAR loci themselves [101], as well as expression and activity of calcium 335 

homeostasis and metabolism proteins. Simultaneously, we need to elucidate the patterns and 336 

regulatory processes involved in nuanced spatio-temporal changes in ADAR editing in brain 337 

development during normal as well as ZIKV-positive pregnancies, and how these changes are 338 

linked to observed clinical symptoms, because we still have only a limited understanding of the 339 

complex regulation of ADAR editing across cells, tissues, developmental stages and individuals. 340 

The observation of differential editing activity and its ramp-up during brain development [102] 341 

must be supplemented by deeper understanding of how editing is regulated during different 342 

stages of brain development and/or different locations in the CNS. This can be greatly aided by 343 

the recently developed single-cell transcriptomics approaches [103]. 344 

Understanding how ADAR editing influences brain development and function may lead to 345 

development of treatment strategies that can be applied to newly infected ZIKV-positive 346 

pregnant women, as well as to infants born or later diagnosed with CZS. It is likely that in utero 347 

treatment strategies would vary depending on the stage of pregnancy (stemming from the 348 

changing role of ADAR-edited proteins) at different stages of prenatal development. Treatment 349 

strategies might range from (tailored) applications of existing immunotherapies to regulate 350 

expression of interferon and/or other players of the cell-autonomous immunity pathway that are 351 

upstream regulators of ADAR expression [85], to development of biomarkers of editing as well as 352 

compounds targeting the editing process itself [104]. Similarly, we need to better understand the 353 

role of ADAR editing and the functional implications of it (including quantitative aspects of how 354 

much gets edited during any given time) on its respective targets during neurodegeneration of 355 

GBS. 356 

357 

There might be an opportunity to intervene in the regulation of ADAR editing during/shortly 358 

after ZIKV infection with the aim of preventing/diminishing the spectrum of ZIKV 359 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 14: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

14  

pathogenic/neurodevelopmental sequelae. For example, during pregnancy, within two-three 360 

weeks of diagnosed ZIKV infection (i.e., within two-three weeks after the initial rash appears 361 

[105]) a short course of drugs leading to the suppression of the type I interferon pathway can be 362 

expected to result in down-regulation (or prevention of activation) of fetal ADAR activity. This 363 

can be achieved by administering treatments currently used, e.g., to treat lupus [106]. Decisions to 364 

use such treatments will be complicated by the fact that not all pregnant women exhibit clinical 365 

signs of ZIKV infection [19]. However, the timing of asymptomatic infections can be inferred if 366 

there is a finite window of exposure, by definition problematic in ZIKV-endemic areas. A similar 367 

course of treatment can be applied if the early GBS symptoms were to appear a few weeks post-368 

ZIKV infection (similar to that in HCV infections, [107]). Furthermore, the role of the recently 369 

discovered member of the type III interferon pathway in the immune response needs to be 370 

considered too [108]. Additionally, development of treatments specifically aimed at the reversal 371 

of deleterious editing effects can also be pursued, e.g., via a combination of short-term 372 

stimulation of expression of ADAR editing targets, administration of antagonists to the edited 373 

protein versions and/or suppression of ADAR editing. 374 

375 

The same molecular mechanism postulated here to explain ZIKV pathogenesis may underlie 376 

other conditions. For example, the increased editing of the calcium channel CaV1.3 has been 377 

observed in dopamine-containing neurons affected in Parkinson’s disease, a second most 378 

frequent neurodegenerative disease in the world [109], in which degeneration and death of these 379 

(‘dopaminergic’) neurons is associated with motor symptoms of the disease [110]. Currently we 380 

have neither a cure for it, nor a firm understanding of its underlying mechanisms [110, 111], 381 

although it appears that (some form of) calcium dysregulation likely plays a prominent role [112]. 382 

This dysregulation would result in oxidative and proteolytic stress and neuroinflammation that 383 

may lead to mitochondrial dysfunction or vice versa [112, 113]. Evidence suggests that even in early 384 

stages of Parkinson’s the calcium homeostasis is disturbed, in part attributable to what appears to 385 

be a shift in cells reliance on (editable) CaV1.3 in lieu of CaV1.2 [114]. It is unclear whether the 386 

changes in channel kinetics are due to CaV1.3 editing, and/or differential expression of 387 

alternatively spliced isoforms CaV1.3 [115], as the study lacked the needed antibody resolution 388 

[114]. In either case, this scenario offers an explanation of yet another neurodegenerative condition 389 

(in addition to GBS) with unclear aetiology that could potentially be linked to possible changes 390 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 15: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

15  

in ADAR editing patterns induced by prior infections (e.g., [116]), likely of minor viral variety, 391 

which have mild to subclinical symptoms that nonetheless have the potential to (over)activate 392 

ADARs as part of cell-autonomous immunity. Could changes in edited calcium channels also 393 

explain the brain calcification observed following prenatal CMV (a herpesvirus) infection [117]? 394 

Interestingly, brain calcification is also a common finding in CZS infants, born with or without 395 

microcephaly [32], again suggesting a role for ADAR editing in ZIKV pathogenesis. 396 

Ultimately, we would like to call for systematic, concerted and broad efforts to understand the 397 

nuances of spatio-temporal distribution of ADARs and associated editing activity throughout the 398 

brain and primary neurons, both in pregnancy and postnatally, as well the influence of viral 399 

infections (including ZIKV) on such activity and subsequent clinical consequences. 400 

401 

Funding 402 

This work was partially supported Kent State University Research Council Seed Award, and 403 

Brain Health Institute Pilot Award to HP. MLW was supported by the National Institutes of 404 

Health grant number GM083192. 405 

406 

407 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 16: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

16  

Figure 1.

A

B

408 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 17: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

17  

409 

Figure 1. Simplified (A) and detailed (B) summaries of our new hypothesis linking ZIKV 410 

infection to congenital Zika syndrome and Guillain-Barre syndrome. (B) Overview of ZIKV 411 

infection and the proposed mechanistic model of ZIKV-mediated pathogenesis. Upon infection, 412 

ZIKV activates Toll-like-Receptor 3 (TLR3), which in turn activates the interferon (IFN) 413 

pathway [118, 119]. Interferon-sensitive response elements (ISREs) upregulate interferon-stimulated 414 

genes (ISGs), including the ADAR p150 isoform [85]. Thus, in addition to ADAR editing of viral 415 

RNA as part of cell-autonomous immunity, ZIKV-driven activation of ADARp150 may also 416 

lead to dysregulation of ADAR editing within host cells. These changes in levels of ADAR 417 

editing may be due to increased abundance of ADAR p150 enzyme copies and/or due to 418 

interference between ADAR p150 and other ADARs, e.g., through substrate competition with 419 

ADARB1 [52, 101]. In turn, ZIKV-induced changes in editing patterns of host transcripts – such as 420 

neurotransmitter receptors and transporters - can result in physiological changes in host proteins, 421 

such as changes in ion permeability and excitability as illustrated by GRIA2 and GRIA3 [73, 77], in 422 

turn leading to excitotoxicity and neuronal demise [45, 46]. Artistic drawing is by Peggy Muddles, 423 

@vexedmuddler. 424 

425 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 18: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

18  

References used 426 

427 

[1] S. A. Rasmussen, D. J. Jamieson, M. A. Honein, L. R. Petersen, N Engl J Med 2016, 374, 428 

1981. 429 

[2] GBD 2016 DALYs and HALE Collaborators, Lancet 2017, 390, 1211. 430 

[3] GBD 2016 DALYs and HALE Collaborators, Lancet 2017, 390, 1260. 431 

[4] E. Oehler, L. Watrin, P. Larre, I. Leparc-Goffart, S. Lastere, F. Valour, L. Baudouin, H. 432 

Mallet, D. Musso, F. Ghawche, Euro Surveill 2014, 19, pii: 20720. 433 

[5] V. M. Cao-Lormeau, A. Blake, S. Mons, S. Lastere, C. Roche, J. Vanhomwegen, T. Dub, 434 

L. Baudouin, A. Teissier, P. Larre, A. L. Vial, C. Decam, V. Choumet, S. K. Halstead, H. J. 435 

Willison, L. Musset, J. C. Manuguerra, P. Despres, E. Fournier, H. P. Mallet, D. Musso, A. 436 

Fontanet, J. Neil, F. Ghawche, Lancet 2016, 387, 1531. 437 

[6] B. van den Berg, C. Walgaard, J. Drenthen, C. Fokke, B. C. Jacobs, P. A. van Doorn, Nat 438 

Rev Neurol 2014, 10, 469. 439 

[7] M. R. Duffy, T. H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, M. 440 

Pretrick, M. Marfel, S. Holzbauer, C. Dubray, L. Guillaumot, A. Griggs, M. Bel, A. J. Lambert, 441 

J. Laven, O. Kosoy, A. Panella, B. J. Biggerstaff, M. Fischer, E. B. Hayes, N Engl J Med 2009, 442 

360, 2536. 443 

[8] A. Delaney, C. Mai, A. Smoots, J. Cragan, S. Ellington, P. Langlois, R. Breidenbach, J. 444 

Fornoff, J. Dunn, M. Yazdy, N. Scotto-Rosato, J. Sweatlock, D. Fox, J. Palacios, N. Forestieri, 445 

V. Leedom, M. Smiley, A. Nance, H. Lake-Burger, P. Romitti, C. Fall, M. V. Prado, J. Barton, J. 446 

M. Bryan, W. Arias, S. V. Brown, J. Kimura, S. Mann, B. Martin, L. Orantes, A. Taylor, J. 447 

Nahabedian, A. Akosa, Z. Song, S. Martin, R. Ramlal, C. Shapiro-Mendoza, J. Isenburg, C. A. 448 

Moore, S. Gilboa, M. A. Honein, MMWR Morb Mortal Wkly Rep 2018, 67, 91. 449 

[9] C. A. Moore, J. E. Staples, W. B. Dobyns, A. Pessoa, C. V. Ventura, E. B. Fonseca, E. 450 

M. Ribeiro, L. O. Ventura, N. N. Neto, J. F. Arena, S. A. Rasmussen, JAMA Pediatr 2017, 171, 451 

288. 452 

[10] A. S. Melo, R. S. Aguiar, M. M. Amorim, M. B. Arruda, F. O. Melo, S. T. Ribeiro, A. G. 453 

Batista, T. Ferreira, M. P. Dos Santos, V. V. Sampaio, S. R. Moura, L. P. Rabello, C. E. 454 

Gonzaga, G. Malinger, R. Ximenes, P. S. de Oliveira-Szejnfeld, F. Tovar-Moll, L. Chimelli, P. 455 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 19: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

19  

P. Silveira, R. Delvechio, L. Higa, L. Campanati, R. M. Nogueira, A. M. Filippis, J. Szejnfeld, C. 456 

M. Voloch, O. C. Ferreira, Jr., R. M. Brindeiro, A. Tanuri, JAMA Neurol 2016, 73, 1407. 457 

[11] J. R. de Oliveira Dias, C. V. Ventura, B. de Paula Freitas, J. Prazeres, L. O. Ventura, V. 458 

Bravo-Filho, T. Aleman, A. I. Ko, A. Zin, R. Belfort, M. Maia, Progress in Retinal and Eye 459 

Research 2018, pii: S1350. 460 

[12] M. C. Leal, L. F. Muniz, T. S. Ferreira, C. M. Santos, L. C. Almeida, V. Van Der Linden, 461 

R. C. Ramos, L. C. Rodrigues, S. S. Neto, MMWR Morb Mortal Wkly Rep 2016, 65, 917. 462 

[13] M. R. Reynolds, A. M. Jones, E. E. Petersen, E. H. Lee, M. E. Rice, A. Bingham, S. R. 463 

Ellington, N. Evert, S. Reagan-Steiner, T. Oduyebo, C. M. Brown, S. Martin, N. Ahmad, J. 464 

Bhatnagar, J. Macdonald, C. Gould, A. D. Fine, K. D. Polen, H. Lake-Burger, C. L. Hillard, N. 465 

Hall, M. M. Yazdy, K. Slaughter, J. N. Sommer, A. Adamski, M. Raycraft, S. Fleck-Derderian, 466 

J. Gupta, K. Newsome, M. Baez-Santiago, S. Slavinski, J. L. White, C. A. Moore, C. K. Shapiro-467 

Mendoza, L. Petersen, C. Boyle, D. J. Jamieson, D. Meaney-Delman, M. A. Honein, MMWR 468 

Morb Mortal Wkly Rep 2017, 66, 366. 469 

[14] C. G. Victora, M. C. Castro, G. V. Franca, L. Schuler-Faccini, F. C. Barros, Lancet 2017, 470 

389, 152. 471 

[15] G. V. Franca, L. Schuler-Faccini, W. K. Oliveira, C. M. Henriques, E. H. Carmo, V. D. 472 

Pedi, M. L. Nunes, M. C. Castro, S. Serruya, M. F. Silveira, F. C. Barros, C. G. Victora, Lancet 473 

2016, 388, 891. 474 

[16] K. M. Adams Waldorf, B. R. Nelson, J. E. Stencel-Baerenwald, C. Studholme, R. P. 475 

Kapur, B. Armistead, C. L. Walker, S. Merillat, J. Vornhagen, J. Tisoncik-Go, A. Baldessari, M. 476 

Coleman, M. K. Dighe, D. W. W. Shaw, J. A. Roby, V. Santana-Ufret, E. Boldenow, J. Li, X. 477 

Gao, M. A. Davis, J. A. Swanstrom, K. Jensen, D. G. Widman, R. S. Baric, J. T. Medwid, K. A. 478 

Hanley, J. Ogle, G. M. Gough, W. Lee, C. English, W. M. Durning, J. Thiel, C. Gatenby, E. C. 479 

Dewey, M. R. Fairgrieve, R. D. Hodge, R. F. Grant, L. Kuller, W. B. Dobyns, R. F. Hevner, M. 480 

Gale, Jr., L. Rajagopal, Nat Med 2018, 24, 368. 481 

[17] F. Grischott, M. Puhan, C. Hatz, P. Schlagenhauf, Travel Med Infect Dis 2016, 14, 313. 482 

[18] K. A. Caillouet, S. R. Michaels, X. Xiong, I. Foppa, D. M. Wesson, Emerg Infect Dis 483 

2008, 14, 804. 484 

[19] M. A. Honein, A. L. Dawson, E. E. Petersen, A. M. Jones, E. H. Lee, M. M. Yazdy, N. 485 

Ahmad, J. Macdonald, N. Evert, A. Bingham, JAMA 2017, 317, 59. 486 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 20: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

20  

[20] E. Dirlikov, C. G. Major, N. A. Medina, R. Lugo-Robles, D. Matos, J. L. Munoz-Jordan, 487 

C. Colon-Sanchez, M. Garcia, M. Olivero-Segarra, G. Malave, G. M. Rodriguez-Vega, D. L. 488 

Thomas, S. H. Waterman, J. J. Sejvar, C. A. Luciano, T. M. Sharp, B. Rivera-Garcia, JAMA 489 

Neurol 2018, 75, 1089. 490 

[21] M. D. Landry, S. R. Raman, K. Kennedy, J. P. Bettger, D. Magnusson, Phys Ther 2017, 491 

97, 275. 492 

[22] J. Li, C. Y. Chong, N. W. Tan, C. F. Yung, N. W. Tee, K. C. Thoon, Clin Infect Dis 493 

2017, 64, 1445. 494 

[23] S. N. Slavov, A. K. Matsuno, F. U. de Melo, K. K. Otaguiri, V. d. M. P. Balbão, D. T. 495 

Covas, S. Kashima, Journal of Clinical Virology 2016, 82, S9. 496 

[24] A. Landais, A. Césaire, M. Fernandez, S. Breurec, C. Herrmann, F. Delion, P. Desprez, 497 

Journal of the Neurological Sciences 2017, 383, 211. 498 

[25] A. Satterfield-Nash, K. Kotzky, J. Allen, J. Bertolli, C. A. Moore, I. O. Pereira, A. 499 

Pessoa, F. Melo, A. Santelli, C. A. Boyle, G. Peacock, MMWR Morb Mortal Wkly Rep 2017, 66, 500 

1347. 501 

[26] P. J. Hotez, JAMA Pediatr 2016, 170, 787; A. Soares de Souza, C. Moraes Dias, F. D. 502 

Braga, A. C. Terzian, C. F. Estofolete, A. H. Oliani, G. H. Oliveira, C. C. Brandao de Mattos, L. 503 

C. de Mattos, M. L. Nogueira, D. C. Vaz-Oliani, Clin Infect Dis 2016, 63, 1622; A. S. Oliveira 504 

Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio, A. M. Bispo de Filippis, 505 

Ultrasound Obstet Gynecol 2016, 47, 6. 506 

[27] M. C. Leal, V. van der Linden, T. P. Bezerra, L. de Valois, A. C. G. Borges, M. M. C. 507 

Antunes, K. G. Brandt, C. X. Moura, L. C. Rodrigues, C. R. Ximenes, Emerg Infect Dis 2017, 508 

23, 1253. 509 

[28] J. Oliveira-Filho, R. Felzemburgh, F. Costa, N. Nery, A. Mattos, D. F. Henriques, A. I. 510 

Ko, T. For The Salvador Zika Response, Am J Trop Med Hyg 2018, 98, 1860. 511 

[29] M. C. Leal, L. F. Muniz, S. D. Caldas Neto, V. van der Linden, R. C. Ramos, Braz J 512 

Otorhinolaryngol 2016, S1808-8694, 30127. 513 

[30] M. Kumar, L. Ching, J. Astern, E. Lim, A. J. Stokes, M. Melish, V. R. Nerurkar, PLoS 514 

Negl Trop Dis 2016, 10, e0005262. 515 

[31] D. J. Platt, J. J. Miner, Curr Opin Virol 2017, 27, 1. 516 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 21: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

21  

[32] V. van der Linden, A. Pessoa, W. Dobyns, A. J. Barkovich, H. V. Junior, E. L. Filho, E. 517 

M. Ribeiro, M. C. Leal, P. P. Coimbra, M. F. Aragao, I. Vercosa, C. Ventura, R. C. Ramos, D. 518 

D. Cruz, M. T. Cordeiro, V. M. Mota, M. Dott, C. Hillard, C. A. Moore, MMWR Morb Mortal 519 

Wkly Rep 2016, 65, 1343. 520 

[33] S. B. Mulkey, G. Vezina, D. I. Bulas, Z. Khademian, A. Blask, Y. Kousa, C. Cristante, L. 521 

Pesacreta, A. J. du Plessis, R. L. DeBiasi, Pediatr Neurol 2018, 78, 75. 522 

[34] P. Brasil, P. C. Sequeira, A. D. Freitas, H. E. Zogbi, G. A. Calvet, R. V. de Souza, A. M. 523 

Siqueira, M. C. de Mendonca, R. M. Nogueira, A. M. de Filippis, T. Solomon, Lancet 2016, 387, 524 

1482. 525 

[35] H. J. Willison, B. C. Jacobs, P. A. van Doorn, Lancet 2016, 388, 717. 526 

[36] R. A. Hughes, A. V. Swan, J. C. Raphael, D. Annane, R. van Koningsveld, P. A. van 527 

Doorn, Brain 2007, 130, 2245. 528 

[37] J. M. Leger, R. Guimaraes-Costa, C. Muntean, Neurotherapeutics 2016, 13, 96. 529 

[38] N. van Leeuwen, H. F. Lingsma, A. M. Vanrolleghem, M. C. Sturkenboom, P. A. van 530 

Doorn, E. W. Steyerberg, B. C. Jacobs, PLoS One 2016, 11, e0143837. 531 

[39] L. Ruts, J. Drenthen, J. L. Jongen, W. C. Hop, G. H. Visser, B. C. Jacobs, P. A. van 532 

Doorn, Neurology 2010, 75, 1439. 533 

[40] S. B. Mulkey, C. M. Glasier, B. El-Nabbout, W. D. Walters, C. Ionita, M. H. McCarthy, 534 

G. B. Sharp, R. M. Shbarou, Pediatr Neurol 2010, 43, 263. 535 

[41] M. E. Rice, R. R. Galang, N. M. Roth, S. R. Ellington, C. A. Moore, M. Valencia-Prado, 536 

E. M. Ellis, A. J. Tufa, L. A. Taulung, J. M. Alfred, J. Perez-Padilla, C. A. Delgado-Lopez, S. R. 537 

Zaki, S. Reagan-Steiner, J. Bhatnagar, J. F. Nahabedian, 3rd, M. R. Reynolds, M. Yeargin-538 

Allsopp, L. J. Viens, S. M. Olson, A. M. Jones, M. A. Baez-Santiago, P. Oppong-Twene, K. 539 

VanMaldeghem, E. L. Simon, J. T. Moore, K. D. Polen, B. Hillman, R. Ropeti, L. Nieves-Ferrer, 540 

M. Marcano-Huertas, C. A. Masao, E. J. Anzures, R. L. Hansen, Jr., S. I. Perez-Gonzalez, C. P. 541 

Espinet-Crespo, M. Luciano-Roman, C. K. Shapiro-Mendoza, S. M. Gilboa, M. A. Honein, 542 

MMWR Morb Mortal Wkly Rep 2018, 67, 858. 543 

[42] N. Yuki, H. P. Hartung, N Engl J Med 2012, 366, 2294. 544 

[43] M. T. Medina, M. Medina-Montoya, J Neurol Sci 2017, 383, 214. 545 

[44] R. Brusa, F. Zimmermann, D. S. Koh, D. Feldmeyer, P. Gass, P. H. Seeburg, R. 546 

Sprengel, Science 1995, 270, 1677. 547 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 22: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

22  

[45] I. Gaisler-Salomon, E. Kravitz, Y. Feiler, M. Safran, A. Biegon, N. Amariglio, G. 548 

Rechavi, Neurobiol Aging 2014, 35, 1785. 549 

[46] J. J. Rosenthal, P. H. Seeburg, Neuron 2012, 74, 432. 550 

[47] B. L. Bass, Annu Rev Biochem 2002, 71, 817. 551 

[48] S. N. Deffit, H. A. Hundley, Wiley Interdiscip Rev RNA 2016, 7, 113. 552 

[49] J. B. Li, G. M. Church, Nat Neurosci 2013, 16, 1518. 553 

[50] C. R. Walkley, B. Liddicoat, J. C. Hartner, in Adenosine Deaminases Acting on RNA 554 

(ADARs) and A-to-I Editing, Springer, 2011, 197. 555 

[51] Y. A. Savva, L. E. Rieder, R. A. Reenan, Genome Biol 2012, 13, 252. 556 

[52] C. Cenci, R. Barzotti, F. Galeano, S. Corbelli, R. Rota, L. Massimi, C. Di Rocco, M. A. 557 

O'Connell, A. Gallo, J Biol Chem 2008, 283, 7251. 558 

[53] A. Gallo, D. Vukic, D. Michalik, M. A. O'Connell, L. P. Keegan, Hum Genet 2017, 136, 559 

1265. 560 

[54] E. L. McGrath, S. L. Rossi, J. Gao, S. G. Widen, A. C. Grant, T. J. Dunn, S. R. Azar, C. 561 

M. Roundy, Y. Xiong, D. J. Prusak, B. D. Loucas, T. G. Wood, Y. Yu, I. Fernandez-Salas, S. C. 562 

Weaver, N. Vasilakis, P. Wu, Stem Cell Reports 2017, 8, 715. 563 

[55] W. Garncarz, A. Tariq, C. Handl, O. Pusch, M. F. Jantsch, RNA Biol 2013, 10, 192. 564 

[56] M. M. Jacobs, R. L. Fogg, R. B. Emeson, G. D. Stanwood, Dev Neurosci 2009, 31, 223. 565 

[57] E. M. Riedmann, S. Schopoff, J. C. Hartner, M. F. Jantsch, RNA 2008, 14, 1110. 566 

[58] Q. Wang, J. Khillan, P. Gadue, K. Nishikura, Science 2000, 290, 1765. 567 

[59] T. Yamashita, C. Tadami, Y. Nishimoto, T. Hideyama, D. Kimura, T. Suzuki, S. Kwak, 568 

Neurosci Res 2012, 73, 42. 569 

[60] G. Lanzi, E. Fazzi, S. D'Arrigo, S. Orcesi, I. Maraucci, C. Uggetti, E. Bertini, P. Lebon, 570 

Neurology 2005, 64, 1621. 571 

[61] H. Q. Zhao, P. Zhang, H. Gao, X. He, Y. Dou, A. Y. Huang, X. M. Liu, A. Y. Ye, M. Q. 572 

Dong, L. Wei, Genome Res 2015, 25, 66. 573 

[62] S. Kwak, T. Hideyama, T. Yamashita, H. Aizawa, Neuropathology 2010, 30, 182. 574 

[63] F. Galeano, A. Leroy, C. Rossetti, I. Gromova, P. Gautier, L. P. Keegan, L. Massimi, C. 575 

Di Rocco, M. A. O'Connell, A. Gallo, Int J Cancer 2010, 127, 127. 576 

[64] H. C. Cox, R. A. Lea, C. Bellis, M. Carless, T. D. Dyer, J. Curran, J. Charlesworth, S. 577 

Macgregor, D. Nyholt, D. Chasman, Neurogenetics 2012, 13, 261. 578 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 23: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

23  

[65] E. Ben-David, E. Granot-Hershkovitz, G. Monderer-Rothkoff, E. Lerer, S. Levi, M. 579 

Yaari, R. P. Ebstein, N. Yirmiya, S. Shifman, Hum Mol Genet 2011, 20, 3632. 580 

[66] L. Mittaz, S. E. Antonarakis, M. Higuchi, H. S. Scott, Hum Genet 1997, 100, 398. 581 

[67] A. J. Fisher, P. A. Beal, RNA Biol 2017, 14, 164. 582 

[68] Y. J. Crow, N. Manel, Nat Rev Immunol 2015, 15, 429; F. Goutieres, J. Aicardi, P. G. 583 

Barth, P. Lebon, Ann Neurol 1998, 44, 900. 584 

[69] G. I. Rice, P. R. Kasher, G. M. Forte, N. M. Mannion, S. M. Greenwood, M. 585 

Szynkiewicz, J. E. Dickerson, S. S. Bhaskar, M. Zampini, T. A. Briggs, E. M. Jenkinson, C. A. 586 

Bacino, R. Battini, E. Bertini, P. A. Brogan, L. A. Brueton, M. Carpanelli, C. De Laet, P. de 587 

Lonlay, M. del Toro, I. Desguerre, E. Fazzi, A. Garcia-Cazorla, A. Heiberg, M. Kawaguchi, R. 588 

Kumar, J. P. Lin, C. M. Lourenco, A. M. Male, W. Marques, Jr., C. Mignot, I. Olivieri, S. 589 

Orcesi, P. Prabhakar, M. Rasmussen, R. A. Robinson, F. Rozenberg, J. L. Schmidt, K. Steindl, T. 590 

Y. Tan, W. G. van der Merwe, A. Vanderver, G. Vassallo, E. L. Wakeling, E. Wassmer, E. 591 

Whittaker, J. H. Livingston, P. Lebon, T. Suzuki, P. J. McLaughlin, L. P. Keegan, M. A. 592 

O'Connell, S. C. Lovell, Y. J. Crow, Nat Genet 2012, 44, 1243. 593 

[70] J. H. Livingston, Y. J. Crow, Neuropediatrics 2016, 47, 355. 594 

[71] E. Y. Levanon, M. Hallegger, Y. Kinar, R. Shemesh, K. Djinovic-Carugo, G. Rechavi, 595 

M. F. Jantsch, E. Eisenberg, Nucleic Acids Res 2005, 33, 1162. 596 

[72] Y. Kawahara, K. Ito, H. Sun, H. Aizawa, I. Kanazawa, S. Kwak, Nature 2004, 427, 801. 597 

[73] T. Hideyama, T. Yamashita, H. Aizawa, S. Tsuji, A. Kakita, H. Takahashi, S. Kwak, 598 

Neurobiol Dis 2012, 45, 1121. 599 

[74] A. Tariq, M. F. Jantsch, Front Neurosci 2012, 6, 99. 600 

[75] S. Pachernegg, Y. Munster, E. Muth-Kohne, G. Fuhrmann, M. Hollmann, Front Cell 601 

Neurosci 2015, 9, 69. 602 

[76] H. Huang, B. Z. Tan, Y. Shen, J. Tao, F. Jiang, Y. Y. Sung, C. K. Ng, M. Raida, G. Kohr, 603 

M. Higuchi, H. Fatemi-Shariatpanahi, B. Harden, D. T. Yue, T. W. Soong, Neuron 2012, 73, 604 

304. 605 

[77] D. Bonini, A. Filippini, L. La Via, C. Fiorentini, F. Fumagalli, M. Colombi, A. Barbon, 606 

RNA Biol 2015, 12, 43. 607 

[78] T. D. Werry, R. Loiacono, P. M. Sexton, A. Christopoulos, Pharmacol Ther 2008, 119, 7. 608 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 24: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

24  

[79] E. Y. Rula, A. H. Lagrange, M. M. Jacobs, N. Hu, R. L. Macdonald, R. B. Emeson, J 609 

Neurosci 2008, 28, 6196. 610 

[80] M. Holmgren, J. J. Rosenthal, Curr Issues Mol Biol 2015, 17, 23. 611 

[81] K. Nishikura, Nat Rev Mol Cell Biol 2016, 17, 83. 612 

[82] N. C. Danbolt, D. N. Furness, Y. Zhou, Neurochem Int 2016, 98, 29. 613 

[83] P. H. Seeburg, M. Higuchi, R. Sprengel, Brain Res Brain Res Rev 1998, 26, 217. 614 

[84] M. T. Veno, J. B. Bramsen, C. Bendixen, F. Panitz, I. E. Holm, M. Ohman, J. Kjems, 615 

RNA Biol 2012, 9, 1054; M. A. Huntley, M. Lou, L. D. Goldstein, M. Lawrence, G. J. Dijkgraaf, 616 

J. S. Kaminker, R. Gentleman, BMC Genomics 2016, 17, 61. 617 

[85] J. D. MacMicking, Nat Rev Immunol 2012, 12, 367. 618 

[86] C. E. Samuel, Virology 2011, 411, 180; G. C. Jayan, J. L. Casey, J Virol 2002, 76, 3819. 619 

[87] A. Grant, S. S. Ponia, S. Tripathi, V. Balasubramaniam, L. Miorin, M. Sourisseau, M. C. 620 

Schwarz, M. P. Sanchez-Seco, M. J. Evans, S. M. Best, A. Garcia-Sastre, Cell Host Microbe 621 

2016, 19, 882. 622 

[88] J. R. Bowen, K. M. Quicke, M. S. Maddur, J. T. O'Neal, C. E. McDonald, N. B. 623 

Fedorova, V. Puri, R. S. Shabman, B. Pulendran, M. S. Suthar, PLoS Pathog 2017, 13, 624 

e1006164. 625 

[89] S. Tripathi, V. R. Balasubramaniam, J. A. Brown, I. Mena, A. Grant, S. V. Bardina, K. 626 

Maringer, M. C. Schwarz, A. M. Maestre, M. Sourisseau, R. A. Albrecht, F. Krammer, M. J. 627 

Evans, A. Fernandez-Sesma, J. K. Lim, A. Garcia-Sastre, PLoS Pathog 2017, 13, e1006258. 628 

[90] N. R. Matevosyan, Critical Care Obstetrics and Gynecology 2016; V. V. Linden, H. V. J. 629 

Linden, M. C. Leal, E. L. F. Rolim, A. V. Linden, M. Aragao, A. M. Brainer-Lima, D. Cruz, L. 630 

O. Ventura, T. L. T. Florencio, M. T. Cordeiro, S. D. S. N. Caudas, R. C. Ramos, Arq 631 

Neuropsiquiatr 2017, 75, 381. 632 

[91] H. Piontkivska, L. F. Matos, S. Paul, B. Scharfenberg, W. G. Farmerie, M. M. Miyamoto, 633 

M. L. Wayne, Genome Biol Evol 2016, 8, 2952. 634 

[92] H. Piontkivska, M. Frederick, M. M. Miyamoto, M. L. Wayne, Ecol Evol 2017, 7, 4475. 635 

[93] S. Kwak, Y. Nishimoto, T. Yamashita, RNA Biol 2008, 5, 193. 636 

[94] G. X. Xu, J. Z. Zhang, P Natl Acad Sci USA 2014, 111, 3769. 637 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 25: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

25  

[95] A. Sailer, G. T. Swanson, I. Perez-Otano, L. O'Leary, S. A. Malkmus, R. H. Dyck, H. 638 

Dickinson-Anson, H. H. Schiffer, C. Maron, T. L. Yaksh, F. H. Gage, S. O'Gorman, S. F. 639 

Heinemann, J Neurosci 1999, 19, 8757. 640 

[96] J. G. Hensler, in Basic Neurochemistry. Molecular, Cellular and Medical Aspects., (Ed: 641 

G. S. Scott Brady, R. Wayne Albers, Donald Price), Elsevier, 2012, 300. 642 

[97] M. Tohda, M. Nomura, Y. Nomura, J Pharmacol Sci 2006, 100, 427. 643 

[98] S. De Lucchini, M. Ori, M. Nardini, S. Marracci, I. Nardi, Brain Res Mol Brain Res 644 

2003, 115, 196. 645 

[99] R. Lyddon, A. J. Dwork, M. Keddache, L. J. Siever, S. Dracheva, World J Biol 646 

Psychiatry 2013, 14, 590. 647 

[100] A. Gatsiou, N. Vlachogiannis, F. F. Lunella, M. Sachse, K. Stellos, Antioxid Redox 648 

Signal 2018, 29, 846. 649 

[101] E. Oakes, A. Anderson, A. Cohen-Gadol, H. A. Hundley, J Biol Chem 2017, 292, 4326. 650 

[102] H. Wahlstedt, C. Daniel, M. Enstero, M. Ohman, Genome Res 2009, 19, 978. 651 

[103] E. Picardi, D. S. Horner, G. Pesole, RNA 2017, 23, 860. 652 

[104] S. van der Laan, N. Salvetat, D. Weissmann, F. Molina, Drug Discov Today 2017, 22, 653 

1056. 654 

[105] M. S. Majumder, R. Hess, R. Ross, H. Piontkivska, F1000Res 2018, 7, 159. 655 

[106] R. Furie, M. Khamashta, J. T. Merrill, V. P. Werth, K. Kalunian, P. Brohawn, G. G. Illei, 656 

J. Drappa, L. Wang, S. Yoo, Arthritis Rheumatol 2017, 69, 376. 657 

[107] E. Doncel-Perez, L. Mateos-Hernandez, E. Pareja, A. Garcia-Forcada, M. Villar, R. 658 

Tobes, F. Romero Ganuza, V. Vila Del Sol, R. Ramos, I. G. Fernandez de Mera, J. de la Fuente, 659 

J Immunol 2016, 196, 1102. 660 

[108] T. R. O'Brien, L. Prokunina-Olsson, R. P. Donnelly, J Interferon Cytokine Res 2014, 34, 661 

829. 662 

[109] L. M. de Lau, M. M. Breteler, Lancet Neurol 2006, 5, 525. 663 

[110] C. S. Chan, J. N. Guzman, E. Ilijic, J. N. Mercer, C. Rick, T. Tkatch, G. E. Meredith, D. 664 

J. Surmeier, Nature 2007, 447, 1081. 665 

[111] S. Fahn, Parkinsonism Relat Disord 2018, 46 Suppl 1, S1. 666 

[112] R. Knorle, Neurotox Res 2018, 33, 515. 667 

[113] J. M. Taylor, B. S. Main, P. J. Crack, Neurochem Int 2013, 62, 803. 668 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018

Page 26: 1 Title: Dysregulation of RNA editing may help explain ...1 1 Title: Dysregulation of RNA editing may help explain pathogenicity mechanisms of 2 congenital Zika syndrome and Guillain-Barre

26  

[114] M. J. Hurley, B. Brandon, S. M. Gentleman, D. T. Dexter, Brain 2013, 136, 2077. 669 

[115] G. Bock, M. Gebhart, A. Scharinger, W. Jangsangthong, P. Busquet, C. Poggiani, S. 670 

Sartori, M. E. Mangoni, M. J. Sinnegger-Brauns, S. Herzig, J. Striessnig, A. Koschak, J Biol 671 

Chem 2011, 286, 42736. 672 

[116] A. Cucca, H. A. Migdadi, A. Di Rocco, Parkinsonism Relat Disord 2018, 46 Suppl 1, 673 

S83. 674 

[117] K. R. Fink, M. M. Thapa, G. E. Ishak, S. Pruthi, Radiographics 2010, 30, 1779; L. 675 

Gabrielli, M. P. Bonasoni, T. Lazzarotto, S. Lega, D. Santini, M. P. Foschini, B. Guerra, F. 676 

Baccolini, G. Piccirilli, A. Chiereghin, E. Petrisli, G. Gardini, M. Lanari, M. P. Landini, J Clin 677 

Virol 2009, 46 Suppl 4, S16. 678 

[118] J. Dang, S. K. Tiwari, G. Lichinchi, Y. Qin, V. S. Patil, A. M. Eroshkin, T. M. Rana, Cell 679 

Stem Cell 2016, 19, 258; 680 

[119] R. Hamel, P. Ferraris, S. Wichit, F. Diop, L. Talignani, J. Pompon, D. Garcia, F. 681 

Liegeois, A. A. Sall, H. Yssel, D. Misse, Infect Genet Evol 2017, 49, 134. 682 

683 

 684 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27401v1 | CC BY 4.0 Open Access | rec: 3 Dec 2018, publ: 3 Dec 2018